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ABSTRACT

Power systems in steady-state are described by a set of nonlinear

equations known as the power flow equations. The system has to be op

erated within the operating limits of the equipments. This is described

by a set of inequality constraints, known as the security constraints.

Explicit limits on the amount of power generation and load demand within

which the system can be operated with all the security constraints

satisfied are obtained. The problem is approached as one of determining

the existence of solutions to the power flow equations in the region

defined by the security constraints. Leray-Schauder fixed-point theorem

and concepts from the degree of mapping are used in the derivation.
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I. Introduction

The steady-state operation of an electric power supply system

requires that the power supply and the load demand must be balanced.

This is described by a set of nonlinear equations known as the power

flow or load flow equations [1-3]. Furthermore, the system has to be

operated within the designed limits of the equipments. This is

described by a set of inequality constraints, sometimes referred to as

tne security constraints. The basic problem in steady-state analysis

of a power system is to determine for a given system and a set of load

demand and available generation whether the system can be operated

within the security constraints. The conventional approach to this

problem is to solve the power flow equations numerically and then check

whether security constraints are satisfied [4]. Galiana [5] is the

first one to investigate analytically the properties of the image of

the power flow map. The analytic approach is of great current interest

[14,15]. We propose to approach this problem as one of determining the

existence of a solution to the power flow equations in the region defined

by the security constraints.

The formulation of the problem is presented in Section II and the

results are presented in Section III. We have obtained.explicit limits

on power generation and load demand to guarantee that the system can be

operated with all the security constraints satisfied. The approach that

we have taken to tackle the problem is to divide it into two steps. We

first consider two simpler problems using the approximate formulation

of decoupled power flow equations. The results that we have obtained

for them are then used for solving the original problem. The analytic

tools that we have utilized for the study are the Leray-Schauder fixed-

point theorem and concepts from the degree of mapping [6]. For ease of
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reference a summary of the definition of the degree and some of its

properties that we have used are included in the Appendix. The degree

theory has previously been applied successfully to the investigation

of the existence-of-solution problems in nonlinear circuit theory

[7-9].

Because the limits on power injection that we have obtained for

the power flow equations to have secure solutions are explicitly

dependent on network parameters, our results can be applied to various

steady-state power system analysis problems that deal with line and

generator removals, such as security assessment and VAR allocation.

The security assessment problem is to determine for a list of possible

disturbances, each of which will result in the removal of a line of

a generator, whether the system can be operated within security con

straints under each of the disturbances. The VAR allocation problem

is to determine how to allocate the reactive power sources (synchronous

condensers, shunt capacitors, and static VAR generators) so that for

a list of possible disturbances the voltage magnitudes at all buses

can always be maintained within desired range.

The proofs are included in the text because we believe that they

enhance the understanding of the results and they also suggest where

possible improvements can be made. Standard notations are used in the

paper: Qk denotes the k-th component of the vector £, Y,. denotes the

ki-th element of the matrix Y, V<VM means Vi <, V^ for all i, A:=B
means that A is defined by the expression B, and B*D denotes the

Euclidean norm.
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II. Formulation

1. Power Flow Equations

The branches of a power network represent transmission lines,

transformers, etc., which are modeled as linear time-invariant RLC

elements. The nodes of the network other than the ground node are

called buses. They correspond to generation stations and load-center

substations. For steady-state analysis the network is considered as

in sinusoidal steady-state.

Consider a power network with N+l buses. Let [Y] denote the node

(bus) admittance matrix of the network and Y.. = Gj. + jB. .be its

ki-th element. Using the standard models of transmission lines and

transformers [3, p. 189 and p. 122], we have"**

Fact 1 Gkk > 0, Bkk < 0; Gki <0 and Bki >. 0 for i f k.

lBkkl^0Bkiand6kk^0lGkil-
iYk i^k

Let Ek denote the bus voltage phasor of bus k and Sk = Pk + jQk

denote the injected complex power at bus k. Let E and £ be the vectors

of complex voltages and power injections, respectively. For convenience,

we introduce a diagonal matrix [E] = diag{E-j, E2*...»EN}. Then we have

S* = [E*][Y]E (1)

where superscript * denotes complex conjugate. There are three types

+
In our model, no load is represented as a shunt impedance.
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of buses:

(i) Slack bus: a bus whose voltage magnitude

and phase angle are specified,

(ii) PQ bus: a bus where the injected real and

reactive power are specified,

(iii) PV bus: a bus where the injected real power

and the voltage magnitude are specified.

