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ACCURATE COMPUTATION OF DIVIDED DIFFERENCES

Allan Charles McCurdy

Abstract

The standard recurrence scheme does not always yield accurate divided differences in

finite precision arithmetic. When the function of interest is known analytically and/or its values

are easily calculated, methods other than the recurrence scheme can be used. In particular, a

table of divided differences can be regarded as a function of a special bidiagonal matrix. For

mulas and computational techniques suitable for computing matrix functions may, thus, be

exploited for divided differences.

Divided difference tables of the exponential function are profitably treated as the

exponential of a special matrix. This approach is good precisely when the standard recurrence

is bad, namely when the abscissae of the divided differences are close. When the abscissae are

scaled down by powers of 2, the resulting scaled divided difference table may be squared to give

the wanted table. For real abscissae this scaling and squaring technique, in combination with

the standard recurrence where suitable, yields a hybrid algorithm which permits computation of

any exponential divided difference to an accuracy dependent only on the order of the

difference. For appropriate arrangements of complex abscissae, such as conjugate pairs, a simi

lar result is established. A good way to compute the exponential of a real square matrix A is to

use the Newton divided difference interpolating polynomial. Our algorithm finds an important

application in computing accurately the coefficients of this polynomial.
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ACCURATE COMPUTATION OF DIVIDED DIFFERENCES

A function of a matrix, /C4), may be defined in terms of a polynomial which interpolates

/ at A's eigenvalues. One such interpolating polynomial is derivable from Newton's divided

difference interpolation formula. Coefficients in this interpolating polynomial are divided

differences of /at the eigenvalues of A. Thus f(A) may be represented in terms of divided

differences of /

The opposite is also true, though this is not widely known. That is, divided differences of

/may be represented in terms of the function of a special matrix. Matrix functions and divided

differences, then, are profitably studied' together. In particular, techniques used to compute

matrix functions may be exploited to study and calculate divided differences. The exploitation

of matrix function theory for the study of divided differences is the prime purpose here. In a

number of cases it will lead to new methods for accurate computation of divided differences.

The first chapter is a brief introduction to matrix functions. The interpolating polynomial

definition leads immediately to several matrix theoretic properties of f(A)y for example A and

f(A) commute. The Newton divided difference polynomial explicitly shows the use of divided

differences in defining f(A). An extension to a divided difference series representation of

f(A) is given for holomorphic /

The second chapter is a general study of divided differences. §2.1 introduces a new com

pact divided difference notation and lists, in this new notation, a number of facts about divided

differences. For completeness, the following sections outline the classical approach to the study

of divided differences and the advantages of an entirely different view of them as functions of

their data points. §2.6 establishes the matrix function formula for divided difference tables.

The remaining sections exploit this formula to develop series expansions for divided

differences.

Chapter 3 is a study, in detail, of divided differences of the exponential function and

methods for computing them. The special nature of/=exp gives its divided differences pro

perties not shared by those of other functions. These properties are presented in §3.1. §3.2

develops bounds on exponential divided differences with real data. These bounds show how



errors grow in computing divided differences by the standard method. The following sections

present, with error analyses, a Taylor series algorithm and a scaling and squaring algorithm for

computing exponential divided differences. The latter is a direct consequence of representing

the divided difference table as an exponential of a matrix. §3.5 then outlines a hybrid of those

two algorithms and shows how real exponential divided differences can be computed with a

bounded relative error. Of prime importance is the fact that the error bounds depend only on

the order of the difference, not the data. Finally, the remaining sections study complex

exponential divided differences, with particular attention paid to methods for computing divided

differences with data consisting of conjugate pairs.
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1. Matrix Functions

1.1 Definitions and representations of matrix functions.

The extension to matrices of the concept of function has led to several definitions of

matrix function. Nonetheless, Rinehart [1955] has shown that ail common definitions of

matrix function are equivalent for functions holomorphic on a region containing the eigen

values of the matrix. Since here we concentrate on holomorphic functions, we are free to

choose a definition which makes presentation easiest. A definition of a function of a matrix in

terms of interpolating polynomials has a natural relationship with divided differences. We

choose this as our primary definition.

Let A be an (n+\) x (n+\) constant matrix whose elements may be complex numbers.

We display the eigenvalues of the matrix A in the sequence

&a —Uo« • • • .Xo,A|. . . . ,X|, . . . ,\/, . . . ,A/| in which /+1 of the eigenvalues are distinct

and each distinct eigenvalue occurs w,+l times, /=0,1, . . . ,/. A^ has £(tf,+l) = «-H

entries. The elements of A^ are just the roots of Ays characteristic polynomial

XaM - (X-Ao^'U-X,)"^ ••• (A-A,)"'+\ (1.1.1)

The definition we give for f(A) requires simply that /(A) be defined for each A€ AA

when the eigenvalues are all distinct. To allow for multiple eigenvalues, however, we require

that /be defined on A,, as follows.

Definition: The function /is said to be "defined on the characteristic values of A" when /(A,),

/'(A,),..., / ' (A,) are defined for each / = 0,1, . . . , /. For brevity, we denote this sequence of

values by fi\A).

For any / satisfying this definition, f{A) is defined in terms of an interpolating polyno

mial for /
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Function of a matrix. When /is defined on the characteristic values of Aand p is any po

lynomial such that

/7<AA)-/(AA),

then

f(A)=p(A). (1.1.2)

The polynomial p is an osculating interpolation polynomial for / on AA. That is,

/7(A,)=/(A,), /7'(A/)=/'(Ay) /7f"/)(A,)=/("')(A() for each /-0.1 /. When the eigen
values are distinct this definition of f(A) becomes particularly simple, as then p is just an ordi

nary interpolating polynomial for /at the elements of A,,.

The rationale behind definition (1.1.2) is that for two functions /and & f(A) is indistin

guishable from g(A) when /(A/l)=»^(A/<). The sequence of zeros of f(\)-g(\) includes

A^, the roots of X/i(X), and xa(4)=0 by the Cayley-Hamilton theorem. The interpolating

polynomial p has degree at least w, since it must satisfy the a+1 conditions given in the

definition.1 An interpolating polynomial p may be chosen to satisfy additional conditions, but

the degree of the polynomial is increased. We write p„ for the unique polynomial of least

degree interpolating /on A^.

pa need not be the polynomial of least degree defining f(A). The characteristic polyno

mial xa »s an annihilating polynomial for A because xa (A) = 0. However for some matrices As

there are polynomials of smaller degree which are also annihilating polynomials. The minimal

polynomial /xA is the non-trivial annihilating polynomial for A of least degree. If ixA (A) has

degree /w+1, m ^ w, it is possible to define f(A) in terms of a m degree polynomial p,„ which

interpolates / at the w+1 roots of p.A. Gantmacher [1959] uses this slightly more general

approach in his definition of f(A). The roots of p.A(\) are eigenvalues of A. For m < n fewer

derivatives of/need be specified, however nA and the multiplicities of its roots may be difficult

and costly to obtain. Thus we shall not try to form 'f(A)=*pm(A) for the smallest possible

degree m. p„ can have significantly higher degree than p,„, see Fig. 1.2.1, but here we achieve

greater simplicity in that less need be known about the matrix A.

fA polynomial of degree k can interpolate at, at most, k+\ points. In general k+l
points uniquely determine a polynomial of degree fc, higher degree polynomials are not
uniquely determined.



§1.1

0 1 2

0 1 0

1 1 3

HA(\) = (X-l)(A-2)

X,i(X)-(A-l)2(A-2)

Fig. 1.1.1: Degree of fiA may be less than degree of Xa>

The polynomial representation of f(A) leads to several elementary, but very useful,

consequences.

Similarity transformations. For any (w+1) x (n+\) nonsingular matrix />,

f(PAP-l) = P-fU )•/>-•. (1.1.3)

In theory this permits performing all computations to form f{A) on the simplest matrix similar

to A, e.g. A's Jordan canonical form. In practice, however, the transformation matrix P may be

difficult to compute accurately1" or may be nearly singular. Some less simple form may be

required. The triangular Schur form 7, which is unitarily similar to /f, eliminates the above

objections.* However, f(T) is not always simple to compute with accuracy.

Commutativity.

A-f(A)-f(A)'A (1.1.4)

Parlett [1976] has presented a very fast method for computing functions of upper triangular

matrices T based on this property. In brief, the diagonal of/(7*), which is also upper triangu

lar, is computed directly;

f(T)u=f(Tu)

for each /=»0,1 n. Then successively by diagonals towards the upper right, the general

recurrence is

fKagstrdm and Ruhe [1976] present an algorithm for computing the Jordan form,
while Golub and Wilkinson [1976] discuss limitations on computing it accurately,
tWilkinson [1965] presents a detailed analysis of the QR algorithm which reduces A to
T by a sequence of unitary similarity transformations; the algorithm is implemented in
the EISPACK [Smith, 1974] collection of computer subroutines.
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AT),j - I X W(T)u+k-Ti+kJ - TiJ.k'f(T)i.kJ))/(TIJ-T/j)
A-0

(1.1.5)

where i <j ^ n. T may be A's Schur form; this recurrence may be used to form f(A) by

(1.1.3).

When /is symmetric in the real axis, that is /(£) =/({), polynomials interpolating /have

real coefficients. We denote the conjugate transpose of A% A1, by A*.

Conjugate transpose. When /is symmetric in the real axis,

f(A*)=f(A)\ (1.1.6)

Expression (1.1.6) shows that conjugate symmetries in A are inherited by f(A).

Formula (1.1.3) shows that f(A), defined as in (1.1.2), may always be computed from

Ays Jordan canonical form. Conversely, we may wish to define f{A) from the Jordan form by

way of (1.1.3). This latter definition is more general than our polynomial definition, as the fol

lowing shows.

The 2x2 identity matrix has, among others, the square roots

1 0

0 1
and

1 0

0 -1

The former root is representable by either definition; the latter is obtained by separately

defining VT=1 and VT=—1 on each Jordan block. The function is permitted to be mul

tivalued, but only on separate Jordan blocks. The polynomial definition does not allow this,

since polynomials are never multivalued.

Even the Jordan form definition of f(A) is not the most general possible. For example a

square root of

0 0

0 0
is

0 1

0 0

E. Cartan proposed a contour integral definition which applies to holomorphic functions /

[Rinehart, 1955].

y
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Cartan definition. If / is holomorphic inside and on a simple closed contour C enclosing

A^, then

f(A) = ^-.ff(r.HU-A)-*dr,. (1.1.7)

Additional representations of f(A) are derivable from those just mentioned. Gantmacher

[1959] and Rinehart [1955] discuss f(A) in further detail. In the next section we present a

particular polynomial representation for f(A) and discuss related series representations.
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1.2 The Newton polynomial of f(A), and series representations.

Because we are free to choose any polynomial interpolating /on A^, definition (1.1.2)

allows many representations of f(A). There is, however, a unique interpolating polynomial p„

of least degree* though even this may be arranged in many ways.1" One arrangement of /»„,

which clearly illustrates the use of divided differences for defining matrix functions, is based

upon Newton's divided difference formula for the interpolating polynomial, namely

pn(A) - £ AoA/-n(X -kj). (1.2.1)
A-0 ./-0

The coefficient Ao/ is the /r-th order divided difference of / defined on the abscissae

Xo.Xi. . . . ,XA.. This compact divided difference notation is further explained in §2.1.

The first few terms of the interpolating polynomial (1.2.1), which we call a Newton poly

nomial, are

/(Xo) + A(j/-(X-X0) + AoV-U-XqHX-X,) + Ao3/-(X-X0)(X-X,)(X-X2) + • • • .

Because p„(AA)*=f(AA) where A^HXq.Xi, ... ,X„}, the eigenvalues in A^ having been

renumbered, f{A) has the following representation.

Newton polynomial of f(A). When /is defined on the characteristic values of A,

/GO - j>d*/-nc* -x,/). (1.2.2)
*-0 7-0

AA is the sequence of abscissae for the divided differences.

In §2.1 we shall see that the conditions on /necessary to define all the divided difference

coefficients A<f/ *«- 0,1, . . . ,w, are exactly those required to assure the existence of some

interpolating polynomial p„. Thus when p„ exists, it may be arranged as a Newton polynomial;

so (1.2.2) is equivalent to definition (1.1.2).

fFor example Lagrange's interpolating formula />„(X)=* X/A(X)-/(XA), where for each
*-o

k /A.(X) = n(X-X>)/n(Xit-Xy), is one of the simplest. Here /A(X/)=0 when k ^ /,
7-0 j*k

and/A.(XA) = l.
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£ =

/xB(X) =»(X-l)4(X-2)

Xfl(X) = /u#(X)

p.A(k) = (X-l)(X-2)

XaM = (X-l)4(X-2)

A*GO =/(!)/ + [f(2)-f(\)](A -/) />*(*) - I
3 /A)<n

*!
(£-/)* + A04/(fl-/)4

A-0

3 /KA)m
>»(<0 = Z-^Tr^-'^ +^oVG*-/)4 p„(B) =PJB)

A-0 *•

Fig. 1.2.1: />,„ depends on the eigenspaces of the matrix.

The Newton polynomial representation of f{A) requires no more of / than that it have

enough derivatives to define f(AA). Our interest here, however, concerns functions /holo

morphic on a region containing AA. In such cases there is a natural extension of the Newton

polynomial to a series. Such a series may be viewed as an interpolating polynomial of infinite

order.

This extension derives from a Newton divided difference series,

A-1

/(X)= 2>6V-II <*-/*/>•
A-0 7-0

(1.2.3)

where the divided differences of / are defined on a sequence of expansion points

M = {Aio,Pi,/i2,...) which lies in the domain of holomorphy of / Because (1.2.3) may be

unfamiliar, Appendix A.l presents an elementary proof demonstrating its convergence. Appen

dix A.2 establishes the following representation of/GO. Gantmacher [1959] establishes more

general series representations for /GO, and Gel'fond [1971] discusses more complicated

divided difference expansions. These more extensive results are not needed here.
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Newton series representation of f(A). Let /have the Newton divided difference expan

sion (1.2.3) on an open disk containing A^. Then
A—I

/GO- I>oA/T[G4-/*,/)
A-0 7-0

(1.2.4)

When the first n+\ elements of M comprise A^, i.e. mo^Xq,..., m^X,,, the Newton expansion

of /GO (1.2.4) terminates after the w-th term and is just the Newton polynomial (1.2.2). This

is the Cayley-Hamilton theorem, JJG4 -XjO^X^GO-O.
7-0

When M=>{fjL,fj.,ix,...} consists of one point, then each A0a/»/u,(m)/*! (§2.1). The

Newton expansion (1.2.3) is, then, just a Taylor series; the representation (1.2.4) reduces to a

Taylor series for f(A).

Taylor series representation of f(A). Let /have a Taylor series on an open disk about fi

containing A^. Then

AA) - i^^-G4 -/*/)*. (1.2.5)
A-0 k\

The above shows that /GO is representable in terms of /'s divided differences. In the

next chapter we reverse this situation. Divided differences of / are expressed in terms of a

function of a special matrix. Hence everything said here concerning f(A) applies to divided

differences of /, and techniques suitable for computing f(A) may be applied to compute them.

In turn, these differences may be used to compute AA) by the Newton polynomial.
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2. Divided Differences

2.1 Definitions and properties of divided differences.

Divided differences were studied extensively in classical precomputer numerical analysis

as part of a finite difference calculus. They primarily saw use in tabulation of tables of function

values. A quite different purpose is envisioned here; however, much of the classical theory is

still relevant. Before proceeding to develop formulas for the calculation of divided differences,

we present a few well-known definitions and their consequences. Our notation is somewhat

different from that of other authors, but it is felt to be an improvement. Once understood, it

will cause no confusion to those already familiar with divided differences.

Most common notations for divided differences are cumbersome. For clarity we begin

with such a notation, but later reduce it to more compact form by suppressing unneeded infor

mation. Let / be a function of a single variable £ and be defined, at least, on a sequence

Z = {£o,£i» . . . ,£,„...} of distinct complex numbers. Z is called the sequence of abscissae, or

sometimes the sequence of data points or nodes. The 0-th divided difference of /at £0 is

U°/)tto>=/(*o).

The first divided difference of/at £0 is a function of the two variables (abscissae) Co and ^,; it

is formed from the 0-th divided difference by the familiar formula

tjLinfr ^- U°/)(gi)-UQ/)(So) ACi)~ACo)
Q\— Qo £i—£o

The k-th order divided difference of / at Co >s, then, a function of the £+1 abscissae

£of£i* • • • >£*t and is defined iteratively from /c-l-st order divided differences.

A first definition of divided c

difference of/at £y, J=*0,1, .

aA/KC,-,£,-+l, ...,£,+*) =

lifferences.

. . , n—k, is

U*-'/)(£,

When / is defined

+!»••• .Cy+A)- (A

on Z, each /c-th order divided

~ f)(Cj> • • • ,£>+*-!) ,„ , ,>>
£/+* -</

. X/..L.IJ

(A*/)(£/»£y+i» • . . .£7+*) has no dependence on abscissae with indices <yor >j+k, and so

no generality is lost when considering just (A"/)(£0,£i £„).
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Divided differences are very special functions of the data points in Z. Not only does the

number of data points used increase with the order of the difference, but the divided difference

is symmetric in its arguments. This is obvious in the equivalent representation of the divided

difference in terms of determinants [Milne-Thomson, 1933].

(A"/)(£o. ....£,,) =

/(£o) /(£i)

£<T' cr1

1 1

/(£,,)

r» —\

1

£o" £."

c<r' cr"

i i

£ "

y n-\

1

(2.1.2)

The abscissae may be arranged in any order without changing the value of

(A "/)(£o.£i, ....£,,)•

Symmetry property. Let ir be a permutation on the set of indices 0,1 /;. Then

(A"/M£o.£. £„) - (A"/)(UU.(i) £»<•!> • (2-1-3)

When /is symmetric in the real axis, i.e. /(£)=*/(£)» (2.1.2) leads to a conjugate symmetry.

For odd values of /*, (A"/)(£o,£i, . . . ,£„) is real whenever £21+1*" ?2i» '=0,1 (n—1)/2.

And for n even, (A"/)(£0,£i £„) is the conjugate of (A"/)(£0,£i, ...,£») when each

C2/+1-C2/.'-<U (/i-2)/2.

The defect in definition (2.1.1) is that data points must be distinct. However when /is

differentiable, (2.1.1) may still be defined even for confluent (i.e. equal) abscissae. In particu

lar when Z = {£0,£o» . . . .£oK (2.1.1) is defined when /(w,(£0) exists. For confluent abscissae

the divided difference reduces to

(AV) (Co. Co. ....Co)
/"'(Co) (2.1.4)

Since the data points may be arranged in any order without changing the value of the divided

difference, (2.1.1) is defined when (2.1.4) is used when confluent abscissae occur. The require

ment that the abscissae be distinct may be removed.

Definition: Let Zs{£0, . . . ,£0.£i, . . . ,£i,. .. .£/, £/.... I be a sequence of abscissae

(just a renumbering of the previous Z) where each £,, /=»0,1, . . .,/, appears /j,+1 times,

J(/i(+l)«fl+l. The function /is "defined on the sequence of abscissae Z" when /(£,),
i-0
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/(£,). .... /"' (£,) are defined for each / = 0,1 /. This sequence of values is denoted

/(Z).

Before rewriting definition (2.1.1) in more generality, we introduce a compact notation.

The sequence of data points Z = {£0,£i £„....} is given and, usually, in a fixed order.

Hence reference to Z may be suppressed. Thus we define

A;/=(AV)(£7,£/+i C+a>. (2.1.5)

The subscript j is understood to mean that we locate the abscissa labled C, and use it and the

next A* abscissae in the sequence. In the event that the particular sequence Z must be

emphasized, k£fm\\ be written for A*/.*

Standard iterative divided difference scheme. When / is defined on the sequence of

abscissae Z,

kffm ^f~i'[f (2.1.6)
£/+*"*£/

for each k= 1,2 nand j = 0,1, . . . , n-ky where A°/ = /(£,).

This definition of divided differences and our earlier definition of matrix functions in §1.1

are consistent. Indeed when Z = AA, "defined on the sequence of abscissae Z" and "defined on

the characteristic values of A" are the same. We shall see later in §2.6 that this similarity in

definitions is no coincidence.

Divided differences have many useful representations and properties. We list several of

these here.

Divided difference tables. Divided differences are most conveniently displayed in tables. Trad

itionally, tables are arranged as in Fig. 2.1.1. Each divided difference is computed from its two

immediate neighbors in the column to its left. For our purposes it is most helpful to arrange

tMilne-Thomson [1933] writes A<j'/as [£o,£i, . . . .£«], suppressing the function; Davis
[1973] uses /,w,(£0.£i. £«); and Kahan and Farkas [1963] use A/(£0,£ £„),
which suggested the notation used here. Gabel [1968] also uses a similar notation.
This compact notation is used in McCurdy [1978], from which much of this introducto
ry section is taken.
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£o /(Co)
Aj/

£i /(Ci) Ao2/
A// Ao3/

£2 /(C2) A,2/ AoV
A2V A,V

£3 /(C3) A22/
Aj/

£4 /(C4)

Fig. 2.1.1: Standard divided difference table.

the table as an upper triangular matrix, for example

/(Co) Ao'/ A02/

A/ s

/(C.) A,1/

/(C2)

AoV

A,""1/

ArV

/(c„)

The symbol A/, without the superscript, is used here to represent a matrix, not a scalar. Ele

ments of the matrix depend on their immediate neighbors in the diagonal to the left. This

leads to a "pattern of dependence" in which A// is independent of all table entries in rows

before the >th and columns after the y+Ar-th. A// depends only upon the block of the table

matrix between it and the main diagonal. Such patterns of dependence are characteristic of tri

angular matrices.

Linearity. For constants a and 0,

Ad'(a/+j3^) = <rA0"/+ /3-A0"s

14

(2.1.7)

(2.1.8)

Translation invariance. For Z+a= {£o+a.Ci+a. • • • ,.£„+a,...} and /a(£) =/(£+a),

A&Z.-A^. (2.1.9)

For example,

±4/.
/a(£|) -/a(C<>) /(C,+«) -/(C0+<*)

Ci~Co (C,+a)-(Co+<*)
<+«f
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AC) - A// — A,2/ — A,V — A,V

I ? I t

/(£/+i) ~* a;+,/

t

~•* A,2+I/

r

"^ Ai,/

I

/(C/+2)

t

/(C/+3) -

A2+2/

T

A,W

t

/(Ci+4)

Fig. 2.1.2: Pattern of dependence in a divided difference table.
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Scaling invariance. For some r ?*• 0 let tZ = {t£0, t£,, . . . , t£,„... } and /T(£) =/(t£). Then

For example,

Aj/r"

Acyr = r".AV.

j , = /r(C|)-/r(Co) = /(tCi)-/(tCq)
Ci-Co t£,-t£0 - **V

1.000 1.718 1.476 .8455 .3632

2.718 4.671 4.013 2.298

7.389 12.70 10.91

20.09 34.51

54.60

Fig. 2.1.3: Divided difference table for /=»exp, with Z - (0,1,2,3,4}.

Mean value representation. When the abscissae are real,

AoV
/'"(C) min £7 < £ < max£,,

n\ o<7<« 0</</>

(2.1.10)

(2.1.11)

for any / having n continuous derivatives in the interval containing the data points. This has

no equivalent for complex abscissae. For example when /=exp and £o=£ and C\ = £+2ir/,

Ajexp
(£ + 2ir/)-£

0?if{

for any finite £.
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Integral representation. Another representation for A0"/, when / has a bounded «-th order

derivative on a closed convex domain containing Z, is [Gel'fond, 1971]

A°V =JJ ' ' ' //")[Co+(C|-Co)T,+ •••+(C„-C„-|)t„]</t„ •••«/T2«/T,. (2.1.12)

Contour integral representation. When / is holomorphic inside and on a simple closed con

tour C enclosing Z, [Gel'fond, 1971]

W-±S, ruf(<:\d<0 , ,,• (2.1-13)2iriJc (a>-£o)(o>-£|) • • • (<o-£„)

Bound. If / has a bounded w-th derivative on a closed convex domain (7 containing Z, then

[Gel'fond, 1971]

lAoVl <Jrmax|/",(£)|. (2.1.14)
n\ {en

This is an immediate consequence of (2.1.12).

In later sections we present a new way of looking at divided differences and develop addi

tional ways to express them.
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2.2 A traditional attitude towards divided differences: tables and interpolation.

Before beginning our study of divided differences, we present a short discussion of the

traditional attitude towards them in order that contrasts may be made with our approach.

Divided differences are often encountered as an adjunct of the subject of ordinary

differences in interpolation and table making. Their treatment in the literature [e.g. Milne-

Thomson, 1933, and Miller, 1950] is patterned on that for ordinary differences. The arrange

ment of the divided difference table (Fig. 2.1.1) is one example. Others are divided difference

interpolation formulas which resemble formulas for ordinary differences.1 Indeed, our borrowed

notation A for the divided difference operator is a modification of A for the foreward difference

operator.

n / A A2 A3 A4 A5

-4

-3

6

-2

€

€

-5€
-1

€

€

-3€

-4€

10€
0 6

—€

-2e

3€

66

-10e
1 €

—6

-4c

5€
2 €

—€

3

4

Fig. 2.2.1: Error growth pattern in table of ordinary differences.

The lack of interest in divided differences shown by some authors [e.g. Ralston, 1965] is

explicable when we recall their use in interpolation and the available means of computation. In

tDivided difference interpolation formulas are derived from the Newton divided
difference interpolating polynomial (1.2.1) in the same way that the Stirling and Bessel
formulas are derived from Newton's foreward difference scheme. For example, averag
ing polynomials using the two sequences of abscissae {C0.C1.C-1.C2.C-2.-l and
{C0.C-1.C1.C-2.C2.—} yields the divided difference generalization ofStirling's formula:

P<0 -/(Co) +y{(A,/)(Co.C.) +̂ ,/)(Co.C-l))(C-Co) +<A2/>(Co.Ci.C-iMC-Co>(C--^^> +....
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hand or desk-top calculation, we desire few and simple computations. Ordinary difference

interpolation formulas may be scaled to minimize divisions and complicated fractions (worse

than say -j, y, —, etc.). This is one reason mathematical tables with unevenly spaced data

are seldom encountered. Comrie [1959] remarks that "computers try to avoid tabulations at

unequal intervals and divided differences ... ."

c A°exp A'exp A2exp A3exp A4exp A5exp A6exp

0.00 1.000

0.284

0.25 1.284

0.365

0.081

0.122

0.50 1.649

0.568

0.203

-0.270

-0.392

1.000

0.75 2.217

0.501

-0.067

0.338

0.608

-0.997

-1.997

1.00 2.718

0.772

0.271

-0.051

-0.389

1.25 3.490

0.992

0.220

1.50 4.482

0.00 0.000

0.000

0.25 0.000

0.000

0.000

0.100

0.50 0.000

0.100

0.100

-0.300

-0.400

1.000

0.75 0.100

-0.100

-0.200

0.300

0.600

-1.000

-2.000

1.00 0.000

0.000

0.100

-0.100

-0.400

1.25 0.000

0.000

0.000

1.50 0.000

Fig. 2.2.2: Example of error propagation in ordinary differences (see Fig. 2.2.5).

The study of error behavior in divided difference computations also shows the domination

of ordinary difference theory. For example when an error € occurs only in the /(0) entry, the

familiar error growth pattern (Fig. 2.2.1) reveals itself in a table of ordinary differences. The

coefficient (exclusive of sign) of the (n, A7) entry is the binomial coefficient

j/2-n '
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where n is assigned half values for entries where j is odd.

Miller [1950] writes, "It is also proposed to give error patterns, such as that in [Fig. 2.2.1],

for tables of divided differences, for use with tables having certain common arrangements at

unequal intervals, for example, with a table having arguments

n i i i i 1 i ii ii -
' 4' 3' 2' 3' 4' ' V 3

Such an error pattern might resemble Fig. 2.2.3.

c / A1 A2 A3 A4 A5

C-4

£-3
€-5.5

C-2
€-3.3

€-4.4

€-4.5

C-i
€-1.1

€-2.2

€-2.3

€-3.4

€-3.5

Co €

«0.1

€-1.2

€-1.3

€-2.4

€-2.5

Ci €0.2

€0.3

€-1.4

€-1.5

C2 €0.4

€0.5

C3

C4

Fig. 2.2.3: Error growth pattern in table of divided differences.

Each €,.y =€[J| (Co-C*)]"1- The error growth pattern reduces to that of Fig. 2.2.1 when the
*-»
kv*0

data points are evenly spaced with unit separation and each entry €U is multiplied by j\.

Because /7-th order differences of polynomials of degree w—1 are zero (see §2.7), one

expects high order differences of a function to be small when it is well-approximated by a poly

nomial. When high order differences begin resembling the alternating sign binomial pattern of

Fig. 2.2.1, an error in the tabulated function values is suspected [Miller,1950]. Multiple tabula

tion errors lead to more complicated patterns, and round-off errors in the difference computa

tions may further obscure any pattern. Statistical methods have been suggested for spotting

aberrations in tables [Blanch, 1954].
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c A°exp A'exp A2exp A3exp A4exp A5exp A6exp

0.00 1.000

1.136

0.25 1.284

1.459

0.6454

1.311

0.50 1.649

2.273

1.629

-2.886

-4.197

8.549

0.75 2.217

2.005

-0.5360

3.603

6.489

-8.513

-11.37

1.00 2.718

3.088

2.166

-0.5493

-4.152

1.25 3.490

3.965

1.754

1.50 4.482

0.00 0.000

0.000

0.25 0.000

0.000

0.000

1.067

0.50 0.000

0.400

0.800

-3.200

-4.267

8.533

0.75 0.100

-0.400

-1.600

3.200

6.400

-8.533

-11.38

1.00 0.000

0.000

0.800

-1.067

-4.267

1.25 0.000

0.000

0.000

1.50 0.000

Fig. 2.2.4: Example of error propagation in divided differences (see Fig. 2.2.5)
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A situation where divided differences, rather than ordinary differences, are usefully

employed in interpolation is presented by Salzer [1947]. Bessel functions /„(£), YM)< etc.,

are commonly tabulated for integral values of v, as well as u= ±1/4, ±1/3, ±1/2, ±2/3, and

±3/4.r For £ fixed, divided differences are used to interpolate for any v, -I ^ v ^ 1, or to

check entries in a table.

Very high (say greater than 10-th) order differences, ordinary or divided, are seldom of

practical interest in interpolation problems. The reason is that when the function is tabulated to

a fixed number of digits, adjacent table entries often have several initial digits in common.

tSee for example tables of the National Bureau of Standards [1948].
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Differencing such entries leads to differences containing fewer significant digits. After a few

steps no correct digits may remain. The tables in Fig. 2.2.5 illustrate this phenomenon. Less

correct information (significant digits) is retained after every differencing step. In interpolation,

one is interested only in making a small correction in the last digits of already tabulated values.

The information remaining in the first few differences is adequate for this task. However when

accurate high order differences are the objects of interest, this loss of information, coupled with

magnification of any previously introduced errors when we divide by a small number, is a disas

ter. We must consider other methods for computing divided differences. The approach neces

sary to develop such methods forsakes the idea of interpolation between table entries and

emphasizes the underlying function.

example: We use the Newton divided difference formula and the four figure divided

differences in the second table of Fig. 2.2.5 to interpolate for exp(0.30).

exp(0.30) - 1.000 + 1.136 x (0.30-0.00) + 0.648 x (0.30-0.00)(0.30-0.25)

+ 0.2347x (0.30-0.00H0.30-0.25M0.30-0.50) + • • •

= 1.349816

This result correctly interpolates to four figures exp(0.30) = 1.350. The errors in the

divided differences do not affect the most significant digits that we want.
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Ordinary differences of the exponential

C A°exp A'exp A2exp A3exp A4exp A5exp A6exp

0.00 1.000 0.284 0.081 0.022 0.008 0.000 0.003

0.25 1.284 0.365 0.103 0.030 0.008 0.003

0.50 1.649 0.468 0.133 0.038 0.011

0.75 2.117 0.601 0.171 0.049

1.00 2.718 0.772 0.220

1.25 3.490 0.992

1.50 4.482

Divided differences using 4 digits

C A°exp A'exp A2exp A3exp A4exp A3exp A6exp 1

0.00 1.000 1.136 6.480E-1 2.347E-1 8.530E-2 0.000 1.712E-2

0.25 1.284 1.460 8.240E-1 3.200E-1 8.530E-2 2.568E-2

0.50 1.649 1.872 1.064 4.053E-1 1.174E-1

0.75 2.117 2.404 1.368 5.227E-1

1.00 2.718 3.088 1.760

1.25 3.490 3.968

1.50 4.482

Correct value of divided differences to 4 digits

C A°exp A'exp A2exp A3exp A4exp Asexp A6exp

0.00 1.000 1.136 6.454E-1 2.444E-1 6.942E-2 1.577E-2 2.987E-3

0.25 1.284 1.459 8.287E-1 3.138E-1 8.913E-2 2.025E-2

0.50 1.649 1.873 1.064 4.029E-1 1.144E-1

0.75 2.117 2.405 1.366 5.174E-1

1.00 2.718 3.088 1.754

1.25 3.490 3.965

1.50 4.482

Fig. 2.2.5: Example of loss of accuracy in computing differences.

