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ABSTRACT

It is found that a finite perturbation of the ion orbits

leads to a nonlinear frequency shift that reduces the mode frequency

and has a weak stabilizing effect on the lower-hybrid drift instability.

This result is obtained from a self-consistent solution of the Vlasov-

Poisson equations using perturbation theory in which the nonlinear die

lectric function and the nonlinear temporal evolution of a single unstable

mode in the low drift velocity regime are calculated analytically.
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I. INTRODUCTION

The linear theory of the lower-hybrid drift instability is well

understood and has been discussed in detail by Davidson et al. When

the amplitude of the wave is small but finite after a time equal to many

multiples of the growth time, further evolution will be different

from exponential growth at very small amplitudes. In order to analyze

this, the nonlinear dielectric response function and the nonlinear temporal

evolution of a single unstable mode are derived self-consistently by using

perturbation theory to solve the Vlasov and Poisson equations. The single-

mode approximation is valid for the instability when the plasma parameters

are close to those for linear marginal stability. This requires v,.^ v .
^ E ti

(the low drift velocity regime) for the lower hybrid drift instability,

where v =cE/B is the equilibrium E*B drift velocity and v .=T./M is
E ' ti i

the ion thermal speed. M and T. are the ion mass and temperature, res

pectively. Similar single mode studies include: modulation of the Lang-

2 3
muir wave due to weak nonlinearity 'J; nonlinear evolution of drift-

cyclotron and drift-cone instabilities both in theory and simulation.

In this paper we demonstrate that a finite amplitude perturbation of

the ion orbits develops during growth which leads to a weakly stabilizing non

linear shift of the lower-hybrid drift mode frequency. The largest shifts in

the mode frequency occur for modes with wavelengths much longer than that of

the most unstable mode (k «k ), at which wavenumbers the lower-hybrid drift
m '

instability converts into the drift cyclotron instability.

For simplicity, we use a one-dimensional slab configuration shown in

Fig. 1; wave propagation is in the x direction; the magnetic field is uni

form and in the z direction; the density gradient is in the y direction.
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FIG. 1 Slab coordinates for lower-hybrid drift instability



- 4 -

The ions are treated as unmagnetized because the wave frequency and growth

rate are much greater than the ion cyclotron frequency. The ions are in

force balance; that is, the force due to the ion pressure gradient in y can

cels that of the equilibrium electric field. The lower-hybrid-drift instab

ility is analyzed in the electrostatic limit; electromagnetic effects are

assumed to be small.

In Sec. II, the nonlinear dielectric response is calculated by

solving the coupled Vlasov-Poisson equations, and a nonlinear dispersion rela

tion is obtained. Section III is devoted to a derivation of the time evolu

tion of the lower-hybrid drift instability. The field energy level at which

saturation might occur and the frequency shift due to the finite amplitude

of the wave are also determined. Finally, conclusions and a comparative dis

cussion of several saturation mechanisms are given in Sec. IV.

II. DERIVATION OF THE NONLINEAR DIELECTRIC FUNCTION

We follow the method of reductive perturbation theory. We

assume that the distribution functions F5(y,v,t) for species s and the

electric potential $(x,t) can be expanded as

and

where

FS(y,y,t) - P*(y,v) + £ eV(y,v,t)ein9 *• c.c. (1)
n"!

♦(x.t) - 2 eni (x,t)e,ne + c.c. (2)
^i n
n=l

^(Y.Y't) - L eJP*,(y.Yft) , n»0,l,... (3)
j=»0 J
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00 .

4>n(x,t) - Z eJ4>n1(x,t) , n=1,2,... (4)
j=0 nj

8 = kx - wt ♦ (5)

The small parameters is e, which is on the order of ed>/T.« 1. k and m
i

are the wave number and frequency of a single mode. Quasi linear analy

sis indicates that current relaxation (the relative drift between

the electrons and ions goes to zero) can cause saturation for v_<v ..
E ti

However, the effect of current relaxation is small for vP« v . . There-
E ti

fore, we shall specialize to the case vc« v . and treat the density gra-
t 11

dient and v_ as constant in our derivation. The distribution function

F .(y,v,t) can then be expressed as
nj ' -'

FnjCy,v,t> = "c/Y^njM) • (6)

The Poisson equation of the system is

- 7% » 4irri e /"dv (f' - fe) . (7)