Normally PQ buses are load buses and PV buses and the slack bus

are generator buses. We let subscript 0 correspond to the slack bus,

subscripts {1,2,...Nq} correspond to PQ buses, and subscripts {NQ+1,...,N}

correspond to PV buses. Let Ek =Vkejek and 9.. =ek -e.. We may
express (1) as

N

VkV. (Gkisin 6ki - Bk.cos 9ki) =Qk k=l,2,...NQ (2)
P
Li^O Vi (GkiC°S e" +BkiSl" 9|d) =Pk K=1'2'-"N (3)

T Twhere V = (V1,V2,...VN ) and £ =(e^ e2,...eN) are the unknown

variables. Equations (2) and (3) are known as the power flow equations

[1-3].

2. Decoupled Power Flow

Suppose that we make the following simplifying assumptions:

(SA1). The line resistances are negligible, i.e., Gk- = 0.

(SA2). The phase angles across the branches 8k^ = 9k - e. are small
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so that the second and higher order terms in the sin e,. and cos e
ki °ki

series are negligible, i.e., cos 9., = 1, sin e, .* e, .
ki ki kv

Then the power flow equations (2)(3) become

Qk =Qk(V):=-VkJoBkiV. k=l,2,...NQ (4)

Pk -Pk(L fi): =Vk ^ Bk. V. (8k -9.) k=l,2,...N (5)

Equations (4) and (5) may be written in a compact matrix form

-[V] {[B] V+ [B°l V°} »£ (6)

[A(.V)]9.= P_ (7)

where r.(v0, v^l ,...v/, 2=(Q,....^ )T, P=̂ ,P2...PN)T,
the ki-th element of [B] is Bk1, k, 1€{1,2,...NQ} and the elements
of [B°] are Bk1, k€ {1,...NQ}, i€{0,NQ+1 ,...N}.
[A(V)] is an NxN matrix whose elements are functions of V. Its

diagonal and off-diagonal elements are

[A(^kk "VjQBkiV M.2....N (8)
i>k

CACV)]k. =-VkV.Bki M1 (9)
k,i=l,2,...N

Equations (6) and (7) are known as the decoupled power flow

equations [10,11].
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3. Security Constraints

Operating limits are imposed on the voltage magnitudes of PQ

buses, i.e.,

Vm^V<_VM (10)

Let us denote the region inside the limits by R , i.e.,

K: ={H 1 ±I^IM> (ID

Thermal considerations limit the amount of current flowing

through transmission lines and transformers. The current I. througl

branch j connecting bus k and bus i may be approximated as follows:

V-Yki (£k-Ei>
»-JBki (Vkejek - v.ejei )

V.

• -jBkiV T^cos 9ki +Jsin 9kT "tf
- -JBkiVkeJ6i (jeM)

v1 tWhere we used the approximations cosek.=l and it— = 1:

4.

This is true when per-unit system is used.
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Hence

Ujl HBki||Vk||ek-ei| 02)

Therefore the line flow constraints may be expressed in terms of

^k "" ®i' 1•e•»

-6 < 9 - 9 < & Whenever j is a branch /,-x
~ j — k i— j connecting buses k and i u '

where 6. <|- . Or we may use the incidence matrix Aof the network

and write 03) as

-£<_AT9 < <s (14)

Let us denote the corresponding region in 9_ by R •

V ={il -£lATlli> (15)

We are going to use the approximate expression (14) for line flow

constraints even when the full-fledged power flow equations are used.

The justification for this is that unlike the "hard" constraints on

power generation due to equipment limitation that will be introduced

shortly, the line flow constraints are "soft" constraints for which

approximation is usually adequate.

Physical limitation imposes constraints on the amount of real

and reactive power that can be generated at PV buses, as well as the

slack bus. The real power constraints on PV buses are
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Pkm£Pk£PkM k=NQ+l,...N (16)

The real power generation from the slack bus is a function of U, e)

so the constraints are of the form

P0m±P0(I»!)iPQM 07)

Let us denote the region in which (17) is satisfied to be

V • Ul.eJI P0m i PqM iP()M} (18)

