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ABSTRACT. We review in this paper a class of recently developed algo
rithms for the solution of functional inequalities and of optimization prob
lems with functional inequality constraints, which arise in the context of
optimal design. These algorithms fall into the categories of phase I -
phase II methods of feasible directions, recursive quadratic programming
methods, and outer approximations methods.

1. INTRODUCTION

In this paper we shall survey algorithms for the optimal design of
structures subject to dynamic loads or disturbances. In particular, we
shall examine algorithms which are applicable to the design of earth
quake resistant structures. In the case of such designs one has to cope
with constraints of the form

p(z,y)S0 for all yeY (1.1)

In (1.1) z€]Rn is the design vector, to be computed, y€YcKp may be a
scalar, as when it represents time or frequency, or it may be a vector, as
when it represents a construction tolerance or an element of a
parametrized family of disturb etnces. Of course, y can also be a vector
combining a number of these quantities into one. When the function
p(z.y) represents a time response or a frequency response, it is nor
mally found to be differentiabie in (z,y). However, when it represents
eigenvalues of an operator, it is generally not differentiabie, which leads
to additional difficulties. We shall mostly concentrate on the case where
<p(z ,y) is continuously differentiable in both variables.

In designing a structure, it may be more important to satisfy the
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given specifications than to optimize a particular criterion. We shall
therefore consider algorithms for two types of problems. The first is that
of finding a feasible vector:

FEAS: findazeF (1.2)

where

F = [2 1^(2)^0,7 =1,2 p\
p'(z.Vj)£0 all yy£^,; =l,2 q] (1.3)

The g* are differentiabie functions representing simple design con
straints and the <p* model the distributed, i.e.t functional, constraints.
The second problem that we shall consider is of the form

OPT: min[f(z)\ z€F] (1.4)

We shall categorize algorithms on the basis of whether the Y are inter
vals or multidimensional sets and of whether the qt are differentiabie or
not. Since the algorithms we shall describe have a modular structure, it
is convenient to present them in the form of Master Algorithms which call
any of a set of Subalgorithms. Furthermore, since the essential features
of Master Algorithms are preserved when we ignore conventional con
straints and assume that there is only one functional constraint and since
this results in considerable notational simplification, we shall consider
only the simplest form of F, viz.,

F = [z\ <p(z,y)*0 for all y€Y] (1.5)

2. ALGORITHMS FOR COMPUTING FEASIBLE POINTS

2.1. Feasible Directions Type Algorithms.

These algorithms can be used for solving the problem FEAS (1.2)
when the sets Y are compact intervals. They differ from each other by
the choice of the search direction subalgorithm. We shall now describe
two such subalgorithms for the simplified problem (1.5). For every z€Rn
.let

m(z) = max [0,max{p(z,y)|y€r)] (2.1)
and for any e > 0, let

Yt(z) = [y€Y\<p(z,y)Zm(z)-€ and y is a

local Tnaximizer of <p(z,.)] (2.2)

The nature of the physical problems we usually consider justify the follow
ing assumption:

Al: For every z€Sn and for every e > 0, the set Yt(z) contains only a
finite number of points.



The simplest search direction subalgorithm computes the search direc
tion vector ht(z) as a solution of

dt{z) = min[maxj<Vzp(z,y),/i>|y€rc(z))|/i£S] (2.3)

with 5 the unit hypercube centered at the origin. Thus, in view of Al, (2.3)
is seen to be a finite linear program. A better direction search subalgo
rithm computes the search direction ht{z) as a solution of

de(z) = min[|/i| | h<£co ^z<p(z,y),y€Ye(z)]] (2.4)

which we recognize as a finite quadratic program. In [P7] we find a
detailed discussion of such subalgorithms, which were first introduced in
[Pl.Gl] for optimization problems with functional constraints. For the
case of ordinary constraints, the reader is referred to [P7].

Master Algorithm 2.1 [P5]

Parameters: e0>0' a. 6. c € (0,1)
Data: zQeMn

Step 0: Set i = 0.

Step 1: Set e =s0 .

Step 2: If z^eF stop. Else, compute Yt{z^)t and use a search direction
finding subalgorithm to compute dt(zi) and h9(zi).
Step 3: if de(zi) > -e , set e = axe and go to step 2.
Step 4: Compute the largest step size Si€Jl,6,62,...j such that

m(zi+Siht(zi)) < -Sics (2.5)

Step 5: Set zi+1 = 2t+si/ie(zi) , set i=i+ l and go to step 1 (or step 2).

