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ABSTRACT

This paper considers, in a general algebraic framework, the design
of a unity-feedback multivariable system with a stable plant. The
method is based on a simple parametrization of the four closed-loop
transfer functions in terms of P, the plant transfer function, and
Q= Hylul. In particular the I/0 transfer function Hy2u1 = PQ. Using
the framework of rational transfer functions, we show that the closed-
loop system will be exp. stable if and only if Q is exp. stable.
Furthermore if both P and Q are strictly proper them the controller is

also strictly proper.

Algorithms are given for obtaining strictly proper comtrollers

such that the resulting I/0 map is decoupled, all its poles can be chosen

by the designer, and the same holds for zeros except, of course, for the
C,-zero prescribed by the C+7zero of the plant. A discussion is included
to temper these results by the constraints imposed by noise and plant

saturation.



I. Introduction

In the past several decades, the problem of multi-variable design,
e.g., closed-loop stability, pole-zero assignment, disturbance rejection,
etc., has been investigated intensively by many authors (see e.g. the
paper collections [MacF. 1, Part IV], [Sai. 1]). In general, the design
methods can be claséified into two categories: 1) the time-domain approach,
and 2) the frequency-domain approach. In the time-domain approach, the
system is described by a state-space model and the design specifications
are expressed in terms of an appropriate (in particular, quadratic)
performance index; the feedback design is obtained by solving the corre-
sponding optimal control problem (see e.g. [IEEE 1], [Kwa. 1], [And. 1]
Based on transfer-function matrices, the frequency-domain approach tackles
the design problem in various ways (see e.g. [MacF. 1, pp. 303-317],
[MacF. 2]): we mention more specifically the algebraic approach (see e.g.
[Ros. 1], [Pec. 1], [Des. 1]), the geometric approach (see e.g. [Won. 1])
and the complex-variable approach (see e.g. [MacF. 3]). Sain has recently
emphasized the importance of algebraic thinking in system engineering

[Sai. 2].

In this paper, we study the design of linear, unity-feedback systems

with a stable plant. Using the work of several authors, we formulate a
refined version of a stability theorem in a general algebraic set up by
using the parametrization proposed by Zames in [Zam, 1]. Considering
_rational transfer-function matrices, we propose a design method for
obtaining a decoupled I/0 map with pole-zero assignment in each (decoupled)
I/0 channel. This design is based on the fact that, in the unity-feedback
configuration, the I/0 map of the closed-loop system is simplyrelated to
that of the plant. The design algorithm displays clearly the constraint(s)

imposed by the €, -zeros of the plant on the decoupled I/0 map. The proposed



design method, although described for the rational transfer function case,
applies to any algebra of transfer functions within which algorithms are
available for obtaining coprime factorizations of transfer functionms.

The paper ends by a discussion of the limitations inherent in the
algebraic approach resulting from saturation and system noise.

In Appendix A, we perform a number of useful calculations in an arbitrary
noncommutative ring: thus by following these calculations the reader has

performed several of them for the price of one (see Table I)!

Notations
a := b means "a denotes b." R := field of real numbers; € := field of

complex numbers; R, := set of nomnegative real numbers;¢+, (C) := set of

+
complex numbers such that Re z > 0, (Re z < 0, resp.). For any set A, AR
denotes the class of all nxn arrays with elements in A, and Z denotes the
interior of A. Thus &_ denotes the open left half-plane. Cp(s),(cp’o(s))
denotes the class of all proper, (strictly proper, resp.), rational functions
with coefficients in €. R(O),(RO(O)) denotes the class of all proper,
(strictly proper, resp.) elements of Gp(s) that are analytic in c,. 1f

d(s) is a polynomial, 3d := degree of d, Z[d] := set of zeros of d. 1If
PER (s)nm, Z[P] := set of zeros of transmission of P, P[P] := set of

poles of P.

II. Algebras of I/0 Maps

We consider inputs, errors and outputs to be functions defined on T

(typically, T = R + for the continuous-time case,T=WIN for the discrete-
n, n n
time case), into some normed space V (typically, V = R l, R e’ R © or
n, n n
ct, ¢ e’ ¢ °). The function space F := {f :T + V} is a linear space

over R or €. Let (L,l:l) denote a Banach subspace of F, i.e.,

fE€EL:=f:T+>V and lfl < »



n
2’

space of L [Des. 2] {vid. 1].