N

Under the assumption (SA1), p = - £ p independent of (V,9), (17)u i=1 i

merely imposes aconstraint on Pk, k=l,2,...NQ. The reactive power

generation at the slack bus or a PV bus k is

Qk(V,i) =iZ(j VkV. (Gk.sin 9k. -Bk1cos efe1) (19)

k=0,NQ+l,...N

The reactive power constraints may be expressed as

qk -% (I»i) -qk K=0,NQ+1,.. .N (20)

Let us denote the region in which (20) is satisfied as R

Rq: =UV,!)I qk <. Qk(V_,9.) iqk> k=0,NQ+l,...N} (21)

Under the assumptions (SA1)(SA2) we can approximate the reactive power

q
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(19.) by

N

\W ="Vk J0BkiVi k=0,NQ+l,...N (22)

The corresponding constraints (20) become

<3k 1 qk(D £ qk k=0,NQ+l,.. .N (23)

Note that eq. (23) is aset of linear constraints on V= (V1s...VM )T,
Qbecause Vk, k=0, NQ+1,...N of the PV buses are known. Let us denote

the region in V-space for which (23) is satisfied to be R'.
q

Rq- ={¥-l ^k i% tt) i^- k=0' NQ+1,...N} (24)

We call the constraints (10) (14) (17) and (20) the security con

straints, and the set in (V^eJ-space

R: -(Rv xRQ) ORp ORq

the security region. If the approximate expression for the reactive

power constraints (23) is used, and the slack bus generation con=

straints are satisfied, then the security region becomes

R' :=(Rv nR'q) xRe

-10-



4. Problem Formulation

The steady^state analysis problem is to determine for a given set

of load demand and generation pattern, can the system be operated so

that all the equipments are loaded within their operating limits.

In terms of the power flow model this problem may be stated as follows:

(P) Given a set of power injections {P_9 £), determine whether

there exists a solution to the power flow equations (2) - (3)

that lies in the security region R.

We shall first consider the simpler model of the decoupled power

flow equations. Using this model, because of the decoupling of Q-V

and P-9 in equations (6) - (7), we may split the problem into two,

namely:

(PI) Given a set of reactive power injection Q, determine whether

there exists a solution V_to eq. (6) that lies in R n R' .

(P2) Suppose that the answer to (PI) is affirmative and given a set

of real power injection P^, determine whether there exists a

solution 9 to eq. 7 that lies in Rn.
9

We are going to present sufficient conditions on £and P^ to

guarantee the existence of solution to (6) and (7) in R n r' and R ,
v q 9

respectively. We then use the result to solve (P).
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III. Existence Theorems

1. Secure Solution of Decoupled QV Equations

Consider Problem (PI), i.e., to determine the existence of a

solution V_ to

- [V] {[B] V_ + [B°]Y°} = £ (25)

in Rvnft'te.,vfl<V< v[\ and £ <cJl(v) <qM. We make two
assumptions on the power system and its security constraints.

Assumption (Al): [B] Vm >_[B] VM

Assumption (A2): For any k such that

([B]im)k =([B]v\

there exists a j such that B. . f 0 and

imf). > (LBlf). (26)

Remark 1. Consider the special case where the range of voltage

magnitude is the same at all buses, i.e., Vk -Vkm =a>0, for all k,

The components of [B] (V_ - r1) in this case are a times the negative

of the row sums of [B], which are nonpositive by Fact 1, hence assump

tion (Al) is satisfied. Moreover ([B]VM)k =([B]Vm)k if and only if
the PQ bus k is not connected to any PV bus. Thus assumption (A2)

implies, in this case, that for any PQ bus k that is not connected to
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a PV bus there is a neighboring bus j that does. If, however,

assumption (A2) is not satisfied, we may use other alternative

assumption (A2)'"or (A2)", which will be presented after the proof

of Theorem 1. (Remark 2).

Theorem 1 (Existence of Secure Solution to Decoupled QV Equation).

Suppose that the assumptions (Al) and (A2) are satisfied. If

the reactive power injection Qk at any PQ bus k satisfies the follow

ing condition

(CI) Qk(Vm) lQklQk(VM) k=l,2,...NQ.

and the reactive power limits at any PV bus j satisfies the following

condition

(C2) q-jO/JVq/ and q.m <_ q.^), j=0, NQ+1,. ..N.

then the decoupled reactive power flow equation (6) has a solution

V^ in the secure region ^ n R\

Proof: We first claim that for any V/=RV, (C2) implies V_e R\

Note that Bk1 ^0(Fact 1) and Vk, k€{0,NQ+l ,...N}, are fixed, so

for any V=(YlfV2...VN )T such that V.m <_ V. £V.M, ie{!,...NQ},
we have

qkCvf) i.qkCD iqk(Im), k=o,NQ+i,...N (27)
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(C2) and (27) imply that V^e r* •Hence, in this case, Ry O R' *R.

