

Copyright © 1980, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

DYNAMIC ARRAYS VIA A MODIFIED RATFOR PREPROCESSOR

by

W. T. Nye

Memorandum No. UCB/ERL M80/23

4 June 1980

ELECTRONICS RESEARCH LABORATORY

College of Engineering
university of California, Berkeley

94720

DYNAMIC ARRAYS VIA A

MODIFIED RATFOR PREPROCESSOR

by

W. T. Nye

I. Introduction.

In many programming situations/ there are needs for arrays

whose sizes avB not fixed/ i.e.» not known at compile time. A

simple scheme is presented here in which not only is the memory

allocation transparent to the user# but the dynamic arrays used

in the program appear and are used just like ordinary Fortran ar

rays. These features exist in a modified Ratfor C13 preprocessor

which was originally obtained from the CSAM department at

Lawrence Berkeley Laboratory (who obtained it from "Software

Tools"). This means that only Ratfor source programs can enjoy

the dynamic array features described in this paper. However/ the

Ratfor language enjoys the same portability as Fortran since (1)

the Ratfor preprocessor generates portable Fortran from Ratfor

source/ and (2) the Ratfor preprocessor itself is quite portable/

subject to the implementation of a very few low level primitives

such as ones for file opening and closing.

The following simple example shows the use of dynamic arrays

in a Ratfor program:

main program.

integer mem(1000) # one big memory array,
common mem

call setmem (mem/ 1000* 5) # initialize dynamic
memory; don't keep free

call easy
call harder

stop
end

- 2 -

blocks smaller than 5.

subroutine easy

dynamic real xary
integer i

call getmem (50* xary)

do i = 1 , 50

xary(i) » 0. 0

allocate dynamic
array xary.

call clrmem (xary)

return

end

clear (eliminate)

dynamic avra^ xary

harder - allocates 3 dynamic arrays then keeps
reading in an unknown quantity of triples
until reaching the end-of-file.

subroutine harder

dynamic real xary/ yary
dynamic integer iary
integer i* sizmem

call getmem
call getmem
call getmem

i = 0

(20,xary)
(20/ yary)
(20/ iary)

repeat <

i = i + 1

if (i > sizmem(xary))
call extmem (10/xary)
call extmem (10,yary)
call extmem (10,iary)
>

read (5,1/end=2) xary(i)
1 format (2f5. 2, i5)

>

2 continue

then extend

dynamic arrays.

yary(i), iary(i)

call clrmem (xary)
call clrmem (yary)
call clrmem (iary)

return

end

- 3 -

The preprocessor output for subroutine easy above follows

subroutine easy
integer xary
integer izi(l)
real rzr(l)

double precision dzd(l)
complex czc(l)
common izi

equivalence (izi(l)*rzr(l),dzd(l)*czc(l))
integer i
call getmem(50*xary*1)
do 23000 i«l, 50

rzr(xary+i)=0. 0
23000 continue

call clrmem(xary*1)
return

end

This example shows that dynamic arrays can be allocated and ex

tended to any size that fits in the large array provided in the

main program* at any time in the program. Then* after an array

is cleared* it is completely gone and no longer uses up space in

the large array. The 'dynamic real' statement tells the Ratfor

preprocessor that xary and yary are dynamic arrays and of type

real* as opposed to integer* complex* etc. As discussed in the

next section* this statement also has some other effects on the

Fortran output of the preprocessor. Note that the simple

transformation shown here does not allow the feature of dynamic

- 4 -

arrays with more than one subscripting dimension.

A textual substitution by a preprocessor similar to the one

presented here was recently suggested as a way of resolving the

problem of using several work space arrays in a Fortran program

library for optimization C43. Partitioning a single user provid

ed avva^ into several work arrays by keeping track of base sub

script pointers "can lead to a lack of clarity in the resulting

code* since the names of the conceptual arrays of the original

algorithm do not appear" C4* p. 2693. Their goal is for program

clarity rather than for arrays whose sizes vary dynamically dur

ing exection and it appears that they have not attempted to write

such a preprocessor.

II. Gramatical Rules.

The key transformation performed by the modified Ratfor

preprocessor is the conversion of

'xary(i)' into 'rzr(xary+i)'

where the variable xary is actually an integer subscript which

points to the beginning of the dynamic array xary in arra^ rzr*

which has been equivalenced to the blank common arra^ provided in

the main program. This is the same technique used in the circuit

analysis program SPICE2 C23 except that the dynamic arrays

(called 'tables' in C23) appear in the program like the substi

tuted string above* i.e.* 'rzr(ltab+i)' appears directly in the

Fortran programs ('rzr' is 'value' in SPICE2). Another differ-

- 5 -

ence is that the Fortran code discussed below also appears
i

directly in the SPICE2 source code.