(typically, L = LI;, L Lli, 2 ..0). call Le the corresponding extended

©

Let 8 L denote the zero element in L (Le). Let A denote the non-commutative

algebra with identity I, consisting of linear causal maps from Le into

Le. Let Abe an algebra of linear camnsal maps defined on Le (but not

necessarily into Le) and such that Ais a subring of A (Equivalently, A

is a super-ring of A ; for example, in the continuous-time case, A includes
the time differentiation operators, hence its range is larger than Le

since it includes distributions). Let As denote the radical (see

Appendix) of A. Let (B, [I.1) denote+ the Banach algebra of continuous :

(linear and causal) elements of A, i.e.,

Pl
B:={PE A :lpl := sup wr <=t -
el
uf
We refer to the elements of B as the IB -stable maps: indeed, we have,
for PE B
Ipull < pl-lul Vu€ L
and§
lIPulIT < ﬂPﬂ'uﬂT ¥TET, Wu€ Le

Let O denote the zero element in A, (B). Let IBS 1= /As NB. Table I

shows some typical examples of A, A, As’ B and B,

III. Closed-loop B -stability

We consider the unity-feedback system shown in Fig. 1. The inputs are

u, and Uy, do is the output disturbance; they are all elements in Le'

1

+We shall use l-l to denote both the norm in L and the induced norm in B.
§Hfﬂ,1,, with T € T and £ € L, denotes the norm of the function f truncated
at T.



Formally (i.e. assuming that all the expressions involved are well-~defined),

-ul e
a - e » representing the closed-
2

_2

: u > and H
Uy _yz eu

loop system, are given by

the maps H
yu

c(1+pc) L -cp(z+cp) !
Bow © | pc(r+ee) ™t p(raep) L (3.1)
and
(I+Pc)‘1 -P(1+CP)‘1
Hu® _p(I+PC)'1 (1+cp) "L (3.2)
respectively. Note the relationms:
yu = J Heu -J (3.3)
and
eu IZ - JH}’U (3.4)
where

|0 1 1o
e[t nefre ]

An important consequence of (3.3) and (3.4) is that: Hyu € /A2x2
*H € AZXZ, and similarly with A replaced by B (but not true for AS
or Bs)'
Definition 3.1.

The unity-feedback system of Fig. 1, with PE€ A, CE€ A and

2x2
€ .
H A (3.5)

is called the system (P,Q), where

Q := c(:[-a-»Pc:)'1 (3.6)
is an element in A (the latter follows from (3.1) and (3.5)). a

Remarks 3.1.
(a) Assumption (3.5) does not imply that the controller C is an element

of A. For example let A = cp(s) and let p(s), q(s) € Cp(s),

-5 -



We may have c(s) § Gp(s): take p(s) = 1, q(s) = s/(s+l), hence c(s) = s,

which is not proper.

(b) Assumption (3.5) excludes singular cases by requiring that all the

closed-loop transfer functions be in A.

As a consequence of the assumptions made in defining the system (P,Q),

it turns out (see (A.34)) that

o -
g € p2x2 (3.11)
¢ lpq P(I-QP)

and similarly

I-PQ -P(I-QP)|
B = i € p%x2 (3.12)
eu Q I-QP

The importance of equ. (3.11) and (3.12) is that the closed-loop behavior
of the unity-feedback system shown in Fig. 1 is completely described in
terms of sums and products of P and Q; no inverses are required! (Compare

with (3.1) and (3.2) above.)

Remarks 3.2,

a) For design purposes, the crucial observation is that the I/O map of

the system shown in Fig. 1 has the simple form

H = PQ (3.13)

and, since Hy q = He w’ the map from the output disturbance do to the
20 171

output Yy is:

H = I-PQ (3.14)
yZdo

b) Note that equ. (3.11) to (3.14) are valid irrespective of whether P

and/or Q are stable.



Definition 3.3.

The unity-feedback system (P,Q) is said to be B -stable iff

H € E52x2
yu

or equivalently,

H E€B .
eu

Remark 3.3.

Note that, as a consequence of the unity feedback, He a - -H

1% 1%
and H = -H » hence, for design purposes, any output disturbance d
ezd° e uy (o)

can be replaced by an equivalent input u, = -do.

1
With B -stability defined, we can state and prove the following

stabilization theorem:

Theorem 3.4. (Closed-loop B -stability).
Consider the unity-feedback system (P,Q) of Fig. 1 (hence, by

definition, P,Q€E A, CE€ A and B, € A %x2y .