Substituting Eqs. (1) and (2) into Eq. (7) yields

(nk)2$n » 4irnoe y\jv (V - f^) . (8)

Since the characteristic frequency of the lower-hybrid drift instability

is much less than the electron plasma and cyclotron frequencies, it is

assumed that electrons respond to the wave linearly, i.e.,

-4irn e
/-e 2dv fn - - xe(nk,na))(nk) $n (9)
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where xe is the linear electron susceptibility. To justify further the

assumption of a linear electron response, we also assume a value of

zero for the plasma beta (plasma pressure« magnetic pressure) and T =0 ,
e

so that electron resonance broadening can be neglected. For finite elec

tron temperature and plasma beta, electron resonance broadening can stab

ilize the instability.10,11 Using Eqs. (3), W and (9), Eqs. (8) re

duces to

[1 + xo(nk,nco)](nk) A . * 4irn e / f' . dv . (10)
e nj o J nj '

The Vlasov equation for the ion distribution in one dimension is

3f' * „ 3f' e 3* 3f'
TT+ V1T" m 3717" 3 ° • (11)

which can be rewritten as

dt \3t 9x/ H3x 3v ' uz;

so that f can be integrated over the characteristics corresponding to

the unperturbed orbits, i.e., x = vt. We obtain, as usual,

f'1 - ff - a / itifidt' („)

Expansion of Eq. (13) in the series given by Eqs. (1) and (2) yields
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jS-'f'oj^^--"--..,]

t «

1=0

/. , . in8' x(«nk(|>njle + c.c.)

3f i. / af0,J-n-Z + A /"'n1, j-n-Jl-n' Jn'91
3v rf=*1 \ 3v

+ c.c. > dt (14)

Convergence of the series solution for the perturbed distribution function

requires that the electric potential cause only a small perturbation to

the unperturbed orbits. Hence, ion trapping is excluded by this assumption.

One should also note that the superscript i for ions has been dropped

from Eq. (14). Equating coefficients of exp(in6) at the same order in e in

Eq. (14) yields

01

and

10

0 ,

e*10 *W3V
M v-V

(15)

(16)

where V=»ui/k and fQ0 is the equilibrium ion distribution function in the

absence of perturbation. We then substitute Eq. (16) into Eq. (10) to obtain
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10
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4im e'
o

♦l0 /
3W3v
v-V

- k X.(k,u>)<|>10 ,

which yields the linear dielectric function D(k,w),

D(k,u>) * 1 + Xa(k,u) + x.(k,tu) .
e 1

dv

(17)

(18)

We now proceed to calculate the second order components. Assuming

u) = uj +i<S and <S->-0, and equating coefficients of the constant terms in Eq.

(14) gives

02
,. e Ik / * 3f10 3f10

(19)

Substituting f^ by using Eq. (16), we obtain the quasilinear modification

to the distribution function,

e<f>
10

02
M 3v

'aWa»
(v-V)

(20)

The component fn results from the second order terms of Eq. (14) for exp(ie),

11

e*n 3f0O/3v

M v-V
(21)
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Then, following the steps used in deriving Eq. (17) and Eq. (18), we

obtain from Eq. (10)

D(k,u)*11 = 0 . (22)

The components f... and <f> , are uncoupled from the lower order compo

nents and are irrelevant to the rest of the calculation. Therefore, we

set 4)^=^=0 in the rest of the analysis.

Equating the coefficients of the second harmonic terms (2w,2k)

in Eq. (14) give

z\m/v-V3v\v-V/ M v-V

The first term appearing on the right side of Eq. (23) is the modification

due to the unshielded second harmonic oscillation of a single wave, and

the second term represents the shielded effect. Similarly, Eqs. (10) and

(23) yield

* - *»' •*"> f 1 3 /af00/avV*20 2 / dv . (24)
8k*0(2k,2a») M J v-V3v\ v-V /

For the third order component f. , Eq. (14) gives

,2 M\*'° v-v *10T^T *12~vT7 *™~T7
(25)



-10-

Uslng f Q , f and f from Eqs. (16), (20) and (23), we find tha
20

12

32 /3f0Q 3Ve*
10

e<f>
10\ 1

ri_J 3_ ! _1
2

v-V 3v2 \(v-V)2

3 /3f00/3vXl
v-V3v!v-V3v\ v-V

0) 3fQQ/3^
v-V

3foo/3vpi

8k D(2k,2w) /
v-V 3v

dv
1 3

v - V 3v \ v-V

+ M *12 v-V (26)

Substituting Eq. (26) into Eq. (10) for t^, combining to obtain *^Q+*\2,
and then using Eqs. (2), (17) and (22) yields the nonlinear dispersion relation

ai /afon/a»'
v-V 3v2 \ (v-V)2

2
« .