* To be precise* the first 'dynamic' statement encountered

causes the following Fortran code to be output by the modified

Ratfor preprocessor:

integer izi(l)
real rzr(l)

double precision dzd(l)
complex czc(l)
common izi

equivalence (izi(l>* rzr(l)* dzd(l)* czc(l))

Also, the Ratfor source line 'dynamic real a*b*c*... ' causes the

line 'integer a* b* c* ...' to be output* so that the dynamic awa^

variables are actually array subscripts as mentioned above. The

equivalence statement above causes dynamic arrays of any type

(integer* real* etc.) to all occupy memory space in the same

large common arva\i. Figure I shows a possible layout of memory

for two dynamic arrays, IARY* real* size 5* and RARY* real* size

3. The values shown for the awa\i subscript pointers are arbi

trary and simply shows that the dynamic arrays could be anywhere

in the large array (not overlapping, of course).

To ensure that the scope of dynamic arrays only extends to

the end of the current subroutine (in a file of say, several

subroutines), the Fortran 'end' statement causes the preprocessor

to eliminate all dynamic array names from its symbol table.

Also, a flag is reset so that the above code is output again upon

encountering the first 'dynamic' statement in the next routine.

- 6 -

The present preprocessor allows the types shown in the fol

lowing examples:

dynamic integer a* b* ...
dynamic real a* b* ...
dynamic double a*b* ...
dynamic complex a*b* ...

The preprocessor keeps track of the type* so as to output for

'a(i)' one of 'izi(a+i)', 'rzr(a+i)', 'dzd(a+i)'* or 'czc (a+i)'.

This substitution occurs only when a dynamic array name is en

countered* followed by a left parenthesis: if x is dynamic real

then 'x(... ' in the Ratfor source becomes 'rzr(x+. .. ' in the

preprocessor output. There is one special case which is con

sidered by the preprocessor* and that is when the left

parenthesis is followed by a minus sign: 'x(-k...)' is substi

tuted by 'rzr(x-k...)' to avoid the consecutive operators in

'rzr(x+-k. ..)' (here* k is presumed to be negative).

One serious implication of this scheme concerns passing

dynamic arrays to subroutines. Since the dynamic array variable

name is simply an integer, either the array subscript value it

self or the actual array can be passed. To pass the actual ar

ray* it must be subscripted as 'rary(l)' for example* in order to

achieve the desired substitution from the left parenthesis. But

arrays passed in this way cannot be extended in the subroutine.

If the name is passed alone (not followed by a left parenthesis),

then the corresponding subroutine argument can be declared as

dynamic and the array can be extended in the subroutine. The

- 7 -

following examples compare these two cases:

dynamic double dary dynamic double dary

call foo (dary(l), n, ...) call foo (dary, ...)

end end

subroutine foo (dv, n, ...) subroutine foo (dv, ...)

double precision dv(n) dynamic double dv

dv(l) = ... dv(l) «...
if (i > sizmem(dv))

call extmem (50, dv)

return return
end end

The case on the left above would be desirable if subroutine foo

made no calls to any dynamic memory array subroutines, since it

avoids the extra addition for each array access, i. e. , it would

use 'dv(l)' instead of 'dzd(dv+D'.

An additional peculiarity concerning dynamic arra\^ names

followed by right parenthesis is discussed next.

One thing that must be known by subroutine getmem is the

type of the dynamic array being allocated. This is important be

cause getmem allocates arrays internally in terms of the number

of integers requested and on some computers, a real might take up

the same memory as two integers. In such a case, 'call getmem

(50, r)', where r is dynamic real, would actually allocate 100 in-

tegers from the large 'mem' array provided to subroutine setmem.

Another consideration is that the number of integers per vari

able, for each variable type, must be easily changed for porta—

- 8 -

bility reasons. For example, on the VAX 11-780, one real and one

integer are both one 32 bit word while on other computers, an in

teger might be one 16 bit word and a real two 16 bit words (this

latter case is shown in Figure I where rary(3) is "wider" than

iary(5)). In both the modified Ratfor preprocessor and in the

recent version of SPICE2* the number of integers per variable*

for each variable type* is easily changed: in the former by means

of 'define's and in the latter in a DATA statement.

