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1. Introduction

Let Zt be a stochastic process and let X be a process of the form

Xt =J Zsds +Wt' t-°

where Wfc is a standard Wiener process independent of Z . The general

filtering problem is to find effective ways of computing the conditional

expectation

E[f(Zt)|Xg, 0<s< t]

for some function f.

Except when Z is of finite state, the Gaussian case and some recently

discovered example [ 4] comprise the entire collection of cases where

solutions, in some explicitly computable form, to the nonlinear filtering

problem are known. The object of this paper is to add a small but

possibly useful class of examples to this collection.

2. A Wiener Series Representation

Let (Q,?,?) be a probability space. Let {Zfc,W ,0 <t <T} be a pair

of independent processes defined on (a,?,?) such that W is a standard

Wiener process, and Z is a strong Markov process that is almost surely

sample square-integrable. Consider an observation process



(2.1) Xfc - Z ds + W . 0 < t < T,
s t — —

and denote F = a(X .s < t). It is well known (see e.g. [6 ]) that if

we define a probability measure P« by

(2.2)
d?

- exp{- Z dW - ^
s s 2

rT

Z2 ds}
s

then (Z,X) has the same distribution under P-. as (Z,W) under P.

For a bounded f define the unnormalized estimator

(2.3) irtf - EQ{f(Zt) dP
dP,

F .>
xt

To normalize, one would only need to write

(2.4) E[f(Zt)|Fxt]=^
where

(2.5) *tl -tt -EQ{^- Fxt}

is simply the likelihood ratio.

Now, from (2.2) we have

(2.6) -gp- = exp{ Z dX
s s -H Z2ds}

s

and the exponential formula for multiple Wiener integrals yields

[3]

(2-7) ^ =JoZ^
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where Z-oX =1 and for n >^ 1

(2.8) ZnoX = Z Z ...Z X(dt1)...X(dt )
0<t-<..<t <T cl C2 n

1 n

are desymmetrized multiple Wiener integrals. It now follows that

(2.9) ir.f = I
z n=0

E0(Z Z ...Z. f(Zj)X(dt.)....X(dt )
o<t.<...<t <t ° h H ^ t x n

1 n

The process Z being identically distributed under either measures, En in

(2.9) can also be replaced by E.

Now, let Z be a diffusion process, with the density of Z being

P(z,t). Introduce an unnormalized conditional density V(z,t) of Zfc given

the observation by the relationship [6]

(2.10) »tf »J V(z,t) f(z)dz

Then (2.9) reduces to [c.f. 5]

(2.11) V(z,t) = p(z,t) I m (z,-,t) • X11
n«0

with

(2.12) mn(z,t1,t2,...,tn,t) = E(Zt Zt ...Zfc
12 n

and

\ » z)

(2.13) m (z,-,t) o x11 »
n

0<t,<...<t <t
1 n

m„(z,t1,...,t ,t) X(dt.)....X(dt )
n x n j_ n

From the Markov property of Z, the functions m satisfy the

recurrence relationships
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(2.14) mn(z,tk,..,tn,t) = E[Zt \_1^t »tlf...,tn) Zt = z]

The main result of this paper is an explicit evaluation of these functions

for a class of stationary Z.

3. Processes of the Pearson Class

We shall restrict our attention to a class of stationary diffusion

processes Zt that have a transition density of the forms

• -A (t-tn)
(3.1) p(z,t|z0,t0) = p(z) I e u<j>k(z) <|>k(z0)

k^O

where p(z) is the stationary density and $, are orthonormal polynomials

of degree k. Densities of the form (3.1) were introduced by Barrett and

Lampard [ 1 ]. In [ 7] diffusion processes with such transition densities

were exhaustively studied subject to the additional condition that p(z)

is of the Pearson type [2 ]. it was found that such processes fall into

three categories, corresponding to the classical Hermite, Laguerre and

Jacobi polynomials respectively. In terms of the Fokker Planck equation

for the traasition density p

2

(3.2) |-2_ [a2(z)p] -~ [m(z)p] =-£• p
dz

these cases can be summarized as follows:

(3.3a) .a (z) = 2, m(z) = -z

<{>, (z) are Hermite polynomials

2
(3.3b) z > 0, a (z) = 2z, m(z) = (a+l)-z, z >_ 0

<j>k(z) are Laguerre polynomials
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(3.3c) \z\ < 1, a2(z) = 2(l-z ), m(z) = (a-3) - (a+6+2)z a,3 >-1

$k(z) are Jacobi polynomials

Observe that z<|>k(z) is a polynomial of degree k+1. Furthermore,

for any j <^ k-2 z<j>,(z) is a polynomial of degrees k-1 or less and hence

is orthonormal to <j>, , i.e.,

jP(z) z<J>k(z) <j> (z)dz «0 j<k-2.