The problem is then tackled by the application of

Leray-Schauder fixed-point theorem [6, p. 162]. Let C be an open and
n n

bounded set in IR containing the origin and f : C -»- 1R be a con

tinuous function. If f (x) f xx for X > 1 and x on the boundary of

C (x e ac), then f_ has a fixed point x_*, f(x_*) = x_*, in the closure

of C (x* € C).

First we rewrite eq. (6) as

V=[B]-1 {-[V]-^- [B°]r> (28)

Note that [B] is irreducibly diagonally dominant, hence nonsingular

interest R..
Vm +vM

*. : = 1 - V_*. In terms of x, eq. (28) becomes

[6, pp.48-49]. In order to have the set of interest RXI containing

the origin, let us shift the origin to V* = "" ~ and set

x=f(x) =[B]"1 {-[x+V*]"1 £ -[B°] V°> -V* (29)

and the constraint set R becomes

v"1- VM VM-Vm
C = { x | < x <=-^ } (30)

Note that x6C iff V_e Ry where x= V_ - V*.
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The condition f_ (x_) t x x_ can be expressed as

X l (x) + x (x) / 0 (31)

where ek (x) = ([B]x)k (32)

Yk 00 =C[B]i*)k +([B°]nk - (xk +V^r1 Qk (33)

Clearly

X6k + vk t 0 for x >1

iff (x-l)Bk + (sk +yk) f 0 forx>l

iff \ (3k +Yk) l 0 but excluding &k =Yk =0

since (X-l) > 0.

We now claim that condition (CI), together with assumptions (Al)

and (A2), implies that for any point x_ on the boundary of C there

exists a k such that

ek(x){Bk(x) +Yk(x)> >_0 and ek(x) t 0.

The boundary of C is the union of the boundary defined by each
+ v M w mxk. Let 3Ck and 3Ck be the boundary of C defined by xk = k ~ vk

V ™ - v M ?and xk - k k respectively.
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v.M - v.m
Consider any point xe ac*. We have x.« <-J ^— for all j

Also recall that Bkk <0 and B.. >0 for j f k. Thus

6k (x) = ([B]x)k

NQ

NQ V.M - V.m
< I Bk, H J-)

j=! KJ 2

VM - Vm
» ([B] )k <0 (34)

The last inequality is due to assumption (Al). Moreover,

VM - Vm
\ (x) +Yk (x) < ([B] )k +Yk (x)

=([B] VM+ [B°] V°)k +\\
Vk

=\ <-Qk (VM) +Qk> <0 (35)
Vk

The last inequality is due to condition (CI).

Similarly for any point x € 3Ck", we have

Vm - vM
6k (x) >([B] = —)k >0 (36)

and
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vm - vM
0k (x) + Yk (x) > ([B] )k + Y|< (x)

Now if for this k

-4j- <-Qk (vm) +Qk> >0 (37)
k

([B] V\ >([B] v\ (38)

then on 3Ck we have 3k (3k + Yk) >0 and ek f 0. Our claim is thus

established. However, if for this k

([B] Vm)k =([B] y\ (39)

V.M - V.m
Then Vx e ac consider a j for which B. . f 0, either x. < -^ ^—

K KJ J p

v M - V m
then 3. (x) < 0 or x. = -J ^— , in this case we have

N Jo
2

3k (x) = ([B] x)k = ([B] = =- )k =0 (40)
VM . Vm

But in this case x6 ac.+ for all jsuch that B,. f 0. Assumption (A2)
guarantees that for one of these j's, 0. (x) < 0. Since x e 3C.+,

j j

3- (3- + Yj) >0. Therefore, our claim, though is not true for that k
•"• A A.

at x> still holds for this j at x. Similarly for the case x_ e ack".

The proof is thus completed. h

Remark 2. It is clear from the proof that assumption (A2) can be

replaced by either one of the following:
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(A2)': For any k such that

([B] V\ =([B] vf1)

the condition (c) is replaced by

Qk (Vm) <Qk <Qk (VM)

(A2)": For any k such that

l[B] Vm)k= ([B] v\

there exists a j such that Bj. f 0 and

Qj (Im) <Qj <Qj (VM)

At this juncture we would like to present sufficient conditions

under which the Jacobian of the decoupled reactive power flow map will

have a positive determinant. This will be used later in Sec. III-3.