One approach to providing the type information to getmem is

that taken in the most recent version of SPICE2 C3D in which dif

ferent getmem routines are provided for each dynamic arraq type*

i.e., 'getm4' for integers* 'getm8' for reals* and 'getml6' for

double precision. This has the pitfall of requiring possibly

several changes to a program to change a dynamic array from type

real to type double, for example. (It is our belief that the de

claration of a variable's type should occur only once, i.e., in

the 'dynamic' statement, and not be intertwined into the pro

gram.)

The approach taken here is to append the number of integers

per variable as another subroutine argument following the awa}^

name. Thus 'call getmem (20,d)' would be substituted by the

preprocessor by 'call getmem (20*d*2)' if d had been declared as

'dynamic double' and there were 2 integers per double precision

variable. The portability of the modified Ratfor preprocessor in

this regard is discussed in appendix A. Also* another execution

time reason for appending this argument is discussed in appendix

- 9 -

B.

This substitution occurs when a dynamic arra\i name is fol

lowed by a right parenthesis: '...x)' becomes '...x*2)' if there

are 2 integers per variable for the type of dynamic array x. Of

course* this substituion can occur for all subroutine calls* not

just to getmem. For the other dynamic memory allocation subrou

tines, this number is used to locate the dynamic arra\^ quickly

(in constant time) in the large arra^. This is discussed further

in appendix B.

This substitution can be dangerous if the programmer forgets

about this extra calling argument since it might sabotage the

subroutine linkage by having a different number of actual argu

ments than formal arguments in the subroutine. If, for example*

the value of a dynamic array variable x was to be printed by a

subroutine (which makes no sense!) then instead of 'call printi

(x)' we could write 'call printi (x+O)' to stop the right

parenthesis substitution. But this technique must not be used to

pass a single dynamic array variable to a subroutine because

'x+O' might produce a temporary variable and the whole allocation

system is based on an assumed call-by-address. The actual name x

must be passed (more on this in appendix A). All one can do is

•plan on the extra argument by having one more formal (dummy) ar

gument in the subroutine.

III. The Dynamic Memory Array Routines.

The dynamic memory allocation subroutines and calling con-

- 10 -

ventions are shown in the following list. (It should be noted

that the subroutine names are almost identical to those of SPICE2

C23. However* the arguments are reversed in most cases due to

the right parenthesis convention.)

routine

setmem (big*nvar*min)

getmem (nvar*ary)

relmem (nvar*ary)

extmem (nvar*ary)

clrmem (ary)

ptrmem (newary*oldary)

sizmem (ary)

memptr (ary)

description

initializes dynamic memory
routines with large integer
arra^ 'big' of dimension 'nvar'.
Blocks smaller than 'min' never
appear on the linked list of
free blocks (see section IV.).

allocates dynamic array 'ary' of
size 'nvar'.

(releases) reduces size of
dynamic arra\i 'ary' by 'nvar'
variables.

extends size of dynamic arra\i
'ary' by 'nvar' variables.

clears (eliminates) dynamic
arra^ 'ary'.

changes the dynamic arra\^
name of 'oldary' to 'newary'.
(Both must of the same type.)

integer function which returns
the current size of dynamic
array 'ary'.

logical function which returns
true if 'ary' is currently an
allocated dynamic arraq.

The user must declare sizmem as integer since it is an integer

function but does not start with i* j, k* 1, m, or n. Note that

the dynamic array names above are always followed by a right

- 11 -

parenthesis causing the number-integers-per-variable argument to

- be appended.

* IV. Memory Allocation Techniques.

This section presents a brief discussion of the actual

memory allocation techniques used in the routines listed in the

previous section. The basic problem of programming with arrays

whose size varies at run-time may be tackled in many ways.

Many programmers create one large array and then allocate

new arrays on the 'top' of (at one end of) the large arra\^ ... a

stack allocation technique. This permits only the array on the

top to be extended dynamically. If extension of the dynamic ar

ray below the top is desired, then the top array must first be

eliminated — the arrays must be eliminated in the reverse of the

order in which they were allocated.

In order to handle the more general case of several arrays

being created or extended at the same time, and in an arbitrary

order, a more sophisticated memory allocation strategy is needed.

