

Copyright © 1980, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

A SOFTWARE SYSTEM FOR OPTIMIZATION BASED

INTERACTIVE COMPUTER-AIDED DESIGN

by

M. A. Bhatti, T. Essebo, W. Nye, K. S. Pister
E. Polak, A. Sangiovanni-Vincentelli and A. Tits

Memorandum No. UCB/ERL M80/14

11 April 1980

A SOFTWARE SYSTEM FOR OPTIMIZATION BASED

INTERACTIVE COMPUTER-AIDED DESIGN

by

M. A. Bhatti, T. Essebo, W. Nye, K. S. Pister
E. Polak, A. Sangiovanni-Vincentelli, and A. Tits

Memorandum No. UCB/ERL M80/14

11 April 1980

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

A SOFTWARE SYSTEM FOR OPTIMIZATION BASED

INTERACTIVE COMPUTER-AIDED DESIGN

by

M.A. Bhatti l. T. Essebo 2. W. Nye 3 , K.SL Pisterl,

E. Polak3 , A. Sangiovanni-Vincentelli3 , A. Tits 3.

1. THE CASE FOR OPTIMIZATION BASED INTERACTIVE CAD.

The term computer-aiojBd design is used to describe a great variety of activities. In elec

tronics, computer-aided design often amounts to no more than simulation of electronic circuits

coupled with a cut-and-try procedure At first the designer chooses an initial design

configuration. Then the configuration is analyzed by means of a computer program which simu

lates the behavior of the physical system. Bylooking at the results of the computersimulation,

the designer adjusts parametervalues in an attempt to satisfya set of given specifications which

are not met by the initial configuration and/or obtain a better design in terms of performances

and/or production costs. After the adjustment, a new simulation is performed and the overall

procedure is iterated until a satisfactory design is obtained.

Over the last decade research in computer simulation of electronic circuits has made con

siderable progress resulting in a number of excellent simulation programs (ag. [1-3]). Since

the late 1960's it has been felt that the cut-and-try design mode could andshould be improved

considerably [4,5]. In a cut-and-try design mode the designer essentially assumes the role of a

heuristic master optimization and inequality solving algorithm. Unfortunately, pure heuristics

are generally inefficient Ln searching a multidimensional parameter space and hence they cannot

1D epartrnent of Civil Engineering
Universityof California. Berkeley

D epartment of Autorratie Control
Institute of Technology. Lund, Sweden

Departmentof Electrical Engineering and ComputerSciences
University of California,Berkeley

be relied on to produce a feasible design, let alone an optimal one. Consequently, an efficient

design procedure must make substantial use of optimization algorithms so as to relieve the

designer from the drudgery of search in the parameter space and to allow him to concentrate on

the conceptual aspects of the design.

Despite considerable research activity in computer optimization of electronic circuits (e.g.

[6-9]), amDrding to recent surveys [10,11] optimization techniques are not used as widely as

might be expected There are several reasons for this. Perhaps the most important one is that

the optimization algorithms used until now have been too primitive for the task at hand For

example, they are not capable of solving non convex problems with tolerances and with toler

ances and post-manufacture tuning. Even in the simple cases, with no tolerances involved the

cost/benefit ratio has frequently been unfavorable because the algorithms failed to converge to

a solution in a reasonable amount of computer time. This situation may be caused by the ill-

conditioning of the mathematical programming problem into which the design problem was

translated by the weak convergence properties of the algorithms used (e.g. penalty function

with conjugate gradients as subroutine for unconstrained optimization) or by a poor choice of

initial design and/or algorithm parameters. Sinceany algorithmfor optimization based computer

aided design requires a number of simulations per iteration and since the cost of simulation

ranges from 15 sees for a simple problem to minutes for a realistic design problem (on a CD C

6400), it is clear that slow convergence or no convergence at all may be considered as a very

expensive accident!

Recently new algorithms have been developed for design problems involving tolerances

[12,14] and tuning [15]. At the same time, methods for early detection of ill-conditioning in

the mathematical programming problem into which the design problem was translated, are

emerging. Also heuristics ere currently being developed which help avoid translation ill-

conditioning. Since in general the transcription of a design problem into a mathematical pro

gramming problem is net unique, these heuristics suggestways for changing the transcriptionof

the design problem to eliminate the ill-conditioning. More robust algorithms, i.a algorithms

with guaranteed convergence properties are now being used [16]. However, these algorithms

are still very sensitive to the choice of internal parameters as well as initial values of design

parameters.