It follows that z<J>, (z) is at most a linear combination of <f>k and ♦*rf.1 •

We shall write

(3.4) z*k(z) = a^^Cz) + bk<J>k(z) + c^^Cz)

for the general 3-term recurrence relationship, and use this to evaluate

the conditional moments m (z,«) explicitly.

We note that for any of these cases we have

X« = 0 and $Q(z) = 1.

4. An Explicit Solution

We begin with the following observation:

Theorem 4.1. If Z is a stationary Markov process with a transition

function of the form (3.1). Then, m (z,#) are of the form

n

(4.1) mn(z,t1,...,tn,t) = I a (t2-tlft3-t2,...ft-tn) <j> (z)
p=0

where a satisfy the recurrence relationship
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(4>2) V(t2-tl-—t-t«i)

-ap<«-v
«» 1 *» T ^^0~*t« ,. .. .,.t —t _ )
n-l,p-l 2 1 n n-l

p n-l,p 2 1 n n-l

+ c, Vi,pfi(VV vw

n — p — °

Proof: We note from (3.1) that

(4.3) E[*k(Zg)|zt = z]

\(t-8)
s e <J>k(z), t >_ s

Hence, from (3.4) we have

m1(z,t1,t) » E[Zt Z - z]

=E[aA(Zti) +b0#0(Z )Zt = z]

-A (t-t ) -^n^-V
° V *l(z) + V Vz)

so that (4.1) holds for n = 1, and we have a-A » b^e
-x0(t-tl)

10 "0*
-X^t-t^)

all = ale

53 bA,

Suppose that (4.1) holds for k _< n-l. Then, from (2.14) we have

(4.4) m (z,t-,...,t ,t)
n x n

n-l

P

u—J.

"la, (t9-t ,...,t -t .)p=q n-l,p 2 1 n n-l

E[Z ♦ (Z )
n r • n

Zfc = z]
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n-l

- I a i (t0-t-,...,t -t .)
LA n-l,px 2 1* n n-l

p«0

-X (t-t)

<ViWz)e P
-X (t-t )

+b*(z)e p n
P P

-A (t-t )

+ Cp-l*P-l(2)e }

which is again of the form (4.1).

If we rearrange terms in (4.3), we get (4.2). n

In (4.2) let's adopt the convention that a =0 whenever p > n or

n < 0. Then the equation holds for any n and p. Observe that when n = p,

we have

-X (t-t )
n n'

a = e a a - ,
nn n n-l,n-l

which can be solved immediately to yield

n "Vk
ann(TrT2 V "" V

k=l

and that in turn can be used to solve for a -, etc. It is convenient
n n-l

to work with Laplace transforms and make a change in notation as follows:

-(s,t,+...+s . t . )(4 «^ „v^„ « „ ^„ I i . v11 P+v p+v'
f» fco — IS T "

o'"Joe ll
a _l. (Ti»T0,...,T , )dT- ... dx .
p+v,pN 1' 2* ' p+v 1 p+v

Then, (4.2) becomes
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(4.6) S(V)(s1(s„...,s_.) i '- ~Ml'*2-—W =(•„«.,+*> iapVi(si Vl'P p+v p

+Cp%(+I2)(sl's2'-"'sp+v-l)}

which can be solved immediately to yield

(4.7) a<°> = I Ti—, a<°> =!

verifying the result that we obtained earlier for a .
nn

The general solution for crv' is given as follows.
P

Theorem 4.2. Let Uj^, b£V) and c£V' be defined as follows
(k > 1, v >_ 1)

k b0(4.8) « - n (-&)
k j=l Sj

k+v k j=l j+v-1 j

(4.10) c£v) =0 v=1

ck-lak k s-i-H>+Xi
— +TTA t*4^ v>

For v >. 1, p _> 0 and 1 _< k < p+1, define a v-dimensional row vector a ,
— pk

as follows:
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(4.XI)

Pi

B (v) (v-l) (v)
(hM AC1 , rSv-lCl , rs2cl „
(bi y u%.(— )» u..( * )» •••» u,(—~ ))V u V" u. v* u„

pk

t(v)
pp+1 =

v-l

(bk » °k • °

<0. <$• ° 0)

v-2

0) , 2 £ k <_ p

Finally, define v+1 by v matrices

(v)

(4.12)
pk 6 ,1

pk v

where I is the v*v identity matrix.