Assumption (A3): The power network is connected.

Assumption (A4): 2Vk > V. i,k = 1,2,... ,n.
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Assumption (A5):

\ (VVk^ VVim for 1=1 NQ and *«> >. -(i-J^W^
+

and the strict inequality holds for at least one k.T

Fact 2 If assumptions (A3)-(A5) hold, then the Jacobian Qg (V) of

the decoupled reactive power flow map g (•) is nonsingular for all _V

in Ry. Furthermore, det qg. (V) >0 .VV e Ry.

Proof: From the definition of Qk (V) in eq (4), we have

[DQ (V)]kk =-2BkkVk - jo BkiV., k=l,2,...,NQ (41)
ij*k

[DQ (V)]ki =-BkiVk, i=l,2,...,NQ, i>k (42)

Assumption (A3) implies that D(£ is irreducible [6, pp 46-47].

Consider

N NQ

^iVkl -j0lBkivil -^ l8kivkl («*>
i>k i^k

* N
I B.. denotes B. + I B. .

i=0,^+l K1 K0 i=^+l kl
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N

Using Fact 1, |Bkk| > £ Bki, we have

N NQ
^ IWkl+ X Bkivk - X BMvk - I Bkivii-u i-i i=u /45x

i7k iYk ift ^D;

N m NQ N#m . / r n \„m -*> (-Bkk)V'^+ ( I Bfc1)Vj- I Bk.Vk- I Bk.V.
KK K i=0,Nn+l K1 K i=l K1 K i=0,Nn+l K1 1

4 ift g
(46)

="¥ {VVk=Vk;Vi=Vi for 1=1,...,NQ and ift)
k

+ ( I B. .)(Vm) } (47)
i=0,NQ+l K1 K

> 0 (48)

The last inequality is true because of assumption (A5). Note that we

have used the fact that V.€ Ry in the inequality from (45) to (46).
Hence DQ(V_) is diagonally dominant for all V. in Rv, and strict inequality
on (45) holds for at least one k. Therefore, DQ.(V) is nonsingular
[6, pp. 48-49].

Furthermore [DQ(V)]ki £0 and assumption (A4) implies [DQ(V)]kk >0,
so DQ(V) is in fact an M-matrix [6,p.55] and det D(j.(V) > 0 [12].

a

2. Secure Solutions of Decoupled P9 Equations

Consider Problem (P2), i.e., to determine the existence of a

solution 9_ to the equation

[A(V)] e * P

such that o_ is in RQ = {9j-£ <Ae_< 6_ } given that V_ is in

RV =^llm <V<VM}. Equation (7) is linear in 9.. We first establish
the nonsingularity of the matrix [A(V)]. In fact [A(V)] is more than
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nonsingular if we make the following assumption.

Assumption (A6). There is no phase-shifting transformers in the system,

so that B.. = B-k, ki = 1,...,N.

Fact 3. If assumption (A3) holds, then [A(V)] is nonsingular and

det[A(V)] > 0. If assumptions (A3) and (A6) hold, then [A(V)] is

positive definite.

Proof: Consider the elements of [A(V)] (eqs. (8)(9)). The network is

connected implies that [A(V)] is irreducible. Clearly

ICA(V)]kk| >9l |[A(V)]k.| (49)

and strict inequality holds for those buses k that are connected to the

slack bus. Therefore [A(V)] is nonsingular VV € Rv [6,pp.48-49].

Furthermore, [A(Vjlkk> 0 and [A(V)]ki ^0 for i f k, hence [A(V)] is in

fact an M-matrix [6,p.55] and det[A(V)] >0 VV€ Rv [12]. Furthermore,

under assumption (A6), [A(V_)] is symmetric, hence a Stieltjes matrix

[6,p.54] and is positive definite [6,p.55]. °

The region defined by R is a polyhedron. For analysis, it is more

convenient to consider the largest ball BQ that is contained in R.. We
o 9

therefore actually consider in what follows the modified problem to

(P2), i.e., determining the existence of a solution of eq. (7) in B..