In our opinion, a new design methodology based on interactive graphic computing is

indispensable. Interactive computing permits one to abort, stop and restart or otherwise modify

a computation as it progresses, resulting in very substantial savings not only in computing time,

but also in the overall time needed to carry out a design. As an example, suppose that an initial

design proposed b}' a designer fails to meet specifications. When using an interactive CAD

system he could identify this fact by observing the computations. He could stop the computa

tion and either modify the structure of his design or experiment with relaxation of the

specifications. Next, in the case of ill-conditioning, he could change the description of the

design probleminto a different mathematical programming problem by observing the heuristic

information displayed on the screen. Finally, he would be in an ideal situation to perform

trade-offs of one desirable goal to obtain an improvement in another. Since it is obviously

impossible either to compute or to display an entire multidimensional trade-off surface, interac

tive computing techniques are being developed which will enable the designer to find a satisfac

tory compromise solution on the basis of a sequence of computations which he must guide

interactively [17].

One of the goals of our research effort is to develop a software system for optimization

based interactive computer-aided design. In the following sections we describe a prototype

interactive software system INTEROPTDYN (INTERactive OPTimization of DYNamical sys

tems), built around the language INTRA C [18]. In section 2 wediscuss how interaction should

be implemented in an optimization package. In section 3 we describe some of the features of

INTEROPTDYN.

a INTERACTIVE GRAPHICS IN OPTIMIZATION BASED CAD

When expressed as an optimization problem most engineering design problems become a

nonstandard mathematical programming problem of the form:

PI: min{f(x) | g>(x) £ 0, ;=1 q; max ^(x.p*)* 0, i=l m J

where x is the vector of the designparameters. Some of the componentsof the p^'s are param

eters such as temperature, time or frequency, while others are tolerances on the nominal

design. The sets /*,i=l,...,m are generally intervals or n dimensional boxes or other convex

sets in R. We assume that the cost and the constraint functions / and g3,j=l g are con

tinuously differentiable. We also assume that the functions p\i=l m are continuously

differentiable with respect to x and Lipschitz continuous with respect to pl. Of course the con

straints of the form max ^l(x,p1)^ 0 are not continuously differentiable with respect to x. For

the sake of simplicity, in the rest of this section we consider design problems where these con

straints are not present

To illustrate the use of interactive graphics in solving such a problem suppose that we use

a feasible directions method [19]. Let F = j x | ^(x) ^ 0, j=l,...,q j be the feasible region

for the design problem Given £> 0, the setJe(x)=\j€\l,...,q] \g3'(x)Z -s\ is called the set of

indices of the e-active constraints. Now we introduce a feasible direction algorithm to discuss

the use of graphic interaction in optimization.

Feasible Directions Algorithm

D ata x0 € F .

Parameters a , (3 € (0,1); s0> 0; £^ 0.

StepO Set i=0.

Step 1 Set e = ea

Step 2 (Direction finding subprocedure)

Compute ht(xi) andi?c(:ct), where

hjixi) = -argrrm \ \h\z \ /i=,\0V /(a0+ V \,V gK*i)\

2 Ay=l;A^0,.7€/cte)]

and i«a0= \K(xd\z.

Sep 3 (Terrrination criterion)

If e g T, compute i%(a*) and stop if i%(a*) ^ T.Else proceed

Step 4 (e—reduction)

If -Oe(xi)^ e, set e=-| and go to Step 2. Else proceed

Step 5 (Stepsize computation by Armijo rule [19])

Compute the smallest integer }%> 0 such that

/ta+Aefo)) - f(xi) * -aetata)I8 (2.1a)
gHxt+fifihJLxi)) * 0, ;=1 q (2.1b)