Master Algorithm 2.1 has the following property (see[Gl]):
// the problem FEAS (1.2) is such that d0(z)^ 0 for all z€F , and the
sequence jz^J constructed by Master Algorithm 2.1 is bounded, then Mas
ter Algorithm 2.1 finds a z €F in a finite number of iterations .

In the form stated, Master Algorithm 2.1 cannot be programmed
since it lacks instructions for approximating m(z). Implementable ver
sions of this algorithm have also been presented in [Pl.Gl], which
improve adaptiveiy, on the basis of tests, the precision with which m(z) is
evaluated.

2.2. Newton's method for Infinite Systems of Inequalities.

This method also can only be used when the sets Yj are compact
intervals and assumption Al holds. In addition, we must require that all
functions be three times continuously differentiabie. In this case, the
problem (1.5) can be replaced by a problem specified by the finite set of
inequalities:

find a z<£F = [z | p(z,y)30,for all y€Ye(z)] (2.6)



where «>0is arbitrary. It is shown in ^h*'™d°TJ™*ff*\0^
rather technical, assumptions on *(*.V) and<Pyy{zy). ™U» yer,(«). one
can construct a locally, quadratically *«*™*«* 7*F*™ of Newton s
method, for solving (2.6). as follows: hetv(z)e£n be defined by

U(z) =ar?min[|v| \v(z,y)+<^Mz,y)^>^for ail y^Y] (3.7)

Then, given z SF, set
zi+i =A,(z<) =z<+i>(z<) (2-8>

Note that because Yt(z) is finite, by assumption, the quadratic program
?2 7) does not present any exceptional difficulties ^^^^ich
standard OP codes. It is also possible to use the L. norm in (2.7), which
^makes this problem an LP. Since the radius of °°^rSence °«th*TroceTs defined by (2.8) may be quite limited, it was proP«j£« Dg*
stabilize it by switching over to the Master Algorithm 2.1. when a certain
test fails as follows. First note that when the return from Step 5 to Stept St Master Algorithm 2.1 becomes one step ,^d the eacceded in
Step 4is afunction of *< only >-je wrrte ^^f^te^orLm
ft -l^Uo^t^C^ scored I Step 3of Master
Algorithm 2.1 so thatA2(.) has the form

Az{z)'z + sht(z) (2.9)

Master Algorithm 2.2

Parameters: e>0, d€(0,l),#>l
Data: z€Mn .

Step 0: Set i = 0, j = 0.
Step 1: If m(Zi)<0, stop.
Step 2: If asolution v (z*) of (2.7) exists and

|v(«t)l < Kd* (2,1 }

HSe'Set _,,„, (2.11b)Zi+i =Az{Zi)

Sten 3- Set i = i + 1 and go to step 1.PWe note that as long as the Newton process (2.8) is -U defined and
shows signs of at least linear '"^^^^"g^ffi" sho
rn ^1:^1^^^^ 2-2 has the



bounded, then there exists an iQ such that (2.11a) holds for all i>i0 , and
z^zeF, quadratically (for some z eF).

In the form stated, Master Algorithm 2.1 is conceptual, since it does
not specify approximation rules form computing the sets Ye(zi). The
reader will find an implementable form discussed in detail in [M4].

2.3. Outer Approximations Algorithms.

We now drop the requirement that the Y* be intervals. They may be
any compact subsets of a Euclidean space. Outer approximations algo
rithms decompose the problem FEAS, which contains infinitely many ine
qualities, into an infinite sequence of problems of the form

FEAS(k): find a z€Fk

where

Fk =01 9j(z)*0, ; =1.2 p;
^(z.y/)£0, for all yj€Yi, j =l,2,...,g] (2.12a)

or, in the simplified framework of (1.5),

Fk =[z I p(z,y)£0 for all y€Yk] (2.12b)
"We see that the sets Fk are described by finite sets of inequalities which
can be solved very rapidly by algorithms such as those described in
[M1.P3]. When certain simple assumptions are satisfied, these algorithms
need only a finite number iterations to to solve FEAS(k) and are called as
subalgorithms by outer approximations master algorithms.

