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Abstract

This paper shows that a set of linear diophantine equations in non-

negative variables with nonnegative coefficients can be reduced to a single

equation with the same solution set in polynomial time. A weaker version

of the above statement is shown to be true when the coefficients are allowed

to be negative. Besides being polynomial-time bounded, the present aggrega

tion scheme differs from existing ones in that the final equation is in

variables that are not explicitly bounded and hence admits of a faster to

dynamic programming algorithm. We finally present three applications of the

aggregation technique of this paper: (i) it is proved that a certain type

of knapsack problem cannot have a polynomial time approximation algorithm

unless NP = P; (ii) an analog of Farkas' lemma for integer programming is

proved and (iii) it is shown that a decision problem involving integer

variables is NP-complete.
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MCS77-09906PA02ted ^ Natl0nal Science Foundation Grants ENG76-09936 and



POLYNOMIAL-TIME AGGREGATION OF INTEGER PROGRAMMING PROBLEMS

Section 1. Introduction

By the integer programming problem, we will mean the question of

feasibility of a set of simultaneous equations in nonnegative integers,

i.e., a question of the form:

Is there a solution x= (x^Xg,... ,x ) to

(1.1) (1.1a) I a. .x. = b. for i=l,2,...,m
j=l 1J J 1

(1.1b) x.. > 0 integer for j = l,2,...,n

where all data are integers.

In case all a., and bi are nonnegative in (1.1), we

present a polynomial-time algorithm for obtaining a single equation in n

variables that has the same set of nonnegative integer solutions as (1.1)

This is later shown to be extendable to integer programming problems with a

bounded feasible set. Since (1.1) is in MP (see e.g. Kannan and Monma [78])

and (1.2) below referred to as the knapsack problem throughout this paper

is WP-complete (Lueker [75]), it is clear that (1.1) can be polynomial-time

reduced to (1.2). But here, we present a stronger reduction—one that

preserves the set of solutions. As one of the consequences, certain conclu

sions are drawn about the existence of polynomial-time approximation

procedures for (1.2).

Is there asolution xezj to

(1.2) ?ax =bQ



where all data are positive integers. Bradley [71], Padberg [72] and Chvatal

and Hammer [77] have also dealt with aggregation. However, two qualifications

have always been attached to methods of aggregation: (i) the coefficients

of the "aggregated" equation may be very large in practice and (ii) it must

be assumed that there is a given bound on each component of any integral

solution vector for the given system.

The polynomial algorithm below establishes that "in theory" coefficients

of the aggregated equation can be kept small. As for the second qualifica

tion, it is now known that if an integer programming problem does not already

contain explicit bounds on the variables, they can be imposed so that the

new problem encoding is of length polynomially bounded in the length of the

encoding of the original problem and is feasible if and only if the original

problem was (see e.g. Kannan and Monma [78]). These bounds, however,

naturally curtail the set of all feasible solutions to the problem. If we

then restrict the aim of aggregation to maintaining feasibility as invariant

rather than maintaining the same set of feasible solutions, we show in

Section 3 that any given integer programming problem can be aggregated in

polynomial time to a problem of the form (1.2) (the knapsack problem). The

final problem has (n+1) variables where the original integer programming

problem had n variables. Further the final aggregated system obtained by

Bradley [71] etc. consists of a single linear diophantine equation in

nonnegative variables and inequalities giving upper bounds on the variables.

Our final system will contain just one equation in nonnegative integer

variables. Besides leading to an exact analog of Farkas" lemma for integer

programming (Section 5) the latter system (with no explicit bounds on the

variables) has an algorithm of lesser time-complexity as pointed in

Garfinkel and Nemhauser [72]. We elaborate on thier argument in Section 3.



Hirschberg and Wong [76] have conjectured that the n-variable knapsack

problem would have a polynomial-time algorithm when n is considered fixed.

It is likely that such an algorithm (if it existed) would be of great

practical value. The results of this paper show that if this conjecture

were true, then the stronger conjecture obtained by replacing the words

"knapsack problem" by "integer programming problem" would also be true.

The following notation will be used throughout.

