Copyright © 1980, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

A SOFTWARE SYSTEM FOR OPTIMIZATION BASED

INTERACTIVE COMPUTER-AIDED DESIGN

by

M. A. Bhatti, T. Essebo, W. Nye, K. S. Pister
E. Polak, A. Sangiovanni-Vincentelli and A. Tits

Memorandum No. UCB/ERL M80/14

11 April 1980

A SOFTWARE SYSTEM FOR OPTIMIZATION BASED

INTERACTIVE COMPUTER-AIDED DESIGN

by

M. A. Bhatti, T. Essebo, W. Nye, K. S. Pister
E. Polak, A. Sangiovanni-Vincentelli, and A. Tits

Memorandum No. UCB/ERL M80/l4

11 April 1980

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

}»

A SOFTWARE SYSTEM FOR OPTIMIZATION BASED

INTERACTIVE CCMPUTER-AIDED DESIGN

by

M.A. Bhatti !, T. Essebo ?, W. Nye?, K.S Pister!,

E. Polak ?, A. Sengiovenni-Vincentelli 3, A. Tits 3.

L THE CASE FOR OPTIMIZATION BASED INTERACTIVE CAD.

The term computer-aided design is used to describe a great variety of activities. In elec-
tronics, computer-aided design often amounts to no more than simulation of electronic circuits
coupled with a cut-and-try procedure. At first the designer chooses an initial design
configuration. Then the configurstion is analyzed by means of a computer program which simu-
lates the behavior of the physical systern. By looking at the results of the computer simulation,
the designer adjusts parameter values in an attermpt to satisfy a set of given spedfications which
are not met by the initial configuration and/or obtain a better design in terms of performances
and/or production costs. A fter the adjustment, a new simulation is performed and the overall
procedurs is iterated until a satisfactory design is obtained.

Over the last decade research in computer sirmlation of electronic dircuits has made con-
siderable progress resulting in a number of excellent simulation programs (e.g. [1-3]). Since
the late 1960's it has been felt that the cut-and-try design mode could and should be improved
considerably [4,5]. In a cut-and-try design mode the designer essentially assumes the role of a
heuristic master optimization and inequality solving algorithm. Unfortunately, pure heuristics

ere generally ineffident in searching a rmultidimensional parameter space and hence they cannot

! Department of Civil Engineering
Universily of California, Berkeley

2D epartment of A utomztic Control

institute of Technology, Lund, Sweden
aDepartmmtdEledﬁmlEngineeﬁng and Computer Sdences
University of California, Berkeley

-2-

be relied on to preduce a feasible design, let alone an optimal one. Consequently, an effident
design procedure must make substantial use of optirmization algorithms so as to relieve the

designer from the drudgery of search in the paramneter space and to allow him to concentrate on

the conceptual aspects of the design.

Despite considerable research activity in computer optimization of electronic cireuits (e.g.
[6-9]), according to recent surveys [10,11] optimization techniques are not used as widely as
might be expected. There are several reasons for this. Perhaps the most important one is that
the optimization algorithms used until now have been too primitive for the task at hand. For
example, they are not capable of solving non convex problems with tolerances and with toler
ances and post-manufacture tuning. Even in the simple cases, with no tolerances involved, the
cost/benefit ratio has frequently been unfavorable because the algorithms failed to converge to
a solution in a reasonable amount of computer time. This situation may te caused by the ill-
conditioning of the mathematical programming problem into which the design problem was
translated, by the weak convergence properties of the algorithms used (e.g. penalty function
with conjugate gradients as subroutine for unconstrained optirization) or by a poor choice of
initial design and/or algorithm parameters. Since any algorithm for optimization based computer
aided design requires a number of simulations per iteration and since the cost of simulation
ranges from 15 secs for a sirmple problem to minutes for a realistic design probiem (onaCDC
B400), it is clear that slow convergence or no convergence at all may be considered as a very
expensive accident!

Recently new algorithms have been developed for design problems involving tolerances
[12,14] and tuning [15]. At the same time, methods for early detection of ill-conditioning in
the mathemsatical programming problem into which the design problem was trenslated, are
emerging. Also heuristics are currently being developed which help avoid translation ill-
conditioning. Since in general the trenscription of a design problem into a mathematical pro-
gramming problem is nct unique, these heuristics suggest ways for chenging the trenscription of

the design problem to eliminate the ill-conditioning. M ore robust algorithms, i.e. algorithms

I

-3-

with guarenteed convergence properties are now being used [16]. However, these algorithms
are still very sensitive to the choice of intermnal parameters as well as iniial values of design
parameters.