The simplest outer approximations algorithms are described by
Eaves and Zangwill in [El]. In these algorithms, given a problem FEAS(k),
with a finite set Yk , first one computes a zk €Fk and then one computes a

yk € org max[<p(zk,y) \y€Yk] (2.13a)

The next problem, FEAS(k+1) is then constructed by setting

l*+i= 1* uil/*i (2.13b)

It is easy to show that any accumulation point z of an infinite sequence
jzfc J, constructed in this manner, must be in F. However, since the cardi
nality of the Yk grows relentlessly, one may not be able to compute too
many elements of such a sequence. Because of this. Eaves and Zangwill
have proposed a scheme for constructing the Yk , which periodically
flushes out a number of elements from Yk . Since their scheme had a
number of shortcoming, including the fact that it was nonimplementable
and highly scaling dependent, Mayne, Poiak and Trahan [M2] have pro
posed a more sophisticated method which was implementable and which
included features to minimize scaling dependence. However, it still
retained at least one bad feature in [El], viz. that convergence could be
claimed not for accumulation points of the whole sequence \zk), but only
for those of the subsequence at which the Yk were flushed out. This

/



\

difficulty, as well as a few other ones, were overcome by the scheme pro
posed by Gonzaga and Polak [G2], which we now state for the simplified
problem (1.5).

Master Algorithm 2.3 [G2.P5].

Parameters: K, L.

Data: Y0 c Y .

Step 0: Set k = 0.

Step 1: Compute a zk €.Fk .

Step 2: Compute a

y € arg max [<p(zk,y) I V^y] (2.14)

Step 3: If m(zk) = 0, stop. Else, set

r*+i = [Vi\<P(zi,yi)^K ll/(l+i)l/L - l/(l+k)x/L], i=0,l *](2.15)

Step 4: Set k = k + 1 and go to step 1.

An examination of formula (2.15) shows that a point y» will always be
included in Y^ and, possibly, in a few subsequent Yk . However, as k
increases, the right hand side of the inequality in (2.15) also increases
and, in most likelyhood, yi will be dropped from the Yk after a few reten
tions. It is shown in [G2] that, any accumulation point z of a sequence [z
], constructed by Master Algorithm 2.3, is in F.

Again, as stated, Master Algorithm 2.3 is only conceptual since no
rule is given for approximating m{zk). An implementable version can very
easily be deduced from the schemes given in [G2], where it is shown that
one merely needs to evaluate m(zk) with progressively greater precision
as k increases.

2.4. Nondifferentiable Constraints.

When the functions y? are nondifferentiable, none of the above algo
rithms apply. However, when they are at least locally Lipschitz continu
ous, it becomes possible to make use of some of the known results in
nondifferentiable optimization [Cl,M5,Ll, P6]. In particular, when the <p*
are eigenvalues of an operator and the Y are intervals, the problem
becomes reasonably tractable, by an algorithm, essentially of the form of
Master Algorithm 2.1, which uses vectors belonging to an ' e-bundle' of
generalized gradients [Cl], instead of gradients in (2.4). The construction
of these vectors is quite complicated and we refer the interested reader
to [P8], where such an algorithm is described in detail.

This concludes our discussion, of algorithms for solving inequalities
which arise in the context of engineering design and we now turn to
optimization.



3. ALGORITHMS FOR COMPUTING OPTIMAL POINTS

3.1. Phase I - Phase II Feasible Directions Algorithms.

These algorithms can be used for solving the problem OPT (1.4) when
the Y are compact intervals and assumption Al is satisfied. Just as the
algorithms described in the preceding section, they differ from one
another only by the choice of the search direction subalgorithm. There is
a direct relationship between the direction subalgorithms used in Sec. 2a
and the ones we are are about to describe. Thus, (2.3) becomes

dt(z) = min[maxj<V/(z),/i> ; <V2<p(z ,y),h>,y €Ye(z)] \h€S] (3.1)

with i%(z) and S as in (2.3). Similarly. (2.4) becomes:

de(z) = min[|/i] | h£co\Vf (z) , Vz<p(z,y) , y€Ye(z)\] (3.2)

It is shown in [Pl.Gl] that d0(z) = 0 is an optimality condition which is
equivalent to the F. John optimality condition. Hence, we call the func
tions dt(z)optimality functions. Although the zeros of the two optimality
functions defined by (3.1) and (3.2) are identical, they do lead to algo
rithms with different computational properties. The one defined by (3.2)
has certain self scaling properties which result in a superior algorithm.

Master Algorithm 3.1 [Gl].

Parameters: e>0, a, b, c, € (0,1).
Data: z0€fln .

Step 0: Set i = 0.

Step 1: Set e = s0 .