For a matrix A of integers,

IIAll = maximum absolute value of any entry of A

A1 = the ith row of A
•Hi

A. = the i column of A

A. • or A. . is the entry in the i row and jth column of A
•j i, j

p-time = polynomial time

1 = 1 x n vector of all l's

Z (Z+) is the set of n vectors with (nonnegative) integer
components

R (K+) is the set of n vectors with (nonnegative) real components



Section 2. Polynomial-Time Aggregation of Integer Programming Problems

with Nonnegative Coefficients

In this section, we consider only integer programming problems with all

nonnegative coefficients. (In Section 3, we explain how this restriction

may be removed.) Theorem 2.1 states that we can "aggregate" these integer

programming problems efficiently. Earliest results on aggregation are

probably due to Matthews [1896]. He shows that given a system of two simul

taneous Diophantine equations whose variables are restricted to be nonnegative

and whose coefficients are nonnegative, there is an (easily obtainable)

single Diophantine equation whose set of nonnegative solutions is identical

to that of the given system. This can be used to aggregate m equations

efficiently to one using the divide and conquer technique by recursively

aggregating the first (j) equations and the last (y) equations and

then combining the two resulting equations. We shall give a more direct

method as proof of the following theorem.

Theorem 2.1. Let A and b be m*n and m*l matrices, respectively,

with all nonnegative integer entries where BAD and libII are nonzero.

Let X = 3nmflAD0bfl. Then

_ n r m .. . ^ m .,
{xez?: I I (A^VjA.. x. = I (A^Vjb.}

j=lli=l 1JJ J i=i n

= {xez": Ax =b} .

Proof. Denote the two sets of the theorem by T' and T, respectively.

Then it is clear that T' contains T. Suppose now that there is an x

in T1 that does not satisfy one of the equations of Ax =b. Let iQ be

the largest i for which A^x f br Since x is in T', we must have



m+1 , ,,m+llxl < fmA '̂ +a^-miibii
xm+l

S (m+l)Ilbll < (A-l)/(nOAQ) . (2.1)

Thus we have

0 < A^x < (X-l) Vi .

Therefore

lA^x-b-l <max{||b[|,X-l} = (X-l) . (2.2)

Since x is in T', we must have

m mH.Jw.1

i .e.,

I (X^'+X'KA'.x-b.) =0 ;
i=l 1

m 1,.1 .. u ^ ,m+l, m ni- IX^A'-x-b.) = X,,,T,( I A'-x-b.) . (2.3)
i=l n i=l n

By (2.2), the magnitude of the left hand side in the above equation is at

most

fA1(A-1) -Xm+1-X <Xm+1-l .
1*1

But X divides the left hand side of (2.3). Thus both sides of the

equation must be zero and hence,

m . .

I xV-x-b.) =0 . (2.4)
i=l n

By the definition of i'q, we have

10-1 1,.1 .. ., Jo .. . JoI X'(A'.x-b.) = -(Au-x-b. )XU (2.5)
i=l 1 ^

and the right hand side of this equation is nonzero. Thus the left hand



no
side is also nonzero and is a multiple of X . But an argument similar

to the one used to derive (2.4) shows that the magnitude of the left hand

side is at most A -1. Thus we arrive at a contradiction and must

have that x belongs to T. •

Since the sizes of (A '+A ) are all polynomially bounded, the

aggregated equation can be arrived at in polynomial-time.

Hence, we have

Theorem 2.2. Given A and b m*n and mxl nonzero matrices,

respectively, with nonnegative integral entries, we can find in polynomial

time, a vector u in Zm such that

{xezj: Ax =b} ={xez0.: (uA)-x =u-b}



Section 3. Aggregation of General Integer Programming Problems

to Knapsack Problems

The word aggregation is used here in a different sense than in the

previous section. There it meant "given a system of linear Diophantine

equations, find a single linear Diophantine equation which has the same set

of nonnegative solutions as the given system." In this section, the final

equation will be required to have a nonnegative solution if and only if the

initial system had one. However, it will not, in general, have the same

set of solutions as the given system.

We need the following result proved independently by various authors

(Kannan and Monma [78], Cook [76] and Borosh and Treybig [76]).

