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ABSTRACT

It is observed that for a power system after a disturbance certain

groups of generators have similar waveforms for their rotor-angle

response curves. We define generators to be coherent if the waveforms

of the rotor-angle curves are identical. In practice, however, they may

be very close but not identical. We say that generators are e-coherent

if the maximum of the difference of their angle curves is less than e.

We present some necessary and sufficient conditions for a group of

generators to be e-coherent under a set of disturbances. The condition

is expressed in terms of the controllability Grammian of the model.

Singular-value decomposition of the Grammian is used to provide insights

to the results. We also derive an approximate expression for the

Grammian and suggest a practical algorithm for identifying groups of

e-cohereht generators.

Research sponsored by the National Science Foundation under Grant
ENG75-21747.



I. INTRODUCTION

It has been observed that for a power system after a disturbance

certain groups of generators have similar waveforms for their rotor-

angle response curves. This phenomenon, called coherency of generators,

has been utilized effectively to construct a reduced-order model of the

external system, known as dynamic equivalents, for power system transient

stability study [1]. For generators to form a coherent group it depends

on the type and location of the disturbance. The conventional approach

to identify coherent groups of generators is examining the response

curves obtained from numerical integration of a set of simplified

linearized differential equations of the system [1]. Engineering

judgement is required.to select a disturbance so that coherency will

prevail for other disturbances.

In a previous paper [2] we have studied the phenomenon of

coherency analytically via the mathematical model of the system. For

analytical studies we define coherency to mean the angle curves of the

generators are identical. We have characterized coherency in terms of

the controllability subspace of the system model. We have also

proposed an algorithm to identify coherency directly from the parameters

of the model.

In practice the generator rotor-angle curves may be very close

but not identical. We call such cases e-coherency. To be more precise,

we say two generators are e-coherent if the maximum of the difference

of their rotor-angle waveforms (ignoring the linear shift of the whole

curve due to different initial rotor-angles) is less than e.

Avramovic et. al. [4] have suggested a "slow coherency" to mean

that the slow modes in the difference of the angle curves are small.
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Our definition of e-coherency is direct. In this paper we present some

necessary and sufficient conditions for a group of generators to be

e-coherent under a set of disturbances. The conditions are expressed

in terms of the controllability Grammian of the model. Singular value

decomposition of the Grammian is used to gain insights to the results.

The conditions may be used to identify which sets of generators will

form e-coherent groups. Our definition of e-coherency is the same as

Sastry and Varaiya [3J. Our approach is more constructive.

The Grammian can be obtained by the solution of a linear

differential equation. We show that because of the properties of our

model, for e-coherency identification we can use the steady-state

solution of the differential equation as an approximate expression for

the Grammian. The steady-state solution involves a Liapunov equation

for which efficient solution algorithm exists. Based on these results

we suggest a practical algorithm for identifying groups of e-coherent

generators by 0) solving a set of special linear algebraic equations

and C2) identifying e-coherency from the elements of the solution.

II. MODELING

1. Power System Model

The same models for generators and network as in [2] are used here,

Three types of disturbances are considered, namely, load shedding,

generator dropping, and line switching. The modeling of load shedding

and generator dropping remains the same as before. However a new

procedure of modeling line switching is introduced, which simplifies the

analysis considerably, as we shall see shortly.

The linearized swing equations for the generators are used:
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MAa) = APM - APG - DAto

A_6 = Ato (1)

where A = deviation

a) = (a)-|,... ,a)n) of rotor speeds

_5 = (5^,...,6 )of rotor angles

M= diag(M.j,...,M )of machine inertia constants

PM = (PM.j,...,PM )of mechanical power inputs

PG = (P6,...,PG ) of electrical power outputs

D = diag(D,,.,.,D ) of machine damping constants

We assume that during the time of interest A PM = 0

The linearized decoupled real power flow equations are used for

the network:

where

APG

APL

Hgg V
u u

A6

A9 (2)

PG: vector of real power injections at generator internal buses

PL: vector of real power injections at load buses

5: vector of phase angles at generator internal buses

= generator rotor angles

0: vector of phase angles at lead buses

H: matrix of partial derivatives

For load shedding at bus i, we model it as changes in the real

power injection,

APL = (o,...i,...or P, (3)

where 1 occurs in the ith position and P. is the amount of power

disconnected. For generator dropping, we model it as load shedding at
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the load bus to which the generator is connected.

We are going to model line switching simply as load changes.