Step 6 Set a^+i = Xi+\hc(xi) , set i=i+l and go to Step L

Under reasonablyweak conditions on the feasible region F if e=0, the above algorithm is

guaranteed to produce a sequence of design parameters whose accumulation points satisfy a first

order necessary optimality condition [16]. Its computational efficiency depends critically upon

the values of the parameters. Eachof the parameters controls a particular phase of the optimi

zation algorithm. For example, e and T control the termination of the algorithm e0 controls

which constraints have to be taken into account at the beginning of each iteration of the algo

rithm in computing the descent direction, a and £ control respectively the slope of the line in

fig.l and the rate of reduction of the step size in the Armijo rule. Unfortunately, the optimal

values of the parameters are problem dependent A designer with knowledge of the mechan

isms of the algorithm may see from the results of the early iterations that the computation is

not progressing satisfactorily. In order to avoid continued inefficient use of the algorithm, the

designer must be able to interrupt the computing process to analyse the causes of the unsatis

factory situation, to change the values of the dataor of the parameters and restart the comput

ing process. These actions can be accomplished efficiently only by interaction. However, in

order to make interaction as effective as possible, the designermust be providedwith indicators

which can guide him in the detection of poor computational behavior of the algorithm. More-

over, these indicatorsshould provide information on as to how the parameters of the algorithm

should be changed so as to improve its performance.

-6-

Forexample, suppose that the algorithm after computing the search direction h^), gets

hung up in the Armijo step loop because test (2.1b) is not satisfied This is certainly extremely

undesirable, since in CAD problems the required function evaluations need expensive simula

tions. A designer may try to correct this situation by adjusting some of the piarameters of the

algorithm or by rsscaling the problem In order to do that, he has to detect which constraint is

forcing the decrease of the step size in the Armijo step. Then he must be able to check if this

constraint is in the set of the e-active constraints. If this constraint is not in the set of the

c— active constraints, then the search direction computation does not "see" this constraint and as

a consequence the step size may have to be reduced considerably before test (2.1b) is satisfied

In this case the designer could modify e by increasing it, so that the neglected constraint is in

the set of e-active constraints, if the process is resumed by going back to step 2. When

increasing s the designer must be careful not to make e so large that too many other constraints

become active, because as a result, he(xi) may become too small and e would then be reduced

in step 3, wasting several cycles in step 2. Furthermore, gradient computations are costly and

should be kept to a minimum. If he finds out that the impeding constraint is in the e-active

constraints set, then he may try a different strategy to improve the performance of the algo

rithm. In this case, the poor computational behavior may be caused by bad scaling. Let us

consider first the geometrical interpretation of the search direction. According to step 2 the

search direction direction calculation problem turns out to be the negative of the nearest vector

to the origin in the convex hull of the gradients of the cost and of the s-active constraints.

From the geometry of the direction calculation problem we deduce that if the L„ norm of the

gradient of the impeding constraint is very large compared to the norms of the gradients of the

other s-active constraints and/or of the cost, then the search direction computed by solving the

quadratic programming problem in step 2 may not take into account the gradient of the con

straint which is causing difficulty (see fig.2). This situation may be detected by looking at the

angle between the search direction and the gradient of the consixaint If this angle is close to

90° then, h&(xi) does not adequately take into account the impeding constraint To correct

this situation, the designer could multiply the gradient of the limiting constraint by a "pushfac

tor" to make the L„ norm of this vector comparable to those of the other vectors considered in

step 2.

It turns out that in almost all the critical phases of the optimization algorithm similar

information should be made available to the designer. Of course, this information can be given

numerically at each iteration of the algorithm and at each iteration of the subalgorithms (loops)

inside the steps of the algorithm However, it is easy to see that a massive quantity of numeri

cal data presented on a screen, may overwhelm a designer, jeorjardizing the efficiency of the

design procedure. A much more efficient methodfor carrying out interaction is through graph

ics.

Let us consider the computational problem described above. To help the designer to

detect the reason for the poor performance of the algorithm, we coulddisplay a bar chart plot

ting the values of the constraints before entering the Armijo step, side by side with the values

of the constraint at each iteration of the Armijo step. By displaying also a line corresponding to

zero and a line corresponding to e, the designer could immediately detect if an impeding con

straint, i.e. a constraintwith the corresponding bar above the zero line in the Armijo iterations,

is not in the set of the e-active constraints by looking at the bar corresponding to the value of

the constraint before the Armijo step is entered (see fig.3). In fact, if this bar is below the s-

line, then the constraint is not in the set of the e-active constraints. The use of colorgraphics

could further improve man-machine interaction. In the example described above, if the bars

corresponding to constraints which are not satisfied are plottedin red the bars corresponding to

the constraints which are satisfied are plotted in green, the s-line in yellow, the designer could

grasp all the information he needs at a glance. The need for graphical displayof information is

even stronger, if we consider a design problem with distributed constraints (Le. constraints of

the max form). In this case the designerneeds to have a feeling for the change in the function