22
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4

2.3 An analytic approach to divided differences.

Up to this point, divided differences are seen as a tool for interpolating in mathematical

tables. We assume only that we are given a table of numbers, presumably representing the

values of some function at certain arguments. No reference to a particular function or expres

sion is required.

In contrast, we now consider how divided differences depend on the function /and make

full use of the theoretical tools presented in §2.1. We treat the divided difference itself as a

function; hence, we always assume we can evaluate /and its derivatives at any valid abscissa.*

A discussion of tables and interpolation is no longer relevant; neither is a limitation to common

arguments, as suggested by Miller [1950] and Salzer [1947]. Indeed, complex as well as real

data points are possible. Further, we are interested in floating-point computation on a com

puter; the desire to avoid divisions, complicated numbers (many digits) and fractions is less

important. Finally , we consider divided differences of any order.

example: The power of the analytic approach can be illustrated as follows. We wish to evalu

ate A'exp at the abscissae Co=0 and Ci = 10~20 on a pocket calculator that can hold

only a ten digit number. In the calculator the number 1+ 10-20 would be

1.000000000; the 10"20 is chopped off. Hence we compute

. , exp(10-20)-exp(0) 1-1 n

as exp(10"20) = 1 to ten digits. Alternatively we may write

exp(Ci)-exp(C0) Uy , , w^ sinh[(C|-C0)/2]
Ajexp= — = exp[(£i +£o)/2] j-—p-r—.

£i"~£o v4j —Qo'U

and then

41 <n cv m-20N. sinh(0.5 x IP"20)A,jexp =exp(0.5 x 10 20) ^ 20 1

to ten digits, if we can evaluate sinh accurately.

fin a computer, abscissae must be representable in the machine; the value of / is
rounded (or chopped) at full machine precision.
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Divided differences of g using 4 digits

C A0* A's A2£ A-V AV A5£ A6*

0.00 0.000 1.406E-6 1.812E-4 2.212E-3 6..913E-3 7.446E-3 2.989E-3

0.25 3.516E-7 9.199E-5 1.840E-3 9.125E-3 1.622E-2 1.193E-2

0.50 2.335E-5 1.012E-3 8.684E-3 2.534E-2 3.113E-2

0.75 2.764E-4 5.354E-3 2.769E-2 5.647E-2

1.00 1.615E-3 1.920E-2 7.004E-2

1.25 6.416E-3 5.422E-2

1.50 1.997E-2

Fig. 2.3.1: Analytic approach to computing A"exp.

example: Consider the second table in Fig. 2.2.5. The value 0.01712 for A06exp contains no

correct digits. Any sixth order difference of a polynomial of degree five is zero

(§2.7). By linearity

A^exp - A06£,

where g «• exp —p$ and ps is any fifth order polynomial. We set

r2 r$ >«4 *S

the first terms of exp's Taylor series. For this choice,

CO »/

Using g instead of exp we get A06exp =• A<?£ - 0.002989, which has three correct

decimal digits. The polynomial /75(C) which dominates the information in the left

most digits of exp(C), the digits lost in differencing, is removed in forming g(C).

The information needed to give Aoexp accurately is retained in g(C), but is lost in

exp(C) because too few digits are carried.

There are many cases in which the standard divided difference scheme (2.1.6) works very

well (Fig. 2.3.2). Because the scheme is so simple and computationally fast we want to use it,

when possible. We need, then, an analysis of the standard formula in order to distinguish

those cases where we may wish to employ it. This leads to criteria for deciding when to use it,

rather than some other formula.
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Divided differences of exp)0 by the recursive formula

C A°exp,o A'exp10 A2exp,0 A3exp|0 A4exp,0 Asexp10 A6expi0

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.000

1.218E+1

1.484E+2

1.808E+3

2.203E+4

2.683E+5

3.269E+6

4.472E+1

5.449E+2

6.638E+3

8.089E+4

9.851E+5

1.200E+7

1.000E+3

1.219E+4

1.485E+5

1.808E+6

2.203E+7

1.492E+4

1.817E+5

2.213E+6

2.696E+7

1.668E+5

2.031E+6

2.475E+7

1.491E+6

1.818E+7

1.113E+7

Fig. 2.3.2: Recursive scheme on expi0(C) = e S correct Aoexp)0= 1.112E+7 to 4 digits
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2.4 An error growth analysis of the standard divided difference formula.

The standard divided difference algorithm (2.1.6) propagates, and may magnify, errors

introduced at earlier steps.1 Algorithms which exhibit this unfortunate error magnification pro

perty are often shunned in practice; however, (2.1.6) is just too attractive from the point of

view of speed and simplicity to be discarded out of hand. We study here the standard scheme's

error behavior and obtain error growth bounds. This analysis provides criteria for deciding

when to employ the standard scheme, or another method, to compute A<j'/

We analyse the error propagation in a typical step of (2.1.6),

A,""'/- A<T' /"
A0"/= ; , . (2.4.1)

For any expression g let Jfig) represent its computed, or "on hand," value. Employing previ

ously computed values in (2.4.1),

4/f"~Co

Define

y/(A0"/) = A0"/+So". (2.4.2)

So is the absolute error in expressing Ao'/by y?(Ao/). Then

(Arl/+5r,)-(Ar,/+sr!)
A0y + ^

C« —Co

sr'-er"-'1 "~°0"Ao»/+ ' ,°
Sw —SO

and so

sii-l C It— \

V-8' ° • (2-4.3)
4/;~ SO

(2.4.3) represents 8q as the error propagated from errors in the /;—1-st order differences. The

fAlgorithms which magnify previously introduced errors from step to step are often re
ferred to as "unstable." This term is commonly applied to algorithms for the numerical
solution of differential equations. In this context it is employed, for example, in texts
by Richtmeyer and Morton [1967] and Gear [1971].
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growth in this propagated error is governed by (C«-Co)-,» the inverse spread in the abscissae.

We may also define

.//(Ad'/) = A0"/'(l+€d'). <2-4-4>

€o is the relative error in expressing Ad'/by its computed valuedAd'/). Then

ArV'-d+er-o-Ad'-'/'d+cd'-1)
Ad'/-(1 + eo")

Cm~Co

-ITtl I,-' I Ao"'/-^""1-^-1)-A./[l +«i + k(f-(l.-U '"

and so

a n—\f.(-ii—I ~it—\\€^„ €f-i +i!L2i5 fi-1 (2.4.5)
Ad7-(C»-Co)

is the relative error inj7(Ad'/) propagated from relative errors in n—1-st order differences.

Expression (2.4.5) indicates the relative error may grow from step to step in (2.1.6), espe

cially when the abscissae Co and C« are close. This relative error growth is equivalent to the loss

of information discussed in §2.2. Such growth in practice may nearly approximate the upper

bounds on error growth we derive in §3.2.

Insisting on small relative errors is often inappropriate in divided difference computations.

From (2.4.5) one expects a large increase in the relative error when |Ad'/| is small compared

with lAd'-1/!. However a large relative error'in a small number is not a disaster when the

absolute error is small relative to the final quantity in the computation in which the divided

difference is used. Our interest here is accurate computation of A7-th order divided differences;

we must then, at least, compare the absolute error with an appropriate estimate of the magni

tude of M-th order divided differences of / Conclusions regarding the bounding of the errors

expressed in (2.4.3) and, especially, (2.4.5) depend on the particular function / and its own

divided differences. We study the exponential function in Chapter 3.

example: Large relative errors in small numbers are not always disastrous. Let /=cosh.

Using four digits we compute the following differences. The entry

A/cosh = 5.970£-3 has a greater relative error than the other entries; yet subse

quent table entries are unaffected by this error because the number 5.970E-3 is
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Table using 4 digits Correct values to 4 digits

c A°cosh A 'cosh A2cosh A3cosh A°cosh A'cosh A2cosh A3cosh

-2.00

-1.00

1.01

4.00

3.762

1.543

1.555

27.31

-2.219

0.005970

8.614

0.7392

1.722

0.1638 3.762

1.543

1.555

27.31

-2.219 0.7392 0.1637

0.005885 1.721

8.613

Fig. 2.4.1: Large relative errors in small numbers may not be important.

small. In four digit subtraction 0.005970-(-2.219) forms A02cosh=0.7392; the

incorrect rightmost digits play no role.
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2.5 The divided difference as a function of its abscissae.

Our approach to divided differences has not escaped the notion that their formation is an

operation performed on entries in a mathematical table. In §2.3 we illustrated the usefulness of

an analytic approach. The basis of this approach is that divided differences are functions of

their abscissae and may be treated as we treat other mathematical functions.

To aid our discussion we introduce a vector notation for divided differences.* The

sequence of abscissae Z = {Co»Ci. • • • -CJ is conveniently viewed as an w+l-tuple. Hence Z is

equivalent to a vector z = (Co.Ci. • • • .C«) in Cn+l (or Rn+I for real abscissae). We speak,

then, of a divided difference function A"/being defined for a vector z in the same sense as the

function /being "defined on the sequence of abscissae Z" (§2.1). Thus

A"/(z)s(A"/)(Co,C. CJ- (2.5.1)

When every vector z in a region of Cn+I is equivalent to a sequence of abscissae Z on which /

is "defined," A"/is a function on that region. Thus when defined,

A"/ : Cn+I — C,

in brief. Our new notation expresses w-th divided differences of/, A"/ as functions from Cn+l

into C. The value of this function at the point z € Cn+I is A"/(z). The ordering of the abscis

sae is suppressed here.

When /is holomorphic on a region containing the abscissae, A "/is holomorphic in each

of its abscissae. In particular for each / = 0,1, . . . , n,

d .„,, , .. A"/(z+(OC,H)-A"/(z)
—A"/(z) » hm —
od d-ii C,-C,

= A"+,/(z.C/). (2.5.2)

The vector e,= (0,0, ... ,0,1,0, ... ,0) is the Mh coordinate vector in Cn+I. The partial

derivative with respect to C, of A"/is an w+l-st order divided difference with the abscissa £,•

repeated; this is indicated by (z,C,).

fThe first notation (A"/)(Co.Ci» • • • »C«) emphasizes both the sequence of abscissae
and its ordering. The second notation Ad'/merely emphasizes the sequence ordering; it
suppresses reference to a particular sequence.
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That A"/is holomorphic in each of its abscissae separately suggests it may be expanded in

a series. The next three sections develop such expansions.

example: By differentiating successive divided differences we can show that

(A"exp)(0,C.C 0 - ^£-^n— •

Start with

(A.exp)(0.£)-lf=i-e«i^i-e«.ii=^.
C C a_1 kl

WithC,-C,

(A2exp)(O.C,0 - ~-(A'exp)(0,C) - -£r(A'exp)(0,C)
oCi aC

/-I '• k-2 *•

k%[ (k-W. k\
k-2

k-2 K'

Using the chain rule in the general case,

(A"+,exp)(0,C 0 - -~-(A"exp)(0,C„C 0 = -~(A"exp)(0,C, . . . ,0
0C1 n dC

*<-z

A-„+. (^-D

(-C)*-""1
A-'

This may be compared with a method based upon the standard formula,

U"'«P>«>.« 0 - (A"e*P)(^ P-(A"exp)(0,; {)
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A-M + l *'

example: Two-point divided differences. Just as divided differences for confiuent abscissae

(which may be referred to as one-point divided differences) reduce to a special

form, divided differences about two repeated abscissae also have special properties.

Let the vector z = (C,~C. • • • . C~C) consist of n repetitions of the two data points C

and —C- Recalling the contour integral formula for divided differences (2.1.13), for

/i-0.1.2, ...

A2''/(z,e)~^r ffi.f" ,w2iriJc (<o-C)"+'(a> + C)"

k2nf(7 _n L f A«>) dot
A /U C)-2^Jc(a>-C)"(a>+C)"+l '

and

A2-'/(z,c,-o - j-.jf r{!:ld"
2ttijc (to-CV'^iw + C) n+\ •

The first 2n abscissae are represented by z, for compactness. For each n define the

functions b„ and a„ by

and

a (t) = A2"*'/^ C-c) =A2"+,/*(z -C t) - — f /(<u) ^

These functions are holomorphic in C,

d , /„v 1 d c o)f((o)d<od . ,„v _1 d_ r o)/K(o)d<o
</C " * 2iri'dCJc (o,-C)"+,(6i +C) «+i

2(n+i)C C <oA*>)da>
2-rri \ («-(;),l+2(« +C)*+2
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= 2(/!+l)C-6„+i(Ch

and similarly

-^aH(C)=2(*+l)C'W0.

The functions, then, satisfy the recurrences

MO =* Trr"^76"->^inC dC

and can be defined when we know bQ(C) and a0(C). For example when /=expT,

expT(C) = eH with r > 0,

b0(C) - cosh(TC)

a0(O=-sinh(TC)/C.

Since

tr\ a2,1+1 w , r\ A2ff/(z,C)-A2/,/(z,-C)<7„(C) - A^'+'/UC.-O =• *— j?— '

the divided differences are recoverable from b„(0 and a„(0- The values b„(C) and

a„(C) yield coefficients of a Newton expansion of/about Cand -£• Note that when

C=/7j is pure imaginary, both b„(0 and fl«(D are real for anV / such that

/(C) =/(C). We extend this example in §2.8.
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2.6 The divided difference table as a function of a matrix.

The entire divided difference table (§2.1) of / for the sequence of abscissae

Z = {Co.Ci C/i) may be expressed as an (w+1) x (/;+l) upper triangular matrix1

/(Co) A07 A02/ • Ad'/

A/s

/(Ci) A,'/

/(c2)

Let Zbe the special (w+1) x (n+l) bidiagonal matrix

Co 1

Ci 1

C2 1

t„-i 1

C„

Opitz [1964] refers to Zas a "steigungsmatrix" (ascent matrix). We shall call Za "step matrix."

The same conditions on / imply the existence of both the divided difference table A/

(§2.1) and the Newton polynomial representation of/(Z) (§1.2). The two are related as fol

lows.

Theorem: "The divided difference table is a matrix function."

A/ - /(Z)

proof: The Newton polynomial representation of/(Z) is

A,""'/

Ar2/

AC,,)

»-1

/(Z) -/(Co)-/ + A0'/-(Z-C0/) + • • ' + Ad'/'II^-CA/)
A-0

(2.6.1)

(2.6.2)

(2.6.3)

t Az/ is written when the sequence of abscissae Z must be emphasized. Recall that
A/, no superscript, is a matrix and A"/is a scalar function.
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Because Z—£*/, each /c, is bidiagonal, the product matrices fl(Z —Ca/) for m</i—1 have
A-0

H-1

(0,«) element zero, while the (0,n) element of JJ(Z —Ca/) is one. Thus the (0,//) element
A-0

of /(Z) is Ad'/ the (0,n) element of A/ By the pattern of dependence (§2.1), the choice of

0-th and w-th abscissae is arbitrary. Hence equality holds between every element of /(Z) and

A/ a

Parlett's recurrence (1.1.5) reduces to the standard divided difference scheme (2.1.6)

when the upper triangular matrix T is replaced by the step matrix Z. This provides another way

to establish (2.6.3).

Several important and useful consequences follow from the theorem.

Function of a Jordan block. When the sequence of abscissae Z = {Co»Co.

confluent,

A/ =

/(Co) /(Co)

/(Co)

£/'(Co)
/(Co)

/(Co)

1 An)^•/"'(Co)
1 Au-l)/"""(Co)

0/-D!

1 An-2)tr )

/(Co)

This is the well-known special form for a function of a Jordan block.

2. Multiplication formula. Let the function fr be defined by /T(C) =/(tC), then

A/T - ArZ).

Co) »s

(2.6.4)

(2.6.5)

3. Scaling abscissae. Let D = diag(l,T,T2, . . . ,r"), a diagonal matrix, and

tZ = {tC0,t£i t£„}, then

AzA-D-Atz/'/T'. (2.6.6)

proof: Az/T=/T(Z)=/(rZ)=/(Z)ZTZ)~,) = D-/(ZT)-Z)-'-D-ATZ/-Z)-', where
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4.

ZT =

rCo I

tC. 1

TC2

rC-i 1

This is the scaling invariance property (2.1.10) in matrix form.

Special functions. Divided difference tables of certain functions inherit some appealing

properties from the functions themselves. For example when /= fJ, the >th power func

tion tv(C) =Cj for J=0.1,2,...,

Af7+A = Z/+A = Af'-Af*.

Also when / = expT, expT(C) = erS

AexpT+„. = e{T+cr)Z- e7Ze'rZ = AexpT-Aexp„

a

fOur divided difference notation suppresses variables, so clarity demands that every
function have a name. The notation f' for the >th power function is used by Davis
[19731.

35

(2.6.7)

(2.6.8)
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2.7 Divided differences of polynomials.

To aid in the development of series expansions for A"/ we first examine divided

differences of polynomials. Let pj be a monic polynomial of degree j given in factored form1

PA) = il(C-<0 =Pj-i(lMt-aM)
i-0

(2.7.1)

for any 7=0,1,2,... [/?0(C) = 1]. The polynomial pt appears in the >th term of the Newton

expansion (§1.2) of/about the sequence A = (a0."i.«2—-}^

/-ZA//-*,.

Pj reduces to the >th power function \j when all the a, are zero. For any j and step matrix Z

(any sequence of n+\ abscissae), the matrix function theorem of the previous section yields

&LPj=*Pj(Z) = f[(Z-a,l)
i-0

example: When n —4 and j —3,

A/73 = p3(Z) = (Z-a0/)-(Z-a,/)-(Z-a2/)

2

n
i-0

Co-«, 1

C|-«y 1

C4-0£,

(2.7.2)

fFor a polynomial />-Zj3,t' in non-factored form, the linearity property (2.1.8) yields
i-0

i-0
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I A

(Co-«o)(Co-«i)(Co-«2) ZZ^*~a*+|)tti-«i)
A-0i-0

37

Z(c,-«.)
i-0

I A

(Ci-ao)(Ci-<*i)(C|-a2) ZZ^A+i-aA+lJ^i+i-a,)
A-Oi-0

(C2-ao)(C2-a|)(C2-«2)

Z(Ci+i-<*,)

I A

Z Z^A+2-«A+|)(Ci+2-«|)
A-Oi-0

Z^+2-<*,)
i-0

I A

(C3-ao)(C3-ai)(C3-«2) ZZ(£*+3-<*A+|)(C,+3-<*i)
A-Oi-0

(C4 —ao)(C4-ai)(C4"*«2)

In particular, the 0-th (top) row of A13 is

A0V3 = (Co~ao)(Co~ai)(Co~a2)

Ao£3 " (Co"«o)(Co~ai) + (Co""ao)(C|-«2) + (Ci-<*])(Ci—0C2)

A0V3 "• (Co*~<*o) + (C\"-<*\) + (C2~a2)

A0V3 = 1

A0V3 = 0

For general n and j the (O.n) element of kpJy that is Ad'/J*/, is the (0,w) element of the

matrix product (Z —a0I)(Z —a\I) • • • (Z-ay_j/). The following formulas can be verified by
A A

actually writing out the products. We freely use the convention that JJs, = 1 and Z5/ —0

when k < j, where s, represents some expression.

'-j '-./
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Divided differences of polynomials.

&6'Pj = 0 when j < n\

Ad'A, = l;

n

Ad'Ai+i = Z(C,-a,);
i-0

Ad7>„+2= Z(CA-«A+i)Z(C,-a,).
A-0 i-0

In general for all j > /i,

i-0 u—0

(2.7.3)

where nQ=n. A rearrangement of this expression is

A0+A|+ • • • +A„-j-iii-0 /-0
-*,-,»• (2.7.4)

*,>o

In the special case of the >th power function |J, expression (2.7.4) reduces to

, A'n— A I

AoV- Z *oV
A0+A,+ • • • +AH-./-n

A,$sO

cA"±11

This is a well-known symmetric polynomial formula for the divided difference of power func

tions [Milne-Thomson, 1933]. When /7 = 1 the first divided difference of pj obtained from

(2.7.4) is

AoV/ =ZintCo-^/n^Ci-aA+i+i)}
A-0 /«0 i-0

•£iff <&-«/) tl (Ci-<*,))
A-0 /-0 i-A+l

(2.7.5)

A simple recurrence for computing divided differences of the functions pj+\,

j «-—1,0,1,2,..., may be developed from expression (2.7.2). We begin by writing
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Apy+,-Ap/(Z-c«,/). (2.7.6)

By writing out the right-hand matrix product, the (0,/t) element of A/j/+i is

AoVi - (Ca-^)-AoV/ + A0A"V (2.7.7)

for any k =0,1 w. All the elements A0V/+1 for 0 ^ /c < /7 comprise the 0-th (i.e. top) row

of the matrix A/»/+j.

Formula (2.7.7) is a recurrence in A: and j. To see this, we replace the index j in (2.7.7)

by j+k where 0 < k < «, and still y =—1,0,1,2 That is,

AoVy+A+i = (Ca -aJ+k)-kokPj4.k + ^o~]Pj+k (2.7.8)

is the (0,/c) element of the matrix ±pJ+k+\. Thus for fixed ./, varying k in (2.7.8) has us look

ing at elements from the top row of different matrices.

example: Let j = 2, then for

k = Q, Ao>/+a+i "• Ao/^3 is the (0,0) element of A/?3;

k = 1, AoV/+A+i = A0V4 Is the (0,1) element of A/?4;

k=2, A0V/+A+t = A0V5 is the (0,2) element of Ap5;

and finally for

k = n, A0V/+A+1 " A0A1+3 is the (0,/i) element of A/7„+3.

Since AoVa —1 f°r aH *» the elements AoVh-a+i are known for y'23—1; so all the AoA+i

are defined by (2.7.8) [we define A"'/?* = 0 for any k]. Thus all the A0V/+A+1 are computable

for j = 0, and recursively for any y > 0 as well. This procedure is summarized in Algorithm 1,

and its first few steps are illustrated in Fig. 2.7.1. Note that if we want all the top row elements

of the table A/jot+i, m ^ /?, one element appears in each step of the algorithm from j = m—n to

j*=*m. A0A11+1 appears first (step j «= m—n) and AoAm+i appears last (stepy = /w). Each >step

of the algorithm requires w+1 multiplications. Three storage n+\ -vectors are needed: one to

hold the abscissae C,, one to hold the j-th level results AoVt+y+i (tne results for level j—1 may

be overwritten), and one to hold the n+l currently active a„ namely a,, a/+|, . . . , a7+H.
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Algorithm 1: Recursive computation of Afe+;.

1. Initialize AoVa "• 1 ft>r each * «• 0,1, . . . , i?

2. For 7 = 0,1,2,...

A0V/+A+1 "" (Ca -ak+j)'^pk+i + A0A"VA+y» /f =0,1, . . . ,w.

(AA/ = 0 for * < 0, any function ./)

Initialize

Ao°/?o =• AqV1« A0V2 = 1

For 7 = 0,

A0V1 = (£o-«o)'AoVo + A0"Vo " Co_«o

A0V2 " (Ci-a^-AoVi + Afoi - (C|-<*i) + (Co-«o)

A0V3 =* (C2-«2)*AoV2 + A0V2 *= (C2-CK2) + (Ci-«i) + (Co~«o)

For 7 = 1,

A0V2 • (Co-ai)*Ao^i + A0~Vi " (Co~ai)(Co-«o)

A0V3 *• (Ci~-<*2)'AoV2 + Ao/?2

- (Ci-a2)(Ci-«i) + (Ci-«2)(Co-ao) + (Co~«i)(Co-«o)

A0V4 ™(C2"*«3)'A(?/»3 + A0V3

» (C2-a3)(C2-«2) + (C2-«3)(Cl-«l) + (C2-a3)(Co-W

+ (C|-«2)(Ci-ai) + (C|-«2)(Co-ao) + tto-«i)fto-«o)

Fig. 2.7.1: First couple of steps of Algorithm 1 for n -»2.

A companion algorithm for computing the n-th column of kpj+\ also exists. Obtaining it

merely requires rewriting (2.7.6) as
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A/7/+, - (Z-«//)-n(2-«,/) = (Z-a,l)^Pj
i-0

41

(2.7.9)

and following the same approach as before. Again just one element of the /Mh column of a

particular matrix is computed at each step. The first few steps of the algorithm are illustrated in

Fig. 2.7.2.

Algorithm 2: Recursive computation of A *_A/?*+7.

1. Initialize &ti-kPk= 1 for each k =0,1 n

2. For./-0.1.2....

A*_ApA+/+| = (C„-k-ak+J)-b!i-kpk+j + A/ArA'+)/;A+/, *-0.1.
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Initialize

A2%» A//?, = AoV2 = 1

For j = 0,

A2V1 = (C2-ao)'A2/7o + A.fVo = C2-«o

A|V2= (Ci-ai)'AiVi + A2Vi = (Ci~a,) + (C2-a0)

A0V3 = (Co~«2)'AoV2 + A|V2 = (Co ~«2) + (C|-«|) + (C2~«o)

Fory = l,

A2V2 " (C2-ai)*A2^i + A3~Vi = (C2_ai)(C2_ao)

A1V3 = (Ci -ct2)-k\P2 + A2V2

= (C|-a2)(Ci_ai) + (Ci-«2)(C2"«o) + (C2"ai)(C2"~ao)

kipa= (Co-«3)-AoV3 + A//73

= (Co~«3)(Co~a2) + (Co""«3)(Cl~-ttl) + (Co*~a3)(C2""ao)

+ (C|-a2)(C|-a,) + (Ci-a2)(C2-«o) + ^2-«i>ft2-«o)

Fig. 2.7.2: First couple of steps of Algorithm 2 for n = 2.



§2.8 43

2.8 Series expansions of A Rf.

The matrix function theorem for divided difference tables leads directly to series represen

tations for divided differences. For example suppose that on the disk D,, = {C \p > |C"-«|), ./'

has a Newton expansion about the sequence of expansion points A = [aQ, ct\,a2,...}. That is

/-ZA*/-p4 (2.8.1)
A-0

A-1

on D,„ where PkiO^THC-otj)- In Appendix A sufficient conditions are presented for the
7-o

existence of such an expansion. Under the same conditions the matrix function f(A) has a

Newton expansion when all the eigenvalues of A lie in D,,. Thus when the data points

Z =(Co.Ci. • • • .C«l He in Dp, the divided difference table has the Newton expansion

AZ-ZCZJ-ZAV-fcCZK1
A-0

(2.8.2)

In the vector notation introduced in §2.5, Z C D,, is equivalent to a vector

z = (Co»Ci» • • • .C«) in D"+l CCn+1. The previous section leads us to examine the (0,n) ele

ment of the table. The result is summarized in the following theorem.

Theorem: Newton expansion of the divided difference function. Suppose /has a Newton

series on Dp. Then

A"/=ZAV'Afl/>A (2.8.3)
A-ii

A-l

over all D;+l, where pk (C) - II ^ ~aP•

The important point is the identification by (2.7.2) of the (0,n) element of pk(Z) with Atfftt-

A Taylor series expansion formula for A"/ is an immediate corollary. Recall that

Ao^—/^(a)/*! in the confluent case.

tThe reader is asked to distinguish between the divided differences A^forming the
series coefficients which have abscissae in A, and the elements A"/of the divided
difference table which have abscissae in Z. Brent [19731 presents a simple Taylor ex
pansion for the divided difference.
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Corollary: Taylor expansion of the divided difference function. Suppose /is holomorphic

on a region D containing the point a. Let DP={C |p > |C-a|l be the largest open disk

such that D„ C D. Then

av-I^t^ai*
A-ii K'

overall D,?+l, where f*({) =M*(£-a)= (C-a)*.

(2.8.4)

proof: Because /is holomorphic on D,„ it has a Taylor expansion about a for all C€ D,r The

theorems in Appendix A establish that

/(Z) - Z
/k)(a)

A-0 k\
\k{Z-al). D

Formulas (2.8.3) and (2.8.4) suggest ways to compute divided differences for perturbed

abscissae when the unperturbed divided differences are available. The computation of divided

differences by (2.8.4) for functions such as exp, sin, and cosh is quite straightforward since the

Taylor coefficients are easily obtained. Functions such as log and V may also be treated; how

ever, care is required to ensure that we use a series representation whose circle of convergence

contains all the data points.

The algorithms of §2.7 in combination with (2.8.3) lead to a method for computing A<fZ

0<fc</7, when we already know the coefficients Ai/Sj8/% /»0,1,2 of /s Newton

expansion. Let sm = £j3,/?, be the partial sums of the Newton expansion (2.8.1) of / so
/-o

sm—/as m —oo. Then by linearity

in

Ao*s,w - Z^/'AoV/
/-A

and by (2.8.3) A<fa„ —A<f/as m—oo for any k. The following algorithm computes A<f/for all

*=0,1 //by forming the partial sums A<frw for m-j+k+l. One additional term is

added to A^+a+i, for each ky at each >step.
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Algorithm 1: Newton expansion of Ao/.

1. Initialize AoVa •» 1. Afc*•• j3*. for each k = 0,1, . . . , n

2. For J = 0,1,2,...

AoV/+A+i - (C*-«;+*)*AoV/+* + A0*~Vy+*

Ao*5/+a+i « A6*s/+A + /3/+A.+,'AdA^/+A.+l, for each k=0,1. . . . ,/7.

Exclusive of the coefficient evaluations, the scheme requires 2/7+2 multiplications per ./-step.

Initialize

AoVo " AoVo "" AoVo = 1

Ao% = i8o» Adsi-fr, Afo-ft

For y = 0,

AoVi = (Co~«o)'Ao% + A0"*Vo •• Co~<*o

A00/ : A0°s, = A0°50 + /3,-AoVi - j80 + j8,({0-«o>

AoV2D (C|-a,)-A0Vi + AiVi - (Ci-ai) + (Co-«o)

Ao1/ : A0'52 - AJji + j32'A0V2 - ft + Mfti -«i) + (Co-«o)l

A0V3 °* (C2-Of2)*Ao2P2 + A(j/>2 - (C2~«2) + (Cl~«l) + (Co-«0)

A02/ : Ao253-Ao252 + /33-AoV3a3i82 + j83'[(C2-a2) + (C|-«i) + (C0-«o)l

Fig. 2.8.1: First step of Algorithm 1 when n = 2.

There is also a companion algorithm which computes the /7-th column of the matrix A/
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Algorithm 2: Newton expansion of A*_*/

1. Initialize A*_*/?* = 1, A*_A5A =/3A., for each k =0,1, . . . , n

2. For J -0.1.2,...

Ai-A/V+A+I D (C„-k-^j+k)'^n-kPj+k + &!iIk+\Pj+k

A*_A.s,+/H., = 15-kSj+k + ^/+A+|-A,f-A^+A+i. for each * =0.1.

example: Two-point divided differences (cont. from §2.5). The Newton expansion of/about

a sequence of two repeated points A= {a,—a,a, —a,...} is

/(C) =/(a) + (A'/)(a,-a)-(C-a) + (A2/)(a,-a,aHC2-<*2)

+ (AV')(a,-a.a.-a)-(C2-a2)(C-a) + • • • .

We may also expand about the rearranged sequence -A = {-a, a, -a,a,...},

/(C) =/(-«) + UyX-a.aMC + a) + (A2/)(-a,a,-a)-(C2-a2)

+ U3f)(-a,a,-a,ct)-(C2-ct2)(C + ct) + ' • '

Recalling the definitions of the functions

*„(«) =y{(A2"/)(a,-a, . . . ,a) +(A2"/)(-a,a, . . . .-a))

and

a„(a) = (A2,,+,/)(a,-a a,-a)

from §2.5, the average of the two expansions is

/(C) = b0(a) + a0(aH + Ma)-(C2-<*2) + ai(aHl2-a*)t + •• • .

We remarked earlier that when wit) is pure imaginary, a„(a) and b„(a) are real

for any /such that /(C) =*/(cX. Hence the expansion

/(C) - *o<"l) + *o(/i?K + b^hMp+rfl + fl,(/7,)-(C2+'r?2)C + • ••

is entirely real when C is real.
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example: Two-point divided differences of the exponential. When /=expT, expT(C) = rr{

with t > 0, the coefficients 6„(a) and a„(a) satisfy the recurrences

rflH_,(a)
b„\ot) =

a„(<*)

2/7

t6„_| (a) - (2/7-1 )a„-| (a)

2/7a^

To show this, recall that (§2.5)

bQ(a) = cosh(rat)

ao(a) = sinh(ra)/a

and

. ( x 1 d . , , TSinh(Ta) Tj0(a)
*,(a) = 2T^*°(a) = 2a - "1~

/ v 1 </ / N rcosh(Ta) -sinh(Ta)/a Tb0(a)-a0(a)
a\(a) = — o0(«) r-j r~5

2a da 2a2 2a2

In general (suppressing a for compactness),

1 f Tfln-2 h n 1
1^7 rr-(2/i-l)ffll_il.