Suppose that for the system after removing the line connecting bus i

and bus j (Fig. lb), A9^ (t) is the vector of bus angles deviation at

time t. Let

AP^AiCt)) :-.(Hl£)1 CA8*Ct)-AeJU)) (4)

Now consider the system with line ij connected and the power injections

•k -k

at bus i and bus j changed by AP.(A£ (t)) and -AP-(A£ (t)), respectively

(Fig. lc). Clearly we get exactly the same set of equations for this

system as the one before without line ij. So we model line switching as

changes in load at buses i and j.

APL = (Q,...1,...-1,...0)T AP.(Ae*(t)) (5)

where 1 and -1 occur at position i and j, respectively. Note that P.,
it

being a function of A£ (t), is not known a priori. However, as we have

shown previously [2] and will see again shortly, the exact waveform of

AP.(«) does not enter into our analytic characterization of coherency.

In general, a set of k disturbances can be modeled as

APL = E u(t) (6)

where E=[e^ e2:**-ek], e. = (0,...l,...0) and u.(t) = P. if ith

disturbance is a load shedding or generator dropping,

T *
e. = (0,...1,...-1,...0) and u.(t) = AP.(A6 (t)) if jth disturbance is

a line switching. Note that for any time interval t of interest, we

have
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ft

»u(t)ll2dt < K2 (7)

for some K >^ 0.

Combining (1)(2) and (6), we obtain a standard linear system model

x = Ax + Bu., x(0) = 0

where x =

A A

B A

Aw

A6

e r 2n

•m"1d -m"1(vA)

•M~VuE

(8)

(9)

(10)

01)

2. Coherency and e-coherency

The idea of coherent generators arises from the observed phenomenon

that after a disturbance the rotor-angle curves of some generators have

almost identical waveform. We therefore define coherency as follows.

Two generators 'i' and 'j1 are said to be coherent if $.(t) - $.(t) = a
* j

constant for t _> 0, or equivalently, A6\:(t) - k&At) = 0 for t > 0. If

the waveforms of two generator rotor-angle curves are "close" but not

identical in a time interval [0,TJ, we would like to call it "almost"

coherent.+ To be more precise, we say generators 'i' and 'j' are

e-coherent in the interval [0,x] if

±
Avramovic et. al. [4] define slow-coherency as follows: generator i and
j are said to be slow-coherent iff slow modes of A6\(t) - A6j(t) are
small. Our definition in (12) is the same as Sastry and Varaiya [3],
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max |A6.(t) - A6.(t)| < e (12)
te[0,x] n J - K'}

III. GRAMMIAN

Our criterion for testing e-coherency will be given (Theorem 1)

in terms of the singular value decomposition of the reachability

Grammian. In this section we introduce the relevant concepts.

1. Grammian and Reachability Set.

Consider the linear time-invariant system

•

x = Ax + Bu x(0) = 0 (13)

where the admissible input u_ satisfying the constraint

i!u(t)!l2dt <K2 (14)
T

0

The reachability Grammian at x is defined to be the matrix W2————————————— ^,

»*:=
T L
feAtBBTeA *dt (15)

2
Note that Wt is real, symmetric and positive semidefinite. Therefore

we have

W2 =UZ2UT (16)

where Z2 =diag(a2,a2,...a2,0,...0), a2 >o\... >a2 >0, are the real
2eignevalues of Wt and columns of U are the corresponding eigenvectors.

We define

WT := USUT 07)
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where Z = diag(a,,a9 ...a 0,...Q), a, > a,... > a > 0.
it, r, I — c — r

The set of reachable states at x is given by

rT kA(x-t), rX

ST ={x|x = eA(T'tJBu(t) dt, ilu(t)ll2dt <K2} (18)
0 Jo

and the set of reachable states in [0,x] is given by

S[0,x] ={xJ3t€£°>TJ s-t. x=f eA(t"t,)Bu(t,)df and

f Ou(t)ll2dt <K2} (19)
J0

It turns out that these two sets are identical, i.e. S = Srn i.
x L0,tJ

Moreover, they are identical to the image S under the map W of the ball

with radius K,

S := {x|x = WT£, ll£ll < K} (20)

This provides a yery nice characterization of the reachability set. We

state the foregoing as a fact.