Theorem 3.1. There exists a polynomial p(-) such that for all

integral matrices A and b (of appropriate dimensions),

S(A,b) ={xez£: Ax=b}

is nonempty iff

S(A,b) n {x: Ilxll<2p(len9th of encoding of A,b)}

is nonempty.

We now prove the main result of the section.

Theorem 3.2. Let A and b bemxnandmxl all-integer matrices.

Then there exists a p-time computable lxn integral matrix u and integers

s and t such that

3x ez": Ax =b o 3x ez", yeZ+: ux+sy =t

and

ux +sy =t; xEz", yGZ+ => Ax =b



Proof. From Theorem 3.1, there exists a p-time computable integer B

such that

Thus,

3x € z": Ax = b o 3x € z": Ax = b; x. < B Vi .

3x e Z": Ax b o 3x GZ" y ez.: Ax = b; Y x.+y
+ + i=1 1

o 3(x,y) ezj+1:
'A 0" V

.y.

' b"

.nB.

= nB

We note that adding a nonzero multiple of an equation to another equation in

a linear system does not change the set of solutions. By adding suitable

multiples of the last equation to each of the others in the above system,

we can make all the coefficients of the system nonnegative. Of course this

process leaves the size of the encoding of the numbers bounded by a poly

nomial in the length of the input. Further, if any of the right hand side

constants is negative at this stage, the system is inconsistent and an

obviously inconsistent single equation may be returned as the aggregated

equation. If all the coefficients and the right hand constants are nonnega

tive, then Theorem 2.2 implies the current theorem. D

The main differences between aggregation schemes found in the litera

ture and Theorem 3.2 are

(1) In Theorem 3.2, the final equation can be written down in p-time.

(2) We do not reuqire that the set {xez": Ax= b} be bounded.

(3) Whereas in known aggregation schemes, the final system is of

the form:
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n

.1 a.x. =
1=1 n n b0

x. > 0 integers Vi,

and x. < B Vi

Our final system does not contain explicit upper bounds on the variables x.

This gives a computational advantage as explained below.

It is not difficult to see that the following result about optimiza

tion problems follows from Theorem 3.1.

Corollary 3.3. There exists a polynomial p(«)» such that for mxn,

mxl and lxn all integer matrices A, b and c,

maximum c«x = maximum c»x

such that Ax = b such that Ax = b

xGZj x6zj; x. <2P(£)

where I = length of encoding of A, b and c.

Thus using the proof of Theorem 3.2, the integer programming optimiza

tion problem can be reduced to the knapsack optimization problem

n

(3.1) maximize Y c.x.
i=l 1 1
n

subject to (3.1a) Y a.x. = bn
i=i 1 1 "

(3.1b) x. > 0 integers

Whereas, existing aggregation schemes would give rise to
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n

(3.2) maximize £ ex.

n

subject to (3.2a) J a^x. = bQ

(3.2b) x. > 0 integers

and (3.2c) xi < B Vi

where all data are nonnegative integers. We elaborate here on a remark in

Garfinkel and Nemhauser [72] that points out why (3.1) is easier to solve than (3.2)

For any k < n positive integer and y nonnegative integer define

k

fjy) = maximum value of Y c.x.
K i=l 1 1

k

subject to Y a.x. = y
i=l n 1

and

x.j >0 integers

k

fj^(y) =maximum value of J c.x.

k

subject to Y a.x. = y
i=l 1 n

B > x^ >0 integers

where the maximum is taken to be -« if the constraints are infeasible.

Then obviously to solve (3.1), we can use the dynamic programming

recursion:

fk+1(y) -"«x{fk(y),fk+1(y-ak+1) +ck+1} .

Thus if f is computed in the order

f1(0),f1(l),...,f1(b),f2(0),...,f (b),...
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since the computation of each fk(y) requires 0(1) operations, fn(b),

the solution value can be computed in 0(n-b) operations. However, a

similar recursion does not apply to fk(y). One is forced to use some

other dynamic programming equation and the usual one is

fk+l(y) =y "x R{fk^-ak+lW +ck+lW •Ak^_i -U, I,...,D

Each f£(y) thus requires 0(B) operations and hence f^(b) takes O(nbB)

steps instead of 0(nb) steps.
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Section 4. Aggregation and Approximative Algorithms

The following theorem due to Luekar follows as a corollary to

Theorem 3.2.