D(k,wH - -2±
1 k* J .._„ ,..2 dv

•if
_J 3_

v-V 3v

_1 3_

v-V 3v

3W3v

v-V

8k2D(2k,2o») L-' v-V 3v \
afgo^av'

v-V

+©(«4) •

dv

^2

dv

'J
e$

M

(27)
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The first term on the right side is the nonlinear coupling of the

potential with the quasi linear perturbation. The last two terms arise from

the nonlinear coupling of second harmonic variations in f1 and $ with

the perturbations at the fundamental, with and without plasma shielding

effects.

We define W(z) by

W(z) •J./
3fQQ/3v

v-V

dv

where z=»V/vt. =u)/kvt! . The quasi linear term gives

/-4ft
32 /3f00/3v

v-V 3v2\(v-V)2
dv

_J dVz)
12v$: dz^

ti

The unshielded second harmonic effect becomes

-if—1-
v-V 3v

1 J_

v-V 3v v-V

dv

(28)

(29)

1 d^V(z)

(30)

and the term associated with the shielded second harmonic oscillation is

w.
pi

8k^D(2k,2aj) J v -V 3v \ v-V

dv

1 /dfWz).
32k2X2 v*.D(2k,2u) dz (3D
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By using Eqs. (29), (30) and (3D, we rewrite Eq. (27) as

D(k,wH
1

!6k2X2
I cTw(z)
3 ~^

1

2k2X2D(2k,2co)
d2W(z)
dz2

♦I ¥

where ij^e^/Tj and XQ is the ion Debye length. The quasi linear term

and the unshielded second harmonic effect are combined in the first term

on the right side of Eq. (32).

III. NONLINEAR EVOLUTION AND FREQUENCY SHIFT

In this section, we estimate the field energy at saturation

caused by a finite nonlinear frequency shift by solving the nonlinear

dispersion relation. When the wave amplitude is very small, Eq. (32)

reduces to the usual linear dispersion relation

D(k,(o) m D0(k,a») + iD,(k,w) . (33)

(32)

Let us examine Eq. (33) in the lower drift velocity regime characterized by

Y/wp| « 1 , V and v£ < v., (34)

where w and y are the real and imaginary parts of frequency, respect

ively. The dielectric function for cold electrons and Maxwellian ions is

expressed as



to

D(k,to) = 1+ -22.+ 2 2
a)ce k XD u - kv£
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1 CO

2 72.2+ i -v/r-
1 CO

k S lkKi
(35)

The real part of the frequency is determined to zeroth order in \y/m | by

>w.) =DR(k
CO , 0)

1 +-Ee- + -J r_
2 2 2

to k L u) -kv_
ce D r E

The soluti an is

0) -= 7 kv_ = co
k2 +k2 E °

m

a 0

and the grswth rate y =-D./(3DD/3w) is given by
I K O

Y =

where

m

|2„2
k /k

m UsL / V
2 (1+k2/k2)3 k

m i

1 1

2 2 2
Xn l+io /to

D pe ce

m x ti
'Ah

is the wave number of the most unstable mode, and

(0
in

to .

/1 + U>* Aoz
pe ce

is the lower hybrid frequency.

(36)

(37)

(38)

(39)

(40)
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When the amplitude of the wave is small but finite, we expand Eq.

(32) around to by replacing to with to + i(3/3t) and use Eqs. (35)
o o

and (36), to obtain

'[(1 + tot) j^ ~v]<p = (A +iB)|*|S (41)

where

a = (30^3^(30^3(0) 3J -y/to , (**2)

and

(to - kv_) /, ,
A - - ° E ^TyJ ) , (43)

8kv£ \* k^DR(2k,2<oo)

B = -7Z\S+ 22 ," 1 • <**>

3y using Eqs. (36) and (39), we get

r - - -i-l 4k2
[^2DR(2k,2too)J --f .