Fact 4. Let us define the ball

(50)89 : = <!l Q9JI <: r}

wheire

r : = min

j
(«j)

-21-
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then BQ C R

Proof. The boundary of RQ is defined by the pairs of hyperplanes of the

form

ek - 9i - ±5j

Clearly the ball {9|il9JI--<~ 6.} lies inside the region {9_| -<5. <_ 9. —» e."

< 6,.}. By the definition of r, we have B. C R a

Theorem 2. (Existence of Secure Solutions to Decoupled P9 Equations)

Suppose that the assumptions (A3) and (A6) are satisfied. If the

real power injection P. satisfies the following condition

(C3) llPfl < rp

where

smallest eigenvalue

p:= g ( of CA(V)] > (52)

then the decoupled real power flow equation (7) has a solution e_ in the

region RQ.

Proof. We are going to apply the translation invariance property of the

degree [Appendix (D2)] to the linear map

£(V,«) :e* [A(V)]£ (53)

First note that 9_ =0 is a solution in BQ of (7) for P_ = 0. By

Fact 3, namely, det[A(V)] > 0, we have deg(P(V,-)»B 0) = 1 [Appendix].

For any £ such that (C3) is satisfied, we claim that for any V. in Ry,

P(V,e) t tP t e [0,1] and 9 € aBfl (54)
— — — o

Since [A(V}] is positive definite (Fact 3) p defined in eq. (52) is
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positive and we have [13,p.312] VV e Ry

8[A(V)]9 >PDeB (55)

So H[A(V)]9ll _> rp on 3BQ. Combining this with condition (C3) on £ we

establish the claim (54).

By the translation invariance property of the degree we have

deg(£(V,-)»Be,P) =ifor any Psatisfying (C3). Theorem 2then follows

from Kronecker theorem [Appendix (Dl)]. n

3. Secure Solutions of Power Flow Equations

We are now ready to tackle Problem (P) utilizing the results we

have obtained for the decoupled power flow equations. Let us define a

vector £ which is an error bound on the approximation by the decoupled

power flow equations.

4 := J VkVi{Bki(1"C0S 6) "Gkisin 6} k=1,2,...,NQ (56)
i7k

N 2

ek := .1 VkVi{Bki(6M"s1n 6) " Gki} +Gkk(Vk} k• 1.2.....N (57)
i7k

N

ek := J VkVi{Bki(1"C0S 5) " Gkisin 6} k =0>Nq+1» —>N (58)

where

5 = max{<5.} and we set

j J

Vk =Vk for k= 0>NQ+1 N'

Theorem 3. (Existence of Secure Solutions to Power Flow Equations)

Suppose that the assumptions (A1)-(A6) are satisfied. Suppose,

furthermore, that the reactive power limits at the stack bus or any PV
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bus j satisfying the following condition.

(C4) q.(f) +̂ <qj and qm <q.(VM) -«J j=0,NQ+1,... ,N

If the power injection (£,P) satisfies the following conditions

(C5) For reactive power injection Qk at any PQ bus k,

MS") ♦ <{j <Qk <Qk(V?) - «j» k=l,2,...,NQ

(C6) For real power injection P=(Pj^t.-.tPuh

BPl < rp - lepB

and

(C7) Poif-fPi) <Po-LM
where

N N N

LM := max { J V^Gkk + J J V '̂G.-cos 5.} (59)
VeRv k=0 KKK k=0 i=0 k n kl J

i7k

then the power flow equations (2) (3) have a solution (V,9j in the secure

region R.

Proof. First note that for Ve Rv and e_ e R

qj(VM) -e!J 1Qj(V,e) <̂ (V"1) +£J j=0,NQ+1,...,N (60)

Condition (C4) implies that (RvxRQ) CR

From the power flow equations

N N

,0+ 1 pi = I I VkViGkiC0S eki <61>u i=l 1 k=0 i=0 K 1 K1 K1
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M
Clearly L is an upper bound of the right hand expression (line losses)

and 0 is a lower bound of it. Hence (C7) guarantees constraint (13).

Consider the decoupled power flow map

F:(V,e) - (£(V),P(V,e)) (62)

We are going to construct a trivial homotopy from F to the power flow

map and apply the homotopy invariance property of the degree [Appendix

(D3)].

First we claim that deg(F,RvxB ,y) f 0 for any

y€K:= {(£,£) IS. satisfies (C5) and P satisfies (C6)}

The Jacobian of F is given by

DF(V,£) =
DQ(V) 0

det DF(V,9j = det DQ(V)-det[A(V)] > 0 by Facts 2 and 3. This, together

with Theorems 1 and 2, establishes the claim.