" 2/7a2l2(/i-l)

Differentiating we obtain

or

1 f ra n-2 ,~ n , i 2a„
fl» = ^—rUf., n —(2/i—l)g „_|) - —

2 nor 2(/i—l) a

2(/f+l)flfflM+| =• -—•r[ra'a„^\-2n(2n—l)a-a„} -
Incr a

1 i^On-l ,- .* ,
—{—^ (2/7-l)flrtJ,
a z/7

where we have used that a'H^\^2na-an. Thus

1 , ™„-| . T6„-(2/7+l)g„
*»+• " >%t .n 2*~T7 (2/i+l)fl„j - — , . 2—

2(/7+l)or 2/7 2(/f+l)or
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This, along with a similar result for bll+h establishes the recurrences.

For example when a = 5/ and t = 1, we obtainf

b0(5i) -- cos(5) = 2.837£-l

a0(5i) - sin(5)/5 - - 1.918£-1

b}(5i) ™-9.589£-2

o,(5/) = -9.509£-3

b2(5i) - -2.377£-3

a2(Si) = 6.737£-4

hiSi) == 1.123£-4

a3(Si) =- 3.830£-5

64(5/) =• 4.788£-6

a4(5i) - 7.792£-7.

WhenC = 1.5Tr/,

48

exp(1.5in) = 0.2837 - 0.1918 x 1.5ir/ - 0.09589 x [(1.5ir/)2- (5/)2] + • • •

= -1.000/, as it should.

example: Suppose we want to compute Aje-xp for the slightly perturbed abscissae Co=5-01/,
£i»-5.01/and ^2=«4.99/. Let us follow the steps of Algorithm 1.

Initialize

A0°l = AM-5/) - A0'(C + 5/) = A02(C2 +25) - 1

A0% - 0.2837, AJ51- -0.1918, A02s2 = -0.09589

For ./ = 0,

A0°(C-5/) = (5.01/-5/) x 1 - 0.01/

A0°(C + 5/) = (5.01/+ 5/) x 1 - 10.01/

A0°C - 5.01/

A0°s, - 0.2837 - 0.1918 x 5.01/ = 0.2837 - 0.9608/

tMost of the numerical examples here were done on a pocket calculator which, unless a
particular working precision is specified, carried more digits than are shown.
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A0'(C2 + 25) - (-5.01/ + 5/) x 1 +0.01/ =0

A0J52 = -0.1918

A02(C2 + 25)(C - 5/) - (4.99/ - 5/) x 1 + 0 - -0.01 /

A02(C2 + 25)(C + 5/) = (4.99/+ 5/) x 1 + 0 = 9.99/

A02(C2 + 25)C = 4.99/

A0253 = -0.09589 - 0.009509 x 4.99/ = -0.09589 - 0.04745/

For j = 1,

A0°(C2+25) = (5.01/+ 5/) x 0.01/ = -0.1001

A0°52 = 0.2837 - 0.9608/ - 0.09589 x (-0.1001) - 0.2933 - 0.9608/

A0'(C2 + 25)(C-5/) - (-5.01/-5/)x0-0.1001 = -0.1001

A0'(C2 + 25)(C + 5/) = (-5.01/ + 5/) x0 - 0.1001 = -0.1001

A0'(C2 + 25)C=>-0.1001

Ao'53 = -0.1918 + 0.009509x0.1001 - -0.1908

A02(C2 + 25)2 - (4.99/+ 5/) x (-0.01/) - 0.1001 = -0.0002

A0254 - -0.09589 - 0.04745/ - 0.002377 x (-0.0002) - -0.09589 - 0.04745/

The algorithm may be continued for j = 2,3 To four figures, the correct values
are

A0°exp - 0.2932 - 0.9560/

A0'exp = -0.1908

A02exp = -0.09589 - 0.04745/

Note that the conjugate pair divided difference (A'exp) (5.01/,-5.01/) is real.
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2.9 Computing divided difference tables.

We have presented essentially two very different methods for computing divided

differences. The first was the standard algorithm (2.1.6) which is simple and fast, but may

magnify errors from step to step. The second was the more complicated series algorithm of

§2.8.

Because Taylor series coefficients are most easily obtained, the series algorithm is most

easily applied for a single expansion point. When the abscissae are closely enough clustered

about this expansion point, the series is rapidly convergent. Hence the series algorithm need

be computed for only a few steps to obtain divided differences with small error. This is pre

cisely opposite to the case for the standard algorithm, where in §2.4 the error magnification was

seen to depend inversely on the separation of the abscissae.

A general purpose algorithm for computing divided difference tables, then, will be a

hybrid. Each algorithm above will be used where it is best suited, with primary consideration

given to speed and accuracy of computation. The question is then to decide which method to

use for a particular element of the table. This is the prime topic of Chapter 3 where divided

differences of the exponential function are discussed.

The series algorithm presented in §2.8 computes only one row (or column) of the divided

difference tabie. It could have been written in matrix form in order to give the entire table at

once. This is equivalent to applying the given algorithm on each row of the table.

Such repeated applications of the series algorithm is not necessary, however. After one

application of the algorithm, the 0-th row of the, divided difference table is obtained. We now

have sufficient information to fill out the remainder of the table, row by row, by running the

standard scheme (2.1.6) backwards.

Backfilling the divided difference table. When divided differences A0V'for k-= 0,1,. . . , n

are known, the remainder of the table may be obtained by computing successively for

/-I.2.... ,/7

A,*/-«/+*--C/-,)-A,A-V/+AA_,/. (2.9.1)

* = 0,1,. . . , n—/.
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12 3 4 5

6 7 8 9

Fig. 2.9.1: Possible order of backfilling using (2.9.1).
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As in §2.4, we check how errors are propagated in one step of the backfill algorithm, say

to compute A ""'/=A<$'"'/+ (C» - Co)'AoV- The absolute error is

the relative error is given by

/•-I
€i

Si""1 =Sr, + (Ci,-Co)8o;

Ar]/ „_
AT1/

zn^ +T^TT^i-Cc^ctJ'
A,"-'/

(2.9.2)

(2.9.3)

The absolute error growth is governed by |C«-Col- When Ao~'/and A ""'/are of comparable

magnitude, the coefficient of €0",governs the growth of the relative error. In both (2.9.2) and

(2.9.3) the expressions governing error growth are essentially inverses of those governing error

growth in (2.4.3) and (2.4.5), respectively. Thus the backfill algorithm is most attractive pre

cisely when the series algorithm is most attractive and the standard scheme is not.
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3. Divided Differences of Exponentials

3.1 Special formulas for exponential divided differences.

The ideas presented in the last chapter are illustrated by considering the exponential func

tion. Because the exponential function is entire, all formulas and algorithms discussed so far

are applicable for any abscissae. Further, the special properties of the function permit useful

simplification of our previous formulas. In addition, results obtained for the exponential may

be modified to cover related functions, such as sin or cosh, by means of the linearity property

(2.1.8) of divided differences.

The behavior of exponential divided differences under a constant shift in the abscissae

illustrates a useful simplification of the translation invariance property (2.1.9). It is convenient

to consider the more general function expT with scaling parameter t, that is expT(C) = eH.

Translation property of exponential divided differences. Let z be a vector whose elements

are data points (§2.5). Then for any constant a,

A"expT(z + aw) - eTa-A"expT(z) (3.1.1)

where the constant vector w= (1,1, . .. ,1).

It is clear from (3.1.1) that no generality is lost when we restrict attention to sets of

abscissae with, say, Co"0 or C»"--Co- In the Iatter case the first divided difference simplifies to

} «,-*<<>_/<o sinh(TCo)
Ao'expT

-Co-(Co) Co

In general for non-centered abscissae any first divided difference of the exponential can be writ

ten as

A.expT - ««•^f^- 0.1.2)

where cu == (Ci + Co)/2 and * = (Ci -Co)/2.

The integral representation formula for divided differences (2.1.12) acquires a simpler

form when the parameter r is non-negative. We have
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1 T| TM-I ,,,

A(J'expr - ff ••• / -^exprlCo+(Ci-Co)Ti+ •••+(C„-C„-i)tJ</t„ • •dr{
oo o "C
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SS " J T"eXp[TCo+(C|-Co)TT,+ •••+(C„-Ci,-|)TT(,]rfT/l •••</t,

by the definition of expT. The change of variables o-^-tt, for 7 = 1.2 wyields the alter

native expression

r ""I 'r„-l

A<J'expr =J J ••• J exp[TCo+(C|-Co)o"i+ *•' +(C„-C„-i)o-„] </o-„ •••d<r] .(3.1.3)
0 0

We recognize that this is a recurrence for Ao"expr, namely

r

Ao"expT =^jy^-AT'exp,, No

where <r = cr\. By the symmetry property (2.1.3), the ordering of the abscissae is arbitrary; we

may replace Co by any C, 0 ^ / < n. To deal with such cases we define

A/JT'exp, = (A"-'expr)(Co,Ci C/-1.C+1 C„). (3.1.4)

the n-l-st divided difference with the /-th abscissa omitted. (3.1.5) summarizes the formula.

Recursive integral formula for Aoexpr. For any t > 0 and index / = 0,1, . . . ,«,

r

A(J'expT - /*'/*""'•Afir'exp,, d<r. (3.1.5)

This result will prove useful in the next section. In addition, one recognizes that formula

(3.1.5) is a convolution,

(exp{. * A/J7'exp)(T),

where A/J7'exp is treated as a function in t. The correspondence is obvious from the convolu

tion formula, with g(cr)= A/'7'expff,

T

(f*g)(r) =fAr-<r)-g(cr)d<r
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3.2 Real exponential divided differences.

Exponential divided differences for real abscissae are positive and increasing functions of

their abscissae. These properties permit derivation of both upper and lower bounds which show

how the divided differences and the error growth in the standard formula depend on (/) the

spread in the abscissae, (//) the order nof the difference, and (///') the parameter t.

In this and the next four sections we consider exclusively divided differences of the func

tion /=expr, with parameter t^O, for real sequences of abscissae X= {£0.fi f„|. All

such divided differences have two properties which characterize them.

Theorem 1: For all t > 0 and n ^ 0, A"expr is

(/') positive,

(/'/) strictly increasing in each abscissa £,, / =0,1, . . . , n.

proof: The result is almost immediate from the recursive integral formula (3.1.5),

T

Ao"expT =ert' f r '̂-A/!7'exPff d<r.
o

All 0-th order real exponential divided differences are positive [A°expr(£)=*er*]. The

recurrence implies all first order differences are also positive, and hence by induction all /7-th

order differences are positive for any n. For (//),

-^-A(5'expT =/(T-o-J^ '̂̂ A/JT'exp^^o- >0,

since the integrand is positive. D

The recursive integral formula also provides an easy way to develop expressions relating

divided differences of orders //—1 and n.
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Theorem 2: Suppose /3 ^ £ <y for every abscissa £, , 0 < / < /!. Then for each / there ex-

ists a £ € 1/3, y] such that

a/;t 'expr == (|-^ + -)-A0"expT.
T

(3.2.1)

proof: By the translation (3.1.1) and scaling invariance (2.1.10) properties,

r

A"exp[T0c-£w)] =r-"f-T^A0"expT - r-V'̂ '̂ /e '̂-A/Ji'exp,,do-
o

for any / = 0,1, . . . , // and £. Differentiating with respect to r yields

-^"expIrCc-^)] - r-V-^{(^/-^-~)-Ao"expr +A/ '̂expJ . (3.2.2)

Every element of the vector x-(3u is non-negative, and so A"exp[TU-/3w)l is increasing in t.

Similarly, every element of x —yu is non-positive and A"exp[T(;r-yw)] is decreasing in t.

Hence

-7-A"exp[TU-j3w)] ^ 0 > -~A"exp[TU-yw)]
dr dr

so for some £ € [/3, y], the derivative is zero. D

A plethora of upper and lower bounds on Ao'expT can be derived from the simple expres

sion (3.2.1) by choosing particular values of £ and /. The two simplest follow by choosing £ as

one or the other of the end points of the smallest interval containing the abscissae. Note that

equality holds when the abscissae are confluent.

Corollary 1: Lower bound on Ao'expT. If £„ > £, for each / = 0,1, . . . , /7, then

JL.A/I-I.^o"expr > —A0" 'expT
n

proof: Choose / - n and y = f „ in (3.2.1), and note that £ - £„ < 0. •

(3.2.3)
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Corollary 2: Upper bound on A0"expr. If £0< £, for each / =0.1 //, then

Ao'expT < —A| expT.
n

(3.2.4)

(3.2.3) leads directly to a bound on the relative error growth in one step of the standard

divided difference algorithm (2.1.6). From (2.4.5) the error in fl{A0"expT) relative to Ad'exp,. is

The factor

€tf-€r' +
Ar'exp^r'-gp"1)

Ad'expT-(f„-£0)

r'0'{r\x) =
Ad'-'exp,

Ad'expT-|£,,-£0|
(3.2.5)

which we call the growth factor, controls the growth of the relative error in computing Ad'expT

by (2.1.6). Clearly when r$(T\x) is small, the relative error growth is small; conversely when it

is large, the relative error growth may be large. By (3.2.3) the growth factor satisfies

4{t;x) <
Ttt„-*o>

(3.2.6)

when £„ ^ £, for all /.

(3.2.6) illustrates the dependence of error growth on the three factors mentioned at the

beginning of this section. It also permits us to bound propagated errors in the divided

difference table in the manner shown in Fig. 2.2.3. We illustrate this in Fig. 3.2.1 for a single

initial relative error e in Ao'exp^ Each element of the bottom diagonal satisfies

|€o•|<T-(il!)|€|•"[^«y-W]-,.

Note that for equispaced abscissae, say £/=./8, we have led'l < |e|/(T8)", and the factorial can-

cells.

fThe abscissae are • • • £-4 < £-3 < £_2 < f-i < £0< f 1< £2< h < U ** '» in contrast
with our usual numbering.
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Fig. 3.2.1: Relative error growth pattern in table of real exponential divided differences.

A sharper error growth bound than (3.2.6) is obtainable. We improve (3.2.3) by further

refining expression (3.2.2), which was used in the proof of Theorem 2.

Theorem 3: Suppose 0 < £,- < y for all abscissae £„ 0 < / < /?. Then there exist values

i'j € [/3, y], 0 < j < /?, such that for any value of £ and every index /

/17'expr = {£-£, +- +£ tj~t
r fyn+l+T(?j-fj) •Ao'exp..

proof: By the chain rule for differentiation, (3.1.1), and (2.1.10),

-f-A"exp[T(;c-£tf)] - £(tty-$)-A-+,explT<Jc-fi#). t(£,-£)1}
»T ,-o

Combining this with (3.2.2) yields

e-^T-("+,)j;{(^/-^).A"+'expTU|y))
7-0

1-AA^r'expr- (- +f-W'Arftexpr+ -XI<f/-^-A,,+,exprUf/)}
T T 7-0

Now by Theorem 2, for each y there exists a f y6 [0, yl such that

(3.2.7)



§3.2 58

A'-'exMx, fj) - a+H.^.fr)*^• °

Setting / = n and £= £'; = £„ for all 0 <y < /? yields a sharper inequality than (3.2.3) when

£„ is the largest abscissa.

Corollary: If £„ > £, for each / = 0,1, . . . , //, then

iT'exp.. (3.2.8)
ii-i !

(X ,. , ,•—7r}-Ao"expr > -^-Ar'expr-

Even better inequalities can be derived, but at the sacrifice of simplicity. We also note that

" 1

J*n+l+T(?j-tj) " 1

because the left-hand side of (3.2.7) and Ao"expT are independent of £, thus giving a relation

amongst the £'7.

example: For evenly spaced data points real exponential divided differences can be presented

analytically. Let X= {f0,fo+28,£0+48, • • • ,£o+2//8}, where 28 is the spacing.

Then

krftap, =V^-^-]" =-Le'^^l^^-}". (3.2.9)
n\ 25 n\ o

This expression yields very accurate divided differences, especially if we have avail

able a good routine to evaluate the function Sh(£) =sinh(£)/£. Fig. 3.2.2 compares

divided differences Ao"expT for /?-0.1. ... .24 computed according to (3.2.9) and

the standard algorithm (2.1.6). t = 1, £o = 0 and 28=1. The initial values A°exp

are rounded to seven digits, and all arithmetic is performed in greater precision in

order to isolate error growth due to initial errors.

The table in Fig. 3.2.3 compares the actual error growth per step in using the stan

dard scheme with bounds derived from

l«dl < ur^ + r't^xHUr^+ur'i)

under the assumption Ur'l-UiT'l. That is* l€d'l ^P-Uo'"'! where
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p=l+2r6'(r,*).

n A0"exp by (3.2.9) Atfexp by (2.1.6) Relative error in

A«'/expby (2.1.6)

0 1.000000 1.000000 0.0
1 1.718282 1.718282 0.0
2 1.476247 1.476246 6.774E-7
3 8.455359E-1 8.455363E-1 -4.731E-7
4 3.632173E-1 3.632166E-1 1.927E-6

5 1.248219E-1 1.248225E-1 -4.807E-6
6 3.574655E-2 3.574611E-2 1.231E-5
7 8.774665E-3 8.774811E-3 -1.664E-5
8 1.884669E-3 1.884642E-3 1.433E-5
9 3.598214E-4 3.598186E-4 7.782E-6

10 6.182746E-5 6.183118E-5 -6.017E-5
11 9.657909E-6 9.655845E-6 2.137E-4
12 1.382918E-6 1.383742E-6 -5.958E-4
13 1.827879E-7 1.825252E-7 1.437E-3
14 2.243437E-8 2.249849E-8 -2.858E-3

15 2.569905E-9 2.558588E-9 4.404E-3
16 2.759888E-10 2.772152E-10 -4.444E-3
17 2.789568E-11 2.787636E-11 6.926E-4
18 2.662925E-12 2.645633E-12 6.494E-3
19 2.408240E-13 2.422432E-13 -5.893E-3

20 2.069018E-14 2.148605E-14 -3.847E-2
21 1.692931E-15 1.349106E-15 * 2.031E-1
22 1.322242E-16 2.119468E-16 -6.029E-1
23 9.878198E-18 -3.198523E-18 1.324
24 7.072304E-19 2.272222E-18 -2.213

Fig. 3.2.2: Ao'exp computed from initial values rounded to 7 digits.
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Error growth factors P

Average error growth per step = 2

Error growth bound using rfi(r\x) l+2/V-l) = 2.16

Error growth bound using (3.2.8) to bound rfi(T\x) < l + 21og2= 2.4

Error growth bound using (3.2.3) to bound r'd(T;x) 3

Fig. 3.2.3: Relative error growth and bounds for divided differences in Fig. 3.2.2.
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3.3 The Taylor series algorithm for AoexpT.

The error growth bounds of the last section show that accurate computation of Ao'expr

when T|f„-£0| is small demands that we consider a method other than the simple scheme

(2.1.6). The series algorithm presented in §2.8 suits our requirements. In particular the Taylor

coefficients are easy to compute and convergence of the Taylor expansion accelerates as the

abscissae cluster more closely together.

The algorithm is derived directly from the Taylor expansion formula (2.8.4). Without

loss of generality let £0< £, < £„ for each / -0,1 /;, and define

_ £ii + £o , . _ , .
a = —-— and 0 = £„-£„ (3.3.1)

a is the Taylor series' expansion point, and 9 is the spread in the abscissae. With /=expT the

basic formula yields

oo „+j

'*»*- 'ToTO! 'W

where tr'(£) = r+/(£-<*)=• (£-«)''"". Let

s = eTOT—t'
J-OJ'

be a partial sum of the Taylor series for expr; so

in—H T«+7
A "e =a oTa V .A "t "+/

°"' fy (»+7)! io1"

is a partial sum of Ao"expr. Algorithm 1 of §2.8 translates into the following.

Algorithm: Taylorseries algorithm for Ao*expr.

Initialize Aq*To = 1• A^.
eTark

, for each k = 0,1, . . . ,n

For j -0,1.2,...

Aflr**' - iik-*)M\?k+ AoA-'U+A
eraTJ+k+\

A<fs,+*+i =Ao*s,+* + ^.+A:+1)!-AoATci+A+l, for each A: =0.1 #i.

(3.3.2)
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The algorithm produces all the values A0Aexpr, 0 ^ k < w, as a bonus because the quantities

needed to form them are intermediate in forming just Ao"expT. Also, the coefficient evaluations

can be performed iteratively for greater efficiency.

We now wish to examine how the error in computing A0"expr by this algorithm is affected

by the parameter t, the order /;, and the spread in the data points 0 = £„—£0- Since lower

order divided differences play no role in the series computation, the subject of propagating ini

tial errors is not relevant. Instead, we examine the effects of round-off errors in each step of

the series computation and obtain an overall error bound.

The algorithm involves many inner product computations. We consider two possible error

n

conditions. In the first, the computed inner product ftii^jotfij) satisfies
i-0

Wt«,fi,) - £a,j8,| <€2>,/3,| 0.3.3)
i-0 i-0 i-O

for all /7. The error analysis here is based upon methods presented by Wilkinson [1963] who

takes € as 1.06 times the machine precision. The error bound (3.3.3) holds, for example, when

all additions are performed in double precision arithmetic (hence the subscript 2 in fl2) and

rounding to single precision is done only when the summation is completed.

n

In the second case, the computed sumy?(£a,/3,) satisfies
i-0

W£«/0,) " £0,0,1 <€£(/7 +2-/)k/3,|. (3.3.4)
i-O i-0 i-0

This bound holds when the entire summation is performed in single precision arithmetic.

The following error bounds for Ao"expT are established in Appendix B. Under the double

precision condition (3.3.3)

_ii_ra

[/?2(Ao"expT) - A0"exPr| < €(2 +T0/2)eT(,/2l^r-. (3.3.5)
n \

and under the single precision condition (3.3.4)

l/7(Ao"expT) - A«J'expT| <€(m +n+l+T9/2)eT(,/21-^- . (3.3.6)

The factor r"eTa/n\ is A"expT evaluated for data points confluent at a. m+1 is the number of
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terms added in our computed partial sum of the Taylor expansion and is chosen so that, say.

|A0»exPr- Ao'Vj =|e'« £ T^Arf'tri <ee*"<2^- .

m depends on e, t, and 9 in a complicated way; only a general estimate can be given. For

example Appendix B shows that when €= 10"'4 and t0 < 2, m ^ 16 satisfies the above condi

tion.

The bounds (3.3.5) and (3.3.6) are converted to relative error bounds by

r"eT*° T"eT*"
< Ao"expT <

n n\

which follows from A"expT being increasing in its abscissae. Then because £0^ <* ^ £m

^ < /(°-^.Ao"expT = ^#/2-Ao"expT

Relative error bounds for the Taylor series algorithm. The relative error €6'in represent-

ing Ao'exp,. by its computed value satisfies

|co*| < e(2+ T9/2)eT9 (3.3.7)

for double precision accumulation (3.3.3), and

|eo"| < €(/77 + /7 + 7+Td/2)^rfl (3.3.8)

for single Iprecision accumulation (3.3.4).

The relative error bound in the first case does not depend on n. In both cases it is

increasing in the "spread" r9. These error bounds are uniform in the sense that if the Taylor

series algorithm were used to compute any other divided difference of the table (any A,AexpT

for /r=0,1, . . . ,/7 and / —0,1, . . . ,n—k), a smaller error bound would result. This follows

from the ordering condition £o^£i^£«- Error bounds for A*expT would either involve

replacing n by k < n or 9 by a smaller number.

example: In Fig. 3.3.1, 8-th order divided differences correct to 7 digits are given initially for

the standard scheme; the scheme is used only to compute the remaining higher

order differences. The relative error increases by a factor of about 3 per step. Thus

|€0"| = 3""8€
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abscissae A0"exp, Ao'exp using Ao'exp using Ao'exp using

//

€h
correct to 7 standard scheme Taylor series Algorithm of

decimal digits after // = 8 Algorithm §3.4

0 -13.0 2.260329E-06 2.260332E-06

1 -12.5 2.932648E-06 2.917451E-06 2.932650E-06

2 -12.0 1.902471E-06 1.905751 E-06 1.902472E-06

3 -11.5 8.227822E-07 8.215427E-07 8.227824E-07

4 -11.0 2.668782E-07 2.669856E-07 2.668782E-07

5 -10.5 6.925181E-08 6.925365E-08 6.925180E-08

6 -10.0 1.497504E-08 1.496362E-08 1.497505E-08

7 -9.5 2.775608E-09 2.777049E-09 2.775609E-09

8 -9.0 4.501490E-10 4.501490E-10 4.501040E-10 4.501491E-10

9 -8.5 6.489361E-11 6.489360E-11 6.490737E-11 6.489364E-11

10 -8.0 8.419572E-12 8.419580E-12 8.420343E-12 8.419573E-12

11 -7.5 9.930829E-13 9.930800E-13 9.930225E-13 9.930829E-13

12 -7.0 1.073723E-13 1.073727E-13 1.073735E-13 1.073724E-13

13 -6.5 1.071611E-14 1.071609E-14 1.071603E-14 1.0716UE-14

14 -6.0 9.931098E-16 9.931271E-16 9.930869E-16 9.931100E-16

15 -5.5 8.590019E-17 8.590612E-17 8.590039E-17 8.590021E-17

. 16 -5.0 6.965660E-18 6.951898E-18 6.965612E-18 6.965660E-18

17 -4.5 5.316202E-19 5.402473E-19 5.316202E-19 5.316201E-19

18 -4.0 3.831926E-20 3.486964E-20 3.831920E-20 3.831926E-20

19 -3.5 2.616686E-21 3.650387E-21 2.616686E-21 2.616687E-21

20 -3.0 1.697500E-22 -6.986900E-23 1.697499E-22 1.697500E-22

21 -2.5 1.048766E-23 5.010054E-23 1.048766E-23 1.048766E-23

22 -2.0 6.185062E-25 -1.792933E-24 6.185061E-25 6.185063 E-25

23 -1.5 3.489027E-26 -1.236419E-24 3.489027E-26 3.489027E-26

24 -1.0 1.886172E-27 6.496526E-25 1.886172E-27 1.886172E-27

25 -0.5 9.788799E-29 -1.931645E-25 9.788798E-29 9.788797E-29

Fig. 3.3.1: Top row of Aexp using several methods.

where e < 5 x 10 , whereas the growth factor bound

p = 1 +
2/7

t(£„-£o)

64

discussed along with Fig. 3.2.3 gives a bound of 5 for the increase. The Taylor

scheme yields good results for /7 = 25 because the data points are symmetrically

placed about the expansion point a = —7; however, the lower order differences have

less relative accuracy than A^exp. The relative error bound (3.3.7) with 9= 12.5 is

{'\ < 2.3 x 106e1*0
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For the lower order differences (small //), this overestimates |cd'| by a factor of

about 10. Without a correct value of the divided difference to compare with,

bounds such as the above must be accepted as the uncertainty in the computed

divided differences, for all n.

The example shows that both the Taylor series algorithm and the standard scheme (even

with some low order differences initially provided) may produce A<i'expT with large relative

errors when t9 is neither large nor small. The algorithm presented in the next section is

designed to deal with this intermediate situation.
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3.4 A scaling and squaring method.

At the end of the last section we saw that there are situations where neither the standard

scheme nor the Taylor series algorithm yields a value of Ao'expr with small relative error for all

n of interest. We present here a third approach for computing divided differences of the

exponential which, in many cases, gives significantly belter error bounds. The method is based

on the matrix function theorem for divided difference tables (§2.6) and is suggested in formula

(2.6.8).

The entire divided difference table is representable as a function of the special "step

matrix" Z (2.6.2). Specifically for/=expr,

AexpT = exp(rZ) = erZ (3.4.1)

where the diagonal of Z consists of the abscissae £o-£i> • - • »£«• Special properties of the

exponential function are reflected in the divided difference table, denoted by Aexpr. In particu

lar for any non-negative integer j\

AexpT= [exp(2-'TZ)F= [Aexp2_/T]2'. (3.4.2)

a formula for scaling and squaring the divided difference table. Ward [1977] has suggested scal

ing and squaring as a method for computing the exponential of a full matrix, whereas we pro

pose to use it only in connection with Z.

example: With abscissae {0,1,2,3,4},

1.0000 6.4872E-1 2.1042E-1

1.6487 1.0696

Aexp(/, = 2.7183

to five digits. Squaring this matrix yields

1.0000 1.7183 1.4763

2.7182 4.6709

(Aexp(/J)2 = 7.3892

4.5501E-2 7.3794E-3

3.4692E-1 7.5019E-2

1.7634 5.7198E-1

4.4817 2.9074

7.3891

8.4553E-1 3.6322E-1

4.0129 2.2984

12.696 10.908

20.086 34.513

54.599
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For example,

4

A04exp = XA0*exp./,-A4~*exp./:
A-0

= (1.0000) x (0.0073794) + (0.64872) x (0.075019) + (0.21042) x (0.57198)

+ (0.045501) x (2.9074) + (0.0073794) x (7.3891)

= 0.36322;

and we check by (3.2.9)

A04exp - 4r(el ~I)4 = -77 x(1.7183)4 - 0.36323.
4! 4!

Basic scaling and squaring algorithm. For (3.4.2) to be the basis of a useful algorithm, we

first must obtain an initial divided difference table Aexprv In the last section we saw that the

relative error in the Taylor series algorithm decreases with the parameter t. By choosing j large

enough we can make, say, the error bound (3.3.7)

|co*| < €{2 + 2-W)T9)e1~h»

small for any spread 9 in the abscissae. Let /3, represent one of the coefficients of e in (3.3.7)

or (3.3.8), that is

j8y = (2 + 2-(j+uT9)e2~iT() or 0, = {m +n +1+2-{i+X)T9)el~hi>. (3.4.3)

The relative error bound fij€ is uniform for every element of the divided difference table

Aexp,_/r computed by the Taylor algorithm. Thus

l/7(Aexpr;T) - AexprJ < e/S/Aexp^. (3.4.4)

The inequality holds element by element.1

tFor a matrix 5, |B \ denotes the matrix all whose elements are the absolute values of
the elements of 5, i.e. \B\U=\BU\. Our notation B < C means that BfJ^ CfJ for
every / and j.
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In §2.9 we remarked that it is not necessary to compute an entire divided difference table

by the series algorithm. The Taylor algorithm need only produce the top row of Aexprv The

backfill formula (2.9.1) generates the remainder of AexprV Specifically when A,?expr,r

Ad'exp2_,T are generated by theTaylor algorithm,

A,Aexp2-ir - (£,+/t-f,_,)-A,AJi'exp2-,T + A^exp^ (3.4.5)

for k —0,1, . . . ,//—/ are obtainable successively for /=»1,2,

modification does not increase the error bound (3.4.4).

,/?. We show that this

example:

1.0000 6.4872E-1 2.1042E-1 4.5501E-2 7.3794E-3

1.6487 1.0696 3.4692E-1 7.5019E-2

Aexp. 2.7183 1.7634 5.7198E-1

4.4817 2.9074

7.3890

The top row is from the matrix in the previous example. The remainder of the table

was filled in by (3.4.5). For example,

Afexpi/, = (4-0)-A04exp./I + A^exp./,

= 4x0.0073794 + 0.045501

= 0.075019

Lemma: The relative error bound on every element of the divided difference table is no

greater than the largest error bound on the elements in the top row of the table. This error

bound is not increased when the table is filled out by the backfill scheme (3.4.5).

proof: Consider one step of the backfill routine

Ar'exp2-7r - (£H-£0).Ao"exp2_/T + A0"-,exp2-/r
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Let €o be the relative error in the computed value of Ad'exp2_,T. The propagated error in

A,""'exp2_;ris

e,"-'-Ar'expr/r = €d'(£„-£o)'Ad'exp2_/r + ed'-'-Ar'exp^.

Both |ed'| <e/3y and |ed'~'| < €/3,, by the uniformity of the bound /3, for the Taylor series

method. Thus

Ur'I'Ar'exp^ < e^K^-^'Ad'exp^ + Ad'-'exp2_/T},

so

When the abscissae are ordered £0 < £1 < ' *' < f »» tne sum in (3.4.5) involves non-negative

numbers only and the above argument may be repeated. It shows that, considering only pro

pagated errors, the uniform error bound (3.4.4) holds also when only the top row of Aexp2_,r is

computed by the Taylor series algorithm and the remainder of the table backfilled according to

(3.4.5). a

The outline of a new approach for computing the divided difference table Aexpr is sum

marized as follows.