Then, a are given as follows:

(4.13)

-(V)

P

P a
— TT . J.

V

k=0 K/\ (s.. +X.)j=l v j+v j7

-(0)
a

P

/- p+1 mv+l

II-
^ V1 mv-l=1

mk+2+1
- 1 A^A^>

u , pm mm.
•w1 v v v~1

when 1, is the k-dlmensional unit column vector.

Proof: We begin by iterating (4.6) in p and get

(4.14) a<v) -

-•A<k+1) O

tt 1 A(v) . r 1

A <-jVV

f n \ A(v-1) . / m x <*(v-2)

for p ^. 1 and
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(4 is) a(v) - —^5 s^-d +_!° s<v-»><-*-15) a0 (sv+X0) a0 + (sv+X0) ai

Now, denote for p ^ 1

(4.15) S<v> =[5 —-L—/V)
P j=l '•jW'V P

Then, we have

(4 .16) Y(V) - «<v> + I -
p 0 *•- m, ~ a.

rl n ^
j-i (8j+v+y

( m~) n ^ y(v_1)Vs . +X ; . - (s.. -+X.) Tm„ m+v m j=l x j+v-1 j'

c m+1 a. /%1 0^

m+v m j»l v j+v-2 j' .>

which simplies to yield

n ,,. (v) *(v) . ? _(v) (v-l) .Pr1 (v) (v-2)
(4.17) U a »n + 1 1>« t„ + /. c™ Y«p 0 ^ m m mil m m

where b and c are as defined in (4.9) and (4.10).
m m

Equation (4.15) can be iterated to yield

/ .\ h_ v-2 crta,b_ s. ,.,+X- ,. x
r4 ia^ *(v) = o . y oio { fc+i o ^ Y0O

n (s.+xn) n (s.+Xn)
j=i 3 u j-k+i 3 u

which is of the form

(4.19) a<v> - uv +T s^ cf+2> rt Y«0 v kf;0 k+2 1 m^+1 1
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With the use of (4.19), we can now rewrite (4.16) in the form of

,(v-D"

(4.20)

(v)

P

(v-l)

(0)

- T ^
m=l

pm

m

v v+1

(0)
m

(v)where A^ are as defined by (4.12) and (4.11). Equation (4.20) can now

be iterated in v. With y ' - 1 we get
P

(v)

(4.21)

(0)
k=0 K

* j.i m +1p+1 v

I I
lV1 mv-l=1

'A(v) A(v-1) ...A(k+D
pm mm -
c V V v-l "WW

\+2+1
I

"W1

H*i
whence the desired result (4.13) follows immediately using (4.15). n

5. The Symmetric Case

There are some cases for which the polynomials § (z) contain only

even or odd terms according as n is even or odd respectively. This is

the situation, for example, for Gegenbauer polynomials (which include both

Chebyshev and Legendre polynomials), and most importantly for Hermite

polynomials which correspond to Z being a Gaussian process. We shall

refer to these cases collectively as the symmetric case.

For the symmetric case the coefficient b, in the recurrence relationship

(3.4) is necessarily zero for every k. It follows from (4.9) that b.(v)

are identically zero, and the result of theorem 4.2 simplies a great deal

as is indicated as follows:
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Theorem 5.1. For the symmetric case we have

P

(5.1) a^.Z^J-Jf Y ...Tc^V2V-2)-=i2)'p J-l (s2v+j+V V-l m^l Vl mv mv-:

Proof: Since b*V^s0, (4.17) becomes

(5.2) Y0(V) =T c^«+^p ^2 m m 0

and (4.18) now takes the form

(5.3) a<v) = (-&) a<v-2)0 sv 1

with the use of (5.2) for ojv\ (5.2) can be rewritten as

/* ^ (v> PVX (v) (v-2)(5.4) y^ ' = I c~ Y„
P mKL m m

where c^v' is given by (4.10). Since y = 1 and y =0, we have
(v)

Y = 0 for all v odd, and
P

(5.5) YOv). f Y Yc^cf-2>...c^
P _.i _i T»i mm. m_

m -1 m =1 m=l v v-l l

whence (5.1) follows.

•1

It is interesting to note that in the Gaussian case (c.f. 33a) the

terms c.~ are given by

(5.6) c*> =(sv.1+l)(sv+2) A fegy
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