(i) u.t.c., if

PEB (3.20)
then+
QEB #H e p2*2 (3.21)
yu
and
Qems°nyuem2"2 and C€ A_; (3.22)

(ii) u.t.c., if

PE B (3.23)

+Equation (3.21) is a slight generalization of [Des. 3, Theorem III].
Equation (3.22) is a result obtained by Zames in [Zam. 1].



then
2x2

Qeméuyuem and CE A (3.24)
and
QGBS°HWEBZXZ and CEA_. (3.25)
=4

Comments 3.4.

(a) To appreciate the scope of this theorem refer to Table I.
(b) With P € B, (3.21) shows that as Q ranges over all of B, the
B -stability of the closed-loop system (P,Q) is guaranteed; Q € B

parametrizes all BB -stable closed-loop systems (P,Q). Note, however, C is

not guaranteed to be B -stable.

(¢) Concerning (3.21), PE€ B and Q € B does not imply
-1
(I"PQ) € A ’

hence the resulting controller C = Q(I-PQ)-]' may not be in A ; by
assumption, it is in ,Z& (see Def. 3.1, above).

(d) The most realistic case is P € ]BS; then (3.25) shows that restricting
Q to be in B s delivers C in AS. In the rational case, a strictly

proper plant P and a strictly proper parameter Q give a strictly proper
controller C. Hence, with P € B s? the problem is to choose Q € B g SO

that the other design objectives are satisfied.

Proof.

First, we recall (3.11):

Q -QpP
H = _ € n2*? (3.11)
¢ IpQ  P(I-QP)

< The implications (3.21), (3.22), (3.24) and (3.25), in this direction,

are immediate by (3.11) since Q = H .
1%



= By (3.11), and the closure properties of the rings B and lBs,

respectively,

PEB,QEB =H_E€B
yu

PEB ,QEB =H_ €B
s s yu s

Hence the first part of the implicatioms (3.21), (3.22), (3.24) and (3.25)

are proven.

Now, calculating in the ring A (DADIBDIBS), we obtain

(+20)™! = 1 - pe(rtrey L (by (A.4))

=1_1>QEAC/A (by (3.11));

then, by (A.27),

C=Qu-PQ tei.

Hence,
PEB CA andQGIBSC/AS
= (I-PQ)-l EA (AS is the radical of A)

=C = Q(I—PQ)‘l € AS (/AS is the radical of A).

A fortiori,

PEB CB and QEB_=CE A .
S S S
Finally,

PEB_CA_ and Q€EB CA
= -'1
(I-PQ) "€ A
= - "l
C=Q(I-pQ) "€ A.
This completes the proof of equivalences (3.21)-(3.25).

Remarks 3.4.

(a) Since H = PQ and H i ° I - PQ, the parametrization by Q gives
Yo% Y2%



us direct control (through Q) of both the input-output map Hy u and the
271
output-disturbance sensitivity operator Hy d° Note that this does not
270
imply that we can achieve simultaneously the design goals with respect to

H and H . However, suppose that the supports of the spectrum of
Yau1 2% ‘

the reference input Uy and the output disturbance do are essentially the

same, then by (3.13) and (3.14),

H = I ®H = 9
Y241 o4,

with the same degree of approximation over the frequency band of interest.

Note that the output-disturbance desensitization requirement is more

restrictive than the requirement that the I/0 map Hy 4. be "nice." For
271

example, for the I/0 map

dl(s) xlz(s) oo xlm(s)

X,, (s) d,(s) .
B () =| 2 270 . ; € R(0)™™ (3.35)

X (8) eeeeiinns d;(s)

to have good control capability, we would like to have, over the band

of interest, all the off-diagonal elements, |xij(jm)|'s small and

ld; Gu)| =1 i=1,...,m, % € band, (3.36)

(together with ¥ di(jw)'s that yield acceptable step responses). Since

-4 (8)  xp, () ... -xlm(s)—
Hyzdo(S) =1 - Hyzul(s) = -x21(x) l-dz(s) . . E (3.37)
-xml(s) ............. . 1—dm(s) J




For output-disturbance desensitization, we must have, over the band of

interest, all Ixij (jw)|'s small and

f1-d; Gw) | = 0 i=1,,..,m (3.38)

Note that (3.38) is equivalent to
di(jm) = 1 i=1,...,m, % € band, (3.39)

which is more restrictive than (3.36).