Theorem 4.1. The knapsack problem (1.2) is WP-complete.

Proof. From Karp [75] we know that the integer programming problem (1.1)

is WP-complete. Theorem 3.2 gives a polynomial-time reduction of this

problem to (1.2). •

The fact that the set of solutions is preserved in the reduction of

Theorem 2.2 gives us a stronger result. It establishes that unless MP = P,

there is no polynomial-time algorithm that finds even an approximate solution

to the optimization problem (3.1). To make this more precise, we briefly

define various types of approximation algorithms. These definitions have

been widely used in the literature (Sahni and Gonsalves [76], Garey and

Johnson [76], Ibarra and Kim [75]).

By an optimization problem here, we will mean a problem of the form

maximize ex
(4.1)

subject to x G s

where c-x is a vector dot product and s is a set suitably defined,

c-x is called the objective function.

Definition 4.1. For e > 0, an e-approximation algorithm for the

problem is an algorithm that produces a solution x with objective function

value P such that if the optimal objective function value P* is nonzero,

then

<4-2> 1^1 <_ e•
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Definition 4.2. An approximation scheme for the problem is an

algorithm which given an e >0 and an instance of the problem produces a

solution x with value P satisfying (4.2).

Definition 4.3. A p-time approximation scheme (PAS) is an approxima

tion scheme whose running time is bounded by a function f(-sA) where l

is the length of the encoding of the instance presented such that f(—,£)
60

is a polynomial in l for each fixed value eQ of e.

Definition 4.4. A fully-polynomial approximation scheme (FPAS) is a

PAS whose running time is bounded by a polynomial in I and 1/e.

Ibarra and Kim [75] have given a FPAS for solving the problem (4.3)

below where xi are further constrained to be 0 or 1. As Lawler [79]

points out, this can be extended to a FPAS for (4.3):

n

(4.3) maximize Y ex.
j=l J J

n

subject to I a.x. < bn; xG z"
j=l J J " u +

where c., a. and bQ are nonnegative integers. In spite of the simi

larity of this problem to (3.1), here we show that replacing the inequality

by an equation makes the problem more difficult in the following sense:

Theorem 4.2. (3.1) has a p-time e-approximation algorithm for at

least one fixed e > 0 if and only if MP = P.

Proof. If MP = P, it is clear that (1.1) is in P. Thus an exact

solution of (3.1) may be found in polynomial time by solving polynomially

many instances of (1.1).
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Conversely, Theorem 2.2 implies that (3.1) has a p-time e-approximation

algorithm iff the integer programming optimization problem (4.4) below with

nonnegative coefficients has a p-time e-approximation algorithm

(4.4) maximize c-x

subject to Ax = b

XGZ?

We use a proof technique of Sahni and Gonsalves to show that (4.4) has a

p-time e-approximation algorithm for some e > 0 iff MP = P,

It is known that the following problem known as the subset sum problem

is WP-complete:

(4.5) Given (n+1) positive integers w1,w2,...,wn and wn+1, does

there exist an I c {l,2,...,n} such that

iGl 1 n+1

Let k be a positive integer and consider

(4.6) maximize -ky+z
n

subject to jw.x.+y =wn+1

x1 +xi = l

z = 1

x.j, X;j, y, z >0 integers.

If the answer to (4.5) is yes, then the optimal solution value of (4.6)

is 1. Otherwise, the optimal solution value is at most (1-k). Suppose

(4.4) has a p-time e-approximation algorithm for some fixed e > 0. Then

given an instance of (4.5), we do the following:
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If n < 2e, solve (4.5) by enumeration. Otherwise,

write down the corresponding instance of (4.6) with

k = n and noting that all coefficients are nonnegative,

apply the e-approximation algorithm to get a solution.

Then it is clear that the answer to the instance of (4.5) is Yes iff the

e-approximate solution is (1-S-) or greater.