Step 2: If d<j(z*) = 0. stop. Else, use a search direction finding subalgo
rithm to compute Ye(zi), de(z<), and ht{zi) .
Step 3: If de(zi) > -e , set s = axe and go to step 2.
Step 4: Compute the largest step size ^€{1,5 ,b2 J such that if z^€F .
then

and

ifz&F , then

Zi + s</ie(z<) € F (3.3a)

/ (z< + Siht(zi)) - / (z^ < -s-tce (3.3b)

m(zi+siht(zi)) - m(zi) < -SiCs (3.4)

Step 5: Set Zi+i=zi+s</ic(zi) . set i=i +l and go to step 1 (or Step 2).

We note that Master Algorithm 3.1 concentrates at first on finding a
feasible point. Once such a point is found, the remainder of the sequence
is feasible. Referring to [Gl], we find that Master Algorithm 3.1 has the



following property:
// the problem OPT is such that dt{z) < 0 for all z?F , then any accumu
lation point z of a sequence jz*) constructed by the Master Algorithm 3.1
is feasible, ie., z^F, and satisfies the F. John condition of optimality,
ie., d0(z)=0.

Again, since no rule for specifying approximations to m(z) and Yt{z)
are given, Algorithm Model 3.1 is only conceptual. An implementable ver
sion with the same convergence properties will be found in [P5.G1].

3.2. Recursive Quadratic Programming Algorithms.

At present, there is strong sentiment in the mathematical program
ming community that recursive quadratic programming algorithms, such
as those described in [W1,R1,H1.P8,P9], which have evolved from Wilson s
method [Wl], offer substantial advantages over other constrained optimi
zation algorithms. We recall that Wilson's method is an appropriate form
of Newton's method for solving the equations and inequalities in the
Kuhn-Tucker conditions.At present, there is no recursive quadratic pro
gramming algorithm for solving OPT in the literature. However, based on
what we have seen in Sec. 2.2. we feel that for the case where the sets
r'are compact intervals and assumption Al holds, one can construct an
RQP type algorithm for solving OPT, as follows. First, we observe that
when we compute dt(z) by (3.2), the quadratic program returns a set of
positive weights: u(z,/),u(z,y),y€re(z), summing to unity, such that

/i8(z) =u(z./)V/(z)+ 2 u(z,y)Vsp(z,y) (3.5)
y€>%(z)

Assuming that u(z./)^0, we can rescale these weights, which are poten
tial F. John multipliers, by dividing them all by u(z,f) to obtain a set of
potential Kuhn-Tucker multipliers which we shall denote by u\z,y,e), to
make their dependence on e more obvious. These multipliers can now be
used to compute the corresponding second derivative matrix

tf(z.e) =32/(z)/9z2 + £ u(z,y,£)a2p(z.1/)/9z2 (3.8)
In our interpretation, given any e>0?and «,. Wilson's method, applied to
the problem

min [/(z<) | <p(zity)<0, y€l%(z<)] <3-7>
requires us to compute v{z^) as asolution of

min[<V/(zi).v>+(l/2)<'y.^(zi.e)v> | ?(z<.y )+<?(** .!/).*> ^
foroUyere(z<)] (3-8)

and to set

z<+i =4,(z<) =*<+*(*<) • (3-9a)
On the basis of the analysis referred to in S=fn2^^^;
that, under suitable assumptions, the algorithm defined by (3.3) wul be



z,+,=,2(z<) <"«»>
Next, we denote by .(.,) the value of . which is £•*£*£?« ^
"uffl a 1 -t «• i e.. which permits passage from Step 3 to seep *.nthmW •al now follow the'scheme in Master Algont^ 3Jto obtam ag
ballv convergent version of an RQP type method for (3.7). Note_mamlLTreq^res us to solve two quadratic programs per iteration.
Master Algorithm 3.2.
Parameters: d €(0,1), K > 1.
Data: z€Rn .

Step 0: Set i = 0, j = 0.
Step 1: Compute .<«,). YCM .andtf(z<.E(z<)) by means of (3.2).
Step 2: If asolution v(«,) of (3.8) exists for e»e(«). and

|t,(s,)| SJTd' t3-10)

S6t -W^ (3-Ha)2**t=Al(«t)

Else, set .

*i*i»il«(«t) (3'Ub)
Step 3: Set i = i + 1and go to Step 1.