Algorithm 1: Scalingand squaring algorithm for AexpT.

With the abscissae ordered such that £0 < £i < * ' * ^ £«♦

1. Choose j and form A0*exp2_jr for *«0,1, . . . ,n by the Taylor series algorithm

(§3.3);

2. Backfill the remainder ofthe table Aexp2_,r according to (3.4.5);

3. Square the divided difference table matrix j times.

Error bounds and selection of a scaling parameter. An error analysis of the algorithm shows

how to select j. The elements of the divided difference table AexpT are non-negative for all

r ^ 0. When inner products involved in matrix squaring are accumulated according to the error

condition (3.3.3), not depending upon n, we have an element by element error bound

\fl2(B2) - B2\ < *B2 (3.4.6)
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for any non-negative matrix 5, such as £ = Aexp,_,_. When a computed matrix.fi2(B) satisfies

MB) - B = £ where |£| < e/3,£ , (3.4.7)

as in (3.4.4), then

\WB))2 - B2\ = \BE + EB + £2| < (2e/8, + e2j32)*2.

Thus squaring a computed matrix ./^(Z?) yields

[fl2[fi2(B)]2 - B2\ < l/72[/72(£)]2 - l//2(£)l2| + \{ft2(B)]2 - B2\

< €(//2(£)]2+(2e/3/ + €2J32)fl2

< e[(l +2/3,) + €(2+fij)fij + €2j3;lS2.

e is so small that terms in €2 are negligible when compared with terms linear in €. We take

\fl2[fl2{B)]2 - B2\ < e(l+2j3/)£2. (3.4.8)

In (3.4.8) 5 = Aexp2_,T, so

.ff2WB))2 =^2l/?2(Aexp2_,r)]2 = .//2(Aexpr(/.„r).

The first computed matrix square satisfies

l//:(Aexp2_„->„r) - Aexp2_(,_„r| ^ €(l +20/)-Aexpr<>_„T

= €[2iPj+1) - 1]-Aexp,_0_,>r •

This inequality is the same as (3.4.7), but now with B= Aexp2_,,_,,T and 0, replaced by

£,_, = 2(/3; + 1) -1. Hence iteratively

l/72(Aexp2_0_2,r) - Aexpr(/_2,J < €[4(/3,+ I) -l]-Aexpr„-_2>r.

and after j steps

!//2(Aexpr) - AexpT| < 6[2-/(/S/+ D- 1]-Aexp7. (3.4.9)

This last inequality is a relative error bound on the divided difference table computed according

to the scaling and squaring algorithm. The bound depends on the Taylor series bound through

pj and increases exponentially in j\ the number of squaring operations performed.
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It is clear both from the error bound (3.4.9) and the amount of work involved in squaring

matrices that we wish to choose j as small as possible. However /3y increases as ./' decreases.

We demonstrate here how to select j to minimize the bound in (3.4.9). With jso chosen, we

obtain an expression of the form kt9 for the relative error bound. The value of the constant k

depends on the specific assumptions made in bounding round-off errors in the Taylor algorithm

and the matrix squaring.

We want to minimize the coefficient in (3.4.9); that is we want to choose ./' to minimize

the expression

g(j) = 2J(fij+\) - 1= 2j[(2 + 2-{j+])t9)c>2~'t,,+ \} - 1.

Define o* = 2~'t9. t and 9 are fixed here, so minimizing g(j) in j is equivalent to minimizing

gM = — [(2+ o-/2)<?" + l]
O"

in or. The minimum is g(o-) = 7.7885 which occurs for a- = 0.9606. 2wt0 = 0.9606 is probably

not true for integer values of j. Nevertheless for integer j\ the cr = 2~'r9 yielding the smallest

value of g(ar) must satisfy o-0 < 2~'t0 < 2cr0 where £(o-0) =£(2o-0).

5C°+

Fig. 3.4.1: Graph of g(<r) showing (o-0,2o-0] is the largest interval containing o-=2 't9

for just one integer value of j.

o*o = 0.6646, so 0.6646 <2~'t0< 1.3292. The minimizing j is the smallest non-negative

integer satisfying

2-'t0 < 1.3292. (3.4.10)

For all <t 6 (0.6646, 1.32921, gW < g(1.3292). We are assured that for the above choice of 7,
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j?(2~'r0) < g( 1.3292) = 8.3259 = *c2. Then

#0') = r0-£(o-) - 1 < k2t0- I.

Hence

[//2(AexpT) - Aexpr| ^ €[k2t0 - UAexpr (3.4.11)

when the scaling parameter j is chosen according to (3.4.10). This bound may fail when r0 is

very small; in this case j =0 and the Taylor series bound (3.3.7) is appropriate.

By a similar argument we derive a bound like (3.4.11) for the single precision error condi

tion (3.3.4). In this case we write

f}j={n+\)yj=im +n+l +2-{i+"T9)e2-'r\

which is consistent with the other Taylor series error bound (3.3.8). The error in matrix squar

ing satisfies

\fl(B2) - B2\ < €(n+l)B2

for any non-negative matrix B. From (3.4.7),

MB) - B = E where \E\ < e(/7+l)y,£.

Replacing € by e(/7+l) and /3, by y} in our arguments leading up to (3.4.9),

l/7(Aexpr) - AexpT| < 6(/7+l)[2/(r/ + l)-l]-Aexpr. (3.4.12)

In Appendix B we show that when e < 10"7, mcan be taken as small as 10. We assume

also all first order divided differences are computed by a special formula as in (3.1.2), so our

bounds here are applied oniy when n> 2. Also, j will be such that 2~{j+ut9 < 1. Hence

=(1+m+6 +2-(^"T0)e2-;Ttf <7<?2-/r» (3A13)
J /7 + 1

As before we want an integer j to minimize the expression

2/(7*2-^+1)-1.

This is minimized when j is the smallest non-negative integer satisfying
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2-'t0 < 1.4542.

For this j

l/7(Aexpr) - AexpT| < €(/7+l)[K,T0-l]-Aexpr

where /C| = 21.2950. The following box summarizes these bounds.
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(3.4.14)

(3.4.15)

Scaling and squaring error bounds. For double precision accumulation of inner products

(3.3.3),

|y?2(Aexpr) - AexpT| < c[k2t0- l]-AexpT

where k2= 8.3259, 0 is the maximum spread in the abscissae, and the number of squarings

j is the smallest non-negative integer such that

2-^-0 < 1.3292.

For single precision accumulation (3.3.4),

L/?(AexpT) - AexpT| < €(/7+1)[k|T0-lJ-AexpT

where k\ = 21.2950 and j is the smallest non-negative integer such that

2^t0 < 1.4542.

example: The entries in the right hand column of Fig. 3.3.1 were computed by scaling and

squaring. The bound (3.4.11) has the coefficient

k2t9-1 - 8.3259 x 1 x 12.5-1 = 103.

and log|0103 = 2.01. This indicates a loss of two decimal digits, at most, in all the

divided differences computed.

Modified scaling and squaring algorithm. The algorithm can be made more efficient by

extending our use of the backfill scheme. Squaring a (/7+1) x (n+\) triangular matrix (such as

Aexp2_,r) requires (n+3)(n+2)(n+\)/6 multiplications. The j squarings needed to get Aexpr

from Aexp2_/r involve 0(jn3/6) operations. This operation count can be reduced to 0(jn2).

Once the top (0-th) row ofj72(Aexp2_0_uT) is computed from squaring 7?2(Aexp2_/r), the

backfill scheme (2.9.1) will generate the remainder of ./^(Aexp^,-,,,) in exactly the same

manner we generated the remainder of7?2(Aexp2_/T) given its top row by the Taylor series algo

rithm. Because relative errors in the elements in this top row of7?2(Aexpr</.|iT) are uniformly
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bounded by c(l +2/3/),

L/72(Aexp2-(/_„T) - Aexp2.(/_nr| < e(l+2/3>)-Aexp2_,/_„r

for the entire table. This idea holds for all the squarings. We notice also that the uniform

bounds are exactly those employed in the analysis of the scaling and squaring algorithm. Thus

all our just derived error bounds are applicable when the matrix squaring is modified in the

above manner. The same argument holds for single precision accumulation when c is replaced

by c(/7+l).

Now, how does the operation count change? Obtaining the top row of a matrix square

requires (/?+2)(/7+l)/2 multiplications. Backfilling the rest of the matrix requires one multipli

cation per element, or n(n+\)/2 multiplications. Thus computing each matrix square by this

modified method requires (/7+1)2 multiplications, compared with (/7+3)(/7+2)(/7+l)/6 for the

direct squaring approach. This is an improvement for all // > 1.

Algorithm 2: Modified scaling and squaring algorithm for Aexpr.

With the abscissae ordered such that £0 ^ £i ^ * * * ^ £m

1. Choose j according to (3.4.10) or (3.4.14) and form Aoexp2_/r for k=0,1, .... n

by the Taylor series algorithm (§3.3);

2. Backfill the remainder of the table Aexp2_/r;

3. Square the divided difference table matrix Aexp2_yr j times in the modified manner:

compute the 0-th row of the matrix square and then backfill the remainder of the

table.
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3.5 A hybrid algorithm for the divided difference table Aexpr.

We have now presented three quite different methods for computing Ad'expT

= (A"expT)(£o til)'- (1) standard divided differences, (2) Taylor series, and (3) scaling

and squaring. These algorithms have complementary error propagation properties, but they

vary in computational efficiency. We summarize here these two aspects of each algorithm and

present a hybrid algorithm which may be used when none of the above alone is satisfactory for

computing an entire table. For our hybrid algorithm we give error bounds which depend only

on the order of the divided differences computed; these bounds are independent of the choice

of abscissae and parameter r.

(1) Standard. The propagated relative error ed' in a typical step of the standard algorithm

satisfies

kd'l < h"-'| + rff(Tyr)-[|er,l + l«d'",|].

where by (3.2.6)

rS(r\x) <
t<*.-«

when I;,, > £, for all /.

When the abscissae are ordered, £o^€i ^ ' ' ' ^£m ana* aH initial relative errors e,° in

the function values A?expT = er ' are uniformly bounded (that is |€,°| ^ e for all /), we obtain

a simple bound on ed'. Let <f> represent the minimum separation of the data points, that is

<r>= min (£, —£,_|). The relative error in all first order divided differences satisfies
i < / < a

|e,'| < e(l+2/r0), / = 0,1 /7-1.

Continuing, we obtain

kd'l < 6I1(1 +2^/t0). (3.5.1)
A-l

This bound is decreasing in r<f>. Given the (initial) n+1 exponentials eT ', computing Ad'exp.,

in fact the entire divided difference table, requires only //(/7+D/2 divisions.

(2) Series. The Taylor series method (§3.3) needs 2/7+2 multiplications (exclusive of

coefficient evaluations) to add a new term to the partial sums we form for each A(JexpT,

/r=0,1, . . . ,/7. When each partial sum has m+1 terms, the total is 2m(n+\) multiplications
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(the initial term requires no inner products) to get Ad'expT, as well as all AoAexpr for

it-0,1. //.

(3) Scaling and squaring. Squaring a (/7+1) x (w+l) divided difference table by the special

method described in §3.4 requires (n+\)2 multiplications, and we do this j times. For any but

small //, the table squaring dominates the rest of the calculation.

Fig. 3.5.1 summarizes this information on bounds and operation counts. The error

bounds listed in the second column assume that inner products satisfy the double precision

error condition (3.3.3), that is

l/VX>/W " 2>Al <0>,/S,|.
/-0 i-O i-O

Those in the third column reflect the single precision error condition (3.3.4), namely

W2>,/3|) - 2>,/3,l <e£(/7 +2-/)k/3,|.
i-O i-0 i-O

The bounds depend on the minimum separation <p and the maximum spread 0 in the abscissae.

The constants k2 and k\ in the bottom entries depend on the details of the arithmetic in the

scaling and squaring algorithm. In §3.4 we derived the values k2=*8.3259, and K| = 21.2950

when e = 10~7.

Method
Relative error bound coefficients

Operations
Double precision Single precision

Standard algorithm with

minimum separation <f>
f[(l +2k/T<f>)
A-l

n(l+2*/T<*>) ~i..

Taylor series, using //?+l
terms, with spread 0

(2+ T0/2)er" (/77 + « + 7+ T0/2)erW — 2/77/7

Scaling and squaring
with spread 0

k2t9 -1 (/7+1)[k,t0-1] ~M2

Fig. 3.5.1: Summary of three divided difference algorithms for Ad'exp-.

Decision criteria and the hybrid algorithm. Our error bounds suggest a hybrid algorithm: com

pute all divided differences having closely clustered abscissae by scaling and squaring, and the
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remainder of the table by the standard formula. The Taylor series is a special case of scaling

and squaring with 7 = 0. The operation counts suggest employing scaling and squaring on

divided differences of the smallest practical order. Our desire for good accuracy and our desire

for efficiency, however, are in conflict. Here we lean towards the former in presenting criteria

for deciding which method to employ when computing a particular difference in the table; we

develop an overall error bound which holds for any sequence of abscissae and parameter t.

A simple criterion is to use the "best" method to compute each divided difference in the

table. By best we mean that method (either scaling and squaring or standard) which yields the

smallest relative error bound for that particular divided difference we are considering. All lower

order divided differences are assumed to have been computed already by the best method, or

by a special formula.

For example in computing A<Jexpr with double precision accumulation, we use scaling and

squaring when

(k2t0-1)€ < (l + 2/T0)€,

and the standard algorithm, otherwise. Here 0=»£|-£o is both the spread and the minimum

separation in the data points. The worst possible error bound for this hybrid, then, occurs

when

k2t9-\ = 1+2/t0.

This has the solution

t0 = (1 +V1+2k2)/k2 = t0, .

For k2= 8.3259 (as derived in §3.4), t0] = 0.62 and

k2t0,-1 = 1+2/T0, = 4.20.

Thus the relative error 6<J is bounded, |«oI ^ 4.20c, when the "best" method is used. This

bound does not depend on the abscissae or t, only on the value of k2. We have obtained a

bound independent of the abscissae and t when we use scaling and squaring for t0 < t0| and

the standard formula for t0 ^ t0|. This is a simple criterion for deciding which method to

employ.



§3.5 78

re, f e

Fig. 3.5.2: Uncertainty in computed values of A(jexpT.

It is important to note exactly what our criterion means. The case t0 =t0| does not mean

that the two methods are equally accurate, only that our convenient error bounds for each

method are equal. Each bound may be viewed as our maximum uncertainty in the computed

A<JexpT when the appropriate method is used. Thus when t0=t0| our uncertainty is equalized

for the two methods, and is maximized over all t0 for the hybrid method. The number 4.20c,

for example, represents our maximum uncertainty in the computed Adexpr when the "best"

method is used. More refined error bounds using information about r and the abscissae will

reduce the uncertainty, but at the loss of the simplicity we have here.

For A02expr and 0=£2-£o> tne relative error for the standard formula is bounded by

(k2t0j - 0(1 +4/t0)€. We use scaling and squaring when

(k2t0-1)6 < (k2t0,-1)(1 + 4/t0)€.

The largest error bound occurs when equality holds. Let this happen for t0 = t92, thus

k2t02- 1 - Oc2t0, - 0(1 +4/t02) .

This procedure may be followed for all divided differences. For A<j'expr we obtain the

recurrence in r0„,

k2t0„-1 - (k2t0w_,-1)(1 + 2w/t0;,) (3.5.2)

The criterion for scaling and squaring in computing Ad'expT is

t(*,-W < t0„, (3.5.3)
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Algorithm: Hybrid algorithm for AexpT.

1. Compute A,°=cr ' for each /=0,1 //.

2. For A=»l,2 wand / = 0,1 n-k, when

t<*(-+a-*(-) <r0k

compute A*expT by scaling and squaring; otherwise, when

T^+t-W >r9k

compute A,Aexpr by the standard formula.

80

The hybrid algorithm requires us to decide which divided difference scheme to use for

each divided difference. For example in computing A<{2expT by employing the values in Fig.

3.5.3, when all lower order divided differences have been computed according to the algorithm,

scaling and squaring is used when

r(*i2-W < t0,2= 109.32.

The standard scheme is used otherwise. The relative error in our computed Ad2expT, that is

€q2, satisfies

|ed2| < (k2t0,2-1)€ = 909.22c.

log|0(909.22) = 3 bounds the number of decimal digits lost in computing A<J2expT by the hybrid

algorithm. That is, when all A°expT are given to 10 correct decimal digits, say, our computed

A<J2expr contains, at least, 7 correct decimal digits.

To gain a better idea of how the decision criterion t0„, and its associated error bound

k2t0„-1, depend upon the order of the divided difference /;, we bound solutions of the

recurrence (3.5.2). Appendix C shows that

t0„ < n2 + n + — (3.5.4)
*2

for n ^ 1 and any k2 > 0. Hence the relative error in A<j'expT, computed according to the

hybrid algorithm with double precision accumulation, satisfies

|e<j'| < [k2(/j2 +w) + 1]€. 0.5.5)

The relative error, then, increases in «, at worst, as 0(n2). This bound holds regardless of our
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choice of abscissae and parameter t. For our example with *c2 = 8.3259,

//(//-4) < T0„ < n(n-3)

when n ^ 17 (Appendix C). For comparison, the last two columns of Fig. 3.5.3 contain values

of /j(w—3) and log|ol*c2/;(/;—3) -1], The latter numbers closely bound the digits lost values

for large n.

Single precision decision criteria. A similar analysis in the case of single precision accumula

tion shows that the hybrid algorithm error bound behaves as 0(/?3). Here the scaling and

squaring error satisfies

|c£| < (/7+l)(K,T0-l)€,

but the bound on the standard scheme is unchanged. The same argument as before leads, now,

to the recurrence

(A7+1)(k,t0„ -1) = n (k,t0h_, -1)(1 + 2*/t0„) . (3.5.6)

In deriving the scaling and squaring bound we assumed all first order differences are computed

by a special method, therefore we require initially

2(k,t0,-1) -1;

hence

2k,

is the initial value. The table in Fig.3.5.4 lists values of the decision criterion t0„ and its asso

ciated error bound for ic^ ==21.2950, which was derived in §3.4.

We can also show how t9„ and its associated error bound for the hybrid algorithm depend

upon n in the single precision accumulation case. From Appendix C,

t9„ <1„2+(J !)„ 0.5.7)
3 2k, 3

for n > 1 and all K| > 0; hence

|e<j'| <e(/7+l)[-|K,Ai2+(|--^-)/7-l] (3.5.8)



C
M

o
o

C
O

!©
9

.
—
,

j*
T

^
c
o

s
:
«
n

c
f
t

00
C
J

_
C
M

C
M

C
M

i
n
«
n
c
m
r
-

©
C
M

C
O

C
O

C
O

C
M

©
o
o
i
n

c
m

o
o
«
n
-
>
v
O
C
N

v
o

v
©

T
f

©
r
f

o
o
o
o

m
•
—
•
i
n

O
N
v
q

©
C
O
»
n

I
-
.
O
v

©
C
M
C
O

T
f
-
«
n

v
©

r-"-
O
O

O
O

O
N

©
©

—
;
C
M

C
M

c
o

«
n
r
-
o
n

—
<

CM.
Tj-

V
©
O
O
O

—
|

C
M

C
O

C
O

C
O
C
O
C
O

Tl*
V

^
^

-
>
*

TT*
n
*
r
f
T
f
-
^
i
n

i
n

«n*
i
n
i
n
i
n

«
n
i
n

i
n
v
©
v
d

v
©

v
©

v
©

r
*
.
r
-

C
O

©
r
-

©
©

C
O

©
©

©
©

©
C
O

©
o

C
O

©
©

C
O

o
©

C
O

©
©

c
o

©
©

©
c
o

©
©

c
o

©
©

C
O

©
©

i
n

p
v
q
p

©
C
O

©
p

©
©

©
c
o

©
©

C
O

©
©

c
o
©

p
C
O

©
©

c
o
p

p
©

c
o
p

©
C
O

©
©

c
o

©
©

|
—
*
o
*
—
"

T
t
O
O

Tt*
-J

.
O
N
O
N
©
*

CM*
v
d

«—"
r-*

i
n

Tf"
T
f

v
©
O
N

C
O

O
v
v
©
T
t

t|*
«n*

©
'
o
o
©

«n*
C
O

©
*
©
"
c
o
©

©
'

f
t

i
•

C
M

c
m
c
o
i
n

v
©

p
~
O
N

©
C
M

T
j
"
v
©
o
o

©
C
O

i
n
o
o
-
-

T
f

r
-

«
n
i
n

©
r
-
o
o

©
i
n
c
o
i
n

©
r
-

—
(
N
C
N

C
M

C
M
C
O
C
O

C
O

i
n

r
-

o
c
m

»
n

c
o

^
*

«
—
'
c
m
i
n

C
M*
*

c
m
c
o

t
|
-
«
n

v
©

decimallost

©
o
o
r
-

C
M

C
M

c
o
O
O
o
n
r
-
c
o

t
—

o
^
^

C
M

,
©

O
N
V
©

T
f

—
o
o

-<cr
O

v
©
,
—

v
©

V
©

T
f
O
N

C
O

r
-
o
o
i
n

*
-*

i
n

C
c
o

O
—
«

O
N
«
n
O
N

C
M

T
f
v
q
o
o
p

~
c
o

T
f
i
n
v
O

r
—
r
-
o
o
o
n

©
©

~
C
M

C
M

C
O

«
n

r
-
o
n

©
C
M

^
•
s
O
O
O
O
'
-
;

o
.
r
:

o
"
—
•
-
^

CM*
C
M

C
O

CO*
C
O

CO*
^
*

-*'
">*

rj*
•
*

"*'
^t*

Tt*
n
*

Tt*
»
n

i
n
i
n
i
n
i
n
i
n

«
n
i
n
i
n

v
©

v
©

v
©
v
d
v
d

t~*
r*»

~
I
S

3OC
Q

©
—

i
n

v
©

"<*-
o
o
O
N

O
O
v
©
O
O

O
O
O

v
©

r
-

T
t
v
©
i
n
o
o

—
C
O

v
O
t
N
t
r
-

O
O
^
o
r
-

O
v

©
v
©
i
n
v
©
o
o

•
o

p
—
;
o
n
v
©

C
O

©
O
N

T
f
C
O
O
N

O
V
©

©
.
—
<

t-^
O
N
«
n
i
n
o
o
i
n

T
f
v
q

°
i

^
""t

o
o
O
O
C
O

«—J
—"j

r-;
v
©
c
m
r
r
o
n

bouridem

—
"
i
n
c
o

__"
i
n

r-'
_
l
©
'
©
'

r-*
O
N

OO*
C
M

T|"
O
N

C
O
—
"

r-*
v
©

-«1*
i
n

tj*
r-*

oo*
c
m

C
M

*-*
o
v

oo*
C
M

v
©
o
n
C
O
C
M

CO*
—
.
o
n
C
O

C
O

o
-<3-

C
O
V
©

—
o
o
i
n

«
—
*
C
O

©
C
M
v
©

©
T
f

v
©

-<*•
r
-
C
O

i
—
"

©
i
n
i
n

c
o
«
n
•
n

^
-
o
o
«
n

—
r
r

C
O
o
o

r
-

©
o
n

Tt^
r-~

r-^
r-^

r
-
r
-
O
N

C
O

O
C
M
o
o

©
o
v
i
n

©
T
f
o
o

r
-
«
n
o
o
c
m

-
<
*

l
-
»
O
O

©
T
j
-

«
—
1

Errorcoeffi

»
—
•
C
O
•
*

r-*"
©
'

T
f
O
N
i
n

C
M

©
©

—
<

C
O
v
©

C
M

o
o
r
»
o
o

©
r
r

O
v
f
-
o
o

^
t

r
t
-

—
i
n
c
m
i
n

i
—
i

~
—

>
«
—
•

»
-
^
C
M

C
O

T
f

«
n
v
©

r
-
o
o

©
~
-
c
o
i
n
o
o

©
«
n

t
-
.
V
©

T
j
-

r
—
>

o
o
i
n
c
m
v
©

t
-
.

«
—
•

«
—
•

«
—
'

.
—
•
~
-

C
M

C
O
i
n

o
o
c
m

r
-
-

o
n
r
-
-
*

-
h
o
n

«
—
<

c
n

•**
t*>*

d
n

r
-
o
o
«
n
v
©
o
o

©
©

r
-
o
o

©
C
M

C
M
O
N

C
O

C
M

v
O
i
n
o
o
v
©
o
o

T
f
C
O
f
-

-«3-
m

,
_
c
m
r
-
v
o
r
-

r
-
o
n
c
m
o
o
«
n

©
C
M

—
<

i
n

i
n
O
N

r
-

©
o
o

o
n

•«a-
C
M
i
n

©
c
o
O
N
O
N

C
M

O
N
o
n

C
M
O
N
O
N

©
t
T

.—J
C
M
v
©

t
3
-
i
n

©
t
*
~
o
o

e
©

©
"
*
—

C
O
v
d

_
J

r»*
i
n

«n*
i
n

r-*
.—.'

v
d

CM*
©
"

O
N
O
N

©
C
O
O
O

c
o

©
O
N
O
O
O
v

i
n
c
o
i
n

©
oo*

i
n
i
n
o
n
i
n
i
n

C
J
5

_
—

r
—

C
M

C
O
T
f

i
n

r
-
o
o

©
C
M

c
o

i
n
o
o

©
c
m

i
n
o
o

©
C
O
v
©

t
t
«
n
o
^

r
-
»
r
»

o
n
r
r
C
M

^
O
v

1
-

^
-

~
-

C
M

C
M

C
M

C
M

C
O

C
O
C
O

i
n
r
-

o
v

c
n

«
n

C
M

—
«

—
*
C
M
T
f

c
m
c
o

T
f
i
n

v
©

—
i
n

n
T
f

«
n

V
©

r
-
»
O
O

O
v

o
—

C
M
c
o

•
*
i
n

v
O
r
-
o
o
o
n

©
«
—
'
C
M

c
o

T
f
i
n

©
i
n

©
i
n

©
©

©
©

©
©

*
-

•

C
M

C
M

C
M

C
M

C
M

C
O

c
o

-
^

T
f
i
n

v
o

r
-
o
o
o
n

©

C
O

7
3C3OX
*C
U

•
occ
a

eci

^
x:

C
J

t
-

C
§>

.2
73

.2
T

-,

g
*

C
J

«
-*

s.
a

*ob
cC
Ool>

22
x
:

«
1

c
a

C
U

^
^

a
.

C
O

F
C
O

C
U

c
a
XC
U

C
O

0
)

c
u

^
x
:

ft

cft

o

C
U

x
:3c
o

S2
J3

i-
o

-

s
s

>
C
U
c
a

0
8

C
O

C
U

C
J

u
.

C
O

C
U

J
Oc
a

<
*
-

c
a

J
C

C
O

3
o

C
O

•J
x
:

C
U

O

H
u

'
o

x
:C
O

.
x
:

(
)

E
C
J

X
x
:

wo

cc
a

'•5cC
U

0
0

o

a

c
a

a
.

C
-

««f
•
o

X
)

c
o

©i
n

>
.

o
O
v

x
:

x
:

C
M

<i>
^
-

x
:

•
a

C
M

*
-
»

c3
H

o
O

—

u
Z

x
»

*



§3.5 83

j//2-2w < r0„ <J»2-J"

for //^ 15. The rightmost two columns of Fig. 3.5.4 list values of n(2n—5)/3 and

log,o[("+l){K,/7(2rt-5)/3-l}].

The hybrid algorithm demonstrates that it is possible to compute exponential divided

differences to a desired accuracy. Our error bounds, particularly the digits lost bounds, tell how

many decimal digits we must carry in order to be assured that A<j'expr has desired accuracy. A

short discussion of some useful modifications of the basic hybrid algorithm follows in the next

section, along with a numerical example in which a rather large divided difference table is com

puted.
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3.6 Comments on the hybrid divided difference algorithm.

The hybrid algorithm of the last section demonstrates that we can compute high order

exponential divided differences with only a modest loss of precision. For this reason, the algo

rithm is a valuable theoretical tool. In this section we propose some modifications which make

its implementation more efficient.

We gave scant consideration to computational efficiency when deriving the hybrid algo

rithm. Our error bounds and decision criteria apply without reference to any particular

sequence of data points or parameter t. As a result, the algorithm recomputes low order

divided differences when scaling and squaring is used for differences whose "patterns of depen

dence" overlap. Also, the decision criteria are based upon worst case arrangements of the

abscissae. These arrangements cannot be achieved since it is impossible to arrange even three

points on a line such that their separations are quadratic. A relaxed decision criterion may

greatly increase efficiency, without sacrificing accuracy. We now propose a possible modification

to the algorithm by introducing an arbitrary criterion to cluster the data points.

Clustering. Let g be a positive increasing function of the order k of the divided difference

under consideration. We decide to use scaling and squaring to compute A *expr when

otherwise, we use the standard formula. In addition, however, we do not permit the computa

tion of overlapping table blocks by scaling and squaring. For example, suppose the decision cri

terion (3.6.1) demands that both A/fexp,. and A/expr, with / <y < i+k <./+/, be computed by

scaling and squaring. We compute only A/+/"'expT by scaling and squaring, regardless of

whether or not

T(€j+,-i,) <g(j+l-i).

The picture in Fig. 3.6.1 shows how overlapping blocks may be combined. We now speak of

the abscissae £,•.£,+1 f/+/ as being "clustered," and refer to the block of the divided

difference table formed by A/+/~'expT*s pattern of dependence as corresponding to this cluster

of abscissae. So when two clusters overlap, they are combined.

When the clustering procedure is completed, the resulting clusters have no abscissae in

common; the corresponding blocks in the table do not overlap. This clustering depends on the

abscissae, not on the divided differences, and it may be performed prior to any divided
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X

X

X

85

y+/-»

Fig. 3.6.1: Clustering of overlapping blocks in a table.

difference computations. Table blocks corresponding to the resulting clusters are computed by

scaling and squaring with backfill. The picture in Fig. 3.6.2 shows what the table might then

resemble. The remainder of the table is filled in by the standard scheme.

X X X X

XXX

X X

X

X X

X X

X

XXX

X X

X

Fig. 3.6.2: Block structure of a divided difference table after

the scaling and squaring step.

Our error bounds make possible a quick a priori error bound computation. For example,

the bound (3.4.11) may be used when scaling and squaring is indicated, and the iterative bound

(3.2.10) when the standard scheme is called for. We may even wish to compute the differences

using the decision criterion (3.6.1) and then examine a postiori error bounds. In any event,

when these bounds are unacceptable the original hybrid algorithm does guarantee a bound on

the error and may be used when more efficient alternatives fail.
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Divided Differences by the Hybrid Algorithm

//
Abscissae

Clustering
Ao'exp by
algorithm

Correct values

to 7 digits
A priori
bound

Relative

error

0 -34.5 0 1.039538E-15 1.039538E-15 0.00 0.00

1 -33.1 0 2.268571E-15 2.268571 E-15 0.50 0.00

2 -32.9 0 1.498804E-15 1.498804E-15 2.00 0.00

3 -14.4 3 8.015853E-11 8.015853E-11 0.77 0.00

4 -14.4 3 6.755117E-11 6.755117E-11 0.69 0.00

5 -14.4 3 2.879424E-11 2.879424E-11 1.61 0.21

6 -14.4 3 8.262803E-12 8.262803E-12 1.83 0.00

7 -14.1 3 1.891783E-12 1.891783E-12 1.96 0.06

8 6.1 8 2.013388E-09 2.013388E-09 1.23 0.00

9 6.4 8 1.522937E-09 1.522937E-09 1.05 0.32

10 6.8 8 6.118262E-10 6.118264E-09 3.54 0.78

11 7.1 8 1.663523E-10 1.663523E-09 3.95 0.94

12 11.3 8 7.590633E-11 7.590636E-11 4.01 0.92

13 11.3 8 1.883713E-11 1.883713E-11 4.16 0.58

14 11.3 8 3.359880E-12 3.359880E-12 4.35 0.15

15 12.2 8 5.323018E-13 5.32302 IE-13 4.51 0.90

16 12.2 8 6.841381E-14 6.841383E-14 4.70 0.65

17 13.1 8 8.156695E-15 8.156692E-15 4.85 0.89

18 25.6 18 5.861817E-15 5.861819E-15 4.61 0.50

19 28.7 19 2.750415E-15 2.750417E-15 4.42 1.16

20 32.9 20 1.381999E-15 1.382000E-15 4.22 0.73

21 33.4 20 3.448419E-16 3.448422E-16 4.07 1.17

22 33.4 20 5.740436E-17 5.740418E-17 4.21 1.71

23 34.5 20 8.338935E-18 8.339004E-18 4.72 2.14

Fig. 3.6.3: Example of the hybrid algorithm with clustering for t = 1
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example: The modified hybrid algorithm, with clustering, is illustrated in Fig. 3.6.3 for a col

lection of abscissae which includes confluent, close and well-separated data points.