In our opinion, a new design methodology based on interactive graphic computing is
indispensable. Interactive computing permits one to abort, stop and restart or otherwise modify
a computation as it progresses, resulting in very substantial savings not only in computing time,
but also in the overall time needed to carry out a design. A's an example, suppose that an initial
design proposed by a designer fails to meet specifications. When using an interactive CAD
system, he could identify this fact by observing the computations He could stop the computa-
ton and either modify the structure of his design or experiment with relaxation of the
specifications. Next, in the case of ill-conditioning, he could change the description of the
design problem into a different mathematical programming problem by observing the heuristic
information displayed on the screen. Finally, he would be in an ideal situation to perform
rede-offs of one desireble goal to obtzin an improvement in another. Since it is obviously
impossible either to compute or to display an entire multidimensional trade-off surface, interac-
tive computing techniques are being developed which will enable the designer to find a satisfac-
tory compromise solution on the basis of a sequence of computations which he must guide
interactively [17].

One of the goals of our research effort is to develop a software system for optimization
based interactive computer-eided design. In the following sections we describe a prototype
interactive software system INTEROPTDYN (INTERactive OPTimization of D YNamical sys-
temns), built around the language INTRAC [18]. In section 2 we discuss how interaction should
be implemented in an optimization packsge. In section 3 we describe some of the features of
INTEROPTDYN.

2 INTERACTIVE GRAPHICS IN OPTIMIZATION BASED CAD

W hen expressed as an optimization problem most engineering design problems become a

nonstandard mathematical programming problem of the form:

-4-

Pl: min{ f(z) | g?(z) £ 0, j=1....q; 11}163;; o (z,p)= 0, i=1,...,m }
where z is the vector of the design parameters. Some of the components of the 2*'s are parem-
eters such as temperature, time or frequency, while others are tolerances on the nominal
design. The sets F%,i=1,...,m are generally intervals or n dimensional boxes cr other convex
sets in R. W e assurne that the cost and the constraint functions f and g/,j=1,....q are con-
tinuously differentible. We also assume that the functons @ti=1l,...m are continuously
differentiable with respect to z and Lipschitz continuous with respect to *. Of course the con-

straints of the form max ¢*(z,p*)$ 0 are not continuously differentiable with respect to z. For
pePt

the sake of simplidity, in the rest of this section we consider design problems where these con-
straints are not present

To iltustrate the use of interactive graphics in solving such a problem suppose that we use
a feasible directions method [19]. Let F={z |g/(z) £ 0, j=1,...q } be the feasible region
for the design problem. Given &> 0, the set J(z)={j€{L,...q}|9?(z)2 ~&} is celled the set of
indices of the z-active constraints. Now we introduce a feasible direction algorithm to discuss
the use of graphic interaction in optirnization.
Feasibic D irections Algorithm
Data g€ F.

Parameters a, B € (0,1); 5> 0; 22 0.

Step 0 Set i=0.
Step 1 Set ¢ = ¢gq
Step 2 (D irecticn finding subprocedure)

Compute h.{z;) and ¥,(x;), where

he(zm) = —agmin § R 2 | h=AV f(z)+ 3 NV ¢/(xm):
jed (%)

A=1 A2 05€0,(%) 3
jel (=)

and Y(x) = |ho(z) R

I

Step 3 (Termination criterion)

If £ £ %, compute Uy(x;) and stop if ¥(z;) £ . Else proceed.
Step 4 (e—reduction)
If 9(z)S &, set e=—; and go to Step 2. Else proceed.

Step 5 (Stepsize computation by A rmijo rule [19])

Compute the smallest integer k;2 0 such that

Fz+B%h(m)) - F(m) £ —af|he(z) P (2.1a)
P m+B5%(z)) 5 0, j=lig (2.1b)
Step 6 Set zi41 = 7 +AR(z;) , set i=i+1 and go to Step L