Let us introduce the following homotopy H:(V.,£) -*• (H^(V,9j, HP(V,9_))T
from the decoupled power flow map F to the power flow map defined by

eqs. (2) (3).

H((V,§),t) := F(V,9.) + tG(V,9) 0 < t < 1

where G:(V,9.) + (GQ(V,9), GP(V,9.))T is defined by

N N

Gk^.e) - -Vk Jq BkiV.(cos 9ki-l) +JQ VkV.Gk.sin 9ki

k = l,2,...,Nn

<(V,£) - -Vk ^^ BklV1(ekrs1n 9k.) +JQ VkV.Gk.cos efc1

k = 1.2,....N.
-25-
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We claim that for any y € K,

H((V,9),t) f y

for t€ [0,1] and (V.,9.) ^ a(RvxB9). We consider two cases

Case (i). Ve aRy.
,MSuppose the boundary is defined by Vk = Vk. We have on this

boundary

Qu(V) M1 W
VVk

and

sg(V,e) >-*\

Consequently,

HJJ((Y,U,t) >.\l£) - Ei

(68)

(69)

(70)

(71)

Condition (C5) and equation (71) establish our claim (68). Similarly

for Vfc =V™.

Case (ii). e_ € aB

Since on 3B
9

UP(V,9.)li > rp

and by definition

0GP(V,9)H <ll£Pl

Therefore

IlHP((V,£)»t)H > rp - ilep!l

Condition (C6) and equation (74) establish our claim (68)
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By homotopy invariance property of the degree we have deg(F+G,R..xBQ,y)

f 0 for any y£K. Theorem 3 then follows from the Kronecker theorem. n

4. Example

The following simple example illustrates the fact that the numbers

one obtains by applying our results are reasonable.

Consider a generator connected to a load through a transmission line

(Fig. 1) with impedance z = jO.l.

Let Rv ={V^O.95 < V] <1.05},

R = {9., |-0.1745 < e1 <0.1745}, R = {(V-,,9-,) |-0.7 <QgO^.e^ <0.7},

Rp =C(V1,91)|0 <P0(V1,91) <1.5}, and VQ =1.

For this example we have Q-i(V-j) = 0.525,

^(V*) =-0.475, ^(vlj1) =-0.5, qQ(Vm) =0.5, r=0.1745, p=9.5,
eQ =0.1595, eP =0.0093, eq =0.1595 and LM = 0.

The inequality in assumption (A5) is satisfied because Q-j(V^=Vm)
=-0.475 >.-(B1Q)(Vm)2 =-9.02. The condition (C4) is satisfied since
qQ(Vm) +eq =0.6595 <q^ =0.7 and qm =-0.7 <%(^\) - ^ =-0.6595.

The limits on power injection imposed by condition (C5) are

-0.3155 < Q1 < 0.3655

and that by conditions (C6)(C7) are

\P}\ < 1.6485, -1.5 < P1 <0

Together they require

-1.5 1 P1 1 0.
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APPENDIX: DEGREE OF MAPPING

Definition [6, pp. 147-160] Let F:DC ]Rn -• ]Rn be continuously

differentiate on the open set D, and C an open, bounded set such that

its closure C C d. If y f- F(3C) u F(S(C)), where aC denotes the boundary

of C and S(C) := {x € C|F'(x) singular}. Let r = {x e C|Fx = y}. The

degree of F on C with respect to y is defined as

r
m . 1 m
j sgn det F'(xJ) if r={x',...,xm}

deg(F,C,y) =<j=1
0 if r is empty.

Properties [6, pp. 156-164]

(Dl) Kronecker Theorem: Let F:C -*• Kn be continuous, and y £ F(aC).

If deg(F,C,y) f 0, then Fx = y has a solution in C.

(D2) Translation Invariance: Let F:C•*• Rn be continuous. Suppose
n 1 n

y ,y e jr are any two points which can be connected by a continuous

path p, i.e., p(0) =y°, p(l) =y', and p(t) £ F(aC) for te [0,1].

Then deg(F,C,y°) =degfF.Cy1).

(D3) Homotopy Invariance: Let H:C x [0,1] -»• IRn be continuous. If

H(x,t) f y for all (x,t) e ac x [0,1], then deg(H(-,t),C,y) is a constant

for all t e [0,1].
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Fig. 1 Example of a two-bus system,
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