The clustering function is g(k) = k. The third column of Fig. 3.6.3 indicates the

resulting clustering of the abscissae. The fourth column contains the top row of the

divided difference table computed in single precision with about seven decimal

digits. The fifth has, for comparison, the same differences computed in double pre

cision. Finally, a priori error bounds, calculated from (3.4.15) and a growth factor

bound from (3.2.8), and the actual relative error are given in a digits lost form.

Complete tables corresponding to Fig. 3.6.3 are presented in Appendix D. Fig. 3.6.4

repeats the same computation, but with r = 2. Finally, Fig. 3.6.5 shows the result of

computing the entire table in one scaling and squaring for Ao3exp2.
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Divided Differences by the Hybrid Algorithm

n
Abscissae

Clustering
Ao'exp2 by
algorithm

Correct values

to 7 digits
A priori
bound

Relative

error

0 -34.5 0 1.080639E-30 1.080639E-30 0.00 0.00
1 -33.1 1 1.192152E-29 1.192152E-29 0.50 0.00
2 -32.9 1 1.986183E-29 1.986183E-29 0.77 0.26
3 -14.4 3 4.467966E-17 4.467966E-17 0.51 0.16
4 -14.4 3 8.233205E-17 8.233205E-17 0.58 0.00
5 -14.4 3 7.604186E-17 7.604185E-17 1.85 0.13

6 -14.4 3 4.692805E-17 4.692805E-17 1.97 0.08
7 -14.1 3 2.444065E-17 2.444065E-17 2.03 0.07
8 6.1 8 8.977370E-07 8.977370E-07 0.95 0.00
9 6.4 8 1.963505E-06 1.963505E-06 0.72 0.00

10 6.8 8 2.309258E-06 2.309258E-06 2.38 0.50
11 7.1 8 1.760567E-06 1.760566E-06 2.59 0.32

12 11.3 12 1.305495E-05 1.305495E-05 2.23 0.00
13 11.3 12 1.217449E-05 1.217449E-05 1.99 0.53
14 11.3 12 6.558480E-06 6.558482E-06 3.41 0.80
15 12.2 12 3.453429E-06 3.453430E-06 3.86 0.43
16 12.2 12 1.281568E-06 1.281569E-06 4.26 0.98
17 13.1 12 4.751205E-07 4.751204E-07 4.48 0.55

18 25.6 18 9.602053E-04 9.602055E-04 3.93 0.63
19 28.7 19 1.412638E-02 1.412640E-02 3.28 1.17
20 32.9 20 4.335487E-01 4.335489E-01 2.54 0.93
21 33.4 20 6.106924E-01 6.106929E-01 1.92 1.04
22 33.4 20 3.836830E-01 3.836832E-01 2.55 0.84
23 34.5 24 2.381056E-01 2.381055E-01 2.94 0.54

Fig. 3.6.4: Example of the hybrid algorithm with clustering for r = 2
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Special methods for low order differences. It is sometimes possible to compute low order

divided differences by a special formula. From (3.1.2) where

A<jexpr = e •(g1+go)/2sinh(T(gi-£o)/2]
(£|-£o)/2

we see that first order differences may always be computed accurately when a good sinh func

tion is available. Error growth in using the standard divided difference formula is primarily

dependent on errors propagated from low order differences. Special computation of these

differences may be very effective1" in reducing errors in higher differences and in extending the

fFig. 3.8.3 gives an example (for complex abscissae) of dramatic improvement in the
error when first order divided differences are computed by a special formula.
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area over which this simple formula may be used. In addition, scaling and squaring never need

be used for these low order differences.

Divided Differences by Scaling and Squaring

a
Abscissae

Clustering
A<J'exp2 by Correct values A priori Relative

*, algorithm to 7 digits bound error

0 -34.5 0 1.080639E-30 1.080639E-30 0.00 0.00
1 -33.1 0 1.192152E-29 1.192152E-29 0.50 0.00

2 -32.9 0 1.986174E-29 1.986183E-29 4.85 1.88
3 -14.4 0 4.467955E-17 4.467966E-17 4.85 1.60
4 -14.4 0 8.233186E-17 8.233205E-17 4.85 1.57

5 -14.4 0 7.604169E-17 7.604185E-17 4.85 1.55

6 -14.4 0 4.692796E-17 4.692805E-17 4.85 1.50

7 -14.1 0 2.444060E-17 2.444065E-17 4.85 1.56

8 6.1 0 8.977336E-07 8.977370E-07 4.85 1.80

9 6.4 0 1.963496E-06 1.963505E-06 4.85 1.89

10 6.8 0 2.309243E-06 2.309258E-06 4.85 2.06

11 7.1 0 1.760551E-06 1.760566E-06 4.85 2.16

12 11.3 0 1.305484E-05 1.305495E-05 4.85 2.13

13 11.3 0 1.217439E-05 1.217449E-05 4.85 2.12

14 11.3 0 6.558430E-06 6.558482E-06 4.85 2.12

15 12.2 0 3.453403E-06 3.453430E-06 4.85 2.11

16 12.2 0 1.281559E-06 1.281569E-06 4.85 2.11

17 13.1 0 4.751175E-07 4.751204E-07 4.85 2.02

18 25.6 0 9.601986E-04 9.602055E-04 4.85 2.08

19 28.7 0 1.412635E-02 1.412640E-02 4.85 1.71

20 32.9 0 4.335491E-01 4.335489E-01 4.85 1.00

21 33.4 0 6.106924E-01 6.106929E-01 4.85 1.04

22 33.4 0 3.836829E-01 3.836832E-01 4.85 1.13

23 34.5 0 2.381053E-01 2.381055E-01 4.85 1.09

Fig. 3.6.5: Example of the scaling and squaring algorithm for r = 2.

Second order differences also may be computed accurately by a special formula when a

routine is available to evaluate the function

accurately for all £. Let <fo ^ £i ^ £2»tnen

A02expr = e '{•
*2-*l *i-*o
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- "''"'J "' - l) " (V-TT " l)Jr(£2-£|) r(£n-£|)

= t/^{//It(|2-c:i)1-MtU„-c;1)]}.

Because signlMc*)] =sign(£) and <f2-£i^0 while ejo-fi<0, the subtraction is actually an

addition of non-negative numbers.

Perturbations and shifts in the abscissae. Abscissae used in computing divided differences

may be obtained either experimentally, or as the result of earlier computations. In either case

we may be uncertain what are the exact abscissae (represented here by the vector x say). The

abscissae, say x we have in hand are only approximations. The most we can expect is to have

a bound in terms of x on our uncertainty in the value of x Thus given x and a bound on the

uncertainty, we ask how far can the divided difference A"expT(x) be from A"expr(x). That is,

how unsure are we of the value of a divided difference, given our doubt about its data.

As an example, we have presented without comment several formulas in which abscissae

are shifted by a constant amount, say a. In finite precision arithmetic, a computed shifted

abscissa fl(i; + a) satisfies

l/K£ + a)-(f + a)| < (|*| + |a|)6.

To have a uniform bound for all abscissae represented in a vector x. we write

\[fi(x + au) - (x+ au)\\oo < (||jc|L+ |a|)e .f

The bound describes our maximum uncertainty in where the exact shifted vector of abscissae

lies, given knowledge only of the computed vector.

It is convenient to think of x as a perturbation of the given vector x The following per

turbation bound describes the sensitivity of A"expT to a bounded change in its abscissae.

fRecall that u is a vector of l's, u =» (1,1, . . . , 1).
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Perturbation bound. Let x = (<;o, «fi %„) be a vector of abscissae, and

* =(£o.li... . ,£„) a perturbation of x such that max |£,-fj < ye for a constant y.

Then

|A"expT(x) - A"expTU)| ^ U'T*«-l)-A"expT(;c). (3.6.2)

proof: From Theorem 1 in §3.2, A"expT is increasing in each of its abscissae, thus

A"expT(x-y€«) < A"expr(.v) ^ A"expT(jc + y€w).

By the translation property (3.1.1),

e-Ty*>b"QxpT(x) < A"expT(x) < <?r*e-A"expT(;t). a

For small rye the bound (3.6.2) is equivalent to a relative error of size rye. Hence com

putational errors may be viewed in the same way as uncertainties in the data. In particular

when data uncertainties of size ye lead to uncertainties of size rye in the value of A"expT(x)

relative to A"expT(x), computational errors of comparable, or smaller, size do not greatly

increase our uncertainty. Thus, there may be no reason to compute A"expT0r) to greater accu

racy than about rye. Hence our uncertainty in the data helps answer the question of how much

accuracy we are justified in demanding when computing divided differences. We may, then,

use the fast standard scheme more in practice, as the data may not warrant using more accu

rate, but more costly, methods.

Additional modifications of the basic hybrid algorithm may be desireable in practice. For

example A<j'expr decreases as r"ln\\ so special provisions may be required to represent small

numbers during computation. These details, however, must not obscure the important fact

about the hybrid algorithm, which is that real exponential divided differences can be computed

with high relative accuracy. Such a general statement cannot be made when the abscissae are

complex. However, a hybrid type algorithm with error bounds comparable to the above can be

developed for some arrangements of complex abscissae. We turn to such a problem in the next

three sections.
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3.7 Divided differences of the exponential function with complex abscissae.

For applications exponential divided differences with complex abscissae are more impor

tant than the real case. In particular a real non-Hermitian matrix A may have complex eigen

values. These eigenvalues are the abscissae used in forming coefficients of the Newton polyno

mial form of exp(-r/0. Therefore it is important to understand which aspects of the real case

go over to the complex case, and which do not.

The algorithms presented earlier are applicable to complex abscissae. The theory used to

derive the Taylor algorithm, scaling and squaring, and even the hybrid algorithm, depends only

upon the exponential function itself. There is no need to distinguish between real and complex

data points. Our error bounds and decision criteria, however, do depend explicitly upon the

fact that real exponential divided differences are positive. Since complex differences can be

zero, we must abandon the idea of strict relative error bounds. Instead, we give error bounds

relative to a quantity that bounds or estimates our divided difference.

In this section we examine a few special cases of complex exponential divided differences

in order to gain a better understanding of the behavior of such differences. In particular we

shall observe how these divided differences are affected by the imaginary parts of the abscissae.

Later we indicate how our algorithms may be applied.

We continue studying divided differences of the function /=expr with parameter r ^ 0.

Our sequence of abscissae Z = {£0.£i £«#•.. 1 may now contain complex elements. We

look at three special arrangements of the abscissae. (1) The abscissae lie on a line in the com

plex plane and are evenly spaced along this line. (2) The sequence of abscissae consists of

repetitions of two points, £ and —£; we also look at the case where the two points are conju

gates £ and £. (3) Finally, we examine the case where the sequence of data points consists

exclusively of conjugate pair points. In the first two examples we achieve explicit formulas for

the divided differences. In the final case, we characterize the differences by upper bounds on

them. This final case is of most interest in matrix function computations because the eigen

values of real matrices are either real or members of complex conjugate pairs.

Evenly spaced, linear abscissae. On a line the abscissae can be ordered. Let Co be an extreme

data point and let 28 be the spacing between the abscissae. Then

Z = {£o.£o+28,£o+48, • • • ,Co+2n8,...} is the sequence of data points. Exactly as in the real

case in §3.2,
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A)lovn _ I /iof <'2rfi- 1i« _ 1 rW'Mi sinh(r8) ,„
A()expT - —, I 2S ] ~ 7!C *^T^ •
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(3.7.1)

We note that A<''expT = 0 if, and only if, T8= A7r/for some non-zero integer A:. Thus high order

divided differences can be zero. Since two points lie on a line, this also implies that first

divided differences are zero if, and only if, their abscissae are separated by kni.

Suppose 8 is pure imaginary, say 8= i//. Let us observe how |A,'/expr| varies with v. We

have

= 1 lJt*qi sin(Tp) |ff
n\ v

where £0 = Re(£o). |A<j'expT|, then, behaves as a damped sine wave, becoming smaller with

increasing v. It has local maxima when tan(T»>) =T»/. For £o=0 and r=l, the table in Fig.

3.7.1 lists some of these maxima for n = 1,2 7.

V |A(jexp| |A02exp| |A(Jexp| |A04exp| |A<fexp| |A(texp| |A07exp|

0 1.00 5.00E-1 1.67E-1 4.17E-2 8.33E-3 1.39E-3 1.98E-4

4.49 2.17E-1 2.36E-2 1.71E-3 9.28E-5 4.03E-6 1.46E-7 4.53E-9

7.73 1.28E-1 8.24E-3 3.53E-4 1.13E-5 2.91 E-7 6.22E-9 1.14E-10

10.90 9.13E-2 4.17E-3 1.27E-4 2.90E-6 5.29E-8 8.06E-10 1.05E-11

14.07 7.09E-2 2.51E-3 5.94E-5 1.05E-6 1.49E-8 1.77E-10 1.79E-12

17.22 5.80E-2 1.68E-3 3.25E-5 4.71E-7 5.46E-9 5.27E-11 4.37E-13

20.37 4.90E-2 1.20E-3 1.96E-5 2.41 E-7 2.36E-9 1.93E-11 1.35E-13

23.52 4.25E-2 9.02E-4 1.28E-5 1.36E-7 1.15E-9 8.16E-12 4.95E-14

26.67 3.75E-2 7.02E-4 8.77E-6 8.22E-8 6.16E-10 3.85E-12 2.06E-14

29.81 3.35E-2 5.62E-4 6.28E-6 5.26E-8 3.53E-10 1.97E-12 9.44E-15

Fig. 3.7.1: Maxima of |A<J'exp|, as a function of i>, for evenly

spaced imaginary abscissae.

The magnitude of these divided differences is strongly affected by the difference in the

imaginary parts of the abscissae. Our study of complex exponential divided differences must

take this into account. The next example even more clearly illustrates this dependence on the

imaginary parts.
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Two-point exponential divided differences. In an example in §2.8 we saw that divided

differences of exponential functions for sequences of data points like Z = {£.-£.£.-{....),

where a point and its negative are repeated, have many special properties. In particular, we

found that the related functions

b„(0 = ^-{ (A 2"exPr) (<;.-<: 0 + (A2''expT)<-<;.£ -£))

</„(£) = a2"+*expT)(Z,H C-0

satisfy the recurrences

M«> =
In

a„(0
Tb„-\{0 - (2/7-l)c7„_,(£)

2/?C;

for n = 1,2,..., where

b0(O - cosh(r£)

*o(0
sinh(Tg)

(3.7.2a)

(3.7.2b)

(3.7.3a)

(3.7.3b)

(3.7.4a)

(3.7.4b)

From these relations, we show that the functions b„ and a„ are representable in terms of spher

ical Bessel functions, commonly denoted j„. In addition, we derive a simple assymptotic

expression for the two-point divided difference (A2"expT)(£,-£. ...,£) as r|C| —°°-

Representation of two-point exponential divided differences. For each n =0,1.2

b„(0 -

a,M) =

zrJ»-\('T02"n !(/£)"-'
.11+1

:J„(iTO<
2"n\(iO"'

where the j„ are spherical Bessel functions. Also as t\c\ —°°,

(A2"exPr)(<i,-c £>~^7^r<-

(3.7.5a)

(3.7.5b)

(3.7.6)

proof: Spherical Bessel functions' are related to the more familiar Bessel functions of the first

fThe introduction to the National Bureau of Standards' Tables ofSpherical Bessel Func
tions [1947] gives a brief explanation of these functions.
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kind, Jm% according to

j„(<i)) = y/ir/2(oJll+</Xai),

where the index m = n+xh indicates a half-order Bessel function. The well-known Bessel

recurrence

2mJ,„{(i)) = cu{7m+|(o>) + y„,_|(w)}

becomes

(2n+\)j„(a>) = <*>{j„+\(<o) +j„-](oi)) (3.7.7)

for spherical Bessel functions. Initially

. ( v sin(co) . . / , cos(ct>) ,7 7 o*
jnKbi) = and y_|(o>) = . (3.7.8)

(a o)

When a? =0 in (3.7.5a-b), a comparison of (3.7.4a-b) with (3.7.8) shows that initially the

y'_i and j0 in (3.7.5a-b) are spherical Bessel functions. For general n we derive the Bessel

recurrence (3.7.7) for j„ from the recurrences (3.7.3a-b) for b„ and a„. Inserting (3.7.5a-b)

into (3.7.3b) yields

t"+i 1 r"+l (2w—1)t"

r^mrJ"iiT° =!tf{2-H»-i)w*J-'Ur0 ' 2-,(j.-i)i(/{)-,7"-|('T{)'

or

JnOrO =-j„.2(irO - ^^-j^VirO .

When this is rearranged and the index n is increased by 1, we obtain (3.7.7) with o> = /r£;

hence each j„ in (3.7.5a-b) is a spherical Bessel function.

For large |o>| spherical Bessel functions behave, assymptotically, as

/-(«) cos[« —(/i+l)ir/2].

Thus as r|$| —oo we have

(A2"expr)(c;.-<I {) - MO + «*.(«>

= 2W'-iU"^iT°'U"(iT°]
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T ; {cos (/>{-//it/2) — /sin(/T{-//7r/2)}
2"n\UO"

2"n\C"
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The translation property (3.1.1) provides an immediate corollary to the above when the

sequence of abscissae consists of £ and £, repeated.

Corollary: Let the sequence of abscissae Z = {£,£, £,£,...}, where £= £ + /i7 and its conju

gate £ = £ - it) are repeated. Then for each // = 0.1,2,...,

(3.7.9a)Re(A02"expT) =e^b,M) =( "'" -T «••*/„-• (-tt>)
2w!tj"

Im(A02"expr) =7j-Aj"+,expT =tje^d't,) =-^^^(-tt,)
2"/I 'TJ " '

Further as 17—»«>,

1 2» (-'»" t.

(3.7.9b)

(3.7.10)

proof: By the translation property,

A02"expr = (A2"expT)(<:.? £) - <?rMA2"expr)(/7j.-/7?. . . . ,iv).

The results follow from (3.7.5a-b) and (3.7.6) by inserting it\ for £, and then multiplying by

eT*. a

From (3.7.10),

|A02"expr| ~
2"/?!tj"

(3.7.11)

The imaginary part leads to a if" damping of Ao"expT. Also since j„-\(—r-q) and j„(—tt}) are

never simultaneously zero, for all t > 0 the divided difference Ao"expr 5*0.

Exponential divided differences with conjugate pair abscissae. We now turn to the case of a

sequence of abscissae consisting of conjugate pair elements. In particular let

Z=»{£o.?o.£i»£i C.L.-l where £> =fy +rn, and Xj**tj-h)j with each tj, >0. The fol

lowing bounds, depending on divided differences of expr for the real abscissae £, alone, help to

describe the dependence of conjugate pair exponential divided differences on both the real and
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imaginary parts of the abscissae.

Bounds for conjugate pair exponential divided differences. Let Z = {£o. £0, . ..£«. *„.... 1

be a sequence of conjugate pair abscissae. Then for each // ^ 0,

|A02"exPr| < (n^/)"'-A^expT
/-o

(2.7.12a)

and

|A02"+,exPr| ^ (n^p^-A^exp,.
7-0

(2.7.12b)

proof: The proof is by induction on //. We note first, employing a remark after (2.1.3), that

since

2//+lov„
ko expT —

(A2"expT)(Co,S0 g„_,,C-i.U - U2wexpT)({o,g0 C-i.^-lU

b» few

—Im(A02"expT),

(3.7.12b) is an immediate consequence of (3.7.12a). When // =0 and r ^ 0,

T*0|- „r*0„ A 0|A00expT| = k^|»e,?0-A|0expT.

and (3.7.12a) certainly holds. Now let us assume it is true for all orders up to (2//-2). That

is, we assume for all r > 0

and hence

«-2

|A02"-2exPr| ^ (IK)~'-AC,exP"
/-o

«-i

|A02"-'expT| < (IIV,,Ai",exPr.
7-0

By the recursive integral formula (3.1.5),

Thus

T

A02"expr - ^r{"/e"<rC"A02"-|expflr do-
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T

|A,2"exPr| </^JV^-lAd'-'expJ </<r

< (nV*^""/'' ,r-"-A^-,exp,rr/cT

=('n^)-,-A^exPr. Q
>-o

When the real parts £, of the abscissae are equal, that is £n*=£i

follows.

Corollary: Let Z = {£ ± rn,,./=-0, . . . ,n). Then for each // ^ 0,

and

|A02"expr| <(fivr11^
7-0 " •

|A02"+lexpT| < (JI^)
7-0

-, r"eTi
n\
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= £„, this corollary

(3.7.13a)

(3.7.13b)

With the exception of the factor 2", the bounds in our corollary resemble our assymptotic

results for two-point conjugate pair divided differences. This leads us to suspect that

M-l

2-"(n^)",'HexpT and 2-»(n^/)",*A^exPr
7-0 7-0

(3.7.14)

are reasonable estimates of lA^'exprl and |Ao2"+,expT|, respectively, when the rjf are large.

The values in Fig. 3.7.2 illustrate this. Note that not every estimated value by (3.7.14) is large

enough to be a bound.

General complex exponential divided differences. When we are unable to make assumptions

about the abscissae, we can say little about the behavior of the divided differences. Just as the

simple bound derived from (2.1.12),

|Ad'expr| < -r max \rtteTii\ - -^re7*",
/7!0<7<« n\

poorly describes the behavior of A<j'expT when £,,-£0 is large, even when all the abscissae are

real, a bound depending only on the real parts of complex abscissae poorly describes |A0"expr|

when some data points have large imaginary parts. All complex exponential divided differences
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Z„ lArf'expl bounds from estimates from
n

(3.7.12a-b) (3.7.14)

0 (0,-hlOi) 1.00 1.00 1.00
1 (0,-10/) 5.44E-2 1.00E-1 1.00E-1
2 (l,+9/) 8.39E-2 1.72E-1 8.59E-2
3 (1,-9/) 9.31E-3 1.91 E-2 9.55E-3
4 (2,+11/) 3.64E-3 1.64E-2 4.10E-3

5 (2,-11/) 2.71E-4 1.49E-3 3.73E-4

6 (3,+10/) 9.18E-5 8.54E-4 1.07E-4

7 (3,-10/) 3.16E-6 8.54E-5 1.07E-5

8 (4,+9/) 2.41 E-6 3.67E-5 2.29E-6

9 (4,-9/) 2.50E-7 4.08E-6 2.55E-7

10 (5, +10/) 4.20E-8 1.40E-6 4.38E-8

11 (5,-10/) 1.96E-9 1.40E-7 4.38E-9

Fig. 3.7.2: Bounds and estimates for |A(j'exp| with conjugate pair abscissae.

do satisfy the following bound regardless of the imaginary parts of the data points.
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Upper bound on |A0nexpT| for complex abscissae. Let Z = {£o,£i. . . ,£„....} be a se-

quence of complex valued abscissae, and let gj^Reitj) for each ./' = 0,1, . , , // Then

|A<j'expr| ^ A£expT (3.7.15)

for all // ^ 0.

proof: Directly from (3.1.3), namely

r ""I ,r«-l

A(J'expT =JJ ' J exPlT£o+ (£|-£o)o*i +•**+(C»-€»-i)o-ii] tl<r„ •••dcr2d<r{
oo o

we have

r °"l "n-X

|A(J'expT| < ff -J exp[r£0+(£i-£o)o-i+ ***+(£i-f«-i>0"J <**» ***dcr2d<jx
0 0 0

A^expT. D

Comparing (3.7.15) with our conjugate pair bounds shows that the imaginary parts of the

abscissae may be very important and should be reflected in any bounds we use. In the next
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sections we apply our divided difference algorithms to conjugate pair abscissae and use the

upper bounds and estimates we have presented here to derive error bounds for the computa

tions.
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3.8 Divided difference tables with conjugate pair abscissae.

The elements of divided difference tables whose abscissae are conjugate pairs are quite

special in that some are real and some are conjugates of others. These properties do not

depend upon the exponential function, but apply to any function / symmetric about the real

axis. For this reason we digress in this section from our study of expr and revert to the func

tion J\ where /(£)=/(£). The results are more general and the notation is more compact.

Applications to expr follow in the next section.

Aii/' aV Aii/ Aii/' aV AV Aii/

*«-2> aV AV Ai^ aV Ai2/" Ai2/

/tt-i) Ai,/ Ai,/ Ai,/ Ai,/ Ai,/

/(«-©) Aip/ AV AV AV

/(So) A<j/

/(Ci)

A02/

A,1/

/(c2)

Ao3/

A2/

A2'/

/(«3>

Fig. 3.8.1: Rearranged divided difference table A/ for {£_3,£_2,£-i,C-o.£0.S1.^2.^3}•

We have seen that abscissae should be ordered so that close values are adjacent to each

other. It follows that £ should not be adjacent to £ when Im(£) is large, as would be natural. A

good, but unorthodox, ordering for complex conjugate pairs of abscissae is

Z = {£,„£„_,, . . . ,?i,Co»Co.£i. • • • .£«}• Some extra dividends follow from this choice as we

show below. In order to maintain (as closely as possible) our notation A}f to indicate the use

of £,,£,+,, £/+A, we write £_, for ?,. The table in Fig. 3.8.1 shows a typical A/where

n = 3. The entries corresponding to the top row in a naturally ordered table are underlined.

These are the entries that are used, for example, as coefficients in a Newton polynomial.

Let Z be the "step matrix" associated with the sequence Z, that is
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/ =

C-i 1

C-o 1

So 1

1

This extra property referred to above is that both Z and A/=/(Z) are Hermitian about the

secondary diagonal (bottom left to top right). This property is most conveniently expressed in

terms of the permutation matrix

1

1
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Secondary symmetry of Af. If Z= {£„ £0f£0 £„} and /(£)=/(£), then both

/•Zand /A/are Hermitian.

proof: Any complex matrix B is Hermitian if 5T=5. We denote the conjugate transpose of B

by Bm. By inspection, /Zis Hermitian,

/•Z=»Z*/.

From the conjugate transpose property (1.1.6),

/(Z*)-/(Z)*;
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so employing (1.1.3) for similarity transformations,

/(Zr-/=/(Z*)-/ = V(/Z*/)

- J'f(hiz) = h/(z),

and 7/(Z) is Hermitian. a

This result means every divided difference lying on the secondary diagonal of A/is real,

and every divided difference below this diagonal has a conjugate above the diagonal. For exam

ple in Fig. 3.8.1, AV Ai,/ Ai2/and Aii/are all real, and AV=aI?while AV=AV

Only the portion of the table on and below the secondary diagonal ever need be computed. For

example, A03/and all differences upon which it depends might be computed by a series method

because the abscissae may be close. The standard formula and taking conjugates will fill out the

rest of the table. The idea is illustrated in Fig. 3.9.1.

From our discussion here, the reordered table is clearly ideal for computation by a hybrid

algorithm. We consider this for/=expT in the next section.

example: Fig. 3.8.2 shows that reordering abscissae and computing first order differences by a

special formula may have a dramatic effect on error propagation when the standard

scheme is used. The abscissae here are

£±0 = -1.414214 ± Z8.585786

£±, = 1.412799 ± /11.41563

£±2» 1.414214 ± /11.41421

£±3= 1.417039 ± /11.41138

First order (initial) differences were computed correct to seven decimal digits. The

standard scheme was employed, thereafter, in greater precision to isolate propagated

errors. The figure compares divided differences from the top row of the table for

the natural ordering of the data points with the identical differences when the data

points are reordered as suggested in this section.

Reordering permits many differences, for which error growth would be large by the stan

dard scheme, to be computed by a special method. We see here with reordering that close

abscissae contribute only to first and second order differences. These first order differences do

not contribute to error growth when computed specially. However, failure to compute first
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Order

n

Correct values to

7 digits

Natural ordering with
special computation of

first differences

0

1

2

3

4

5

6

7

(-1.624537E-1, 1.808715E-1)

(2.106638E-2,0.0 )

(-5.269139E-2, 1.213605E-2)

( 1.063108E-3, 0.0 )

(-1.114105E-4, 1.907577E-3)

( 1.671230E-4, 0.0 )

( 3.230809E-5, 1.838758E-5)

( 1.611337E-6, 0.0 )

(-1.624537E-1, 1.808715E-1)

( 2.106638E-2, 0.0 )

(-5.269140E-2, 1.213604E-2)

( 1.063107E-3, 3.965390E-10)

(-1.113896E-4, 1.907435E-3)

( 1.671291E-4,-2.643648E-9)

( 3.215634E-5, 1.820492E-5)

( 1.547398E-6,-3.597914E-8)

Order

n

Reordering with
special computation of

first differences

Reordering without
special computation of

first differences

0

1

2

3

4

5

6

7

(-1.624537E-1, 1.808715E-1)

(2.106638E-2, 0.0 )

(-5.269141E-2, 1.213605E-2)

( 1.063108E-3, 0.0 )

(-1.114107E-4, 1.907577E-3)

( 1.671230E-4, 0.0 )

( 3.230604E-5, 1.838538E-5)

( 1.611144E-6, 0.0 )

(-1.624537E-1, 1.808715E-1)

( 2.106639E-2, 0.0 )

(-5.269139E-2, 1.213604E-2)

( 1.063108E-3, 0.0 )

(-1.113844E-4, 1.907667E-3)

( 1.671309E-4, 0.0 )

( 3.203465E-5, 1.802915E-5)

( 1.579928E-6, 0.0 )

Fig. 3.8.2: Effects of reordering data points and special computation of

first divided differences on A"exp.
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order differences accurately destroys any benefit from reordering, as the numbers show.

When clusters of close abscissae are small, as here, reordering the absdssae makes special

computation of low order differences very effective in controlling error growth. In the next sec

tion we shall see that a hybrid algorithm effects even more dramatic improvements in accuracy.
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3.9 A hybrid algorithm for Aexpr with conjugate pair abscissae.

The table rearrangement presented in the last section strongly suggests implementing a

hybrid algorithm for computing Aexpr when the abscissae are conjugate pairs. A hybrid algo

rithm using scaling and squaring, as well as the standard scheme, is most accurate for abscissae

having imaginary parts nearly equal in absolute value, but large. Fig. 3.9.1 illustrates the conju

gate symmetry relationships in a reordered conjugate pair divided difference table. The "s" indi

cates an element which may be computed by scaling and squaring, V by the standard scheme,

while V means the element is real.

ssssxxx r

s s s x x r x

s s x r x x

s r x x x

s s s s

s s s

s s

s

Fig. 3.9.1: Relation of entries in conjugate pair table.

.r«3

Aexpr

A2' A,2 Ao3 Aio Ai, A°2 Ai

«"» 17 17 IT0 ai; Ah Ai,

**' 17 Ho AJ+ Ai, Ai,

7* Ai, Ai0 A_o Ai0

e"» A<j A„2 U

e'l> A,1 A,2

A2'

e'l>

Fig. 3.9.2: Conjugate pair divided difference table showing symmetries.



§3.9 105

Algorithm: Hybrid algorithm for conjugate pair abscissae. For conjugate pair abscissae

£/= £/ +'"H/ and £_, = £,-»£7-—/ty with *n,»0, y* =0,1 //, form the divided difference

table matrix as follows:

1. Reorder the sequence of data points as {£-„. . . . .£-i.£-o.£o>£i £«) and, if possible

(by reindexing if necessary), so that £o ^ €i ^ ' ' ' ^ €»•

2. Compute A0"expT, and hence each A,Aexpr for /=*0,1 // and A- =0.1 /;-/, by

scaling and squaring (§3.4).

3. For each / =0,1 n compute (—/ + 1= 0 when / = 0)

a. on the secondary diagonal of the table

Aij+lexpT = —Im(Aii+1expr);

b. for k =2/+2, .... i+n+1 each Ai,expT by the standard scheme, e.g.

Ai~HexpT - Air'exp.
A *,expT =

Ck-i-\ ~~ C-/

4. Fill the remainder of the table using conjugate symmetry about the secondary diagonal.

When n —3 the matrix in Fig. 3.9.2 illustrates the relation between various elements in a

table. (Some references to the function expr are suppressed.) In the hybrid algorithm entries

below the horizontal line in Fig. 3.9.2 are computed by scaling and squaring (step 2), while

entries to the left of the vertical line are just conjugates of these, as indicated.

Next in step 3a of the algorithm,

., expr(S0) - expr(g0) i Tf sin(Tij0)
Ai0exp7 = = = — Im[expr(£0)] = e *°

£o *~ £o Vo Vo

This and the row immediately below, already known from the scaling and squaring step, permit

completion of the -0 table row by the standard scheme (step 3b). Then again in step 3a,

Ai,expr = —Im(Ai0expT),
T7l

and the elements to the right of Ai,expT are computed by the standard formula (step 3b). For

example
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Ai,expr
Aipexpr-Ai,expr

Ci - C-,
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Step 3 is, then, repeated until Ai3expr is computed. The remaining elements to the right of

the vertical line are conjugates of elements above the horizontal line, as indicated. The ele

ments on the secondary diagonal (indicated by underlining in Fig. 3.9.2), computed in step 3a,

are all real.