Under reasonably weak conditions on the feasible region F if €=0, the above algorithm is
guaranteed to produce a sequence of design parameters whose accurnulation points satisfy a first
order necessary optimality condition [18]. Its computational effidency depends critically upon
the values of the parameters. Each of the parameters controls a particular phase of the optimi-
zation algorithm. For examnple, £ and T control the termination of the algorithm, &g controls
which constreints have to be taken into account at the beginning of each iteration of the algo-
rithm in computing the descent direction, a and 8 control respectively the sloge of the line in
fig.1 and the rate of reduction of the step size in the Armijo rule. Unfortunately, the optimal
values of the parameters are problem dependent. A designer with knowledge of the mechan-
isms of the algorithm may see from the results of the early iterations that the computation is
not progressing satisfactorily. In order to avoid continued ineffident use of the algorithm, the
designer must be able to interrupt the computing process to analyse the causes of the unsatis-
factory situation, to change the values of the data or of the parameters and restart the comput-
ing process. These actions can be accomplished efficiently only by interaction. However, in
order to make interaction as effective as possible, the designer must be provided with indicators
which can guide him in the detection of poor computational behavior of the algorithm. M ore-
over, these indicators should provide information on as to how the parameters of the algorithm

should be changed so as to improve its performance.

-8-

For example, suppose that the algorithm, after computing the search direction h{z;), gets
hung up in the Armijo step loop because test (2.1b) is not satisfied. This is certainly extremely
undesirable, since in CAD problems the required function evaluations need expensive simula-
tions. A designer may try to correct this situation by adjusting some of the parameters of the
algorithm or by rescaling the problem. In order to do that, he has to detect which constraint is
forcing the decreass of the step size in the Armijo step. Then he must be able to check if this
constraint is in the set of the e—active constraints. If this constraint is not in the set of the
g—active constraints, then the search direction computation does not "see" this constraint and as
a cocnsequence the step size may have to be reduced considerably before test (2. 1b) is satisfied.
In this case the designer could modify € by increasing it, so that the neglected constraint is in
the set of e—active constraints, if the process is resumed by going back to step 2. When
inareasing ¢ the designer must be careful not to make & so lerge that too many other constraints
becomne active, because as a result, ~y(x;) may become too small and £ would then be reduced
in step 3, wasting several cycles in step 2. Furthermore, gradient computations are costly and
should be kept to a minimum. If he finds out that the impeding constraint is in the e—~active
constraints set, then he may try a different strategy to improve the perfcrmance of the algo-
rithm. In this case., the poor computational behavior may be caused by bad scaling. Let us
consider first the geometrical interpretation of the search direction. According to step 2 the
search direction direction calculation pmblem turns out to be the negative of the nearest vector
to the origin in the convex hull of the gradients of the cost and of the s-active constraints.
From the geometry of the direction calculation problem, we deduce that if the L, norm of the
gredient of the impeding constraint is very large compared to the norms of the gradients of the
other e-active constraints and/or of the cost, then the search direction computed by solving the
quadratic programming problem in step 2 may not take into account the gradient of the con-
streint which is causing difficulty (see fig.2). This situation may be detected by looking &t the
angle between the search direction and the gradient of the constreint. If this angle is dose to

90° then, h.(z;) does not adequetely take into account the impeding constraint To comrect

-7-

this situation, the designer couid multiply the gradient of the limiting constraint by a "pushfac-
tor'' to make the L, norm of this vector comparable to those of the other vectors considered in
step 2.

It tums out that in almost all the critical phases of the optimization algorithm similar
information should be made available to the designer. Of course, this information can be given
numerically at each iteration of the algorithm and at ezch iteration of the subalgorithms (loops)
inside the steps of the algorithm. However, it is easy to see that a messive quantity of numeri-
cal data presented on a screen, may overwhelm a designer, jeoperdizing the effidency of the
design procedure. A much more effident methoed for carrying out interaction is through greph-
ics,

Let us consider the computational problem desaribed above. To help the designer to
detect the reason for the poor performance of the algerithm, we could display a bar chart plot-
ting the values of the constraints befor= entering the Armijo step, side by side with the values
of the constraint at each iteretion of the A rmijo step. By displaying also a line corresponding to
zero and a line corresponding to ¢, the designer could immediately detect if an impeding con-
straint, i.e. a constraint with the corresponding ber above the zero line in the A rmijo iterations,
is not in the set of the z-active constraints by looking at the bar corresponding to the value of
the constraint before the Armijo step is entered (see fig.3). In fact, if this bar is below the &-
line, then the constraint is not in the set of the ¢-active constraints. The use of color graphics
could further improve man-machine interaction. In the example described above, if the bars
corresponding to constraints which are not satisfied are plotted in red, the bars corresponding to

the constraints which are safisfied are plotted in green, the &-line in yellow, the designer could

grasp all the information he needs at a glance. The need for graphical display of information is

even stronger, if we consider a design problem with distributed consiraints (i.e. constraints of
the max form). In this case the designer needs to have a fesling for the change in the function
¢*(z,p') when z chenges. W hile the plot of the function ¢*(z,p") with respect to p* for a fixed

z gives information easily grasped by a designer, the numerical data printed on a screen cannot

be absorbed without a lengthy analysis.