The Boundary Tag Method C53 C63 is a heap allocation technique

which starts out with the large array provided to setmem being

considered as one big free block. When a dynamic array is re-

• quested, it becomes an allocated block in this large free block.

- When arrays are cleared, 'free' blocks are left behind. These
a

free blocks are added to a doubly linked list of such blocks,

used to facilitate the location of a free block for subsequent

getmem's. Following C63, a First-Fit strategy is used when

- 12 -

searching down the list of free blocks for one whose size is

greater than or equal to the requested size. In fact, the rou

tines used internal to the memory allocation routines listed in

section III are closely patterned after procedures 'allocate' and

'free' in C63. When no free block can be found large enough to

meet the size of the requested dynamic array, an internal subrou

tine, 'crunch', is called to compress all the allocated blocks

together leaving one large free block. If this block is still

not large enough, then an out-of-memory message is printed and

the program halts.

The current method of handling dynamic array size extensions

via 'extmem' is important to understand so as to not create cpu-

time inefficiency. The algorithm may be stated briefly as:

Input: ary* n (dynamic array name and extend size)

Convert n from number of variables to number
of integers using the augmented number-integers-
per-variable argument.

Try to allocate a new dynamic arraif of size
equal to the new total size, i. e. , oldsize+n.
If successful, copy the old arra^ into the
new* clear the old* and return.

The attempt was unsucessful so call
crunch to compact all the allocated
blocks to the lower subscript end of
the large array and try to allocate
the new total size again.

If not successful* perform a double-swap-flop
to move the dynamic arraq being extended right
below the one free block left after a crunch.
Then* it may be extended into this free block
even though there is not enough room for
the new total size.

- 13 -

Under any conditions, the least amount of work to extend an arra\i

is to copy the entire array one time. This implies that extend-

ing a large array can be costly and thus the number of extends

should be minimized. This is achieved by extending with n

greater than one, as shown in the example subroutine harder in

section I.

V. Possible Inefficiencies.

There are a number of inefficiencies which this scheme can

create, most of which are due to the fact that 'what you see is

not quite what you get'. One simple example is shown below,

along with its translated Fortran output:

dynamic integer k integer k

do i = 1 , 100 do 23000 i=l, 100

k(i) = 0 izi(k+i)=0

23000 continue

To avoid the extra addition for every loop iteration, this code

may be rewritten as:

dynamic integer k

il = k+1

i2 = k+100

do i = il , i2

izi(i) = 0

4

This modification, using 'izi', is considered by us to be a gross

misuse of the knowledge of what the modified Ratfor preprocessor

produces, and is strongly discouraged. Also, Fortran compilers

- 14 -

with code optimization which removes loop-invariant computation

from loops or performs induction variable modification* as shown

in C73, will make the original code no less efficient than the

rewritten code by actually generating code which mimics the

latter.

VI. Conclusions.

The modified Ratfor preprocessor has been in existence for

about 8 months and has been used extensively by the author on

several large programming projects. One, in particular* is a

LALR(l) C73 compiler-compiler called RACC which has about 15

dynamic arrays. During the processing for an average size gram

mar, the program executes a few crunches without snags. As the

amount of available array space comes close to being exhausted,

the occurence of crunches becomes very frequent. This implies,

as suggested by Knuth in C53, that execution should halt after

the total amount of free space falls below a certain amount.

This would avoid the cpu time of the last several crunches before

a likely exhaustion of space anyway.

Using the dynamic array subroutines mentioned in this pro

gram requires caution in regard to subscripting arrays out of

bounds. This is because certain internal information such as

links, requested size, allocated size, etc., are stored directly

around the dynamic array in the large equivalenced arravi: if

xary is of size n then xary(O) and xary(n+l) must not be des

troyed. If they are* the dynamic memory routines are certain to

- 15 -

'crash'. Also, Fortran compiler generated run-time array sub

scripting checks would not catch such subscripting violations.

Remaining for future work is to measure the amount of time

spent in the dynamic memory allocation routines to find

bottlenecks which might be made more efficient. Preliminary

feelings are that the whole system is quite efficient and that

the extra computer time to extend arrays, etc., is negligible

compared to the benefits of the availability of dynamic arrays.

Certainly if, without dynamic arrays, all program arrays were

dimensioned to the size needed by the largest possible input pro

gram* then either the program size might be too large to fit in

memory or the program might create tremendous paging overhead in

a virtual memory environment.