<pl(x,pl) when x changes. While the plot of the function ^(x.p1) with respect to p* for a fixed

x gives information easily grasped by a designer, the numerical data printed on a screen cannot

be absorbed without a lengthy analysis

We noticed before that the designer may need to perform additional computations in

order to gather relevant information to rescale the problem It seems undesirable to load the

main algorithm with ail kinds of side computations to cover all the possible needs of the

designer, partly because it is not possible to anticipate all such needs and partly because the

designer may come up with unforeseen tests which are particularly efficient for his problem,

Thus, an optimization based computer-aided design system should permit improvised side

computations on variables, vectors and matrices used in the optimization algorithms. Conse

quently, the system should incorporate a powerful scratchpad capable of matrix operations such

as inversions, transpositions and calculation of condition numbers.

Asa result, we designed a prototype system with the following criteria in mind

1- Ease of interaction should be emphasized A designer should be able to interrupt the com

puting process, change the parameter values and restart the process. Moreover he should

be able to control the flow of the algorithm by single stepping through its loops. (This

feature is most useful in diagnosing where the computation jammed up and what is the

probable cause of the jarnming of the algorithm).

2- Graphical display of quantities computed by the optimization and the simulation algo

rithms should be possible. Color graphics should be used to enhance man-machine

interaction.

3- A powerful, high level, scratchpad for side computations on variables, vectors and

matrices used in the optimization algorithm should be available.

3. THE INTEROPTDYN SYSTEM

The INTEROPTDYN system is an experimental interactive software package for optimiza

tion based computer-aided design of dynamical systems developed at the University of Califor

nia, Berkeleyby a team formed by the authors of this paper. The system is running on a DEC

VAX 11/780 computer granted by NSF for research on interactive computer-aided design of

engineering systems. The operating system is a virtual memory version of UNIX developed at

the University of California Berkeley,(UNIX is a Bell system trade mark). The system can be

used to solve design problems of the form PI where the P'sare intervals. At present, the sys

tem consists of:

1- A main program (OPTDYN) written in FORTRAN, implementing the Gonzaga-Polak-

Trahan phase I-phase II method of feasible directions [20,21].

2- The interpreter of an interactive language, INTRA C-C, evolved from INTRAC, an ele

mentary interactive language, originally developed at the Department of Automatic Con

trol, Lund Institute of Technology, Sweden [19]. INTRA C-C is written in FORTRAN and

produces FORTRAN as intermediate code. We shall refer to the interactive language

interpreted by INTRA C-C as the INTRAC-C language.

3- A set of procedures (macros) written in the INTRAC-C language.

The heartof the system is INTRA C-C. It is an application specific extension of INTRA C,

which is an elementary interaction language conceived in such a way that applications specific

extensions are easy to construct The INTRAC-C language has four sets of problem indepen

dent commands:

1- The original INTRAC commands for assignment of variables, conditional and uncondi

tional branching, looping, input and output

2- Commands for interacting with the optimization package.

3- Graphics commands.

4- Scratchpad commands, i.e. powerful commands foralgebraic manipulations of scalars, vec

tors and matrices.

INTRAC-C allows the use of macros (procedures). A macro is implemented in INTRAC-

C as a text file. When a macro is called by the user, INTRAC-C reads the file corresponding to

the macro from mass storage and takes the appropriate action. INTEROPTDYN has a simpie

text editor to modify macros.

- 10-

Variables in the INTRAC-C language can be local or global Local variables are local to

the macro level and are defined when they are first given a value in a read statement or in an

assignment statement Global variables are always accessible and may pass information between

macros.

A feature which makes INTRAC-C particularly useful in interactive CAD is the possibility

of suspending the execution of a macro by using the command SUSPEND. The execution of

the macro can be resumed by using the command RESUM E. When a macro is suspended com

mands can be inputted from the terminal. A typical use of this feature would be the following.