A,

rfi

A/, *4 10 " T7oi? 1 ° T70T?1*>72 °
' A/,

7J0T?l'»)27?3

*', U -a&Vo 4o 1 K ' A/.
W»7i*>?2 ?ft

' A/.
')7o'»7i'*l2

e'(< Ai -Ai•no *° 1 KW*l °
' Al

loll °
1 A|

170171 "

e'f«
10 VO l"

1 A3
Vo '"

/*• K Ai Ai

e'*>

**>

A/,

Ai
r*,

Fig. 3.9.3: Table of upper bounds based on real divided differences.

Upper bounds. For an error analysis of the hybrid algorithm we must first develop error bounds

on the scaling and squaring portion of the computation. Then we can see how these errors are

propagated during the remainder of the computation by the standard formula. An examination

of the upper bounds (3.7.12a-b) and (3.7.15) yields quantities relative to which we may con

struct error bounds. For example, the table in Fig. 3.9.2 is bounded, element by element, by

the table in Fig 3.9.3. Here we omit the function reference expr, for clarity, and point out that

the divided differences in Fig. 3.9.3 are for the real abscissae {£o.£i £«}• Our error

bounds will be relative to an upper bound matrix such as the one in Fig. 3.9.3.
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Tiy
vt

1 Ai,

Ai

A<« TZ*l>2i?o

1

2tjo

1

2t?o

Ai Ai

Ai

Tin

170

1

4t)0t),

47,017, fft
1

•A£

2t?0i7,

1

2tjo

Ai

Ai

Ai

1

8i7(>i7|i7:*£ft
1

4T7ni7|i72

1_
4i7ni7]

1

Ai

Ai

A/

Ai

1

1

8t?o17|172

1

4tjoT7

Ai

A;'.

•Ai

—A/

Ai

Ai

t£;

07

Fig. 3.9.4: Table of estimated absolute values.

When the tj, are nearly equal, but large, the error may be estimated, element by element,

by €K times the matrix in Fig. 3.9.4. The constant k depends only on errors introduced in the

scaling and squaring part of the algorithm. This result is not surprising. When the tj7 are large,

the standard scheme is employed only for well-separated abscissae. From our earlier studies

there is little error growth in this case. Indeed, such separation of the data points is the reason

for reordering them, in the first place.

example: With the data from the example at the end of §3.8, namely

£±0 = -1.414214 ± Z8.585786

£±1 = 1.412799 ± /11.41563

£±2= 1.414214 ± /l 1.41421

£±} = 1.417039 ± /11.41138.

the tables in Fig. 3.9.5 show that upper bounds, as in Fig. 3.9.3, and estimated abso

lute values, as in Fig. 3.9.4, describe the size of the divided differences. From sym

metry, only the portion of each table on and below the secondary diagonal is shown.

The divided differences themselves are listed in Fig. 3.9.6.

Scaling and squaring error bounds. Error bounds from our earlier analysis of scaling and

squaring in §3.4 carry over immediately to that portion of the conjugate pair table computed by

this method. The bounds are no longer valid relative to the computed difference itself, but

rather to an appropriate upper bound on this difference. A quick reexamination of the
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Layout of tables Correct absolute values

• • • Al3exp • • 1.61 E-6

• • Ai2exp Ai2exp • 1.67E-4 3.72E-5

• Ai,exp Ai,exp Ai,exp 1.06E-3 1.91E-3 7.80E-4

Aioexp Ai0exp Ai0exp Aioexp 2.11E-2 5.41E-2 4.26E-2 1.74E-2

c> Ao'exp A02exp Aoexp 2.43E-1 1.08 8.54E-1 3.53E-1

e(> A 'exp Ai2exp 4.11 4.11 2.06

e(> A2exp

e^

4.11 4.12

4.12

Upper bounds (Fig. 3.9.3) Estimated values (Fig. 3.9.4)

• • ' 3.01 E-5 • • 3.76E-6

• • 8.67E-4 3.43E-4 • 2.17E-4 4.29E-5

• 1.39E-2 9.90E-3 3.92E-3 6.97E-3 2.47E-3 9.80E-4

2.83E-2 1.59E-1 1.13E-1 4.47E-2 2.83E-2 7.96E-2 5.65E-2 2.24E-2

2.43E-1 1.37 9.70E-1 3.84E-1 2.43E-1 1.37 9.70E-1 3.84E-1

4.11 4.11 2.06 4.11 4.11 2.06

4.11 4.12

4.12

4.11 4.12

4.12

Fig. 3.9.5: Example of bounds and estimates for conjugate pair

divided differences in A exp.
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derivation of scaling and squaring error bounds will show this. We study only the double preci

sion accumulation case, as the argument is exactly the same in the single precision case.
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Scaling and squaring bound. Consider only the non-conjugate portion of the sequence of

abscissae, namely |£o,£,. . . . .£„}. For double precision accumulation of inner products,

[//2(AexpT) - Aexpr| < e(K2T0-l]-AxexpT, (3.9.1)

where k2*= 8.3259, 9 is the maximum spread in the abscissae, and Axexp. is the related di

vided difference table whose abscissae are X= {Re(£,), 7=0 //). For single precision

accumulation,

|/7(Aexpr) - AexpT| < €(w+l)[K,r0-l]-Axexpr, (3.9.2)

where k, = 21.2950.

proof: We first compute a scaled divided difference table by the Taylor algorithm. The expan

sion point a may be the center of the smallest circle enclosing the data points, and the spread 9

is the diameter of that circle. Let the data points be ordered so that the real parts satisfy

£o^ £i ^ ' ** ^ £/r Because exponential divided differences with real abscissae are increasing

in each abscissa, we have

— < A£exPr

and

«„T*o

n\ n\ n\ *° T

In Appendix B we derive the error bound

L/72(A0"expr) - A0"expT| ^ c(2 +T0/2)ert/2-^

Therefore,

l/?2(Ao"expr) - Ao"expT| < <s(2 +T0/2)eT"-A4expr (3.9.3)

The Taylor series error bound (3.9.3) applies to every element of the divided difference

table. The error in the original scaled matrix in scaling and squaring, then, must satisfy the

matrix inequality

-|y72(Aexp2_/T) - Aexpr/r| < €(2 +2-(j'+nT0)«?2"iT<'-Axexpr/r, (3.9.4)
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where 2"' is the scaling factor.1 The subscript X indicates the divided difference table matrix

Axexp2_,r has real abscissae X= {£o.£i fj.

For

/3y = (2 +2-('+,,r0)*2~'"\

the error in each element of y72(Aexp2_,T) is bounded by e/3, times the corresponding element

of Axexp2_/r. This 0, is exactly that used earlier in §3.4. For any complex matrix B

\fl2{B2)-B2\ <c|£|2.

Also bound (3.7.15) yields

|Aexp2./r| < Axexp2_/r;

hence,

|Aexp2_J2 < Axexp2.(/_„r.

The same argument that led up to (3.4.9) gives

l/f2(AexpT) - AexpT| < cG^ + l) - l]-AxexpT,

where 2J(/37 +1) —1 is the same as in (3.4.9). It is minimized in the same way. For j the smal

lest non-negative integer satisfying (3.4.10), namely

2~jt9 ^ 1.3292,

we obtain

l/72(AexpT) - AexpT| < €[K2T0-l]-AxexpT

where k2= 8.3259. The same argument shows the single precision bound is (3.4.15). D

fThe matrix bound (3.9.4) does not hold, rigorously, when Aexp2_,r is backfilled from
its top row. This is because

A/;;|expr < A/.-'expT+ |£,>*-£,|*A£expT

when 7j/+A ?* tj,. If the Taylor formula is used on the entire table, (3.9.4) does hold.
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Relations (3.9.1) and (3.9.2) mean that the error in complex exponential divided

differences, relative to corresponding real divided differences, has the same bound for scaling

and squaring as in the exclusively real case.

Standard scheme error bounds. When all the imaginary parts t\h 7 = 0,1 /;, are large and

nearly equal, the portion of the table computed according to the standard scheme satisfies the

following error bounds.

Standard scheme error bound. When each tj7-, 7=0,1 //, is large compared with ///r,

L/7(Ait+expT) - Aii+/exprl <eK^p-'-A/^-'exp, (3.9.5)
7-0

for each k =0,1, . . . , n and / = 1,2, . . . , n—k+\. k is one of the scaling and squaring er

ror coefficients k2t0 —1 or (/7+1)[k,t0— 1], depending on the arithmetic used.

The recursive nature of the standard scheme makes it easiest to describe bounds on the

propagation and growth of errors in terms of examples. Also, this will make clear what large

compared with n/r means. Errors introduced in the scaling and squaring portion of the compu

tation of the table in Fig. 3.9.2 are propagated during the computation of the remaining

differences. We bound these errors relative to the table in Fig. 3.9.3.

From (3.9.1-2), depending on our arithmetic assumptions,

L/7(A0*expT) - A<fexpr| < €K-A/0expT

for each k =0,1 n. To keep the analysis simple we forget that all zeroth, and even first,

order differences may be computed specially with a smaller error coefficient than k. The

difference A<°expT = e'c° in Fig. 3.9.2 is computed with an absolute error 8§=ffleH°)-eT^

such that |fi0°l < €Ker*°. Now,

Aioexpr = —Im(A<°expT);
170

the propagated error 5i0 satisfies

|8io| <6K— .
"Ho
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Since A0'expr is computed by scaling and squaring, its absolute error 80' satisfies

|8,i| ^ €K-Aiexpr. By (2.4.3) the propagated absolute error in the computed Ai(,expr is

fi2 So ~ fi-o
5i £-o

thus

Ai expr + —erfo*° t?o . ^7o+1/t ^
l8-ol < <"* FT T~l ^ 77 r~T"€—Ai expT

where bound (3.2.3) is used on e* °. When tj0 "^ v\ and 170 is large compared with 1/t,

i7o+1/r _ 1
l«|-C-ol 2*

or is even smaller than Vi when the difference in the real parts £| - £_o is large. 8i0 satisfies the

simple bound

|8iol = l/?(Ai0expT) - A20expr| < e~AJ expr.
i7o

One more step makes the general case (3.9.5) clear. Since |8o| ^CK-A^exp,. by scaling

and squaring,

A|0expT+—AiexpT
|8iol < €K r- —j

Is2 "* 4-01

7,0 +2/7 £KA2
ICz-C-ol "Ho

Thus when 170 ^ "Hi =172 and "Ho »s large compared with 2/t,

7}0+2/r j_
IC2-C-0I 2 '

and again we have the simple bound

|8i0| = |y?(Aioexpr) - Aioexpr| < e—Af2expT
170
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By continuing this process, (3.9.5) can be checked.

When the r)i are large compared with /;/r, the coefficient of 1/2 that appears above sug

gests the assymptotic estimates for the divided differences, as in Fig. 3.9.4.

Estimated error bounds: When each 7jy, 7 = 0.1, . . . //, is large compared with «/'•r,

[//(Ait+lexpT) - AiAA+,expr| - €*2-A(n*?/)~
7-0

'•A/0expr (3.9.6a)

and

L//(Ai{+/expr) - Ai{+/expT| ~ €K2"lk*li(fln,r
/=0

•&tn expT (3.9.6b)

(3.9.5) shows that €k times a matrix like that in Fig. 3.9.3 bounds the error. (3.9.6a-b)

indicates that ck times a matrix as in Fig. 3.9.4 is a good approximate bound. The elements in

Fig. 3.9.4 are the estimated values for the conjugate differences (3.7.14). These are good esti

mates when the 17, are large; hence, a bound using them is nearly a relative error bound.

Because k depends only on the scaling and squaring, the standard formula portion of the hybrid

algorithm does not lead to error growth, which is the purpose of reordering the data points.

example: The data from the previous example, namely

£±0= -1.414214 ± Z8.585786

C±, = 1.412799 ± i\ 1.41563

£±2= 1.414214 ± /11.41421

£±J= 1.417039 ± /11.4I138,

generate the divided differences shown in Fig. 3.9.6 (only half the table is exhi

bited). The data were generated by assigning each £,= <* +pe' ', /=0,1.2.3, and

rounding to seven digits, a = 10/, p = 2, and <t>0=>—3ir/4, <f>\ =ir/4-l-0.00l, d>2 = Tr/4

and 03= 7r/4-0.002. This yields both closely clustered and moderately separated

data points. The arithmetic is seven digit single precision, so condition (3.4.14) with

spread 0 = 4 gives 7 »2 squarings. From (3.9.2) the error coefficient is

k = (3+1){k,-4-1] =337.

In Fig. 3.9.5 the estimated bounds are very close to the true absolute values of the
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divided differences, so k indicates a loss of, at most, 2.5 decimal digits. This x is

clearly excessive. Indeed, the double precision coefficient

k = k2*4-1 -32.3.

giving a loss of about 1.5 digits, is also larger than the results in Fig. 3.9.6 warrant.

Differences correct to seven decimal digits

Row Index Divided difference table

-1

-0

0

1

( 1.063108E-3, 0.0 )
( 2.106638E-2, 0.0 ) (-5.269139E-2, 1.213605E-2)
(-1.624537E-1, 1.808715E-1) (-3.706310E-1,-1.019594 )

( 1.675059 ,-3.750361 )

-3

-2

-1

-0

0

1

2

3

( 1.611337E-6, 0.0 )
( 1.671230E-4, 0.0 ) ( 3.230809E-5, 1.838758E-5)
(-1.114105E-4, 1.907577E-3) (-2.524930E-4, 7.375033E-4)
(-4.248672E-2,-2.540785E-3) (-1.694748E-2,-3.852958E-3)
(-1.220463E-1,-8.447846E-1) (-i.342108E-2,-3.523510E-l)
( 1.673579 ,-3.754205 ) ( 8.355560E-1,-1.880302 )
( 1.672096 ,-3.758050 ) ( 1.669130 ,-3.765728 )

(1.666154 ,-3.773412 )

Differences computed by hybrid algorithm

Row Index Divided difference table

-1

-0

0

1

(1.063106E-3,0.0 )
( 2.106639E-2,0.0 ) (-5.269139E-2, 1.213603E-2)
(-1.624537E-1, 1.808715E-1) (-3.706307E-U-I.019594 )

( 1.675059 ,-3.750361 )

-3

-2

-I

-0

0

1

2

3

( 1.611334E-6, 0.0 )
( 1.671228E-4, 0.0 ) (3.230808E-5, 1.838754E-5)
(-1.114093E-4, 1.907575E-3) (-2.524923E-4, 7.375030E-4)
(-4.248669E-2,-2.540757E-3) (-1.694747E-2,-3.852943E-3) \
(-1.220468E-1,-8.447842E-1) (-1.342132E-2,-3.523509E-l)
( 1.673576 ,-3.754205 ) ( 8.355546E-U-1.880302 )
(1.672096 ,-3.758050 ) (1.669127 ,-3.765729 )

( 1.666154 ,-3.773412 )

Fig. 3.9.6: Conjugate pair exponential divided differences.
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Exponential divided differences with real abscissae are accurately computed by a hybrid

type algorithm. This idea of decomposing the divided difference table into blocks, each best

computed by a particular method, may be extended to additional cases, such as conjugate pair

exponential divided differences. Indeed any sequence of abscissae which readily decomposes

into well-separated clusters is well suited to the hybrid approach; and the idea need not be res

tricted to exponential divided differences. Though scaling and squaring does not work in gen

eral, the function may possess special properties which are exploitable through representing its

divided difference table as a matrix function. The series algorithms are still applicable for

clustered abscissae. Certainly many extensions are possible, only the simplest and most basic

have been dealt with here.

Our original intention in studying divided differences was to find a quick and accurate way

to compute the matrix exponential. We have always kept in mind the Newton polynomial

representation and techniques appropriate for computing matrix functions. The techniques we

have employed, scaling and squaring, the standard divided difference recurrence, Taylor series,

and decomposing the table to apply a hybrid algorithm, all have analogues appropriate for com

puting the exponential of a matrix [Moler and Van Loan, 1978]. Indeed, it was these analogues

that suggested many of the approaches pursued here. Thus our study of divided differences not

only aids in computing more general matrix functions (the Newton polynomial), but it also pro

vides an indication of difficulties that lie in wait in matrix function evaluations. Precisely

because divided difference tables are matrix functions, a full understanding of methods for

computing such tables is essential to an understanding of functions of a matrix.
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Appendix

A.l The Newton divided difference series.

For those readers who may be unfamiliar with divided difference expansions such as

./'(?)-= SA0A/-n (£-«,).
A-0 7-0

we present here a convergence proof sufficient for our purposes. Similar expansions are stu

died, for example, by Geffond [1971], but they are not quite what we require.

A simple derivation of the Newton divided difference series is obtained from the contour

integral formula (2.1.13)

2iriJc (o> —ao)^""0*!) ***(« —«„)

Our proof follows a method commonly employed to establish the convergence of complex Tay

lor series. The Taylor expansion of /, of course, is a special case of the more general Newton

expansion.

We begin by deriving a Newton formula with remainder. The expansion points are the

abscissae of the divided differences which are coefficients in the expansion.

Newton divided difference expansion with remainder. Let A„ = {aQ,a\, . . . ,a„] be a se

quence of expansion points and let /be holomorphic on a simply connected region D con

taining AH. Then for any simple closed contour C in D enclosing A„ and a point £,

a-i

A-0 7-0

where the remainder

2iri^c Jm0

n-\

proof: From (2.7.5) where />,,(£) = JJ (£-<*,),
j-o

P„+iM - P„+i(Q l

w & 0> t y-Q 7-0
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A-0 /-() /-A + l

Dividing by p„+\(<o) and rearranging yields

-37 - trrl[(c-«>)-li(--«/)-,J +-rrIl[(«-«J)(a.-«,>-|i
«» <> A-0 7-0 /-0 w b 7-0

By Cauchy's integral formula,

/(£) - -^-.f(io-0~\/'(<o)d(o

A-0 Z7r/ C /-0 /-0

=iAo/*n(C-a/) +/?H(^). a
A-0 7-0

When A„ consists of the eigenvalues of a matrix /J,

f(<o) dti>R,&) - T-Si—0(<t> —ocq) • • • (<D —a„) 'XaW
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^(^n^"^ 's tne characteristic polynomial of A. When /is holomorphic inside and on
7-0

C, the integral is bounded in £. R„(A)=0 by the Cayley-Hamilton theorem, thus establishing

the Newton polynomial representation of f(A) for holomorphic /.

We need only show that £„(£)—»0 as n—•«> to establish the Newton series formula.

Newton divided difference expansion. Let A = {ao»a\,a2,...} be a sequence of expansion

points and suppose only finitely many points of A lie outside a circle of radius € about a

point a. Suppose further that /is holomorphic on a simply connected region D containing

A and a disk about a of radius p > 2e. Then for all £ such that |£—a | < p —2e,

/(C)- fAoV-ntt-ay).
A-0 7-0

proof: Select a simple closed contour C in D enclosing A and such that

pc = min|<w —a\ > |£—a| + 2e.
«€C
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Because / is holomorphic on C, there exists a constant K such that |/(o») | < K for all w € C.

Let M= [j | € < |a, -a|. 7=0,1,2,...} and let m be the number of elements in M. Since m is

finite.

If — I
j3(£) = max{l, maxmax ' '

/€M w€C |o> —<Xj\

exists. C was selected so that <u ^ a7 for any7. C was also selected such that for all o> € C

|a>-£| > |<u-a|-|C-<*| >2e,

and

W-Ctj\ pC-€

for all 7 € Mc, the complement of M. Thus

7<« 7^,,

<2^~03(C)]",[?(C)]""'̂

where L is the length of C. Then as /* — <», |/?,,(£)|—0. a

On every closed disk |£—a\ ^p' where p' <p —2e, the series converges uniformly to /

p may be chosen as the radius of the largest open disk about a in D. When the sequence of

expansion points {a0,a],a2,...} converges to a, the e of the theorem may be chosen arbitrarily

small. Convergence of the Newton expansion may then be claimed for all £ such that

|{-a| <p. In particular when all the expansion points are confluent at a, the Taylor expan

sion of /appears as a corollary.
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Taylor expansion. Suppose /is holomorphic on a simply connected region D that contains

a disk of radius p about a. Then for all £ such that |£-<x\ < p.

00 fik'(n)

/(£>-EZTrI(s-tt,A*
A-0 *•

proof: Recall that &okf='/k)(a)/k\ for confluent abscissae. D

It should also be noted that because / is holomorphic on D, the theorem applies equally

well to any derivative of /
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A.2 Divided difference expansion of matrix functions.

The results of the previous section will now be extended to functions of a matrix. For a

(w+1) x (//+1) matrix As the matrix function f{A) has a Newton series representation when

/Ts eigenvalues all lie inside the series' circle of convergence.

Newton divided difference series for a matrix. Suppose ./' has a Newton series expansion

(as in §A.l) on the disk D,, = {£|p- 2e > |£ —a|}. Then if every eigenvalue X„ o< < n.

of A lies in D,„

f(A)<
A-0 7-0

proof: For any &> ^ X„ 0 < / < w, the matrix (a>/ - A) is non-singular and

M-A)-' ° JtlfiiA -ajD'Ylia-a,)-1) +fl[ *^''ivI-A)"'
A-0 7-0 7-0 7-0 w ai

By the Cartan definition (1.1.7)

2iriJc

The simple closed contour C is selected such that it encloses all the expansion points and

pc = min|co —a\ > max |X,— a| + 2e.
<u€C 0</<w

Then

where the remainder

A-l

f(A) = Z^of'U^ -aJ!) + R»iA)
A-0 7-0

»A —a,I
R„(A) - -r-:ffM(»l-A)~lIl —d*>

2*'Jc 7-0 *»-<*;

To complete the proof, we need only show that in some norm \\R„(A) || —0 as n—©°.

Define the set M as in the proof in §A.l. Thent

f||5|U=max{il^|}.
0<i<« JZq
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A —or,/.. „ __ A —a,
ii».w)i-<^/i/(-)M(«/-^)-iwni-T-7ii--in-^ii

*v V /€M 0,~a7 /€MC '
</to|

The curve C has finite length L. For all o> € C,

|/(o>)| < K

for some constant tf because /is holomorphic on C, and

\{*I-A)-XU< K

for some other constant K' because C is bounded away from A's eigenvalues. The constant

B = max{l, maxmax || —IU)
7€M w€C co— aty

exists because M is a finite set and C does not contain any c*7. For ail j € Mc each eigenvalue

X, of /4, 0 ^ /" ^ n, satisfies the inequalities

\\,-aj\ ± |A,-«|+c ^ k-gl+c _
max -i -r < < max = y < 1.
u€C |(0—ay] Pc""e 0<i<» Pc~€

Let /4 = P"-1//3 where the upper triangular matrix J is ^'s Jordan canonical form. Then

._ /I —ct;I . __ J —a.:I „
n —- - />-1 n ——p

= P-'D- T7 J—D~lP
CO — CK ,•

7€MC •*
7<"

where D = diag(l,Tj,i72, . . . ,tj"), tj > 0. Taking norms,

ii n i^i- <i/'-'oiL-iifl-'/'iu- n n°"lJZ?rtt;/|1-
7<« •/'<»

For any j € Mc

— L < max -j r + t f—j

< y + -^- *S y < 1
Pc-e
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forall7?<(p{:-€)(l-y). Thus

76MC J

where the constant K"= ||i°-,D||.-||i9",i0|U for some fixed y< (pc-e)(l-y). Combining

these bounds yields

||K„C4)||oo< ^KK'fimKuy-m.

and ||/*„C4)IU—Oas n-* oo. n
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B. Error bounds for a Taylor series computation of A0nexpr.

The Taylor series is one of a number of proposed methods for computing A0"expT. It

involves no previously computed divided differences; so its study does not concern propagation

of errors, but just computational errors. Here we develop error bounds on the computation of

A0"expr by a Taylor series and demonstrate that the method is best applied when the abscissae

are closely clustered.

In §2.8 Ao"expT, with real or complex abscissae {£0.£i. £„} and r^O, is shown to

have a Taylor expansion about a

00 t"+jptu

^-tft+m™"'- (BI)

where the power function f^' is U'+/(£) = (£-a)"+/, 7=0,1,2 It is convenient to consider

the shifted abscissae {£0-a,£|-a, . . . ,£„-a} exact; the numerical effects of shifting abscissae

are discussed in §3.6. With

8= max |£,-a|, (B.2)
0</</>

the bounds we obtain resemble

L/?Uo"expT) - A(j'expT| <p.e7&^p-,
n\

where p. represents a coefficient dependent on the arithmetic details to be introduced shortly.

77(Ao'expT) represents the computed floating-point value of Ao'expT.

The Taylor series algorithm outlined in §3.3 requires many inner products. We consider

two separate conditions for bounding round-off error accumulation in inner product computa

tions.1"

1. Double precision accumulation. The error in the computed inner product ftii^a^i)
1-0

satisfies

Mia fit) - 2>,/3,| < €£|a,j8,|. (B.3)
/-0 /-0 i-O

fSee Wilkinson [1963] for a general treatment of rounding error analysis.
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where € = 1.06x (machine precision), e is assumed so small that any 0(e2) expressions are

negligible when compared with expressions linear in € and may, because of the arbitrary 1.06,

be absorbed into such linear expressions. Error condition (B.3) holds for double precision

accumulation of sums and inner products. It does not depend on the number of terms summed

and leads to simple illustrative error bounds. Additionally, we assume the series coefficients

Tu+JeTa/(n+j)\ are all calculable to machine precision, namely

[n2(. , ,v,) - ( , ,v, < e , ' ' . (B.4)
(n+j)\ (n+j)\ (n+j)\

2. Single precision accumulation. The second condition applies to single precision computation

of all quantities. Wilkinson [1963] shows that

l/KJ>A) - I>//3,l < €[(/;+l)|aoj3ol + i>+2-/)|c*,/3,|].
»-0 i-0 /-I

We simplify this to the more convenient

W2>/W - £«£,{ < €t(«+2-/)|a/i3/|. (B.5)
/-0 /-0 /-0

In addition, we assume the series coefficients are evaluable with no more than five rounding

errors (say, errors in the evaluation of t"+/, eray and (rt+7)!, plus a multiplication and a divi

sion); so

(B.6)

Bounds derived from (B.5), though more complex, are more generally applicable than those

from the first condition.

We start by deriving bounds on divided differences of power functions.

Lemma 1: For 7 = 1,2,

|Ao*?i+Al <iL^JT' k~0'1 "• (B*7)

proof: From the recurrence (2.7.8),

AoAt^= (£A•-")•AoA?^!+*-, + A<r'U+*-'
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(ct-a)MU+k-1 + (u-\-*)+t-lu+k-2 + Arf-2t,:+A-2

l^-^-Aoir-1.
*-0

For 7= 1, AoH^1 = £(£,-«) and so
/-0

If for some j > 1

for each k =0,1,

|A0AtA+l| < (*+l>6\ *-0,l n

Ia At7+A-ii <: O'+ft—D! v-i
|Aota !< *!(7-D!8

/if then since LtU+k-i,iti-*)+iU+'-1*
i-0

IA At /+*! < * £ (/+/-!)! _ (/+*)',Ho!. K(-i)Tl ,, " *!y! s

for A=0,1, . . . ,n. a
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We now give bounds on the error in 7?(A0A|i+A) for each A- and j. When the error is not

too large, M^ok\i+k) rnay also be bounded as in Lemma 1.

Lemma 2: Let A0AU+A be computed according to Algorithm 1 of §2.7. Then for each

7 = 1,2,... and /r = 0,1, . . . , w,

\j!2UokU+k) ~ Ao*U+Al < **}!?.k)L - J€Vk\(j-\)\

for double precision accumulation (B.3), while for single precision accumulation (B.5),

(B.8b)

j + k

k

|7?(AoAU+A) - AoA?rA| <W^Zlll +^"^StT1

proof: For (B.8a),

l7?2(AoAti'+,)-A0Ati+,l < *El£,-«l < (Ar+1)«€. *-0.1,
>-o

by (B.3) when 7 = 1. If for some j > I

(B.8a)

,n



§B 126

for each A =0.1 w, then

^(Aol^) - A0Ati+A| <|/«i({;,-a)J/2adlii+,-,>] - i«i-«WAdir,-')|
/-0 i-0

+il^-«ll>y2(A^+'-1)-A„i>w-,i
i-0

< f»/f 1 4. _J_i y 0+/-D!

Similarly for (B.8b), when 7 = 1,

|7?(A0ATA+I) - A6*l«*+,l < €£(A+l-/)|£,-a|
»-o

. «(A:+2)(A:+1) . n .< 60 Tj , Ac =0,1 n ,

by (B.5) modified slightly to reflect that Aoto is just a sum. Now if for some 7 ^ 1

L/?Uo'u+*-') - io'i^-'l <̂ -'(o-i)-^-+0-2) ffizlli'
for each A =0,1, . . . , /*, then

l/KAo*Te(+*> - A0AtrAl <€i(A+2-/)|£/-a|WA(Jt^-,)|
i-0

+ Ilt*-a|WA«^-')-A^'-'|
i-O
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Theorem: In computing Ao"expT by a Taylor expansion about a, the error is bounded by

l/bUrffexp,) - A<j'expr| ^ €erH2 + Tb) r"\e'

n\
(B.9a)

for double precision accumulation (B.3), while for single precision accumulation (B.5)

|.//(Ad'expr) - Ao"expT| <€(m +n+7+T8)eT*T"\c'TU\ % (B.9b)
n\

where /w+1 is the number of terms actually summed in the expansion.

proof: Let A<j's„+,H = £/3»+7,AoTa+/ be partial sums of the Taylor expansion (B.I), where each
7-0

coefficient £„+, = T"+,eTtt/(n+j)L The error is bounded by four terms.

|77(A(J'expr) - A<J'expT| < l/7(A<S'expT) - E^^X/KAfi^l
7-0

7-0 7-0

7-0 7-0

+ |A<JV,„ - A<j'expT|

= 1 + 11 + 111 +IV

We bound each of the four terms separately. In addition we note that

7?(A0,'expT) s/HjyKfi.+jhAW''))
7-0

Double precision accumulation (B.3): By (B.3) and (B.7),

7-0 7-0 ^n+Jf- flljl

r"\eTa\ frW <^T»\e'«\

By (B.4) and (B.7),
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III

"< Si//2(i3«+/)-^+7ll^2(Ao"U'+/)|
/-o

lit —ll\ a\

< €£|/3H+/U//2(Atf?r7)l <C^-^r
7-0 W!

And using (B.8a),

in ^ ii^w+7ii.//2(A(j'tro - A^ir^i <^i1^^-^^
,|,m| » r757 r6r^l
a! £,(7-1)! /»! '7-1

We may ignore the truncation error IV because

IV < IZ^+yAd'tr7- I/WAot«+'l
7-0 7-0

< £ i/wiAo'tr'i« ^ i #
7-w+l "• 7-w+l J'

is negligible for m large enough. Summing the bounds, then, yields (B.9a).

Single precision accumulation (B.5): The same steps are repeated for (B.9b). By (B.5) and

(B.7),

I < € 2(m+2-y)Lff(/3„+y)|̂ (A,i'trJ)l <^(m+2-j) \ ]' ' •'"J/ ,B
/-0 . 7-0 \n~rjj. n.j.

"! y-o ./!

In the same manner as before, by (B.6)

II < See7*1^-

By (B.8b)

in < ii/w wwu+j) - A(j'tryi
7-0

€f^|^|,Q+fl+l)! (/-»(/+»>V
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"! *T| 7+1 7?

and so

I + III < e—L-r-J- V(m+l+-f*-7+7)—-
«! ft 7+1 7!

< 6(W + A? + 1+T8)grfi ' , ' .

Finally, we choose m so large that, say,

7-»ii+l J'

From the discussion earlier for IV,

n\

Summing our bounds on I+ III, II and IV yields (B.9b). D

r"eTaln\ is A<j'expT for abscissae confluent at a, the bounds (B.9a-b) make clear why the

Taylor series method is best applied to closely clustered abscissae.

Relation (B.IO) permits determination of m when a particular € and t8 are given. For

example when €= 10~7 and r8 < 1, (B.IO) yields

*£ -1. ^ 6*i =2.72xl0-7.
7-mi+|7«

The smallest value of m for which this inequality holds is /w = 10. And when €=10"14, the

smallest mis /w = 16.

//!

Ti> <€*Tfi. (B.IO)
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C. Decision criteria for the hybrid algorithm.

Double precision accumulation. In §3.5 we found that the decision criterion t0„ for the hybrid

divided difference algorithm, with double precision accumulation (3.3.3), satisfies the

recurrence (3.5.2)

(k2t9„-\) - (k2t0,1_|-1)(1+2///t0h) =0 (CA)

where t9{)=2/k2. This recurrence has no simple closed form solution for r9„. However it is

possible to give a simple bound on t9„.