Thus, just as in the case of Master Mgorithmi 2Awej^™^
method if it shows signs of convergmgat east ^£^ ^ basfs of
(3 10), and we revert to Master Algorithm 3.1 otherwise,
ihe results in [P8] and [M4], we conjecture as follows:
If m all functions are three times continuously diflerentiable , (u) all

irSsrras^-»srasra s

S"S\y «^«r iSoriUa if I. bound.*. "»» »-"">" *»
dratically to a Kuhn-Tucker pomt.
Master Algorithm 3.2 can * "^*^^*£ffi£,£:rules as those for Master "sorithms 2.2 and 3 1 and hence p

bUity is not asource °^^c^u^e^/d^u4s. Fortunately, asous difficulty is the need £° ^teJ/*°™mber of first order schemes
can be seen from [Hl.P8.P9j there are a ake use of elther
available for approximating ff(z.s(z))- These scnemes m
secant or quasi-Newton formulas.



3.3. Outer Approximations Algorithms.

We now drop the requirement that the Pbe intervals (see 2.3) and
allow them to be any compact subsets of a Euclidean space. We shall
describe the scheme presented in [Gl]where the decomposition of the
problem OPT into a sequence of problems

OPT(k): min[/(z) | z€Fk] (3.12)

is carried out essentially in the same manner as in solving inequalities,
with one important exception. We can solve a problem FEAS(k) in a finite
number of iterations, but we cannot solve OPT(k) in a finite number of
iterations (or find a stationary point, for that matter). Hence, we must
specify in what sense should the solutions to OPT(k) be approximated.
Such a specification is incorporated in the master algorithm, below, which
calls an ordinary constrained optimization subalgorithm to "solve"
OPT(k). Without essential loss of generality, we again state the algorithm
in terms of the simplified problem OPT, with F given by (1.5). First, given
Yk, a finite subset of Y, for any z €iRn , we define

m(z,Yk) = max[0,max{^(z,y) \y€Yk]] (3.13a)

Next, for any z€#nand e>0, we define

n.*(z) = [yeYk | <p(z,y)>m(z,Yk-s] (3.13b)

Finally, we define

d(z,Yk) = min[|/il | hecofV/(z),V^(z,y), y€Yk(z)]] (3.13c)

We recognize that d(z,Yk)=Q is a necessary condition of optimality for
OPT(k), which, as we have already mentioned, is equivalent to the F. John
condition.

Master Algorithm 3.3

Parameters: eq ,K, L > 0.

Data: YQcY

Step 0: Set k = 0, set e =e<].

Step 1: Solve OPT(k) to the extent of computing a zksuch that

d(zk,Yk) > -e (3.14a)
and

m(zk,Yk)<s (3-l*b)

Step 2: Compute a
y € arg max [<p(zk,y) Iy^Y] (3-15)

Step 3: If m(zfc,r) = 0 , stop. Else, set

Yk+i =[y, I*<*,*,) >;m/(i+j)l/i-i/(i+fc)l/H J=al'2 *I3-16)



Step 4: Set e = e/2 , set k = k + 1 and go to Step 1.

The only part of Master Algorithm 3.3 which is not implementable is
the computation of the yfcand m(zk,Y). In [G2], we find a simple rule
which states that all that is needed is that these computations be carried
out with progressively greater and greater precision, as the computation
progresses (in the same manner as for OPT(k)). As far as convergence is
concerned, we find in [G2] the following result:
(i) If the sequence \zk] constructed by Master Algorithm 3.3 is finite, then
its last element is in F and satisfies the F. John condition of optimality for
OPT.

(ii) If the sequence \zk] constructed by Master Algorithm 3.3 is infinite,
then all its accumulation points are in F and satisfy the F. John optimality
condition for OPT.

Finally, it should be pointed out that the rule for constructing Yk^,
as given in (3.16) and also in (2.15) can be substantially modified by using
double subscripted sequences \tjx\ in the right hand side of the inequali
ties in (2.15) and (3.16), as explained in [Gl], with the one used in this
paper being only one example of such a sequence.

3.4. Nondifferentiable Optimization Algorithms.

At present, it appears that the entire arsenal of nondifferentiable
optimization algorithms which apply to OPT, consists of those described
in [P2] and [P6]. These algorithms make use of outer approximations
master algorithms and of either ordinary or nondifferentiable optimiza
tion subalgorithms. The lack of space prevents us from describing them
here. The interested reader is referred to the above mentioned journal
article and report.

4.C0NCLUSI0N

We have given in this paper a brief survey of a class of algorithms
which are applicable to optimal design. Some of these algorithms, such as
feasible directions, have been used by us for a number of years and have
been found to be quite reliable, though somewhat expensive. The newer
algorithms, such as RQP are in the process of being programmed up for
testing. Given their excellent behavior on ordinary mathematical pro
gramming problems, we expect that they will eventually prove to be a
most valuable tool in optimal design, as well.
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