When executing a macro, the program may need some information from the user to perform

effectively its task. Then the macro is suspended and a question-answering phase begins. In

this phase, all the variables of the macro are accessible and the user can change values of vari

ables local to the macro. When the interaction is ended the macro is resumed and the compu

tation progresses. In INTEROPTDYN it is also possible to interrupt the execution of the

macro externally, forcing it in suspended mode. This feature allows the user to abort an unsa

tisfactory run and to access parameters and variables in the program outside a fixed frame.

Parameters and variables of the optimization algorithm which need to be changed interactively

or which, need to be accessible to INTRAC-C must be deposited in the symbol table of

INTEROPTDYN.

Among the application commands available in I?JTRAC-C we find the commands which

handle the interaction with OPTDYN. The first step in using these commands was to decide

where interaction should take place. According to the considerations of section 2, interaction

should be implemented at each step of the main loop of the algorithm as well as at each step of

every internal loop Thus breakpoints have been inserted after the corresponding statement of

OPTDYN. At each breakpoint a subroutine, INTCAL, is called This subroutine checks the

condition associated with the break point The condition may assume the following values:

1- NEVER: In this case no action is taken and the control is returned to the main program.

-11-

2- ALWAYS: In this case INTRAC-C is called and an interaction phase takes place.

The condition of a breakpoint can be changed by the HALT corrrmand of INTRAC-C.

An INTRAC-C command has the general form:

< rommand identified < argument list>

The foUcwing notation will be used in describing the syntax of commands

1- < > denotes that the enclosed term is not used literally but is replaced by its appropriate

value.

2- \] groups terms together.

3- [] groups terms together and denotes that the group is optional.

The HALT command has the following structure: HALT < breakpoint < condition> ,

where < breakpoints is the name of the breakpoint where the condition is to be set and

< condition> can be ALWAYS, NEVER or an IF-clause followed by ALWAYS or NEVER.

The IF-dause is used to change the condition dynamically. For example, the command HALT

ARMIJO IF ITER> 3 ALWAYS, sets the condition of the breakpoint ARMIJO to ALWAYS if

the number of iterations in the Armijo step is largerthan 3.

A number of other commands are available for the control of flow of INTEROPTDYN.

For the sake of brevity we shall not describe them here.

The variables in the symbol table of INTEROPTDYN can be changed byusing the fol

lowing commands:

1- SET: The SET command has the following structure: SET< variable> = < argument> ,

where < arguments can be either < variable> or < number> .

2- SETDIM: The SETDIM command changes the dimension of a variable in the symbol

table. Its syntax is SETDIM [ncoijnrowj (< variable>)= < arguments , where < ncoi>

and < nrow> are respectively the column and the row dimension of the variable.

The graphics commands of INTRAC-C can be grouped in two parts:

-12-

1- Low level primitives for vector generation, initialization, terminal control, text output

positioning and windowing.

2- High level display functions.

These commands can be executed on the foUowing graphics interactive terminals: Tek

tronix 4027, Ramtek Micrographics, HP 2648. The first two terminals are color graphics termi

nals. Our research group has access to 1 Tektronix, 1 Ramtek and 5 HP 2648 terminals.

About 15 low level primitives are available. For the sake of brevity, we are going to examine

only one of these; the VECTOR command It is used to draw a vector betweentwo points. Its

syntax is : VECTOR < xl> < yl> < x2>< y2> , where < xl> and< x2> are the x-coordinates

of the two points and < yl> and < y2> are the y-coordinates of the two points.

Two high level display commands are available: a CURVE and a BAR command Both

commands have the same syntax. The syntax of the commands is < commands < array>

< ymin> < ymax> [< topcolor>] [< botcolor> < thresholds] where < array> contains the

name of the array carrying the information to be displayed, < ymin> and < ymax> are used

for the y-axis scaling, the optional < topcoior> specifies the color to be used in the output if

the second option is not used If the optional < botcolor> is given, then a numeric < thres

holds must follow. All entries in the < array> above the < thresholds will appear in the

< topcolor> while all entries below the < thresholds will appear in the < botcolor> . The

CURVE command plots all the entries in the < array> , while the BAR command produces a

carchart These commands implement among others, the ideas discussed in section 2 for using

color graphics to plot indicators for the behavior of the optimization algorithm.