The recurrence (CD is quadratic in t#„; thus

t0„ = ylrtf.., +V(r^-i)2 +8/i(r#M_,-l/K2)} (C.2)

is a rearrangement of (CD where t9„ appears explicitly. We attempt to bound t0„ for every /;

by finding a function in n which satisfies a majorizing recurrence. A little exercise in complet

ing the square gives

/7(«+l)+2/K2=Y{//(/l-l)+2/K2+V[w(«-l)+2/K2]2+8/l[w(rt-D+2/K2-l/K2] +16//2+8///K2} ,

which is nearly the same as (C2). Since t9q=*2/k2, it is clear that

t9„ < w(/7+1) + 2/k2 (C.3)

for all n ^ 0 and any k2 > 0. Also in a similar way,

n(n-3) - y{(//-l)(w-4) +VlOi-DOf-4)]2 +8/i[(/i-1)(/i-4) - \/k2] + 16* +8/;/k2} .

We compare this with recurrence (C.2). For the value of k2= 8.3259 derived in §3.4, we find

that r0,7=237.85 < 17-07-3) =238 from the table in Fig. 3.5.3. Thus t9„ < n(n-3) for all

n > 17. However,

/,(rt-4) =Y{(//-l)(/7-5)+V[(«-l)(//-5)]2+8w[(/7-l)(/7-5)-l/K2]-4/72+40ff+8/7/K2}.

For k2 = 8.3259, -4/72+ 40/i + 8«/k2<0 when /i >11. Since t»,0=72.02> 10-O0-4) = 60,

t9„ > n(n-4) for all n *£ 10. Combining these two results yields, for n > 17 and k2 = 8.3259,

that t9„ is bracketed by
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w(«-4) < r0„ < n(n-3). (C.4)

Single precision accumulation. The decision criterion t9„ for single precision accumulation

(3.3.4) satisfies the recurrence (3.5.6), namely

(fl+ l)(K,T0M-l) - H(K,Tfl/l.,-l)(l+2w/0 =0. (C.5)

This is also quadratic in t9„\ so we have the equivalent recurrence

t9>< " -> /xn KKl'JTfl,,.! +1) +y/iKi/ire^ +l)2 +8fCl/I2(/|-H)(*ClTgw_| - 1)) (C.6)
2k\\h-t\)

in which t9„ appears explicitly. Initially t9\=*3/2k\.

For <r„ = 2a2/3+ (3/2kj - 2/3) w, we find by completing the square that

** = i } ^AitxHVn-y +1) +VU|WO-H-l +l)2 +8K,rt2(«+l)(K,(r/J_,-D +u„) (C.7)
lK\\n-tl)

where o-„_, = 2(/i~l)2/3+• (3/2k,-2/3)(/?-l) and

,h=4k1(,+D{(2+̂ +(^-^+})«2+(|-^M.

a„ was chosen so that o-i= 3/2k1™t0i and v„ > 0 for any k\ > 0 when /? > 2. Comparing the

recurrences for o-,, and t9„ shows that

T9„<lna+(_l__|)n (c.8)

for n > 1.

To bracket t0„, for large /», orH = w(2/?-5)/3 satisfies the recurrence (C.7) with

^;=4K,(/7+l){(2K, +y)n2 + yw}.

A check of the first and fourth columns of Fig. 3.5.4, which has *i = 21.2950, reveals that

3.16= T04<<r4»4. Thus t9„ < <r„ = n(2n-5)/3 for all w>4. Similarly, o-„ = 2n(n-3)/3

satisfies the recurrence (C.7) with

vn - 4k,(/7+1){—£V +(4k, +y)/r2 +2/;}.
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When // > 10, v„ < 0. From Fig. 3.5.4, 12O.12 =t0,5 > <r,s« 120. Thus t0„ > 2n(n-3)/3 for

n ^ 15. Combining the two bounds shows that r0„ is bracketed by

\n2-2n <t9„ <y"2-y« (C.9)

for n> 15 and k. = 21.2950.
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D. Numerical examples.

The tables on the following pages illustrate the example in §3.6 of the hybrid algorithm

with clustering. The first table (3 pages) is the hybrid computation in single precision for t = 1.

The correct seven digit divided differences are presented in the following table for comparison.

The two following tables exhibit in a digits lost (login) form the actual relative error and the

results of an a priori error bound computation. The data in these tables are summarized by Fig.

3.6.3. A second set of tables for t = 2 then follows (see Fig. 3.6.4). Finally for comparison,

the table for t = 2 is recomputed by scaling and squaring only (Fig. 3.6.5). The abscissae are

listed to the left of each table. The computations were performed on a PDP-11 computer,

which has a precision slightly greater than seven decimal digits.



abscissae

( -34.50)

( -33.10)

{ -32.90)

( -14.40)

< -14.40)

( -14.40)

( -14.40)

< -14.10)

( 6.10)

( 6.40)

( 6.80)

< 7.10)

( 11.30)

< 11.30)

< 11.30)

( 12.20)

( 12.20)

( 13.10)

( 25.60)

< 28.70)

< 32.90)

( 33.40)

( 33.40)

< 34.50)

.1039538e-14

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.0000000e+00

.OOOOOOOe+00

.0000000e+00

.0000000e+00

.0000000e+00

.0000000e+00

.0000000e+00

.0000000e+00

.00000006+00

.0000000e+00

.0000000e+00

.0000000e+00

.OOOOOOOe+00

.0000000e+00

.0000000e+00

.OOOOOOOe+00

.0000000e+00

.0000000e+00

Divided difference table ba the hubrid algorithm for tau =1.00

,2268571e-14

,4215541e-14

.OOOOOOOe+OO

,0000000e+00

.0000000e+00

♦0000000e+00

.0000000e+00

.0000000e+00

*0000000e+00

.0000000e+00

.0000000e+00

.0000000e+00

.0000000e+00

.0000000e+00

.OOOOOOOe+OO

.OOOOOOOe+00

.OOOOOOOe+OO

.OOOOOOOe+00

.OOOOOOOe+OO

*OOOOOOOe+00

.OOOOOOOe+OO

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.1498804e-14

.4666655e-14

,5148857e-14

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+OO

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+OO

.OOOOOOOe+00

*OOOOOOOe+OO

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+OO

.OOOOOOOe+00

,OOOOOOOe+OO

.OOOOOOOe+00

.OOOOOOOe+OO

table of divided differences

.8015853e-10 .6755117e-10

.1611188e-08

♦3012922e~07

.5573906e-06

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+OO

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+OO

.OOOOOOOe+00

.OOOOOOOe+OO

.OOOOOOOe+00

.OOOOOOOe+OO

,OOOOOOOe+00

.1437937e-08

.2850061e-07

.5573906e-06

,5573906e-06

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

*OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+OO

.OOOOOOOe+00

.OOOOOOOe+00

♦OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+OO

.OOOOOOOe+00

.OOOOOOOe+00

,OOOOOOOe+OO

.2879424e-10

.64631S5e-09

.1352404e-07

.2786953e-06

.5573906e-06

.5573906e-06

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

*OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+OO

.OOOOOOOe+00

.OOOOOOOe+OO

.8262803e-ll

.1948766e-09

.4290508e-08

.9289843e-07

♦2786953e-06

♦5573906e-06

.5573906e-06

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

•OOOOOOOe+00

.OOOOOOOe+OO

.OOOOOOOe+00

.OOOOOOOe+00

.1891783e-ll

.4685518e-10

,1085125e-08

.2469086e-07

.10030576-06

.3087869e-06

.6500264e-06

.7523980e-06

.OOOOOOOe+00

.OOOOOOOe+00

♦OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+OO

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+OO

.OOOOOOOe+00

.OOOOOOOe+OO

.OOOOOOOe+00

.OOOOOOOe+OO

.OOOOOOOe+OO

.OOOOOOOe+00



abscissae

-34.50)

-33.10)

-32.90)

-14.40)

-14.40)

-14.40)

-14.40)

-14.10)

6.10)

6.40)

6.80)

7.10)

11.30)

11.30)

11.30)

12*20)

12.20)

13.10)

25.60)

28.70)

32.90)

33.40)

33.40)

34.50)

.2013388e-08

,8174544e-07

*3204468e-05

♦1249753e-03

.2562019e-02

.5252149e-01

.10766916+01

.2207216e+02

.4458577e+03

♦OOOOOOOe+00

♦OOOOOOOe+00

.OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

.OOOOOOOe+00

,1522937e-08

.6430151e-07

♦2621655e-05

.1062355e-03

,23346746-02

♦5112324e-01

.11158856+01

.2428709e+02

.51995766+03

.6018451e+03

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.0000000e+00

.00000006+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+OO

.OOOOOOOe+00

.OOOOOOOe+OO

♦6118262e-09

♦2679136e-07

♦1133277e-05

♦4761274e-04

♦1115626e-02

.25985946-01

.60202526+00

.13878826+02

.31435446+03

.7400057e+03

.89784756+03

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+OO

.OOOOOOOe+00

.OOOOOOOe+00

,OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+OO

table continued

.16635236-09 .7590633e-10

♦7532083e-0B

♦3295811e-06

♦1431652e-04

.35541796-03

.87571lle-02

.21426386+00

.5208697e+01

.1243032e+03

♦4386575e-+03

«10470666+04

.12119676+04

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

*3642862e-08

♦1692752e-06

♦7811543e-05

♦2150732e-03

.58827996-02

.1599450e+00

♦4324852e+01

♦1150599e+03

♦7226147e+03

.39794696+04

.18954696+-05

♦8082166e+05

♦OOOOOOOe+00

♦OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+OO

.OOOOOOOe+00

.1883713e-10

.9386467e-09

.4531878e-07

.21723656-05

.6364132e-04

.1850655e-02

*5344464e-01

.1533472e+01

.4327505e+02

♦ 3400902e+-03

.2389056e+04

.14730226+05

.8082166e+05

.8082166e+05

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+OO

♦3359880e-ll

♦1727196e-09

♦8607398e-08

♦4257658e-06

♦1311455e-04

*4006852e-03

.12148266-01

.3656550e+00

♦1082111e+02

♦9954482e+02

♦8278597e+03

*6114425e+04

»4041080e+05

.80821666+05

♦8082166e+05

♦OOOOOOOe+00

♦OOOOOOOe+OO

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

.OOOOOOOe+OO

.OOOOOOOe+00

.53230186-12

.2821838e-10

.1451012e-08

♦7404805e-07

.23954446-05

«7683336e-04

.2444453e-02

.7717070e-01

♦2395244e+01

♦2543210e+02

♦2470510e+03

*2161935e+04

.1714029e+05

.5583707e+05

*1310750e+06

♦19878916+06

.OOOOOOOe+OO

.OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

,OOOOOOOe+OO S



abscissae

-34.50)

-33*10)

-32.90)

-14.40)

-14.40)

-14.40)

-14.40)

-14.10)

6.10)

6.40)

6.80)

7.10)

11.30)

11.30)

11.30)

12.20)

12.20)

13.10)

25.60)

28.70)

32.90)

33.40)

33.40)

34.50)

.68413816-13

.37272276-11

.1970618e-09

*1033850e-07

.3490521e-06

.1168023e-04

.3875274e-03

.1275268e-01

*4125662e+00

♦4911899e+01

.53921116+02

.53822506+03

.49068826+04

.2155649e+05

.7523791e+05

.1987891e+06

.1987891e+06

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+OO

.8156695e-14

.45667256-12

.2482550e-10

.13390356-08

.4716195e-07

.1646006e-05

.56945386-04

*1953S25e-02

♦6588858e-01

.87378646+00

.10766276+02

.1217486e+03

*1268717e+04

.71905736+04

.3449952e+05

♦1373371e+06

♦3223926e+06

.4889426e+06

.OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

.OOOOOOOe+OO

.OOOOOOOe+00

.OOOOOOOe+OO

.5861817e-14

♦3604519e-12

♦2161520e-10

♦1289315e-08

.5291163e-07

.21636276-05

.8819108e-04

.3584589e-02

.1442617e+00

.2878992e+01

.5615043e+02

.1066394e+04

.19850046+05

.28512446+06

.40844696+07

.584424le+08

♦7832657e+09

.1049608e+ll

.1312015e+12

,OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+OO

.OOOOOOOe+00

table continued

,2750415e-14 .1381999e-14

.1796880e-12

♦1146517e-10

♦7278698e-09

.32660516-07

.1460579e-05

.65114616-04

.28946316-02

.1274748e+00

.30251926+01

.70340786+02

.15966146+04

.3555325e+05

.6384767e+06

,11394626+08

.20235086+09

.33972326+10

.56837606+11

.8971627e+12

.2912406e+13

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+OO

.OOOOOOOe+00

♦9589719e-13

.6508902e-ll

♦43975106-09

♦2152809e-07

.1050939e-05

♦5117001e-04

*2485456e-02

.11971lle+OO

♦3335732e+01

.91422106+02

.24564586+04

.64973236+05

.14389756+07

.31720346+08

.6965541e+09

.1462102e+ll

♦3060524e+12

.61166766+13

.4554890e+14

.1942178e+15

.OOOOOOOe+00

.OOOOOOOe+OO

.OOOOOOOe+00

.3448419e-15

*2479676e-13

.17448826-11

♦1221946e-09

♦62806S2e-08

♦3217433e-06

.1643027e-04

♦8365369e-03

♦4222097e-01

♦1272343e+01

♦3768901e+02

.10939506+04

.3122734e+05

.7550975e+06

.1812663e+08

*4323190e+09

♦9861718e+10

♦2236895e+12

.4846949e+13

♦4392288e+14

*2519865e+15

.3202111e+15

.OOOOOOOe+OO

.OOOOOOOe+00

.5740436e-16

.4242598e-14

.3069296e-12

.2209431e-10

.1178303e-08

.6260353e-07

.3314192e-05

♦1748486e-03

.9141848e-02

♦2917934e+00

.9150766e+01

.2810994e+03

♦8486865e+04

.2187871e+06

,5590293e+07

♦1416721e+09

.343S768e+10

.8270001e+ll

.1902500e+13

*196864Se+14

.1364492e+15

.3202111e+15

.3202111e+15

.OOOOOOOe+OO

.8338935e-17

.6327909e-15

♦4701926e-13

♦3476028e-ll

♦1920721e-09

.1057063e-07

♦5795073e-06

♦3165210e-04

♦1713141e-02

♦5779504e-01

♦1915834e+01

♦6221937e+02

.1985910e+04

.54559986+05

.1484579e+07

.4003252e+08

.1034397e+10

«2650283e+ll

.6498605e+12

.7686258e+13

.6426674e+14

,2392759e+15

,5834142e+15

.9619658e+15 S



abscissae

-34.50)

-33.10)

-32.90)

-14.40)

-14*40)

-14.40)

-14*40)

-14.10)

6.10)

6.40)

6.80)

7.10)

11.30)

11.30)

11*30)

12.20)

12.20)

13.10)

25.60)

28.70)

32.90)

33.40)

33.40)

34.50)

.10395386-14

.OOOOOOOe+00

.00000006+00

t0000000e+00

.00000006+00

.00000006+00

.OOOOOOOe+00

.00000006+00

,00000006+00

.00000006+00

.00000006+00

.00000006+00

.00000006+00

.00000006+00

.OOOOOOOe+00

.OOOOOOOe+00

.00000006+00

.OOOOOOOe+00

.00000006+00

.00000006+00

.OOOOOOOe+OO

.OOOOOOOe+00

.OOOOOOOe+OO

•OOOOOOOe+00

Divided difference table correct to seven digits for tau - 1.00

.2268571e-14

.42155416-14

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

♦£000000e+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

♦OOOOOOOe+00

,OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+OO

,OOOOOOOe+00

.OOOOOOOe+OO

.OOOOOOOe+00

.14988046-14

.4666655e-14

.51488S7e-14

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

♦OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+OO

.OOOOOOOe+OO

table of divided differences

.80158536-10 .67551176-10

.1611188e-08

♦3012922e-07

♦5573906e-06

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+OO

.OOOOOOOe+00

♦1437937e-0B

.28500616-07

.55739066-06

.55739066-06

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+OO

.2879424e-10

*6463154e-09

♦1352404e-07

.27869536-06

.5573906e-06

♦5573906e-06

*OOOOOOOe+00

.OOOOOOOe+00

*OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+OO

.OOOOOOOe+00

.8262803e-ll

.19487666-09

.4290508e-08

.9289843e-07

.2786953e-06

.5573906e-06

.5573906e-06

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+OO

.OOOOOOOe+00

.OOOOOOOe+OO

.OOOOOOOe+00

.1891783e-ll

.4685518e-10

.1085125e-08

.2469086e-07

.1003057e-06

.3087869e-06

♦6500264e-06

♦7523980e-06

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

.OOOOOOOe+00

♦OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

*OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+OO

.OOOOOOOe+00

.OOOOOOOe+00



abscissae

-34.50)

-33.10)

-32.90)

-14.40)

-14.40)

-14.40)

-14.40)

-14.10)

6*10)

6.40)

6.80)

7.10)

11.30)

11.30)

11.30)

12.20)

12.20)

13.10)

25.60)

28.70)

32.90)

33.40)

33.40)

34.50)

.2013388e-08

*8174545e-07

*32044686-05

*1249754e-03

*2562019e-02

*5252150e-01

*1076691e+01

.22072166+02

.4458S77e+03

.OOOOOOOe+00

.00000006+00

*00000006+00

*OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.1522937e-08

.64301506-07

.26216556-05

*10623S5e-03

.23346746-02

.51123236-01

.11158856+01

.2428709e+02

.51995766+03

.60184516+03

.00000006+00

.OOOOOOOe+00

.00000006+00

.00000006+00

.OOOOOOOe+00

*OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+OO

.61182646-09

.2679137e-07

.1133277e-05

.4761275e-04

.11156266-02

*2598594e-01

.60202526+00

.13878826+02

.3143544e+03

.7400057e+03

.8978475e+03

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+OO

.OOOOOOOe+00

table continued

.1663523e-09 .7590636e-10

.75320816-08

.329581Oe-06

♦1431652e-04

,3554179e-03

.8757110e-02

♦2142638e+00

.52086976+01

.12430326+03

.4386576e+03

.10470666+04

♦1211967e+04

♦OOOOOOOe+00

*OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

.OOOOOOOe+00

♦OOOOOOOe+00

.OOOOOOOe+OO

.3642864e-08

♦1692752e-06

♦78U546e-05

♦2150733e-03

.5882801e-02

♦1599451e+00

«4324852e+01

*1150600e+03

♦7226150e+03

♦3979471e+04

.1895469e+05

.80821666+05

«OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

,OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.1883713e-10

.93864696-09

.45318796-07

.2172366e-05

.6364135e-04

.1850656e-02

.5344465e-01

.1533473e+01

.4327506e+02

.34009036+03

.2389057e+04

.1473023e+05

.8082166e+05

.80821666+05

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+OO

.OOOOOOOe+00

.OOOOOOOe+00

.3359880e-ll

.1727196e-09

.86073986-08

.4257658e-06

.1311455e-04

.4006852e-03

.1214827e-01

.3656551e+00

.10821lle+02

♦9954485e+02

.8278600e+03

♦6114428e+04

♦4041083e+05

*8082166e+05

.8082166c+Q5

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

.OOOOOOOe+00

*OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+OO

'• »

.5323021e-12

.2821839e-10

.1451012e-08

♦7404806e-07

.239S444e-05

♦7683336e-04

,2444453e-02

♦7717070e-01

♦2395245e+01

.25432106+02

.24705106+03

♦2161936e+04

.1714030e+05

♦55837096+05

♦1310750e+06

.1987891e+06

.OOOOOOOe+00

.OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

.OOOOOOOe+00

,OOOOOOOe+00

.OOOOOOOe+OO

.OOOOOOOe+00 •



abscissae

-34.50)

-33.10)

-32.90)

-14.40)

-14.40)

-14.40)

-14.40)

-14.10)

6.10)

6.40)

6.80)

7.10)

11.30)

11*30)

11*30)

12*20)

12*20)

13.10)

25.60)

28.70)

32.90)

33.40)

33.40)

34.50)

.6841383e-13

.37272286-11

.1970618e-09

.1033850e-07

.3490522e-06

.1168023e-04

.3875275e-03

.1275268e-01

.41256636+00

.4911899e+01

.5392112e+02

.5382250e+03

.49068836+04

*2155649e+05

.7523792e+05

.1987891e+06

.1987891e+06

.00000006+00

.00000006+00

.OOOOOOOe+OO

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+OO

.OOOOOOOe+00

,8156692e-14

.4566724e-12

*2482S49e-10

.1339034e-08

.47161946- 07

,1646006e-05

.5694538e-04

*1953526e-02

.6S88858e-01

.8737864e+00

.1076627e+02

.12174866+03

.12687176+04

.7190574e+04

.3449952e+05

,1373371e+06

.3223926e+06

.4889426e+06

.OOOOOOOe+OO

.OOOOOOOe+00

.OOOOOOOe+OO

.OOOOOOOe+00

•OOOOOOOe+OO

.OOOOOOOe+OO

.5861819e-14

.3604520e-12

.2161S20e-10

.1289315e-08

.5291163e-07

.2163627e-05

.381?110e-04

.3584589e-02

.1442617e+00

.2878992e+01

.56150446+02

.10663956+04

.1985005e+05

.2851244e+06

,4084470e+07

.5844241e+08

.7832657e+09

.1049608e+ll

.1312015e+12

.OOOOOOOe+OO

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+OO

table continued

.2750417e-14 .1382000e-14

.1796882e-12

.1146S18e-10

*727B704e-09

,3266053e-07

.14605806-05

.6511465e-04

*2894632e-02

*1274749e+00

.30251936+01

.70340816+02

.1596614e+04

.35553266+05

.6384769e+06

.11394626+08

.2023509e+09

.3397232e+10

.5683760e+ll

.89716276+12

.2912406e+13

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+OO

.9589721e-13

.6508904e-ll

.4397511e-09

.2152810e-07

.1050940e-05

.5117002e-04

.2485457e-02

.1197111e+00

.3335733e+01

.9142212e+02

.2456458e+04

.6497324e+05

•1438975e+07

.3172035e+08

.6965541e+09

•1462102e+ll

.3060524e+12

.6116676e+13

,4554890e+14

.1942178e+15

.OOOOOOOe+00

.OOOOOOOe+OO

.OOOOOOOe+00

.3448422e-15

.2479678e-13

.1744883e-ll

.12219476-09

.6280657e-08

.3217435e-06

.1643028e-04

.8365374e-03

.4222098e-01

.1272344e+01

.3768903e+02

.1093950e+04

.3122735e+05

.7550978e+06

.1812664e+08

.4323190e+09

.9861718e+10

.2236895e+12

.4846949e+13

.4392288e+14

.2519865e+15

.3202111e+15

.OOOOOOOe+OO

.OOOOOOOe+00

.5740418e-16

,4242586e-14

.3069288e-12

.2209426e-10

.1178300e-08

,6260342e-07

.3314187e-05

.1748484e-03

.9141838e-02

.2917932e+00

.9150761e+01

.2810993e+03

.84868616+04

.2187870e+06

.5590291e+07

.1416721e+09

.3435767e+10

.8269998e+ll

.1902499e+13

.1968645e+14

.1364492e+15

.3202111e+15

.3202111e+15

.OOOOOOOe+OO

.B339004e-17

'..63279546-15

,4701956e-13

.3476047e-U

.1920730e-0V

.10570676-07

.5795091e-06

.3165218e-04

.17l3144e-02

,5779514e-01

.1915837e+01

.6221944e+02

.1985912e+04

.54560026f05

.1484579e+07

.4003253e+08

.1034398e+10

.2650283e+ll

.6498605e+12

.7686258e H3

.64266?4e*14

.2392759e+l5

•5834142e+15

•9619658e+15 *



Dibits lost in hubrid algorithm computation with tau = 1.00

abscissae table of didits lost values

( -34.50) .00 .00 .00 .00 .00 .21 .00 .06 .00 .32 .78 .94 .92 .58 .15 .90 .65 .89 ,50 1.16 .73 1.17 1.71 2.14

( -33.10) .00 .00 .00 .15 .00 .13 .00 .04 .11 .45 .77 .80 .89 .63 .00 .77 .57 .81 .41 1.15 .66 1.18 1.67 2.08

( -32.90) .00 .00 .00 .00 .00 .00 .00 .00 .21 .52 .74 .59 .90 .54 .00 .74 .51 .75 .29 1.14 .69 1.19 1.62 2.02

< -14.40) .00 .00 .00 .00 .00 .00 .00 .03 .16 .60 »76 .48 .93 .63 .04 .56 .60 .60 .34 1.12 .74 1.16 1.58 1.96

( -14.40) .00 .00 .00 .00 .00 .00 .00 .00 .28 .52 .64 .14 .84 .74 .11 .25 .54 .38 .16 1.08 .72 1.12 1.52 1.88

< -14.40) .00 .00 .00 .00 .00 .00 .00 .00 .27 .44 .50 .17 .76 .76 .34 .15 .58 .00 .29 1.04 .64 1.09 1.45 1.80

( -14.40) .00 .00 .00 .00 .00 .00 .00 .00 .00 .18 .18 .00 .68 .70 .36 .00 .51 .00 .36 .94 .58 1.02 1.38 1.72

< -14.10) .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .58 .65 .51 .00 .41 .04 .37 .91 .47 .98 1.31 1.64

< 6.10) .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .54 .54 .51 .19 .29 .14 .23 .86 .33 .90 1.28 1.56

{ 6.40) .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .47 .74 .69 .57 .33 .04 .00 .24 .85 .44 .95 1.17 1.45

( 6.80) .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .03 .94 .84 *76 .47 .38 .28 .05 .83 .37 .90 1.05 1.33

< 7.10) .00 .00 .00 .00 .00 .00 .00 .00 .00 ,00 .00 .00 .16 .99 .87 .57 .33 .16 .05 .78 .07 .78 1.00 1.23

( 11.30) .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .96 .74 .48 .40 .25 .79 .10 .84 .90 1.14

{ 11.30) .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .82 .61 .29 .02 .62 .00 .71 .81 1.01

( 11.30) .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .57 .45 .26 .62 .00 .59 .75 .80

( 12.20) .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .19 .19 *60 .00 .32 .74 .64

( 12.20) .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .41 .00 .00 .68 .30

< 13.10) .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .09 .00 .00 .67 .00

< 25.60) .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 ,00 .00 .00 .00 .00 .00 .00 .00 .00 .59 .00

( 28.70) .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .37 .00

( 32.90) .00 ,00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .03

( 33.40) .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .29

< 33.40) .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

( 34.50) .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00



•» <

A priori digits lost bounds for algorithm with tau = 1.00

abscissae table of digits lost bounds

-34.50) .00 .50 2.00 .77 .69 1.61 1.83 1.96 1.23 1.05 3.54 3.95 4.01 4.16 4.35 4.51 4.70 4.85 4.61 4.42 4.22 4.07 4.21 4.72

-33.10) .00 .00 .50 .52 .61 1.54 1.70 1.79 1.07 .96 3.49 3.88 3.92 4.05 4.23 4.38 4.55 4.69 4.45 4.27 4.07 3.92 4.09 4.63

-32.90) .00 .00 .00 .50 .55 1.48 1.57 1.61 .94 .88 3.45 3.81 3.83 3.95 4.12 4.25 4.41 4.53 4.29 4.13 3.93 3.76 3.98 4.54

-14.40) .00 .00 .00 .00 .50 1.43 1.43 1.43 .84 .82 3.42 3.74 3.74 3.85 4.01 4.13 4.27 4.38 4.14 3.99 3.79 3.62 3.87 4.45

-14.40) .00 .00 .00 .00 .00 .50 1.43 1.43 .71 .73 3.35 3.62 3.60 3.70 3.83 3.92 4.04 4.12 3.93 3.82 3.60 3.42 3.74 4.

-14.40) .00 .00 .00 .00 .00 .00 .50 1.43 .60 .65 3.30 3.50 3.47 3.55 3.65 3.72 3.81 3.88 3.75 3.66 3.43 3.22 3.63 4.

-14.40) .00 .00 .00 .00 .00 .00 .00 .50 .51 .59 3.25 3.39 3.36 3.42 3.49 3.53 3.60 3.64 3.61 3.52 3.26 3.03 3.52 4.