S^i S[0,T] " ST " S-

2. Singular Value Decomposition of the Grammian.

Consider the set

S= (xjx = WT£, Hpjl < K} (21)

where Wt =UZUT and z=diag(ar...a ,0...0) (22)

If we change coordinates to a basis formed by the columns of U, i.e.,
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x = Ux', £ = U£', then the set S can be described as follows:

fl 2 X2 2 xr
^ +^2 +''' +^7 -" '"r+1 ~"2n

>2n

S-(x'M +(~> +.- +BlK2, x- =x' =0} (23)

Thus S is an r-dimensional elliposoid in R whose axes are the eigen

vectors corresponding to the nonzero eigenvalues of W and the length

of the ith axis is a..

Remark: In this particular case where W is real, symmetric and positive

semidefinite, the eigenvalues and the eigenvectors of W coincide with

the singular values and the singular vectors of W ,and W = UZUT is

also the singular value decomposition (SVD) of W . The readers are

reminded of the many desirable numerical properties enjoyed by the

SVD [5-8].

3. Differential Equation of the Grammian

The reachability Grammian W^ can be obtained from the solution of

a linear matrix differential equation as stated in the following fact,

whose proof is immediate by the definition of W2.
x

Fact 2[9, pp. 84] The reachability Grammina W2 satisfies the following
linear matrix differential equation

X=AX +XAT +BBT, X(0) =0 (24)

IV e-COHERENCY IDENTIFICATION

1. Criterion for e-coherency identification.

Theorem 1. Consider the power system model (8) generators 'T1 and 'J1

are e-coherent in [0,x] for a set of disturbances satisfying

f u(t)ll2 dt < K2, if and only if
0
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(ci)ii °fe»)24 <*>
or equivalently

(C2)W.. +W.. -2W..<^ (26)
where i=T+n, j=J+n, WT =U?UT, Z=diag(a.j ,cr2,...a ,0...0)f
and U^, Wim are the wth elements of U, W2 respectively.

Consider the column vectors u of U,
—.m

"-[",! j".2 ;•••ii.2n]

Let us weight each column vector ij by its corresponding singular value
m

m

UZ = [a1u-1 : ... aru_#r :0 ...0] (27)

Recall that the orthonormal vectors ]L-i....»u_.r are the directions of the

axes of the elliposid S, which is the set of reachable states, and the

singular values a^9...a are the lengths of the corresponding axes. Our

condition (25) asserts that if there are identical rows in the matrix

Cc71u_.-j : ...aru>f] (28)

then the corresponding generators are coherent; and if there are rows in

the matrix (27) that are almost identical (in the sense of the Euclidean

distance between the row vectors), then the corresponding generators are

e-coherent.

2. Procedure for e-coherency Identification

The following procedure may be used for identifying e-coherent

generators. However Step 2 involves the solution of a set of linear
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differential equations.

1. Determine e,x. Estimate K.

2. Solve

X=AX + XAT + BBT, X(0) =0

and set

W2 = X(x)
p

3. Perform singular value decomposition of W^ and obtain

Wx =U2IIJT
4. Identify groups of e-coherent generators by the sets of "almost

identical" rows (condition (CI)) of the matrix [a-jJLi ••••ary_rJ

We may also identify e-coherent generators directly from W using

(C2). Thus, Steps 3 and 4 above may be replaced by the following Step 3'

3'. Identify groups of e-coherent generators by checking condition (C2),

i.e., the set of generators H will be e-coherent if for any i,j in H,

we have

Remark: Condition (CI) provides more insights to the result and it is

similar to our previous results [2]. Condition (C2) may be more

computationally advantageous,

V. APPROXIMATE METHOD FOR e-COHERENCY IDENTIFICATION

In this section we will make use of the special properties of our

power system model (8-11) and develop an approximate method for

identifying e-coherent generators.
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1. Some Analytic Properties of the Model

We make the following reasonable assumptions about the system.

(Al) The network is connected.

(A2) The lines are lossless with positive reactance.

(A3) The initial angles across the lines satisfy

18,(0)- 8,(9)1 <f *

Fact 3 Under the assumptions (Al) - (A3). The eigenvalues of the power

system matrix A (eq. 10) have the following properties.

(i) All the eigenvalues of A lie in the closed left half plane,

(ii) There is no eigenvalues of A on the imaginery axis except

at the origin,

(iii) A has exactly one eigenvalue at the origin.

Remark: The results of Fact 3 are what one would expect intuitively.