In addition to the main, or INTEROPTDYN, symbol table, there is a second or

scratchpad symbol table. This symbol table serves to protect the main symbol table as well as

for results of side computations. Thus the INTRAC-C set of scratchpad commands can access

both symbol tables, but can only alter values in the scratchpad symbol table. The most

interesting commands of the scratchpad are:

- 13-

1- PD1M: This command creates arrays in the symbol table. Its syntax is PDIM < array>

[(< nrow> [:< ncol>])] < type> where < arrays is the name of the variable which is

being created < nrow> and < ncol> are the row dimension and the column dimension

of the array which can be given optionally. If < nrow> and < ncol> are not given then

the variable being created is a scalar. If < ncol> is not given then the variable being

created is a column vector and so on. < type> indicates which type is to be attached to

the variable. The saratchpad set of commands accepts four types, namely, integer, real,

double precision real and complex.

2- PM AT: This command is used to perform mathematical operations on arrays. It takes two

forms

a- PMAT< array> = \< array> < number>] < op> < array> , where the first

< array> is the name of the array where the result of the operation is stored the

second is the first operand the third is the second operand and < op> is one of the

following matrix operations: ^multiplication), + (addition), -(subtraction)

b- PMAT< array> = < func> < array> , where < funO can be: INV(inversion),

TRANS(transposition), TRACE(trace) orDET(determinant).

3- PSCAL: This command is used to perform mathematical operations on the scalars. Its

syntax is similar to PMAT except, for the < array> which now is replaced by < scalers .

The operations available are the four basic operations and the functions available are the

functions allowed in FORTRAN.

It is obvious that this set of commands meets the specifications indicated in section 2.

For example, in step 2 of the Gonzaga-Polak-Trahan algorithm a quadratic programming prob

lem must be solved to find the search direction. We use the Wolfe algorithm to solve this

mathematical programming problem It is very important that the matrix of the linear con

straints be well conditioned for the algorithm to produce a meaningful solution. If the search

direction is not satisfactory, the designer could checkon the conditioning of this matrix. To do

so, he couldform a square matrix by multiplying the matrix by its transpose using the functions

- 14-

and the matrix operations provided inthe scratchpad set of commands (a transposition followed

by the multiplication of two matrices). Then he could compute the condition number of this

square matrix by using the COND function provided in the PM AT command

Finally, the last component of the INTEROPTDYN systemis a set of macros written in

•the INTRAC-C language which have been found to be sufficiently useful to warrant depositing

them in our library. These macros can be divided into three groups:

1- Macros which manage the execution of the optimization algorithm

2- Macros which implement high level displayfunctions.

3^ Macroswhich make the use of the scratchpad feature easier.

The main macro of the first set is called RUN. This macro enables the execution of a

specified number of overall iterations of the optimization algorithm. Its syntax is RUN < nitn>

[< display>], where nitn is an integer indicating the number of iterations one wants to perform

and < display> is the name of a macro which can be coupled to RUN. This macro will be exe

cuted at each iteration of the overall algorithm. The program will stop after the number of

iterations specified has been reached (of course, the program may stop before if the optimal

design is reached). When the program stops, the macro displays on the screen a set of ques

tions incUcating to the user possible changes of algorithm parameters before running more itera

tions. It is very useful to combine RUN with a display macro which prints or displays graphi

cally the values of the cost and of the constraints while the computation is progressing. In fact

on the basis of the information displayed on the screen the designer may decide to suspend the

execution of the macro RUN and to perform side computations or change the values of a few

parameters via the SET command

Several macros are available which implement high level displaj'' functions. For example,

the macro GRAPH is used to plot the values of an array. Its syntax is GRAPH < array>

< color> < mark> [< indexl> < index2>] where < iarray> is the name of the column vector

whose entries have to be plotted < color> is the name of the color to be used when plotting

the array and < mark> can assume either the value yes or no. In the first case, the points of

- 15-

the graph corresponding to the entries of the array are marked with a small asterisk. The

optional < indexlS and < index2> are used to plot only a subset of entries of the array,

namely the ones between the elements with index equal to indexl and with index equal to

index2. The macro computes the scale factors to fit the curve in a given window on the screen

and it clips out the subarray defined by the indices. Thus, the option can be used to zoom in

on a part of the graph which looks particulariy interesting to the designer. Graphic macros are

built MerarchicaUy so that macros at liigher levels call macros at lower levels. GRAPH is a

macro at an intermediate level. For example, PLTROW is a macro at higher level whichplots a

specific row of an array and which calls GRAPH. Its syntax is: PLTROW < array(I:)>

< color> [< mark>] where < array(I:)> is the name of a row to be plotted < color> is the

name of the color to be used to plot the array, and the optional < marks indicates if the coor

dinate points forming the graph has to be marked To give an example of how a macro is writ

ten in INTEROPTD YN we list PLTROW below.