-14.10) .00 .00 .00 .00 .00 .00 .00 .00 .50 .54 3.21 3.28 3.26 3.29 3.33 3.35 3.38 3.40 3.50 3.39 3.10 2.85 3.43 4.05

6.10) .00 .00 .00 .00 .00 .00 .00 .00 .00 .50 3.17 3.17 3.17 3.17 3.17 3.17 3.17 3.17 3.41 3.27 2.94 2.67 3.35 3.96

.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .50 3.17 3.17 3.17 3.17 3.17 3.17 3.17 3.27 3.04 2.65 2.35 3.22 3.82

.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .50 3.17 3.17 3.17 3.17 3.17 3.17 3.12 2.80 2.34 2.04 3.11 3.69

.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .50 3.17 3.17 3.17 3.17 3.17 2.97 2.55 2.03 1.76 3.00 3.56

11.30) .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .50 3.17 3.17 3.17 3.17 2.81 2.29 1.71 1.52 2.91 3.44

11.30) .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .50 3.17 3.17 3.17 2.58 1.92 1.32 1.30 2.82 3.30

.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .50 3.17 3.17 2.30 1.50 .98 1.15 2.73 3.17

.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .50 3.17 1.91 1.03 .78 1.05 2.65 3.05

.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .50 .53 .58 .67 .96 2.57 2.93

13.10) .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 ,00 .00 .00 .00 .00 .00 .50 .54 .62 .89 2.50 2.82

.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .50 .58 .83 2.44 2.71

.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .50 .69 2.30 2.47

.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .50 2.12 2.12

.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .50 2.12

.00 .00 .00 .00 ,00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 ,00 .00 .00 .00 .00 .50

.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

6.40)

6.80)

7.10)

11*30)

12.20)

12.20)

25*60)

28.70)

32.90)

33.40)

33.40)

34.50)

34

24

14



abscissae

-34.50)

-33.10)

-32.90)

-14.40)

-14.40)

-14.40)

-14.40)

-14.10)

6.10)

6.40)

6.80)

7.10)

11.30)

11.30)

11.30)

12.20)

12.20)

13.10)

25.60)

28.70)

32.90)

33.40)

33.40)

34.50)

.1080639e-29

.00000006+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.00000006+00

.00000006+00

.OOOOOOOe+00

.00000006+00

.00000006+00

.00000006+00

.OOOOOOOe+00

.00000006+00

.OOOOOOOe+00

.OOOOOOOe+00

.00000006+00

.00000006+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

♦OOOOOOOe+00

.00O0O00e+00

Divided difference table ba the hubrid algorithm for tau = 2.00

«1192152e-28

.1777079e-28

.OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

.OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+OO

.19861836-28

,4370042e-28

.26510746-28

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

.OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.00000006+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+OO

.OOOOOOOe+00

table of divided differences

.44679666-16 .8233205e-16

.89806126-15

.16793746-13

*3106843e-12

♦OOOOOOOe+00

*OOOOOOOe+OO

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

.OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+OO

♦1699554e-14

.32679716-13

.62136856-12

.3106843e-12

.OOOOOOOe+00

,0000000e+00

♦OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.7604186e-16

.16107736-14

♦3182102e-13

♦6213685e-12

.62136856-12

.3106843e-12

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.4692805e-16

.1019296e-14

.2067160e-13

.4142457e-12

.6213685e-12

.62136856-12

»3106843e-12

.OOOOOOOe+00

.OOOOOOOe+00

,OOOOOOOe+00

.OOOOOOOe+00

•OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.2444065e-16

.5455173e-15

.1138412e-13

.2346931e-12

.4B46534e-12

.7667642e-12

.8513972e-12

.56610286-12

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00



abscissae

-34.50)

-33.10)

-32.90)

-14.40)

-14.40)

-14.40)

-14.40)

-14.10)

6.10)

6.40)

6.80)

7.10)

11.30)

11*30)

11.30)

12.20)

12.20)

13.10)

25.60)

28.70)

32.90)

33.40)

33.40)

34.50)

'» .:

.89773706-06

.36448126-04

.14287666-02

.55721886-01

♦1142299e+01

♦2341712e+02

♦48005106+03

.98410456+04

.19878916+06

.00000006+00

*00000006+00

.00000006+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

*OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

,OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.1963505e-05

.81205106-04

.3244049e-02

.12891996+00

.27372566+01

.58077226+02

.1231423e+04

.2609366e+05

.54476106+06

.36221756+06

.OOOOOOOe+00

*OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.00000006+00

.OOOOOOOe+00

♦OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

,2309258e-05

.97335856-04

.3964905e-02

.16065086+00

.35347166+01

.77673256+02

,1704750e+04

.3737213e+05

.8071712e+06

♦1109781e+07

.8061301e+06

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

table continued

.1760567e-05 .1305495e-04

.75548826-04

.31343986-02

.1293408e+00

♦2941478e+01

.6677650e+02

.1513368e+04

.34242166+05

.76330606+06

.1570477e+07

.22091156+07

♦14688646+07

*OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.0000000e+00

.OOOOOOOe+OO

.OOOOOOOe+00

.OOOOOOOe+00

.5996770e-03

«2670121e-01

.1183328e+01

.3054086e+02

.7878417e+03

.20314316+05

.5235912e+06

.1333346e+08

.7009729e+08

.3450472e+09

.15549216+10

.6532140e+10

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.1217449e-04

.57064656-03

.2593638e-01

.1173089e+01

.31331726+02

.8357662e+03

.2226704e+05

.5925771e+06

.1557505e+08

.9432373e+08

.5322836e+09

.2740323e+10

.13064286+11

.6532140e+10

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

,OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.6558480e-05

.3125528e-03

.1444799e-01

.6645376e+00

*1825171e+02

*5004006e+03

.13696066+05

.3742558e+06

.1009868e+08

.6808817e+08

♦4279557e+09

,2458084e+10

♦1306428e+ll

♦1306428e+ll

*6532140e+10

♦OOOOOOOe+00

.OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.3453429e-05

.1678336e-03

♦7915416e-02

♦3714333e+00

♦1054466e+02

,2987397e+03

.8446878e+04

.2383830e+06

♦6643730e+07

♦5062542e+08

♦3617156e+09

.23812206+10

.1460231e+ll

.2620635e+ll

»3664998e+ll

.3951711e+ll

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+OO

.OOOOOOOe+00

.OOOOOOOe+00 «*»



abscissae

-34.50)

-33.10)

-32.90)

-14.40)

-14.40)

-14.40)

-14.40)

-14.10)

6.10)

6.40)

6.80)

7.10)

11.30)

11.30)

11.30)

12.20)

12.20)

13.10)

25.60)

28.70)

32.90)

33.40)

33.40)

34.50)

.1281568e-05

.6330266e-04

.30354446-02

.1448140e+00

.4223485e+01

.1228894e+03

.35675976+04

.10334496+06

.2956355e+07

.24677506+08

.1937549e+09

♦1407992e+10

♦9561979e+10

.23208086+11

.47093616+11

.7903422e+ll

♦3951711e+ll

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.47512056-06

.23897306-04

.1167358e-02

*5673392e-01

.17049976+01

.51110896+02

.15284396+04

.4559967e+05

.13436566+07

.12361956+08

.10750266+09

.8710210e+09

.66341186+10

*2150339e+ll

*6191420e+ll

*1585392e+12

♦2217196e+12

♦2390649e+12

♦OOOOOOOe+00

.0000000e+00

♦OOOOOOOe+00

.00000006+00

.OOOOOOOe+00

.OOOOOOOe+00

.96020536-03

.57708816-01

.33875316+01

.19817186+03

♦7926927e+04

»3170788e+06

.12683206+08

.50732976+09

.20141036+11

.39275156+12

.7540842e+13

.1417679e+15

.2622708e+16

.37504736+17

.5363177e+18

.7669343e+19

.1027692e+21

.1377107e+22

.17213846+23

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

table continued

.14126386-01 .4335487e+00

.89374776+00

.55291326+02

.34093336+04

.1471404e+06

.63496806+07

*2739883e+09

.11821586+11

.50647106+12

.1146639e+14

.25609326+15

.56159826+16

.12144706+18

.21158006+19

.36852436+20

.64176886+21

.1059686e+23

.17495096+24

.2730612e+25

.84821106+25

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.2923531e+02

.1930424e+04

.1270772e+06

.60141616+07

.2846170e+09

*1346873e+ll

.63734516+12

.2996705e+14

,8036233e+15

♦2130749e+17

♦55638156+18

*1436026e+20

,3103031e+21

.67046636+22

.1448576e+24

.29991946+25

.6209393e+26

.1229635e+28

.8979066e+28

.3772057e+29

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.6106924e+00

,4189957e+02

.2815557e+04

.1886018e+06

.91422466+07

.4430136e+09

.2146067e+ll

.10392B9e+13

.5000356e+14

♦1395064e+16

♦3847036e+17

*1044619e+19

*2802987e+20

*6338204e+21

.14317736+23

.3231266e+24

.6995144e+25

.15129636+27

,3133408e+28

*2567022e+29

*1296291e+30

.102535le+30

.OOOOOOOe+00

.OOOOOOOe+00

.38368306+00

.2666277e+02

.1814974e+04

*1231483e+06

♦6075093e+07

*2995317e+09

*1476063e+ll

,7270188e+12

*3557268e+14

*1021138e+16

.28965796+17

*8089603e+18

*2232028e+20

.52130816+21

♦1215473e+23

.2829373e+24

.6321398e+25

.14100B8e+27

.3013775e+28

«2664086e+29

.1508823e+30

.2050703e+30

.1025351e+30

.OOOOOOOe+00

.2381056e+00

.16812976+02

.1163219e+04

.8O21595e+0S

.40457086+07

♦2039102e+09

.1027074e+ll

.51699996+12

.2585322e+14

.76980406+15

.2265263e+17

.6564436e+18

.1879552e+20

.4583763e+21

.11155646+23

.27096556+24

.6325469e+25

.1473794e+27

.32949276+28

.3233862e+29

.2142048e+30

,4936097e+30

.7480402e+30

.9253782e+30 *



abscissae

-34.50)

-33.10)

-32.90)

-14.40)

-14.40)

-14.40)

-14.40)

-14*10)

6.10)

6.40)

6.80)

7*10)

11*30)

11.30)

11*30)

12.20)

12.20)

13.10)

25.60)

28.70)

32.90)

33.40)

33.40)

34,50)

'*,.

.1080639e-29

.00000006+00

♦OOOOOOOe+00

♦OOOOOOOe+00

.OOOOOOOe+00

*00000006+00

.OOOOOOOe+00

.00000006+00

.00000006+00

.OOOOOOOe+00

.OOOOOOOe+00

.00000006+00

.00000006+00

.00000006+00

.OOOOOOOe+00

.OOOOOOOe+00

.00000006+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

Divided difference table correct to seven digits for tau = 2.00

.1192152e-28

.17770796-28

.OOOOOOOe+00

.00000006+00

.OOOOOOOe+00

.00000006+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

*OOOOOOOe+00

»OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+OO

.OOOOOOOe+OO

.OOOOOOOe+OO

.1986183e-28

.437004le-28

.26510746-28

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.00000006+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

.OOOOOOOe+00

♦OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+OO

table of divided differences

♦4467966e-16 .8233205e-16

.8980612e-15

♦1679374e-13

.31068436-12

.00000006+00

.00000006+00

.00000006+00

.00000006+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

♦0000000e+00

.OOOOOOOe+00

.OOOOOOOe+00

.00000006+00

♦OOOOOOOe+00

♦OOOOOOOe+00

.00000006+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+OO

.1699554e-14

.3267971e-13

.62136856-12

.31068436-12

.0000000e+00

.OOOOOOOe+00

*OOOOOOOe+00

.OOOOOOOe+00

*OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

*OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+OO

♦7604185e-16

.16107736-14

.31821016-13

.62136856-12

.6213685e-12

.31068436-12

.OOOOOOOe+00

.OOOOOOOe+00

,OOOOOOOe+00

*OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.00000006+00

,OOOOOOOe+00

.00000006+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.4692805e-16

.10192966-14

.20671606-13

,4142457e-12

.6213685e-12

.6213685e-12

•3106843e-12

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

•OOOOOOOe+00

.2444065e-16

,5455173e-15

.1138412e-13

.2346931e-12

♦4846534e-12

.7667642e-12

.8513972e-12

♦5661028e-12

♦OOOOOOOe+00

♦OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

•OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+OO

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00



abscissae

( -34.50)

< -33.10)

< -32.90)

( -14.40)

< -14*40)

( -14.40)

( -14*40)

< -14.10)

( 6.10)

( 6*40)

( 6.80)

( 7.10)

< 11.30)

( 11*30)

( 11*30)

( 12.20)

( 12.20)

( 13.10)

( 25*60)

( 28.70)

( 32.90)

( 33.40)

( 33.40)

( 34.50)

.89773706-06

.36448126-04

.14287666-02

.55721896-01

.11422996+01

*2341712e+02

*48005106+03

.98410456+04

*1987891e+06

.OOOOOOOe+00

.00000006+00

.0000000e+00

.OOOOOOOe+00

.00000006+00

.00000000+00

.0000000e+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

*OOOOOOOe+00

*OOOOOOOe+00

.OOOOOOOe+00

.00000006+00

.19635056-05

.8120510e-04

.32440496-02

.1289199e+00

.27372566+01

.5807722e+02

.12314236+04

.26093666+05

.54476106+06

»3622175e+06

.OOOOOOOe+00

.00000006+00

.OOOOOOOe+00

.OOOOOOOe+00

.0000000e+00

,OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

.OOOOOOOe+00

♦OOOOOOOe+00

.OOOOOOOe+00

♦23092S8e-05

.97335876-04

.39649066-02

♦1606508e+00

.3534718e+01

♦7767326e+02

.1704750e+04

.3737213e+05

.8071713e+06

.11097816+07

.8061301e+06

.00000006+00

.00000006+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

.OOOOOOOe+00

♦OOOOOOOe+00

.OOOOOOOe+00

♦OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

table continued

,1760566e-05 .1305495e-04

♦7554881e-04

.31343986-02

.12934086+00

.29414796+01

.667765le+02

.15133686+04

.34242166+05

.76330616+06

.1570477e+07

.22091156+07

.1468864e+07

.00000006+00

.OOOOOOOe+00

.00000006+00

.OOOOOOOe+00

.00000006+00

.OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.5996771e-03

♦2670121e-01

♦11833286+01

*3054087e+02

.78784186+03

.2031431e+05

.523591le+06

.1333346e+08

.70097296+08

.34S0472e+09

.1554921e+10

.65321406+10

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

•OOOOOOOe+00

•OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

.OOOOOOOe+00

.1217449e-04

«5706466e-03

♦2593639e-01

.1173090e+01

.3133173e+02

.8357663e+03

.22267046+05

♦5925771e+06

♦1557505e+08

♦94323726+08

♦5322835e+09

*2740323e+10

.13064286+11

.65321406+10

.0000000e+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.00000006+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.6558482e-05

,3125530e-03

♦1444800e-01

.6645379e+00

♦1825171e+02

♦5004008e+03

♦13696076+05

♦3742559e+06

.1009868e+08

.68088186+08

.42795586+09

.2458085e+10

.1306428e+ll

.1306428e+ll

.6532140e+10

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.3453430e-05

.1678337e-03

.79154186-02

«3714333e+00

.1054466e+02

.29873986+03

.84468796+04

.2383830e+06

*6643730e+07

♦5062543e+08

.3617156e+09

.23812206+10

.14602316+11

.26206356+11

.3664998e+ll

.39517116+11

.OOOOOOOe+00

.OOOOOOOe+00

.0000000e+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+OO

.OOOOOOOe+00



abscissae

-34.50)

-33.10)

-32.90)

-14.40)

-14.40)

-14.40)

-14.40)

-14.10)

6.10)

6.40)

6.80)

7.10)

11.30)

11.30)

11.30)

12.20)

12.20)

13.10)

25.60)

28.70)

32.90)

33.40)

33.40)

34.50)

.12815696-05

.63302696-04

.30354456-02

.1448140e+00

.4223486e+01

.12288946+03

.3567597e+04

.10334506+06

.29563566+07

.2467750e+08

.1937549e+09

.14079926+10

.95619806+10

.2320809e+ll

.47093626+11

.7903422e+ll

.39517116+11

.OOOOOOOe+00

.00000006+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.4751204e-06

.2389730e-04

.1167358e-02

.567339le-01

.1704997e+01

.51110896+02

.1528439e+04

.4559967e+05

.1343656e+07

.1236195e+08

.1075026e+09

.871021le+09

.66341196+10

♦2150340e+ll

♦6191420e+ll

♦1585392e+12

♦2217196e+12

♦2390649e+12

♦OOOOOOOe+00

♦OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

•OOOOOOOe+OO

•OOOOOOOe+00

.9602055e-03

,5770883e-01

.33875326+01

♦1981718e+03

.7926929e+04

♦3170788e+06

♦12683216+08

♦5073297e+09

♦2014104e+ll

.39275156+12

.7540842e+13

,1417679e+15

.2622708e+16

.37504736+17

.5363177e+18

.7669343e+19

.1027692e+21

.1377107e+22

.17213846+23

.OOOOOOOe+00

.OOOOOOOe+00

,OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

table continued

.1412640e-01 .4335489e+00

.89374856+00

.55291376+02

.34093366+04

.14714056+06

.63496856+07

.27398856+09

.1182159e+ll

.5064713e+12

.11466396+14

•2560933e+15

.5615984e+16

.12144706+18

.21158016+19

»36852456+20

«6417689e+21

.1059686e+23

.1749509e+24

.2730612e+25

.8482110e+25

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.2923532e+02

.19304256+04

.12707736+06

.6014164e+07

.2846171e+09

.1346874e+ll

.6373453e+12

.2996705e+14

.8036235e+15

.2130749e+17

.5563817e+18

.1436026e+20

.31030326+21

.6704665e+22

.1448576e+24

.2999195e+25

.6209393e+26

.1229635e+28

.89790676+28

.3772057e+29

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.6106929e+00

.4189959e+02

.2815558e+04

.188602Oe+06

♦9142251e+07

♦4430138e+09

♦2146067e+ll

♦1039289e+13

♦5000358e+14

♦1395065e+16

♦3847037e+17

♦1044620e+19

♦2802988e+20

♦6338206e+21

♦1431774e+23

♦3231267e+24

♦6995144e+25

♦1512963e+27

♦3133408e+28

♦2567022e+29

.1296291e+30

,1025351e+30

.OOOOOOOe+00

.OOOOOOOe+00

.38368326+00

♦2666278e+02

♦1814975e+04

♦1231484e+06

♦6075095e+07

♦2995318e+09

.1476063e+ll

♦7270190e+12

♦3557269e+14

.10211386+16

.2896579e+17

.80B9605e+18

.2232028e+20

.5213082e+21

.1215473e+23

.2B29373e+24

.6321398e+25

.14100B8e+27

.3013775e+28

.2664086e+29

.1508823e+30

,2050703e+30

.1025351e+30

.OOOOOOOe+00

.2381055e+00

.16812966+02

.1163219e+04

.8021594e+05

.4045708e+07

.20391026+09

.10270746+11

.5169998e+12

.2585321e+14

.7698039e+15

.2265263e+17

.6564436e+18

.1879552e+20

,4583762e+21

.1115564e+23

.2709655e+24

.6325468e+25

,1473793e+27

.3294926e+28

.32338626+29

.2142048e+30

.4936097e+30

.7480402e+30

,9253782e+30 "*



abscissae

( -34.50)

( -33.10)

( -32.90)

( -14.40)

< -14.40)

< -14.40)

< -14.40)

< -14.10)

< 6.10)

( 6.40)

( 6.80)

( 11.30)

< 11.30)

Digits lost in habrid algorithm computation with tau = 2.00

table of digits lost values

♦00 -00 .26 .16 .00 .13 .08 .07 .00 .00 .50 -32 .00 .53 .80 .43 .98 .55 .63 1.17 .93 1.04 .84 .54
♦00 .00 .00 .00 .00 .03 .00 .00 .00 .00 .56 .05 .00 .54 .82 .51 .97 .40 .55 1.15 .96 1.04 .81 .42
♦00 .00 .00 .00 .00 .01 .00 .00 .11 .00 .61 .00 .02 .56 .86 .54 .91 .39 .54 1.17 .95 1.00 .80 .05
♦00 .00 .00 .00 .00 .00 .00 .00 .13 .00 .75 .13 .25 .52 .90 .54 .85 .33 .35 1.17 .98 .98 .83 .08
.00 .00 .00 .00 .00 .00 .00 .00 .08 .00 .72 .22 .25 .29 .80 .49 .79 .00 .43 1.15 .91 .93 .75 .28
.00 *00 *00 .00 .00 .00 .00 .00 .16 .00 .57 .13 .01 .00 .75 .29 .65 .00 .24 1.12 .92 .85 .73 .22
♦00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .28 .23 .00 .00 .64 .23 .60 .00 .41 1.08 .83 .84 .74 .13
♦00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .18 .00 .00 .00 .58 .17 .62 .00 .31 1.04 .75 .74 .63 .27
♦00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .05 .11 .00 .13 .50 .00 .48 .00 .34 1.01 .67 .72 .66 .43
.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .27 .00 .12 .38 .24 .42 .00 .27 1.00 .68 .76 ,67 .12
♦00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .13 .00 .33 .24 .34 .00 .21 .96 .74 .76 .72 .00

< 7.10) .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .26 .39 .42 .12 .31 .89 .78 .70 .68 .07
( 11.30) .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .17 .32 .31 .30 .39 .89 .81 .73 .65 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .28 .22 .09 .03 .78 .67 .58 .56 .20

.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .33 .00 .00 .72 .61 .66 .35 .40
( 12.20) .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .47 .65 .51 .26 .44
< 12.20) .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .49 .20 .33 .55
( 13.10) .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .20 .07 .09 .58
< 25.60) .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .06 .33 .00 .43
< 28.70) .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 ,00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .35
( 32.90) .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .11
< 33.40) .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
< 33.40) .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 ,00 .00 .00 .00 .00 .00 .00
< 34.50) .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00



A priori digits lost bounds for algorithm with tau = 2,00

abscissae table of digits lost bounds

-34.50) .00 ,50 .77 .51 .58 1.85 1.97 2.03 .95 .72 2.38 2.59 2.23 1.99 3.41 3.86 4.26 4.48 3.93 3.28 2.54 1.92 2.55 2.94

-33.10) .00 .00 .50 .51 .55 1.82 1.91 1.94 .86 .69 2.36 2.56 2.17 1.93 3.38 3.82 4.21 4.42 3.84 3.17 2.40 1.80 2.52 2.91

-32*90) *00 .00 .00 .50 .53 1.80 1.84 1.86 .78 .66 2.34 2.52 2.12 1.87 3.36 3.78 4.16 4.36 3.75 3.05 2.27 1.69 2.49 2*87

-14.40) .00 .00 .00 .00 .50 1.77 1.77 1.77 .72 .64 2.33 2.49 2.06 1.81 3.33 3.74 4.11 4.30 3.66 2.93 2.13 1.58 2.46 2.83

-14.40) .00 .00 .00 .00 .00 .50 1.77 1.77 .63 .60 2.30 2.43 1.96 1.71 3.29 3.68 4.03 4.21 3.53 2.76 1.94 1.45 2.43 2.78

-14.40) .00 .00 .00 .00 .00 .00 .50 1.77 .56 .57 2.28 2.37 1.87 1.62 3.25 3.62 3.96 4.12 3.39 2.59 1.75 1.34 2.40 2.74

-14.40) .00 .00 .00 .00 .00 .00 .00 .50 .51 .54 2.26 2.32 1.79 1.53 3.21 3.56 3.88 4.03 3.25 2.41 1.58 1.25 2.37 2.69

-14.10) .00 .00 .00 .00 .00 .00 .00 .00 .50 .52 2.24 2.27 1.72 1.46 3.17 3.51 3.82 3.95 3.11 2.24 1.42 1.18 2.34 2.65

6.10) .00 .00 .00 .00 .00 .00 .00 .00 .00 .50 2.22 2.22 1.65 1.39 3.14 3.45 3.75 3.87 2.97 2.08 1.27 1.12 2.31 2.61

6.40) .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .50 2.22 1.29 1.03 3.00 3.25 3.48 3.56 2.61 1.71 1.03 1.03 2.27 2.54

6.80) .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .50 .55 .74 2.88 3.05 3.22 3.25 2.28 1.40 .87 .97 2.22 2*47

7.10) .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 *00 .50 .62 2.76 2.85 2.94 2.95 1.98 1.15 .77 .92 2.18 2.41

11.30) .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .50 2.66 2.66 2.66 2.66 1*75 .96 .71 .87 2.15 2.35

11.30) .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .50 2.66 2.66 2.66 1,55 ,78 ,65 ,82 2,11 2.28

11.30) .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .50 2.66 2.66 1.31 .65 .61 .78 2.07 2.21

12.20) .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .50 2.66 1.00 .57 .58 .74 2.04 2.15

12.20) .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .50 .51 .53 .56 .71 2.00 2.09

13.10) .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .50 .51 .54 .68 1.97 2.03

25.60) .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .50 .53 .65 1.94 1.97

28.70) .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .50 .59 1.88 1.84

32.90) .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .50 1.78 1.66

33.40) .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 ,50 .01

33.40) .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .50

34.50) .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00



abscissae

-34.50)

-33.10)

-32.90)

-14.40)

-14.40)

-14.40)

-14.40)

-14.10)

6.10)

6.40)

6.80)

7.10)

11.30)

11.30)

11.30)

12*20)

12*20)

13.10)

25.60)

28.70)

32.90)

33.40)

33.40)

34.50)

.1080639e-29

.0000000e+00

.00000006+00

.00000006+00

.00000006+00

.00000006+00

•OOOOOOOe+00

.00000006+00

.00000006+00

.0000000e+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+OO

.OOOOOOOe+00

.0000000e+00

.OOOOOOOe+00

.OOOOOOOe+OO

Divided difference table ba scaling and souaring for tau - 2.00

.1192152e-28

.1777079e-28

.00000006+00

.00000006+00

.OOOOOOOe+OO

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

.OOOOOOOe+00

♦OOOOOOOe+00

,OOOOOOOe+OO

.1986174e-28

.43700426-28

.2651074e-28

.00000006+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

♦OOOOOOOe+00

.OOOOOOOe+OO

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+OO

table of divided differences

.4467955e-16 .8233186e-16

.8980588e-15

.1679374e-13

.3106843e-12

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+OO

.16995506-14

,3267963e-13

.6213685e-12

.31068436-12

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

♦OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

,OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

•OOOOOOOe+00

.OOOOOOOe+00

,7604169e-16

.1610770e-14

.3182094e-13

.6213669e-12

.6213685e-12

.3106843e-12

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+OO

.4692796e-16

.10192946-14

.2067155e-13

♦4142447e-12

.6213669e-12

♦6213685e-12

*3106843e-12

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

♦OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

•OOOOOOOe+00

.OOOOOOOe+00

*OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.2444060e-16

.5455161e-15

.1138409e-13

.2346925e-12

.48465206-12

.7667617e-12

.8513972e-12

.5661028e-12

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

,OOOOOOOe+00

.OOOOOOOe+00

♦OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+OO

.OOOOOOOe+00

.OOOOOOOe+00

.0000000^+00



abscissae

-34.50)

-33.10)

-32.90)

-14.40)

-14.40)

-14.40)

-14.40)

-14.10)

6.10)

6.40)

6.80)

7.10)

11.30)

11.30)

11.30)

12.20)

12.20)

13.10)

25.60)

28.70)

32.90)

33.40)

33.40)

34.50)

.8977336e-06

.36447986-04

.1428761e-02

.5572165e-01

.11422946+01

.23417016+02

,4800488e+03

.9841045e+04

.19878916+06

.00000006+00

.OOOOOOOe+00

.0000000e+00

.00000006+00

.OOOOOOOe+00

.00000006+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+OO

.OOOOOOOe+00

.19634960-05

.8120470e-04

.3244033e-02

.12891926+00

.2737241e+01

♦5807689e+02

.12314166+04

«2609350e+05

«5447610e+06

.3622175e+06

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+OO

•OOOOOOOe+OO

.2309243e-05

.97335196-04

.3964877e-02

«16064966+00

.3534690e+01

.7767264e+02

.1704736e+04

.3737181e+05

.807164le+06

.11097816+07

.80613016+06

.OOOOOOOe+00

.OOOOOOOe+00

*OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

,OOOOOOOe+00

•OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

•OOOOOOOe+OO

table continued

.17605516-05 .13054846-04

.7554815e-04

.3134370e-02

.1293396e+00

.2941450e+01

.6677584e+02

.1513353e+04

.34241806+05

.7632976e+06

.1570457e+07

.2209115e+07

.1468864e+07

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+OO

.5996721e-03

.2670099e-01

.1183318e+01

.30540606+02

.78783456+03

.2031412e+05

.5235860e+06

.1333332e+08

.7009654e+08

.34504336+09

.1554921e+10

.65321406+10

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

•OOOOOOOe+00

.OOOOOOOe+OO

,1217439e-04

.5706419e-03

.2593617e-01

.1173079e+01

.3133145e+02

.83S7587e+03

.2226683e+05

.5925714e+06

.1557490e+08

.9432273e+08

.5322777e+09

.27402936+10

.1306428e+ll

.65321406+10

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.6558430e-05

.3125504e-03

.1444788e-01

.6645322e+00

.1825156e+02

.5003963e+03

.1369594e+05

.3742523e+06

.1009858e+08

.6808747e+08

♦42795126+09

♦2458058e+10

♦1306414e+ll

♦1306428e+ll

♦6532140e+10

.OOOOOOOe+00

♦OOOOOOOe+00

•OOOOOOOe+00

.OOOOOOOe+00

♦OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

,OOOOOOOe+OO

,3453403e-05

,1678323e-03

,7915353e-02

♦3714302e+00

.1054457e+02

♦2987372e+03

♦8446804e+04

♦2383B08e+06

.66436676+07

♦5062492e+08

.3617119e+09

.2381196e+10

.1460216e+ll

»2620609e+ll

.3664998e+ll

.3951711e+ll

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+OO

.OOOOOOOe+00



abscissae

-34.50)

-33.10)

-32.90)

-14.40)

-14.40)

-14.40)

-14.40)

-14.10)

6.10)

6.40)

6*80)

7.10)

11.30)

11.30)

11*30)

12.20)

12.20)

13.10)

25.60)

28.70)

32.90)

33.40)

33.40)

34.50)

.1281559e-05

.6330220e-04

•3035421e-02

.14481286+00

•4223450e+01

«1228883e+03

•3567566e+04

.10334406+06

«2956328e+07

.2467725e+08

.1937529e+09

.1407978e+10

.9561885e+10

.23207856+11

♦4709315e+ll

.7903422e+ll

.39517116+11

.OOOOOOOe+00

,OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+OO

.OOOOOOOe+00

.4751175e-06

.23897156-04

.1167350e-02

.5673353e-01

•1704985e+01

.5111053e+02

.1528428e+04

.4559933e+05

.1343646e+07

.1236185e+08

.1075017e+09

.8710141e+09

.6634069e+10

.2150324e+ll

.6191379e+ll

.1585383e+12

.2217196e+12

.2390649e+12

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+OO

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+OO

.9601986e-03

.5770841e-01

.3387507e+01

.1981703e+03

.7926867e+04

.3170763e+06

.1268310e+08

.50732556+09

.20140876+11

.3927481e+12

.7540775e+13

.1417667e+15

.2622684e+16

.3750439e+17

.5363127e+18

.7669272e+19

.10276820+21

.1377107e+22

.1721384e+23

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

table continued

.1412635e-01 .4335491e+00

.89374576+00

.5529119e+02

.34093246+04

,1471400e+06

.63496626+07

.2739875e+09

.1182154e+ll

.5064694e+12

.11466356+14

.25609236+15

«5615964e+16

.12144666+18

.2115794e+19

.3685233e+20

.6417670e+21

.10596836+23

.17495056+24

.2730612e+25

.84821106+25

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+00

.2923534e+02

.1930426e+04

.1270773e+06

.6014167e+07

.28461726+09

.1346874e+ll

.63734566+12

.29967076+14

,8036239e+15

*2130750e+17

.5563821e+18

*1436028e+20

.31030356+21

*6704674e+22

.1448578e+24

,2999200e+25

.6209407e+26

•1229638e+28

.8979066e+28

.3772057e+29

.OOOOOOOe+00

.OOOOOOOe+00

.OOOOOOOe+OO

.6106924e+00

,4189957e+02

.2815556e+04

.1886018e+06

.9142242e+07

.4430133e+09

•2146066e+ll

•1039288e+13

.50003536+14

.1395063e+16

.3847034e+17

.1044619e+19

.2802985e+20

.6338202e+21

.1431773e+23

•3231266e+24

.6995143e+25

♦1512963e+27

.31334080+28

.2567024e+29

.1296291e+30

.1025351e+30

.OOOOOOOe+00

.OOOOOOOe+OO

.3836829e+00

.26662766+02

.1814973e+04

.1231483e+06

•6075088e+07

•2995314e+09

•1476062e+ll

•7270180e+12

•3557264e+14

•10211376+16

.28965766+17

*8089596e+18

.2232026e+20

.5213077e+21

.1215472e+23

.2829371e+24

.632139Se+25

,1410087e+27

.3013774e+28

.2664086e+29

.1508823O+30

,2050703e+30

,1025351e+30

.OOOOOOOe+00

.2381053e+00

.1681295e+02

.11632180+04

.8021586e+05

•4045703e+07

.2039100e+09

•1027073e+ll

•5169992e+12

.25853186+14

.76980286+15

.22652606+17

.6564427e+18

,1879549e+20

•4583758e+21

.1115563e+23

.2709653e+24

.6325464e+25

,1473793e+27

.32949256+28

.323386le+29

•2142048e+30

•4936091e+30

•7480402e+30

•9253782e+30



Digits lost in scaling and souaring computation with tau = 2.00

abscissae table of digits lost values

-34.50) .00 .00 1.88 1.60 1.57 1.55 1.50 1.56 1.80 1.89 2.06 2.16 2.13 2.12 2.12 2.11 2.11 2.02 2.08 1.71 1,00 1.04 1.13 1.09

-33.10) .00 .00 .00 1.63 1.59 1.55 1.53 1.58 1.82 1.91 2.07 2.17 2.14 2.14 2.13 2.12 2.12 2.02 2.09 1.72 .98 1.04 1.17 1.16

-32.90) .00 .00 .00 .00 1.63 1.60 1.58 1.63 1.83 1.92 2.09 2.18 2.15 2.14 2.14 2.13 2.12 2.04 2.10 1.73 .91 1.11 1.25 1.17

-14.40) .00 .00 .00 .00 .00 1.63 1.59 1.65 1.85 1.95 2.10 2.19 2.17 2.16 2.16 2.15 2.14 2.06 2.11 1.76 .84 1.18 1.24 1.22

-14.40) .00 .00 .00 .00 .00 .00 1.63 1.69 1.86 1.96 2.12 2.21 2.17 2.17 2.16 2.15 2.15 2.05 2.11 1.75 .86 1.20 1.26 1.27

-14.40) .00 .00 .00 .00 .00 .00 .00 1.74 1.89 1.98 2.13 2.23 2.19 2.18 2.18 2.17 2,16 2.07 2.13 1.77 .84 1.23 1.33 1.29

-14.40) .00 ,00 .00 .00 .00 .00 .00 .00 1.89 1.98 2.14 2.24 2.20 2.19 2.19 2.17 2.17 2.09 2.13 1.77 .86 1.17 1.29 1.27

-14.10) .00 .00 .00 .00 .00 .00 .00 .00 .00 2.01 2.16 2.25 2.22 2.21 2.21 2.19 2.19 2.10 2.14 1.78 .81 1.23 1.32 1.31

6.10) .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 2.17 2.27 2.22 2.22 2.21 2.20 2.19 2.11 2.15 1.79 .85 1.22 1.35 1.31

6.40) .00 .00 .00 .00 .00 .00 .00 ,00 .00 .00 .00 2.34 2.26 2.25 2.24 2.23 2.22 2.13 2.17 1.82 .81 1.31 1.37 1.37

6.80) .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 2.27 2.27 2.26 2.24 2.23 2.14 2.18 1.80 .99 1.23 1.33 1.34

7.10) .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 2.26 2.26 2.24 2.23 2.12 2.18 1.77 1.10 1.17 1.31 1.34

11.30) .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 2.24 2.23 2.22 2.10 2.18 1.77 1.22 1.12 1.25 1.27

11.30) .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 2.23 2.22 2.08 2.18 1.73 1.30 .97 1.21 1.22

11.30) .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 2.23 2,05 2,19 1.73 1.38 .93 1.17 1.21

12.20) .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 1.98 2.19 1.71 1.43 .85 1.13 1.15

12.20) .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 2.19 1.68 1.51 .47 .99 1.01

13.10) .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 1.65 1.57 .00 .83 .95

25.60) .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 1.58 .00 .86 .97

28.70) .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .93 .00 .42

32.90) .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .24 .50

33.40) .00 .00 .00 .00 ,00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 1.29

33.40) .00 .00 .00 .00 .00 .00 .00 .00 .00 ,00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

34.50) .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
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