Since we have assumed aPM = 0, and the generators have positive damping

D > 0, without any disturbance the system should settle down, i.e.,

back to synchronism. It makes no difference if we shift all generator

angles by the same amount, since it is the angle difference and its

derivative that count. Therefore the system may settle down to the -

same frequencies AW = 0 but to some other angles A£ different by a

constant term. Thus we expect the eigenvalues of A to lie on the open

left half plane plus one at the origin (for the constant term in k§).

2. An Approximate Expression for the Grammian

By making use of the properties (Fact 3) of the power system model

we have the following asymptotic expression for the reachability

2
Grammian W..
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Theorem 2. Consider the power system model (8). Suppose that
2

assumptions (Al).- (A3) hold. Let W be the solution of

AX + XAT = -BBT (29)

with minimum Frobenius norm.

Then

W2 *W2 +3t CIT

T

where £ = (0,...0,!,...!) is a vector whose first n components are

zeros and the last n components are ones, and $ is a constant.

Remark: If all the eigenvalues of A except the one at the origin have

real part less than -|a|, then for x>> y-r ,

W2 +3t C£T

o

is a good approximation of W .

Fact 1 asserts that any reachable state x in [0,x] can be expressed

as x= WT£ for some ll£il < K. This implies that [7,8]

2
x= W^z_ for some z_ (30)

If we use the approximation

W2 *W2 +Sx££T (31)

then we have

x?(W2+8x £ CT) z (32)
4-

The Frobenius norm II-II- of a matrix X is defined by
1/2

•XO- := ( I X2 ) [5, pp. 173].
i,j J
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In coherency identification, we are interested in (A6.-A5.). Recall

that the first n components of x are the Aw. ts and the last n components

of x are the A6k,s. Therefore as far as coherency identification is

concerned we can just focus on W and ignore the term 8x ££T. But W2
is the solution of an algebraic equation (29) whereas W2 is the solution

x

of a differential equation (24). Thus we expect the computational effort
2

using W for e-coherency identification will be much less.

3. Algorithm for the Approximate Method of e-coherency Identification

The following algorithm can be used as an approximate method for

identifying e-coherent generators.

Step 1. Determine e,x. Estimate K.

Step 2. Find the solution W2 of

AX + XAT = -BBT

with minimum Frobenius norm. There is an efficient algorithm

for the solution of this problem [10].

Step 3. Identify e-coherency condition by checking

c2
W.. + W.. - 2ff.. < %r
n 33 U - K2
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APPENDIX

1. Proof of Fact 1

(1) St =S :See [7,8]

t1i} S[0,x]=V

It is obvious that Sx c SrQ T-, We are going to show SrQ -. c S by

contradiction. Suppose SrQ -. £ S then

3f, 0<t' <x, and u(0, fBu(t)Il2dt <K2 such that
J0

x(t') =[ eA(t'"t)Bu(t)dt ^ES
Jn ~" T

Let u(t) = u[t-(x-t')] for x - f < t < x

0 < t < x - t'
rX

then f llu(t)U2dt <K2 and x(x) = eA(T_t)Bu(t)dt =x(t'). But by
J0 0

/\ /\

definition of ST, x(x) e S this implies x(x) = x_(t') SS *

2. Proof of Theorem 1

By Fact 1 for any x(t), =|£(t), il£(t)tl < K, Vt e [o,x] and

x(t) =WT£(t) for t € [0,x].

Consider phase angles of generator T, j :

2n

I
m=lxiW-xJ(t)=J/Win,-VPmW

For a fixed t', and let hm := w. - W.
m "ira jm

max

Hull2dt<k2

|x.(t') - x.(t')| < max{| < h, p > | | ilpll < K} = llhO-K
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Since HhlNK is independent of t, we have

2n o 1/2
max |x.(t) - x.(t)| <K[ £ (W. -W.m)^]

te[0,x] n J ra=l im JIT1

=K!laTWxll aA(0.. .1 ...-1,.. .0)
t t

i j

T T 1/2= K(aW Wa)
\ T x '

T ? ]/2=K(a'W^a)

Similarly using the fact that llpll <Kimplies UUTpll < K, we have

r o « 1/2
max |x.(t) - x.(t)| < Kll c/(u. -u. H

te[0,x] ' J - m=l m im Jm

3. Proof of Fact 3

We first establish two lemmas for the proof.

Lemma 1: H" is positive definite.

Proof: H is the node admittance matrix of the network obtained by

connecting all generator internal buses to ground. Under assumptions

(Al) - (A3) this is equivalent to a positive resistive network, hence

Hu is positive definite this implies that H^\ is positive definite.
Lemma 2: H - H oH~ H. is nonnegative definite and has one and only

one zero eigenvalue.