MACRO PLTROW H(I:) C; YESNO

The array is H(I:), a row vector extracted from a matrix Hby picking up the I-th row. Cisthe

local variable indicating the color of the plot the ; separates the compulsory arguments from

the optional ones, YESNO is the argument which indicates if theplot has tobemarked ornot

DEFAULT YESNO = N

This line of codeindicates the defaultvalue of YESNO which is no.

ROW oH = H(I:)

This lineuses the macro ROW to create anew variable, oH, which is a row vector.

TRS oHT = TRANS(oH)

This line uses the macro TRS to create a column vector which is obtained by transposing the

row vector of the previous statement

PREM oH

This line of code is needed to remove the variable oH which has been created in the scratchpad

symbol table by the previous command

- 16-

GRAPH oHT C YESNO

This line of code calls the macro GRAPH whose arguments are; the column vector created
the previous statements, the color indicated in the arguments of the macro PLTROW and the
variable needed to determine if the plot has to be marked

PREM oHT

Once we have used oHT we need to remove this variable from the symbol table of the
scratchpad so asnot to waste memory.

END

This commandindicates the end of a macro.

Macros are relatively easy towrite butthey are inefficient In fact since thecommands of

a macro are interpreted every time a command is read the command is parsed and executed

Therefore, macros involving loops take a long time to run. On the other hand the cornmands

are implemented by FORTRAN routines, are compiled and are therefore much more efficient

However they are more difficult to write than macros.

The last set of macros available in INTEROPTDYN make the scratchpad commands

easier to use. For example, the macro MM makes the use of the matrix multipUcation com

mand much easier. When using the command PMAT A = B*C, we need to create thevariable

A first declaring its proper dimensions. MM creates the variable with the right dimensions

automatically. Its syntax is MM < array> = < array> *< array> where the first < array>

indicates the name of the array where the product will be stored the second and the third

< array> indicate the name of the arrays to be multiplied We need not declare the first

< array> nor its dimensions.

4. CONCLUSIONS

INTEROPTDYN is a prototype software package for optimization based corrrputer-aided

design of engineering systems. Its main features are :

1- Ease of interaction with the optimization algorithmimplemented in the package.

2- Extensive use of colorgraphics.

3- A scratchpad subsystem used to perform side computations needed to monitor the

in

- 17-

behavior of the optimization algorithm and to improve it when unsatisfactory.

Weare currently incorporating into our system a number of powerful simulation packages

which can be called by INTEROPTDYN for function and derivative computation. Asa result

we are obtaining a number of very powerful optimization based CAD packages for use in

different engineering fields. In parallel to this activity, we are working on a more advanced ver1

sion of INTEROPTDYN based on a new toteractive language which should be more powerful

than the INTRAC-C language.

5. ACKNOWLEDGEMENT

Research sponsored by the National Science Foundation under ,

Grants ENG-7810442, PFR-7908261 (RANN), ECS-7913148 and the Joint

Services Electronics Program Contract F49620-79-C-0178.

REFERENCES

[1] "Advanced Statistical Analysis Program(ASrAP)", IBM Corp-Data Processing Division,
White Plains, NY, Installed User Program, SH 20-1118-X

[2] Nagel, L.W. and D.O.Pederson, "SPICE2: A computer Program to Simulate Semiconduc
tor Circuits'ERL Memo N.ERL-M520, Electronics Research Laboratory, University of
California, Berkeley, May 1975.

[3] Becker, D. et al. ,'3CEPTri](Improved)", USAF Technical Report AFWL-TR-73-75, Air
Force Weapons Laboratory, Kirkland AFB, N.M.1973.

[4] Director, S.W. and R.Rohrer, 'The Generalized Adjoint Network and Network Sensitivi
ties" IEEE Trans. Circuit Theory, CT-16, pp.318-323, Aug. 1969.