We note that since k = n, (4.6) can be obtained from (4.5) in

p-time and thus we have proved the theorem. D
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Section 5. Analog of Farkas' Lemma for Bounded Integer Programming

Theorem 5.1 (Farkas1 Lemma). For any mxn and mxl rational matrices

A and b, precisely one of the following alternatives holds:

(5.1a) 3x such that Ax = b; x > 0

(5.1b) 3u G z"1 such that (uA) >0 and ub < 0.

The usual statement of Farkas* Lemma (see, for example, Gale [60])

does not assume rationality of A and b and does not assert that u is

in z"\ It has been stated here in the form most useful to us. Noting

that (5.1b) is equivalent to (5.2b) below, we rewrite the theorem as:

Theorem 5.2 (Farkas1 Lemma restated). For any mxn and mxl rational

matrices A and b, precisely one of the following alternatives holds:

(5.2a) 3x: Ax = b; x > 0

(5.2b) 3u GZm: (uA)x = ub; x > 0 has no solution x.

An analogous result has been stated as a classical result in Edmonds

and Giles [77]. We restate this theorem in a form similar to Theorem 5.2.

Theorem 5.3. For any mxn and mxl rational matrices A and b,

precisely one of the following alternatives holds:

(5.3a) 3x: Ax = b; x G Zn

(5.3b) 3u GZm: (uA)x = ub; xG Zn has no solution x.

We prove the following theorem here.
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Theorem 5.4. For any mxn and mxl rational matrices A and b such

that {x£R+: Ax=b} is bounded, precisely one of the following alternatives

holds:

(5.4a) 3x: Ax =b; xgzJ
(5.4b) 3u GZm: (uA)x =ub; xGlJ has no solution x.

Before proving the theorem, we give an example to show that the hypo

thesis "{xGR": Ax=b} is bounded" is essential. Consider

A =

b =

r 2-2-1 0 1

-2 2 0-1

3 1

-3

For any solution xG Z+ to the system, we must have x3 +x- = 0 (by

adding the equations), i.e., we must have x3 = x« = 0. But since 2 does

not divide 3, no solution is possible. Thus (5.4a) fails. Suppose the

alternative (5.4b) holds for u = (u, u«). By dividing through, if neces

sary, we can assume that u, and u2 are relatively prime. Thus either

U-, or u« is not divisible by 2. We will only treat the case when 2 does

not divide u,. The other case is similar. 2 >f u, implies that

±2(u-.-u2) and u-. are relatively prime. Further, u, and u2 are

nonzero, since each individual equation has a solution in nonnegative

integers. If u-. = u2, then x=0 solves (uA)x = ub. Thus, u-j f u2-

Thus, both U-, and ±2(u-.-u2) are nonzero. uA therefore has two nonzero

components of opposite signs that are relatively prime. By Proposition 5.5

below, (uA)x =1 has a solution x in Z+. Further, since one of

±2(u-.-u2) is negative, (uA)x = -M has a solution x in Z+ for arbi

trarily large positive M. Thus (uA)x = ub has a solution x in Z+.
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Note that here {x: Ax=b; x>0} is unbounded.

Proposition 5.5. For any two nonzero integers r and s with

GCD(r,s) = 1 and rs < 0, there exist nonnegative integers p and q

such that pr+ qs = 1.

Proof. From basic arithmetic, there are integers p and q such

that pr + qs = 1. If p and q are both nonzero and of different signs,

then pr and qs are both of the same sign and each at least 1 in magni

tude. Thus, we cannot have this case. Hence for any p, q such that

pr + qs = 1, adding a suitable multiple of |s| to p and the same multiple of

|r| to q establishes the proposition.

Proof of Theorem 5.4. We multiply each equation in Ax = b by an

integer, if necessary, to make all data integral. It is clear that both

(5.4a) and (5.4b) cannot hold. We assume that (5.4a) does not hold and prove

(5.4b) holds. If {x: Ax=b; x>0} is empty, (5.2b) and hence (5.4b) hold.

Thus, assume that this set is nonempty. Then the boundedness hypothesis of

the theorem implies that

$x: Ax = 0; x > 0; x f 0.