We noticed before that the designer may need to perform additional computations in
order to gather relevant information to rescale the problem. It seems undesirsble to load the
main algorithm with all kinds of side computations to cover all the possible needs of the
designer, partly because it is not possible to anticipate all such needs and partly becausz the
designer may' come up with unforeseen tests which are particularly efficient for his problem.
Thus, an optimization based computer-asided design system should permit improvised side
computations on variables, vectors and matrices used in the optimization algorithms. Conse-
quently, the system should incorporate a powerful scratchpad, capable of matrix operetions such

as inversions, transpositions end calculation of condition numbers.

As aresult, we designed a prototype system with the following criteria in mind:

1- Ease of interaction should be emphasized. A designer should be ahle to interrupt the corm-
puting process, change the parameter values and restart the process. M oreover he should
be able o control the flow of the algorithm by single stepping through its loops. (This
feature is most useful in diegnosing where the computation jarmmed up and what is the
probable cause of the jamming of the algorithm).

2- Graphical display of quentities computed by the optimization and the simulation algo-
rithms should be possible. Coler graphics should ke used to enhance man-machine
interaction.

3 A powerful, high level, scrafchpad for side computations on variables, vectors and

matrices used in the optimization algorithm should be available.
3 THE INTEROPTDYN SYSTEM

The INTEROPTDYN systemn is an experimental interective software package for optimiza-
tion based computer-aided design of dynarmical systemns developed at the University of Califor-
nia, Berkeley by a team formed by the authors of this paper. The system is running on a DEC

VAX 11/780 computer grented by NSF for ressarch on interactive computer-aided design of

-9-

engineering systems. The operating system is a virtual memory version of UNIX developed at
the University of California, Berkeley,(UNIX is a Bell systemn trade mark). The system can be
used to solve design problems of the form P1 where the P*'s are intervals. At present, the sys-

tem consists of :

1- A main program (OPTDYN) written in FCRTRAN, implementing the G onzaga-Polak-
Trahan phase I-phase 11 method of fessible directions [20,21].

2- The interpreter of an interactive language, INTRAC-C, evolved from INTRAC, an ele-
mentary interactive language, originally developed at the D epartrnent of A utomnatic Con-
trol, Lund Institute of Technology, Sweden | 19). INTRA C-C is written in FORTRAN and
produces FORTRAN as intermediate code. W e shall refer to the interactive language

interpreted by INTRAC-C as the INTRAC-C language.

3 A set of procedures (macros) written in the INTRA C-C language.

The heart of the system is INTRA C-C. It is an application specific exterision of INTRAC,
which is an elementary interaction language conceived in such a way that applications specific
extensions are easy to construct. The INTRAC-C language has four sets of problem indepen-
dent commands:

1- The original INTRAC cormmands for assignment of variables, conditional and uncondi-
tional branching, looping,input and output.

2- Commends for interacting with the optimization package.

3 Graphics commands.

4- Scratchpad commands, i.e. powerful commands for algebraic manipulations of scalars, vec-
tors and matrices.

INTRAC-C allows the use of macros (procedures). A macm is implemented in INTRAC-
C &s atext file. W hen a macro is called by the user, INTRAC-C reads the file corresponding to

the macro from mass storage and takes the appropriate action. INTEROPTDYN has a simpie
text editor to modify macros.

-10 -

Variables in the INTRAC-C langnege can ke local or global. Local variables are local to
the macro level and are defined when they are first given a value in a read statement or in an

assignment, statement. Global variables are always accessible and may pass information between

TAaCcros.

A featurs which makes INTRAC-C particularly useful in interactive CAD is the possibility
of suspending the execution of a macro by using the command SUSPEND. The execution of
the macro can be resumed by using the command RESUM E. W hen a macro is suspended, com-
mands can be inputted from the terminal. A typical use of this feature would be the following.
When executing a macro, the program may need some information from the user to perform
effectively its tasic Then the macro is suspended and a question-answering phase begins. In
this phase, all the variables of thé macro are accessible and the user can change values of vari-
ables local to the macro. W hen the interaction is ended, the macro is resumed and the compu-
tation progresses. In INTEROPTDYN it is also possible to interrupt the execution of the
macro exterraily , forcing it in suspended mode. This feature allows the user to abort an unsa-
tisfactory run and to access parameters and variables in the program outside a fixed frame.
Parameters and variables of the optimization algerithm which need to be changed interactively
or whick need to be zccessible to INTRAC-C must be deposited in the symbol table of

INTEROPTDYN.