[5] Director, S.W. and R.Rohrer, "Automated Network Design: The Frequency-Domain
Case", IEEE Trans. Circuit Theory, CT-16, pp.330-336, Aug. 1969.

[6] BandlerJ.W., P.C.Liu and H.Tromp, "A Nonlinear Programming Approach to Optimal
Design Centering Tolerancing and Tuning", IEEE Trans, on Circuits and Svstems, CAS-
23, pp. 155-165, Mar.76.

[7] Director, S.W. and G.Hachtel, 'The Simplkial Arjproximation to Design Centering", IEEE
Trans, on Circuits and Systems, CAS-24, pp.363-372, July 1977.

[8] Marisen, K., H.Schjaer-Jacobsen, and J.Voldby, "Automated Minimax Design of Net
works", IEEETrans, on Circuits and Systems, CAS-23, pp.456-460, July 1976.

[9] Hachtei, G.D., M.R.Lightner and H.J.Kelly, "Application of the Optimization Program
AOP to the Design of Memory Circuits", IEEE Trans, on Circuits and Systems, CA3-22,
pp.496-503, June 1975.

- 18-

[10] Kaplan, G. "Computer-AidedDesign", IEEE Spectrum pp.40-47, Oct 1975.

[11] Pinel, J.F. et al. 'The Impact of Optimization in Network Design" IEEE Proc.1976 Int
Symp. on Circ and Syst, pp.783-786, 1976.

[12] Schjaer-Jacobsen K. and K.M adsen, "Algorithms for Worst-Case Tolerance Optimization",
IEEE Trans, on Circuits and Systems, CAS-26, pp.775-784, Sept 1979.

[13] Brayton, R.K. et al. "A New Algorithm for Statistical Circuit Design Based on Quasi-
Newton Methods and Function Splitting", IEEE Trans, on Circuits and Systems, CAS-25,
pp.784-795, Sept 1979.

[14] Gonzaga, C. andE.Polak; "On Constraint Dropping Schemes and Optimality Functions for
a Class of Outer Approximations Algorithms", SIAM J.Control and Optimization, vol.17,
pp.477-493, July 1979.

[15] Polak; E. and A.Sangiovanni-Vincentelli, 'Theoretical and Computational Aspects of the
Optimal Design Centering. Tolerancing and Tuning", IEEE Trans, on Circuits and Sys
tems, CAS-2S, pp.795-813, Sept 1979.

[16] Polak, E."Algorithms for a Class of Computer-Aided Design Problems: A Review",
Automatica, vol.15, pp.531-538, 1979. "~. ":,-

[17] Payne, A.N. and E.Polak; "An Interactive Rectangle Elimination Method for biobjective
decision making",,IEEE Trans, on Automatic Control, in press.

[18] Wieslander, J. and H.Elmqyist "INTRA C, A Communication Module for Interactive Pro
grams", Department of Automatic Control Memo LUTFD2/(TFRT-3149)/l-060/1978,
Lund Institute of Technology, Lund, Sweden, Aug. 1978.

[19] Polak, E. 'Computational Methods in Optimization", Academic Press, NY, 1971.

[20] Gonzaga, C. .E.Polak and R.Trahan"An Improved Algorithm for a Class of Optimization
Problems with Functional Inequality Constraints" Electronics Research Laboratory Memo
N.UCB/ERL-M 78/56, University of California Berkeley, 1978

[21] Bhatti, M.A., E. Polak and K.SL Pister "OPTDYN- A General Purpose Optimization Pro
gram for Problems with or withoutDynamic Constraints" Report No. UCB/EERC-79/16,
Earthquake Engineering Research Center, University of California, Eerkeley, July 1979.

19-

f(x + Xh(x))- f (x)

-XaHMx)ll2
-XHh€(x)ll2

Figure l.The Armijo step size calculation.

-20

Vg'(x),Vf(x)}

Figure 2. An example of the influence of bad scaling on the

search direction calculation.

g'(x+^h€(x)) ,
g(x+y3he(x))

g'U)"

g2(x+£phe(x))
g2(x+#'h€(x))

g2(x)

Figure 3. The barchart of the constraints.

g^(x)

^"(x+yS'Mx))
gq(x+£Y(x))

	Copyright notice 1980
	ERL-80-14