3k
(45)

Substituting Eq. (45) into Eqs. (43) and (44), and using Eqs. (29) through

(32), the relative strengths of the nonlinear contributions from the quasi-

linear modification (ql), the bare second harmonic oscillation (b) and

its shielded effect (s) are given as the ratios,



and
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k2
'ql :''(2k,2co ). : A(2k,2U . - *:"3 :-f {(,6)

ob o)s k

k2

ql :B(2k,2u ) :B(2k,2U ) - 20 :-15 :8-f . (47)
o b os \f

For the most unstable mode, k=» km ,the three nonlinear contributions to

the ion distribution function are comparable. For k/k «1 the shielded
m

second harmonic contribution dominates the nonlinear modification of the

ion response. This is because the second harmonic perturbation is very

close to satisfying the linear dispersion relation for k«k , i.e., D(2k,2to )
m o

nearly vanishes.

In order to obtain the time evolution of the wave amplitude and

frequency shift,, we define ty =r exp(-is), where both r and s are real. Eq.

(42) becomes

or - rs » - Ar3 , (48)

and

r + ctrs - yr = Br . (49)

Eliminating r, we obtain

ay A + aB 2 /f.«vs = '-j + rr (50)
1+a 1+a

where the first term is the linear correction to the frequency in the

presence of growth, and the second term is the nonlinear frequency shift

2 2which grows in time with r (i.e., le^/T.J ). Eliminating rs, we obtain



r =
Y_ + i^A p2\r

2 ' 2
1+a 1+a

Integration of Eq. (51) yields

2yt/(1 +o )
r2 = r2^S

00
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2yt/(1+a)
1 +ce

where

ej>

T.

(t + co)
ciA- B

(5D

(52)

(53)

is the field energy level at saturation.

From Eqs. (42) through (47), it is obvious that the quasi linear

effect and the shielded second harmonic oscillation stabilize a single

lower-hybrid wave, i.e., they nonlinearly reduce growth. The nonlinearity

due to the bare second harmonic oscillation enhances growth and raises the

saturation level. If r » r(t=0) =r , Eq. (52) gives
00 Q

r2(t)

2yt
2 1 +a2

r e
o

2 2yt

,+%e^
r

and Eq. (50) becomes

s(t)
ay

1 +a

A+aB

1+a2

r2 l+a2
roe

p2 2yt
,ro 1+ a21+^e

r

(54)

(55)
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We identify the second term on the right side of Eq. (55) as a nonlinear

shift of the mode frequency.

V. CONCLUSION

A nonlinear dispersion relation for the lower-hybrid drift instab

ility was derived. We obtained the saturation field energy and the nonlinear

frequency shift at saturation. With use of Eqs. (35) through (44), Eq. (53)

gives

e<j>.

T.
sat

» 6 (t)7 , +3jd+Ii kl
k2 8 k"

m m

Extracting the nonlinear part of s in Eq. (55) gives

1
Ato

sat k2 15 k^ °.
1+3H^

m m

(56)

(57)

at saturation in the limit v./v .«1.
E 11

In Fig. 2 we present |e$,/T.| , the frequency shift Aw „, linear
l i sat sat

frequency u and growth rate y versus k/k for v,./v .=0.3. We note that
o m E ti

the saturation amplitude leJ./T.| is much less than unity only if k« k .
i i sat in

However, from Eq. (57) we observe that Ato . approaches -to for k« k .
sat o m

This violates the assumptions of our perturbation theory. Nevertheless,

it is true that |Ato/co | is largest for long wavelength modes k« k ,
° m

and that Eqs. (50) and (55) are valid only for |ej /T. | , |Aco/co |«1. Also

from Eqs. (37), (39) and (40) , we notice that co becomes smaller than the
o
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0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

K/K,
m

Saturated lower-hybrid drift mode amplitude [ei-/T.| due to non-
I I Sat

linear frequency shift mechanism, normalized frequency w /to.., growth

rate Y/to£h, and nonlinear frequency shift Ato t/«ih as functions of
k/k for vc/v .=0.3.

m E 11
to

ih
is the lower hybrid frequency, and k is

m

the wave number of the most unstable mode. Note that |ed>,/T.| «1
1 1 i'

only for k/k «1 , and that -Ato « to only for k/k >1.
m sat r m -
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ion cyclotron frequency for k<0.4k when v_/v .-0.3. Therefore, our

assumption of unmagnetized ions breaks down, and these long wavelength

lower-hybrid drift modes convert into ion cyclotron drift modes. Many

4-8
studies have shown that a nonlinear ion orbit perturbation induces

a frequency shift which can stabilize the ion cyclotron drift instability.