Amoeng the applicetion cormrnands available in INTRAC-C we find the commands which
handle the interaction with OFTDYN. The first step in using these corrmnands was to decide
where interaction should take place. According to the considerations of section 2, interaction
should be implemented at each step of the main loop of the algorithm as well as at each step of
every internal loop. Thus breakpoints have been inserted after the corresponding statement of
OPTDYN. At each breskpoint a subroutine, INTCAL, is called This subroutine checks the

condition assvdated with the break point. The condition may assume the following values:

1- NEVER: In this case no acticn is taken and the control is retumed to the main program.

-11-

2- ALWAYS: In this case INTRAC-C is called and an interaction phase takes place.

The condition of a breakpoint can be changed by the HALT conmmand of INTRAC-C.
An INTRAC-C cornmand hes the general form :
< cormmand identifier> < argument list>
The following notation will be used in describing the syntax of commands

1- < > denotes that the endosed term is not used literally but is replaced by its appropriate

value.
2- {1 groups terms together.
3 [] groups terms together and denotes that the group is optional.

The HALT command has the following structure: HALT < breakpoint> < condition> ,
where < breakpoint> is the name of the breakpoint where the condition is to be set, and
< condition> can be ALWAYS, NEVER or an [F-clause followed by ALWAYS or NEVER.
The IF-clause is used to change the condition dynamically. For example, the command HALT
ARMIJO IF ITER> 3 ALWAYS, sets the condition of the breakpoint ARM1JO to'ALWAYS if

the number of iterations in the Armijo step is larger than 3.

A number of other commands are available for the control of flow of INTEROPTD YN.

For the sake of brevity we shall not describe them here.

The variables in the symbol table of INTEROPTDYN cean be changed by using the fol-

lowing comrnands:
- SET: The SET commeand has the following struchure: SET< variable> = < argumnent> ,
where < argument> can be either < variable> or < number> .

2~ SETDIM: The SETDIM command changes the dimension of a variable in the symbol
table. Its syntax is SETDIM {ncolnrow (< variable>)= < argument> , where < ncol>

and < nrow> are respectively the column and the row dimension of the variable.

The graphics commands of INTRA C-C can be grouped in two parts:

-12.

1- Low level primitives for vector generation, initialization, terminal control, text output,
positioning and windowing,
2- High level display functions.

These commands can be executed on the following graphics interactive terminals: Tek-
tronix 4027, Ramtek M icrographics, HP 2648. The first two ’rgrminals are color graphics termi-
nals. Our research group has access to 1 Tektronix, 1 Ramtek and 5 HP 2648 terminals.
About 15 low level primitives are available. For the sake of brevity, we are going to examine
only one of these; the VECTOR command. It is used to draw a vector between two points. Its
syntax is: VECTOR < x1> < y1> < x2> < 2>, where < x1> and< x2> are the x-coordinates

of the two points and < y1> and < y2> are the y-coordinates of the two points.

Two high level display commeands are available; a.CURVE and a BAR command. Both
commands have the same syntax. The syntax of the commands is < command> < array>
< ymin> < ymax> |< topeolor>] [< botcolor> < threshold>] where < array> contains the
name of the array carrying the information to be displayed, < ymin> and < ymax> are used
for the y-axis scaling, the optional < topcolor> spedifies the color to be used in the output if
the second option is not used. If the optional < botcolor> is given, then a numeric < thres-
hold> must follow. All entries in the < aray> above the < threshold> will appear in the
< topcolor> while all entries below the < thresnold> will appear in the < boteolor>. The
CURVE command plots all the entries in the < array>, while the BAR cormmand produces a
varchart. These commands implement among others, the ideas discussed in section 2 for using

color graphics to plot indicators for the behavior of the optimization algorithm.