Equivalently,
n

$x: Ax = 0; x > 0; Y x. = 1.
i=l 1

Using Farkas' lemma (Theorem 5.1) with the (m+l)xn matrix A obtained by

augmenting A with an (m+l)st row of l's we have

3u' GZ"*1: G'A >0
and

°m+l <° •
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Thus if u' denotes the vector of the first m components of u', then

u'A > 0. Hence, there exists a positive integer k such that

Clearly,

{xGf^: Ax=b}

A^ku'A > 0 Vi

={xGf^: Ax=b; ku'Ax=ku'-b}

={x€Rj: (A1+ku'A).x=b.+ ku'-b for i=l,2,

and ku'Ax= ku'«b} .

.,m

Noting that the last equation is implied by the first m and that the

above set is nonempty,

{xGZ^: Ax=b} ={xGZ£: (Ai+ku,A)-x= b. +ku1-b Vi}

where all coefficients are nonnegative in the last system. Note that the

validity of (5.4a) and (5.4b) are invariant under this change. Thus, A

and b can be assumed to be nonnegative integral matrices and hence

Theorem 2.1 implies Theorem 5.4. D

We now contrast the three apparently similar Theorems 5.2, 5.3, and 5.4,

In the second theorem given A and b we can assume that A is of full

row rank and that A and b are integral without loss of generality.

Using the results of Kannan and Bachem [79] we can compute in polynomial-

time unimodular matrices (i.e., matrices with integral entries and a deter

minant of ±1) U and K such that UAK = S(A) has the form:

* 0

0 *

0 0

. 0

0*0

0
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where * is a nonzero entry. By the unimodularity of K,

3x G Zn such that Ax = b

o 3x GZn such that S(A)x = Ub

«*• each nonzero diagonal entry of S(A) divides the entry of Ub

in its row.

Thus for any given integral A and b, (5.3a) fails

o 3i such that (SfA))^. K (Ub).

i.e., (StA))1^ = (Ub)1 has no solution xGZn, i.e.,

(UnAK)x = Un-b has no solution x in Zn

* (U^x = U^b has no solution x in Zn
(since K is unimodular)

Thus, given A and b, we can compute S(A), U and K in polynomial time,

check if (5.3a) holds and, if not, return u = U1 above such that the other

alternative of the theorem holds.

In Theorem 5.2, for any fixed u, the validity of (5.2b) can be easily

checked. It is valid if and only if at least one of (uA)19(uA)2,...,(uA)n

has the same sign as (ub). Recently, Khacian [79] gave a polynomial-time

algorithm to solve linear programming which can be used to decide which of

the alternatives of Theorem 5.2 hold.

In Theorem 5.4, even for a fixed u, the decision as to whether (5.4b)

is valid is WP-complete (Lueker [75]). We note that when the given A and

b have all nonnegative entries a u can be computed in polynomial time

using Theorem 2.2 such that one of the alternatives (5.4a) or (5.4b) must

hold for this A, b and u. However, this of course does not lead to a

polynomial-time bounded algorithm for deciding which of the alternatives



holds in Theorem 5.4 because of the fact that there is no known good

algorithm to decide (5.4b) even for a fixed u.
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Section 6. An WP-Completeness Result Using Aggregation

As a final application of polynomial-time aggregation, we wish to

establish that question (6.1) below is WP-complete.

(6.1) Do there exist integers x,,x2,...,x such that

n n

I a.x, = b and I \x.\ < k
i=l 1 ] i=l 1 "

where a^, b and k are given integers.

Note that this would prove that the optimization problem (6.2) has a poly

nomial-time algorithm if and only if P = WP.

(6.2) min J |x.|

n

subject to Y a.x. = b
i=l 1 1

x.. integers

Theorem 6.1. Question (6.1) is WP-complete.

Before giving the formal proof of the theorem, we give an idea of the

proof. We wish to reduce the knapsack problem (1.2) (repeated here for

convenience as (6.3)) to (6.1).