Proof: By construction, we have

%n + V - a C34)
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where H, I ' are vectors having al 1 elements 1, with appropriate

dimensions.

We rewrite (34) as

Substituting (35) into (33) we obtain

vA,n -*•

(35)

,-iThis implies that I is an eigenvector of H -HqAH^H- with eigenvalue
X = 0.

Now since the network is assumed to be connected,

~% V

> Hu

NxN
^ R is nonnegative definite and

with rank N - 1, i.e.,

(xV)
"Hgg v"
_% Hu

f >o

The equality holds if and only if

(|) =k(-Jr) for some k.

Let £= -H^«FL oc then we can write (36) as

The equality holds iff

x = kH .

-A3-
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This implies that

dim W(Hgg-H H^[h )-1
.-1,Hence H -H„rtH?!Hn„ is nonnegative definite, and has exactly one

gg gi is, &g

eigenvalue X = 0.

Proof of Fact 3.

Assume that is an eigenvalue of A with eigenvalue X,

VD -M^Hgg-H^XgJ *1 *1
.... = X

_*2_ _*2_

-•f^-^VViV^"^
X., = XXg

--M-bxx^ - M"1 (Hgg-HgaH-Xg)x2 =X2Xj

But x2 7* 0.» otherwise x, = XXg =5.

Let dA4dx2, eA4<V V*lV*2'f A4M*2
then fX2 + dX + e = 0

and d > 0, e > 0, f > 0.

Hence (i) ReX(A) £ 0

(11) ReX(A) = 0 X(A) = 0

-1Besides, rank A » n + rank (H -H_0H" H0 )'gg gl U lg

= 2n - 1 and the fact that A can not have
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generalized eigenvector at origin implies that A has exactly one eigen

value at the origin.

4. Proof of Theorem 2

Consider the linear map from R2nx2n to R2nx2n

L :X -»- AX + XAT

Then the eigenvalue of L [11, pp. 235-239] are X = X. + X., i, j. = l,...,2n,
* j

A., X. are eigenvalues of A. But from Fact 3, ReX(A) < 0, and A has only

one eigenvalue at the origin. Hence ReX(L) £ 0, and L has exactly one

eigenvalue X - 0. This implies that

rank(L) = 2n x 2n - 1

Let {x.}f", be a set of generalized eigenvectors of A, then {x.}spans

R2n. [12,13]. B=I x.cJ, B€ R2nxr, a, € Rrxl. Thus
i=l M 1

W2 = ' eAtBBTeA *dt
0

T a "V1 „ X,trx k X,.t 2n 2n

( I I t*e kP (A))l I x,J)( I x.cJ) ( I I tVk P.JA))Tdt
k=l £=0 J* i=l 1 1 i=l 1_1 k=l ^=0 J*

rT r T (x,+x.)t T
-f i 4Vid(t)e a ^-4dt +

xi+x.^o

= : H(x) + 3x C C1

rt

0CCTdt

where mfc is the multiplicity of eigenvalue X. of minimal polynomial of A.

Since Re(X.+X.) < -|a| for X. +X. M
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Hence as x+ «,H(x) -»- 0 and W2 =AW2 + W2AT + BBT. Thus
XXX

AH(x) +H(x)AT +BBT h- g££T (V A? =0)

=>AH(x) +H(x)AT *-BBT +BCIT for large x

2 T T
Now; if W is the pseudo solution of AX + XA = -BB with minimum

Frobenius norm. i.e.

W2 =arg minllAX + XAT + BBTilr
X F

2 T Tthen H(x) = Wc + r£ £• for some constant r. (since W(L) = span £j;')

But H(x) :=
fT r T (X.+Xjt T

I a.a.f..(t)e x.x. dt e K(L)
0 i,j

x^+x.^o

and W2 e r(l*) =K(L) =sp^.x^^ ^T

r = 0

.\W2 +W2 +(3t££T.
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ie: 40?

(a)

40°+A0*(t) 40-+A0*(t)

(b)

40°+A0*(t) i0;+A0*(t)

I

APj

(c)

Ap;

Fig. 1. Modeling of line switching as changes in power injections
at the load buses without network modification.

(a) The connection and phase angles in the line before
switching.

(b) The removal of the line and postfault phase angles.
(c) The removal of the line can be represented as changes

in power injection with line connected.
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