In addition to the main, or INTEROPTDYN, symbol table, there is a second, or
scratchpad, symbol table. This symbol table serves to protect the main symbol table as well as
for resulls of side computations. Thus the INTRA C-C set of scratchped cormmands can access
both symbol tables, but can only alter values in the scretchpaed symbol table. The most

interesting commands of the scratchpad are:

-13-

1- PDIM: This command creates arrays in the symbol table. Its syntax is: FDIM < array>
[(< nrow> [:< neol>])] < type> where < aray> is the name of the variable which is
being created, < nrow> and < ncol> are the row dimension and the column dimension
of the array which can be given optionally. If < nrow> and < ncol> are not given then
the variable being created is a scalar. If < ncol> is not given then the variable being
created is a oolurmm vector and so on. < type> indicates which type is to be attached to
the variable. The scratchpad set of commands accepts four types, namely, integer, real,

double precision real, and complex.

2- PMAT: This command is used to perform mathematical operations on arrays. It takes two

forms

& PMAT< aray> = {<amray> <number>} <op> <amay>, where the first
< array> is the name of the array where the result of the operation is stored, the
second is the first operand, the third is the second operend and < op> is one of the
following mafrix operations: *(multiplication), + (addition), -(subtraction)

b- PMAT< amray> = <func> < aray>, where < func> can be: INV(inversion),
TRANS(transposition), TRA CE(trace) or D ET(determinant).

3~ PSCAL: This command is used to perform mathematical operations on the scalars. Its
syntax is similar to PMAT except for the < array> which now is replaced by < scalar> .

The operations available are the four basic operations and the functions available are the
functions allowed in FORTRAN.

It is obvious that this set of commands meets the specifications indicated in section 2.
For example, in step 2 of the Gonzaga-Polak-Trehan elgorithm, a quedratic programrming prob-
lem must be solved to find the search direction. We use the Wolfe algorithm to solve this
mathematical programming problem It is very important thet the matrix of the linear con-
straints be well conditioned for the algorithm to produce a meaningful solution. If the search
direction is not satisfactory, the designer could check on the conditioning of this matrix. To do

so, he could form a square matrix by multiplying the matrix by its transpose using the functions

-14 -

and the rnatrix operations provided in the scretchpad set of commands (a transposition followed
by the multiplication of two matrices). Then he could compute the condition number of this

square matrix by using the COND function provided in the PMAT command.

Finally, the last component of the INTEROPTDYN system is a set of macros written in
-the INTRAC-C language which have been found to be sufficiently useful to warrant depositing

thern in our library. These macros can be divided into three groups:

1- M acros which manage the execution of the optimization algorithm.
2~ Macros which implement high level display functions.

3 Marros which make the use of the scratchpad feature easier.

The main macro of the first set is called RUN. This macro enables the execution of a
spedified number of overall iterations of the optimization algorithm. Its syntax is RUN < nitn>
[< display>], where nitn is an integer indicating the number of iterations one wants to perform
and < display> is the name of a macro which can be coupled to RUN. This macro will be exe-
cuted a each iteration of the overall algorithm. The program will stop after the number of
iterations specified has been reached (of course, the program may stop before if the optimal
design is reached). W hen the program stops, the macro displays on the screen a set of ques-
tions indicating to the user possible changes of algorithm parameters before running more itera-
tions. It is very useful to combine RUN with a display macro which prints or displays graphi-
cally the values of the cost and of the constraints while the computation is progressing. In fact,
on the besis of the information displayed on the screen the designer may decide to suspend the
execution of the macro RUN and to perform side computations or change the values of a few

pararmeters via the SET command

Several macros are available which implement high level display functions. For example,
the macro GRAPH is used to plot the values of an array. Its syntax is GRAPH < array>
< color> < mark> (< index!> < index2>] where < array> is the name of the colurm vector
whose entries have to be plotted, < color> is the name of the color to be used when plotting

the array and < mark> can assume either the value yes or no. In the first case, the points of

-15-

the graph corresponding to the entries of the array are marked with a small asterisk. The
optional < index1> and < index2> are used to plot only a subset of entries of the array,
namely the ones between the elements with mclex equal to indexl and with index equal to
index?. The macro computes the scale factors to fit the curve in a given window on the screen
and it clips out the subarray defined by the indices. Thus, the option can be used to zoom in
on a part of the graph which looks particulerly interesting to the designer. Grephic macros are
built hierarchically so that macros at higher levels call macros at lower levels. GRAPH is a
macro at an intermediate level. For example, PLTROW is a macro at higher level which plots a
spedfic row of an array and which calls GRAPH. Its syntax iss PLTROW < amray(l:)>
< color> [< mark>] where < array(l:)> is the name of a row to be plotted, < color> is the
namne of the color to be used to plot the array, and the optional < mark> indicates if the coor
dinate points forming the graph has to be marked. To give an exarﬁple of how a macro is writ-
ten in INTEROPTD YN we list PLTROW below.