VII. Acknowledgement.

Research sponsored by the National Science Foundation under

Grants ECS-79-13148/(Rann) PFR79-08261 and Joint Services Elec

tronics Program Contract F49620-79-C-0178.

Appendix A. Machine Independence of Routines.

The machine independence or portability of the dynamic

.memory routines described in this paper is based on a few

'define's in the file 'machdep':
a

define (NUMIPERI*1) # number of integers per integer var.
define (NUMIPERR,1) # number of integers per real var.
define (NUMIPERD,2) # number of integers per double

precision var.

- 16 -

define (NUMIPERC, 2) # number of integers per complex var.
define (LCMULT, 2) # least common multiple of above.

Also* the two machine dependent routines getadr and setadr

must be implemented. These get the address of the argument vari

able and set the variable at the argument address. The way that

the dynamic memory routines use these two subroutines makes it

essential that the Fortran be implemented using strictly call-

by-address. Most implementations use this approach. Also, For

tran 77 now states explicitly that call-by-address is part of the

standard.

Appendix B. Another Reason for Appending the Number of Integers
per variable.

In section II the right-parenthesis convention was presented

in which an additional argument* the number of integers per vari

able, is appended after the dynamic array name. It was stated

that this argument is necessary for a getmem since the actual al

location is internally in terms of the number of integers. Addi

tionally* this argument is used to determine the location of the

dynamic array in the large integer array provided to setmem. For

example, if there are 2 integers per real* then dynamic real ar-

ray ary with subscript pointer ary=50 would actually begin at

subscript 100+1 in the large integer array. This immediate ac

cess to the actual arrai^ location gives rapid access to the sur

rounding information about the array* i.e., the requested size,

the allocated size, the subscript pointer address, etc. In par

ticular, function sizmem excutes and returns the size in constant

- 17 -

time, independent of the number of dynamic arrays. This makes

the use of function sizmem ok in an inner loop as shown in sub

routine harder in section I.

This is not the case in the memory manager in SPICE2, howev

er, due to the fact that determination of the actual location of

a dynamic arra^ requires a search through a list of addresses for

one which matches the address of the routine's table pointer ar

gument. This search may be as long as the number of allocated

dynamic arrays.

Appendix C. EECS-SESM VAX UNIX File Locations.

On the University of California EECS-SESM VAX* the dynamic

memory routines are located in directory /usr/eecs/nye/mem and

consist of files memae. r, memfr. r, and memsz. r . To load a For

tran program that uses these routines, one may append

'/usr/eecs/nye/mem/mem*. o' to the 'Id' command.

The modified Ratfor preprocessor is located in directory

/usr/eecs/nye/ratfor There is a shell script

/usr/eecs/nye/rat4 which, when invoked using 'rat4 abc'* both

Ratfor preprocesses and Fortran compiles a Ratfor source file

named abc.r .

References.

C13 Kernighan, B. W. C19753. "RATFOR - a Preprocessor for a
Rational Fortran*" Software—Practice and Experience,
5: 4, 395-406.

C23 Cohen, E. £19763. "Program Reference for SPICE2,"

- 18 -

Electronics Research Laboratory Report No. ERL-M592,
University of California* Berkeley, Ca.

C33 Vladimirescu, A. , Newton, A. R. , Pederson, D. 0. C19803
"SPICE Version 2F.0 User's Guide," Electronics Research
Laboratory* University of California* Berkeley* Ca.

C43 Gill* P., Murray* W. , Picken, S. * and Wright* M.
CSept* 19793. "The Design and Structure of a Fortran
Program Library for Optimization*" ACM TOMS* Vol 5,
No. 3* 259-293.

C53 Knuth, D. E. C19683. The Art of Computer Programming,
Vol I: Fundamental Algorithms, Addison-Wesley,
Reading* Mass.

C63 Horowitz, E. and Sahni, S. C19763. Fundamentals of
Data Structures, Computer Science Press, Woodland
Hills* Calif.

C73 Aho* A. V. and Ullman* J. D. C19773. Principles
of Compiler Design, Addison Wesley, Reading, Mass.

IZI:

RZR

IZI
RZR

IARY=I23

\
IARY(I)

thru IARY(5)

RARY=456

\
RARY(I)

thru RARY(3)

A

V

Due to the EQUIVALENCE,

the above two are

equivalent to the one

array below.

free
block

Array IARY free

block
Array RARY free

block

Figure I. Memory layout for two dynamic arrays

	Copyright notice 1980
	ERL-80-23