For modes with k>k , which includes the most unstable mode, k = k ,
- nr ' m'

|e<j>../T. I= ©(1), which is too large and thus also invalidates our per

turbation theory. For these short wavelength modes, we expect that other

nonlinear effects will be the dominant saturation mechanisms, for example,

trapping or quasi linear diffusion.

The nonlinear frequency shift does not appear to be an efficient

mechanism for saturating the lower-hybrid drift instability. However, it

is important to compare some of the more promising saturation mechanisms

and ascertain whether the nonlinear frequency shift effect should have

been included in their descriptions.

Let us restrict our discussion to the low drift regime v- «v^. and
3 E ti

T «T.. By using Eqs. (39), (43) and (50), the field energy, £ =<E2/8ir>,

for which Aw= -0.1w (nominal value) is

•*»&.
Tr x m m// E\

"ft
w
m '

(58)

where Aw stands for the nonlinear frequency shift and w = w /(1+a ) is the
o

real part of mode frequency including the linear correction term. Note that

the right side of Eq. (58) is a function of k/k and v-Ar., and not a
m h 11

function of T /T..
e 1
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An oft cited saturation mechanism is based on ion trapping. This

12
eneti. ror v_» v ., winsKe ec ai

E ti

ion trapping requires

is also a single-wave effect. For v_» v ., Winske et ai estimated that
t t i

(59)

where C is order of 0.1 to fit their simulation data. For the low drift

13regime, i.e., v£<vtJ> Cnen ®t al showed that above the threshold given

in Eq. (59), saturation occurs when

pe ce \nTi/trap ksG , .k2 \\\)
1+7

m

(60)

This estimate was calculated on the basis of energy conservation; as the

ions trap, the velocity distribution flattens in the neighborhood of the

wave phase velocity v^w/k liberating kinetic energy that is then converted

9 13into wave energy. ' Simulations described in Ref. 13 demonstrated that

the lower-hybrid drift instability was stabilized by ion trapping at ampli

tude consistent with Eq. (60) when v_ was kept constant in time.

Another possible saturation mechanism is stabilization via current

9
relaxation, which gives

<"V^ce* (nT")^ -̂ (^1 (1*^1 • (6D
This mechanism can apply to single wave cases or turbulent conditions.
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Finally, saturation due to electron resonance broadening ' '

yields

<• >-^.>(§7)rb -*»&!/(# • <«.
for plasmas with nonzero T . This equation is given in Ref. 11 without

derivation. This mechanism requires the presence of turbulence.

Figure 3is aplot of (fi/nT,)^ , (£s/nT.)trap and (£s/nT.)cr
versus k/k for M/m =3672 , vc/v .=0.3 , and T/T. =0.25 . m is

m t 11 e 1

the electron mass. It is seen, except for k «ck , that (ft/nT.)A is
m ^ 1 Aid

much larger than (P. /nT.) and (ft /nT.) ; and thus the frequency
ws 1 trap ^s 1 cr

shift is important only for k<0.1k at which the lower-hybrid drift mode is

converted into a drift cyclotron mode.

In Fig. kwe present (fi/nT.)^, (8,/nT?)trap f (fi/nT.)^
and (8s/n"Tj)rb versus vE/vtJ for M/m =3672 , T/T. =0.25 . For the
parameters chosen, it can be seen that for v_/v . <0.2 the lowest satura

tion amplitudes are achieved by ion trapping. Again it shows that for finite

k/k the nonlinear frequency shift is insignificant at the saturation ampli

tudes suggested by the other proposed saturation mechanisms. It is also

noted that the saturation level due to current relaxation is only slightly

higher than that of electron resonance broadening for these parameters;

for T/T. =0.25, (gL/nT.) *1.38(P/nT.) ..
e 1 s--s 1 cr - <"-is 1 rb

In conclusion, we have shown that a nonlinear frequency shift has

a weakly stabilizing influence on the lower-hybrid drift instability. Ion

trapping, current relaxation, and electron resonance broadening are more

likely saturation mechanisms; which of these actually accounts for satur

ation depends on the plasma parameters.
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*©|»S

3|3

FIG. 3 Saturated lower-hybrid drift mode amplitudes £ /nT. =< E /8irnT.) as
s I I

functions of k/k for M/m = 3672, ve/v .=0.3, and T /T. =0.25. Two
m E 11 e i

saturation mechanisms are compared: current relaxation (cr.) and

ion trapping (trap). Also shown is the amplitude at which Aw = -0.1w.