MACRO PLTROW H(I:) C; YESNO
The array is H(I:), a row vector extracted from a matrix H by picking up the I-th row. C is the
local variable indicating the color of the plot, the ; separates the compulsory arguments from
the optional ones, YESNO is the argument which indicates if the plot has to be marked or not.

DEFAULT YESNO = N
This line of code indicates the default value of YESNO which is no.

ROW oH = H(L)
This line uses the macro ROW to create a new veriable, oH, which is a row vector.

TRS oHT = TRANS(oH)
This line uses the macro TRS to create a column vector which is obtained by transposing the
row vector of the previous staterment.

PREM oH

This line of code is needed to remove the variable oH which has been created in the scratchpad
symbol table by the previous command.

- 18-
GRAPH oHT C YESNO

This line of code calls the macro GRAPH whose arguments are; the column vector created in
the previous statemnents, the color indicated in the arguments of the macro PLTROW and the
variable needed to determine if the plot has to be marked,

PREM oHT

Once we have used oHT we need to remove this varieble from the symbol table of the
scratchpad so as not to waste memory.
END

This cormmeand indicates the end of a ITacro.

M acros are relatively easy to write but they are inefficient. In fact, since the cornmands of
a macro are interpreted every time a command is read, the cormmand is persed and executed.
Therefore, macros involving loops teke a long time to run. On the cther hand, the commands
are implemented by FORTRAN routines, are compiled and are therefore much more effident.

However they are more difficult to write than macros,

The last set of macros available in INTEROPTDYN make the scratchpad comrnands
easier to use. For example, the macro MM makes the use of the matrix rmultiplication com-
mand much easier. W hen using the cornmand PMAT A = B*C, we need to create the varigble
A first, declaring its proper dimensions. MM creates the variable with the right dimensions
automnatically. Its syntax is MM < aray> = < array> * < array> where the first < array>
indicates the name of the array where the product will be stored, the second and the third
< aray> indicate the name of the arrays to te multiplied We need not declare the first

< array> nor its dimensions.

4. CONCLUSIONS
INTEROPTDYN is a prototype software package for optimization based computer-aided
design of engineering systems. Its main features are :
1- Ease of interaction with the optirnization algorithm implemented in the peckage.
2- Extensive use of color graphics.

3> A saatnhpadsubsystemusedtopexfomlsidewmputaﬁonsneededtommtorthe

-17-
behavior of the optimization algorithm and to improve it when unsatisfactory.

¥ e are currently incorporating into our system a nurmnber of powerful simmilation packages

which can be called by INTEROPTDYN for functiocn and derivative computation. A's a result,

we are obtaining a number of very powerful optimization based CAD packeges for use in

different engineering fields. In parallel to this activity, we are working on a more advanceé ver

sion of INTEROPTDYN based on a new interactive language which should be more powerful

than the INTRA C-C language.

5.

ACKNOWLEDGEMENT

Research sponsored by the National Science Foundation under ;

Grants ENG-7810442, PFR-7908261 (RANN), ECS-7913148 and the Joint .

Services Electronics Program Contract F49620-79-C-0178.

[1]

[2]

(3]

(4]

(5]

(6]

[7]

(8]

(s]

REFERENCES

"Advanced Statistical Analysis Program(ASTAP)", IBM Corp-Data Processing Division,
W hite Plains, NY, Installed User Program, SH 20-1118-X .-
Nagel, L.W. and D.0.Pederson, "SPICE2: A computer Program to Simulate Sermiconduc
tor Circuits’ERL Memo N.ERL-M 520, Electronics Research Laboratory, University of
California, Berkeley, M ay 1975.

Becker, D. et al. "SCEPTVE(Improved)”, USAF Technical Report AFW L-TR-73-75, Air
Force W eapons Laboratory, Kirkland AFB, N.M.1973.

Director, S.W. and R.Rohrer, '"The Generdlized A djoint Network and Network Sensitivi-
ties" IEEE Trons. Circuit Theory, CT-18, pp.318-323, A ug.1969.

Director, SW. and R.Rohrer, "Automated Network Design: The Frequency-D omain
Case", IEEE Trens. Circuit Theory, CT-16, pp.330-336, A ug.1969.