(6.3) Do there exist x.,,x2,...,xn £0 integers such that Ia.x. =b?

where a., and b are given nonnegative integers. Consider the system

(6-4) a1x1 =y. for i=l,2,...,n
n

.1 y, - b
i=l ^

n

I \y,\ " b; x., y. integers
i=l ' '
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If (6.3) has a feasible solution, then with y. =a^, (6.4) would have

a feasible solution, because a.. £ 0| x^ >0 => y. ^ 0 => y^ - |yi | Vi.

Conversely, suppose (6.4) had a feasbile solution. Then,

i=l 1 iiy^O i:y.<0

i=l Ky^O 1 1:y.<0

Thus the second sum must be zero. Hence all y^ are nonnegative, and

therefore so are the x^. Thus the x. are afeasible solution to (6.3).

The idea of the proof of Theorem 6.1 is to aggregate in polynomial-time the

first (n+1) equations of (6.4) to get a form like (6.1). However in (6.4)

the last equation involves only the absolute values of the y.'s whereas in

(6.1) we take the sum of the absolute values of all variables. This and

certain other details are taken care of in the implicit aggregation of the

proof that follows.

Proof of Theorem 6.1. The following lemma establishes the theorem.

Lemma 6.2. A given instance of (6.3) has a Yes answer iff (6.5)

below has a Yes answer.

(6.5) Do there exist x1,x2,...,x2n integers such that

2n 0
I|Xil<s2

i=l n

and

(6.6) a1(l+Xs)x1 +a2(l+X2s)x2 +••• +an(l+Xns)xn +Xxn+] +X2xn+2
+ ••- +Xnx2n =b
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where a. and b are as in the given instance of (6.3) and

s = b+1 and X = 3ns3b +b+1 .

Proof. If the answer to (6.3) is Yes, let x-i,x2,...,x >0 integers
n

satisfy J a.x. = b. Put x +. = -sa.x. for i= l,2,...,n. Then,

2n «
I |x_. | < b+ bs < s

i=l ^ "

and equation (6.6) is satisfied. Thus the answer to (6.5) is Yes. We now

set out to prove the converse.
2n 2

Suppose for integers x,,x«,...,x«n, I |x.| < s and (6.6) isi c a\ i=1 i -

satisfied. Rewrite (6.6) as

(6,7) a]Xl +a2x2+ •- +Vn +X(salxl+Xn+1) +x2(sa2x2+xn+2) +' ** ^"^Vn^n5
= b .

Claim 6.3. sa^. +xn+. =0 Vi, 1 <i <n

Proof. Suppose not. Let j be the largest value of i such that

the equation is violated. Then

hx1 +a2x2 +•" +Vn +X<salx1+Xn+1) +x2(sa2x2+xn+2> +̂ <saj-lxj-l+Vi-l>
Yi +Vi

'j-rj-l'An+j

2 |XJ(saix,+xn..)|-|b|

But |xi| < s Vi. Substituting this into the above inequality, we get

(using max a. < b)

2b + [sbs2+s2][X+X2 +—+X0'"1] >XJ*-bns

i.e.,

b+ns2b+2s3b(^J-) >xJ
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i .e.,

(X-l)ns2b +2s3bXJ* +b(X-l) >XJ'(X-1)
i.e.,

b(X-l) , X-12. , 9c3. K , ,
> * f + —T-ns b + 2sb>x-l .
XJ XJ

Since j > 1, this implies that

b+ns2b +2s3b+l >X =» b+3ns3b >X

contradicting the definition of X. Hence Claim 6.3 follows. D

Claim 6.4. {x..: i=l,2,...,n} and hence {xi: i=n+1,. ..,2n} are

of the same sign.

Proof. By (6.7) and Claim 6.3, a-jxi +'*'+ anxn =b. Suppose (x.}"=1
are not all of the same sign. Then

I kx-l > b+1 .
1»1 1 n

Thus

•I ii

I |xn+i| = I s|a.x.| (by Claim 6.3)
i=l n+1 i=l 1 n

> sb + s

2
= s

2n 2
Thus I |x. | > s +1, a contradiction. D

Since {x4}n, are all of the same sign and a^, + •• •+a xM = b, we
i l-l J 11 n n

must have x.. > 0 Vi. Hence Theorem 6.10 is proved. D
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