Only for k/k <0.1 is -Aw>0.1w for (O /nT.) and (fi /nT.),.
m - ^s i cr ^-'s i trap
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(Aaj=-O.I<j,K =Km)

(Aai =-0.la>,K=0.5Km)

trap(K =Km)

FIG. 4 Saturated lower-hybrid drift mode amplitudes Q /nT. as functions of

VE^Vti for* M/m=s3672 and T/T. =0.25. The amplitudes corresponding
to three saturation mechanisms [ion traping (trap), current relaxa

tion (cr.), and electron resonance broadening (r.b.)] are compared

to that for which Aw=-0.1w for various values of k. Only for

k<0.1km and moderate values of v /v . are the frequency shifts signi
ficant at the saturated amplitudes given.



- 2k -

ACKNOWLEDGMENTS

We are indebted to Prof. C. K. Birdsall for numerous stimulating

discussions, his encouragement, and a critical reading of the manuscript.

This research was supported in part by the Office of Naval Research

Contract No. N00014-77-C-0578, and in part by the Department of Energy Con

tract No. W-7405-ENG-48.



- 25 -

REFERENCES

1. R. C. Davidson, N. T. Gladd, C. S. Wu, and J. D. Huba, "Effects

of Finite Plasma Beta on the Lower-Hybrid Drift Instability", Phys.

Fluids 20, 301 (1977).

2. Y. H. Ichikawa, T. Imamura and T. Taniuti, "Nonlinear Wave Modulation

in Col 1isionless Plasma", J. Phys. Soc Japan 33., 189 (1972).

3. H. Sanuki, K. Shimizu and J. Todoroki, "Effects of Landau Damping

on Nonlinear Wave Modulation in Plasma", J. Phys. Soc. Japan 33.,

198 (1972).

4. A. K. Nekrasov, "Non-Linear Evolution of Drift-Cyclotron Flute Oscil

lations", Nuclear Fusion V4, 865 (1974).

5. R. E. Aamodt, Y. C. Lee, C. S. Liu and M. N. Rosenbluth, "Non1inear

Dynamics of Drift-Cyclotron Instability", Phys. Rev. Lett. 39., 1660

(1977).

6. R. E. Aamodt, Y. C. Lee, C. S. Liu, D. R. Nicholson, M. N. Rosen

bluth and B. I. Cohen, to be published.

7. R. C. Myer and A. Simon, to be published in Phys. Fluids; and R. C.

Myer, Ph.D. thesis, Univ. of Rochester (1980).

8. B. I. Cohen and N. Maron, "Simulation of Drift-Cone Modes", LLL

report UCRL-83260 (1979), to be published in Phys. Fluids.

9. R. C. Davidson, "Quasi-Linear Stabilization of Lower-Hybrid-Drift

Instability", Phys. Fluids 21_, 1375 0978).

10. J. D. Huba and K. Papadopoulos, "Nonlinear Stabilization of the

Lower-Hybrid-Drift Instability by Electron Resonance Broadening",

Phys. Fluids 21, 121 (1978),



- 26 -

11. S. P. Gary, "Wave-Particle Transport From Electrostatic Instabilities",

LASL Report CTR-6, submitted to Phys. Fluids.

12. D. Winske and P. C. Liewer, "Particle Simulation Studies of the Lower

Hybrid Drift Instability", Phys. Fluids 21_, 1017 (1978).

13- Yu-Jiuan Chen, B. I. Cohen and C. K. Birdsall, "Lower Hybrid Drift

Instability Simulations Using ES1 Hybrid Code", QPR, ERL, Univ. of Cal.,

Berkeley, July 1 - Dec. 31 (1979).

14. C. T. Dum and T. H. Dupree, "Nonlinear Stabilization of High-Frequency

Instabilities in a Magnetic Field", Phys. Fluids 13, 2064 (1970).


	Copyright notice 1980
	ERL-80-20