BandlerJ.W., P.C.Liu and E.Tromp, "A Nonlinear Programming A pproach to Optimal
Design Centering Tolerancing and Tuning”, IEEE Trens. on Circuits and Systems, CAS
23, pp.155-163, M ar.76.

Director; SW. and G.Hachtel, "The Simplidal A pproximation to D esign Centering", IEEE
Trans. on Circuits and Systems, CAS-24, pp.363-372, July 1977.

Madsen, K., H.Schjaer-Jacobsen, and J.Voldby, "Automated Minimax Design of Net-
works", IEEE Trens. on Circuits and Systems, CA S-23, pp.456-460, July 1576.

Hachtel, G.D., M.R.Lightner and H.J.Kelly, "Application of the Optimization ngrarxi
AQP to the Design of Memory Circuits”, IEEE Trens. on Circuits and Systems, CA3-22,
pp.486-503, June 1975.

-18 -

[10] Keplan, G. "Computer-Aided Design”, IEEE Spectrurn, pp.40-47, Oct. 1975.

[11]
[12]
&
4]

[15]

[16]
(17]

[18]

[19]

[20]

[21]

Pinzl, J.F. et al. 'The mpect of Optimization in Network Design” IEEE Proc.1978 Int.
Symp. on Circ. and Syst., pr.783-786, 1976.

Schiaer-Jacobsen H. and K.M adsen, "A lgorithms for W orst-Case Tolerance O ptimization',
IEEE Trans. on Circuits and Systemns, CAS-26, pp.775-784, Sept. 1979.

Brayton, R.K. et al. "A New Algorithm for Statistical Circuit Desion Based on Quasi-
Newton M etheds end Function Spiitting”, IEEE Trens on Circuits and Systems, CA $-28,
Pp-784-785, Sept. 1979,

Gonzages, C. and E.Polak, "On Constraint D ropping Schemes and Optimelity Functions fcr

a Class of Outer A pproximations Algorithms", SIAM J.Control and Optimization, vol.17,
pp-477-483, July 1979.

Polak, E. and A.Sangiovanni-Vincentelli, ‘Theoretical and Computational A spects of the
Optimal Design Centering, Tolerandng and Tuning", IEEE Trans on Circuits and Sys-
terms, CAS-23, pp.795-813, Sept 1979,

Polak, E."Algorithms for a Class of Computer-Alded Design Problems: A Rev1ew"
A utomatica, vol. 18, pp.531-538, 1379.

.

Payne, A.N. and E.Polak, "An Interactive Rectangle Elimination M ethod for biobjective
decision making’,,]JEEE Trans. on Automatic Control, in press.

w 1eslander. J. and H.Elmgqvist, "INTRAC, A Communication M cdule for Interactive Pro-
grams”, Depertment of Automatic Control Memo LUTFD2/{TFRT-3149)/1-080/1978,
Lurd Institute of Technology, Lund, Sweden, Aug 1978.

Polak, E. "Computational M ethods in Optimization”, A cademic Press, NY, 1971.

Gonzaga, C. ,E.Polak and R.Trzhan" An Improved Algorithm for a Class of Optimization
Probiems with Functioral Inequality Constraints” Electronics Research Lakoratory M emo
N.UCB/ERL-M 78,56, University of Celifornia, Berkeley, 1978

Bhett, M.A., E. Polak and K.S. Pister "OFTDYN- A Generel Purpose Optimization Prc-
grem for Problems with or without D ynamic Constraints’ Report No. UCB/EERC-73/186,
Earthquake Engineering Research Center, University of California, Berkeley, July 1879.

-19 -

f(x+Ah(x)) =~ f(x)
\

A

Bs? Bﬁ-l ' /

-Xalihg(x) 112
- X llhg(x) 112

Figure 1.The Armijo step size calculation.

-20-

Vg (x)

Co{¥g't 71(x)}

“he(x) -
VE(x)

Figure 2. An exarmple of the influence of bad scaling on the
search direction calculation.

g/(x+Bhe(x)--
g'(x+8'h (x))#—-—:h

-€ L“Og“(X)
g'(x)--—- y
2 g x+l3 he(x))
: X+B?h€(X) ———————————— - g"(x+,3 he (X))
ga(x +B he(x))T- ————————— |-
gz(x) Bt

Figure 3. The barchart of the constraints.

	Copyright notice 1980
	ERL-80-14