(b) In many applications, e.g., in a fail-safe closed-loop system or

for ease of maintenance, we would like to have the resulting controller C
in ]Bs or in B. Since with P in']Bs, the condition Q € IBS does not imply
that C € B s? it would be desirable to have a numerically convenient
description of the class of all Q in B s with its corresponding controller
Cin B s

(¢) With the plant P fixed in B (or IBS), when the design parameter Q

ranges over all B (or B s), the corresponding input-output map is given

'by Hy 0 = PQ (see (3.13)); hence, the I/0 map is restricted by the presence
21
of the left factor P. We will see later that this implies limitations on
the achievable H 's.
2%

Theorem 3.4 has therefore the following design implications that we

formulate as the

Design Theorem 3.5

Suppose that we wish to design a unity-feedback system (P,Q) as

shown in Fig. 1. Then, given any P € ]Bs, ‘Fﬁyzul € ]BS such that
Hyzul = PQ for some Q € B 3 (o= /As for which the system (P,Q) is

B-stable and has the specified I/0 map Hy a
271

-11-



Remark 3.5: Since in a number of algebras of transfer functioms there

are procedures for stabilizing by feedback any unstable transfer function
(see e.g. [You. 1], [Cal. 4], [Che. 1], [Ant. 1]), the theorem ahove appliés
to any P € /As provided that, whenever P € BB, P is first stabilized by

local feedback.
If the plant P in Fig. 1 is nonlinear, then from (3.1), it is easy

to show the following result:

Corollary 3.6. (Nonlinear System IB -stability)

Let IBN'L be the class of nonlinear B -stable maps from Le into Le
(more precisely,

PEB Y@ <=2 ﬂPezﬂ < y(P)--ﬂezfl, Ve € ).

Consider the unity-feedback system in Fig. 1. If P € BNL’ then

B € Bﬁiz s c(+pe) e B

-1
- and (I+PC) ~ € BN’L

NL

Remark 3.6.

Note that the class BNL is no longer a ring: the right-distributive

law fails!

IV. Design Procedures

Youla et al. have shown that any stabilizing proper controller can be
parametrized in terms of given matrices [You. 1]; however, the resulting
formula for the controller and the closed-loop 1/0 tramsfer-function matrix
are rather complicated. Zames discovered that, if the plant is stable, a
simple parametrization exists for both the closed-loop stability amd the
output-disturbance sensitivty [Zam. 1]. In the case of unity-feedback
systems with a stable plant, we observed that the relatiomship between the

closed=-loop I/0 map Hy a and the plant transfer-function P is particularly
271

-12-



simple if onme uses the parametrization proposed by Zames:

H = PQ
T2%
(see (3.13)). The design procedures described below are based on this

observation.

Although the examples are developed for the rational transfer function
case, it is clear that the procedure will immediately apply to those
cases where the matrix transfer functions can be factorize; appropriately
and where the notion of zero makes semse (in this connection for the
algebra 3(0) see [Cal. 1-4].

In this section, we consider a linear, time-invariant plant P(s)

€ RO(O)mxm (equivalently, P(s) 1is strictly proper and exp. stable) and we

introduce procedures for obtaining a stfictly proper controller such that

(1) the closed-loop unity-feedback system in Fig. 1 is exp. stable,

(ii) the I/0 map Hy u is decoupled and strictly proper; and
271
(iii) in each diagonal element of Hy u (s), the poles and the zeros
21
(in addition to the C+-zeros of P(s)) can be specified by the designer.

From the previous results, the design starts by choosing an
appropriate diagonal Hy a (s) € RO(O)mxm such that
271
(i) equation (3.13), Hy a (s) = P(s) Q(s), has a solution Q(s) in

271
’%(O)mxm (Hence, by Theorem 3.4, the closed-loop system is exp. stable

and the resulting comtroller is strictly proper);

(ii) the decoupled I/0 map Hy a (s) satisfies design specifications
271
such as zero asymptotic error for step responses, appropriate bandwidth,

etc.

13-~



We consider two design situations depending on whether the plant P(s)

has ¢+-zeros or not.

4.1. Design Procedure for P(s) with no c+-zeros

Algorithm 4.1. (P(s) has no C+-zer6s)
Data P(s) €R ()™, Z[p] C&_.
Step 1. Calculate P(s)-l

Step 2. Choose the polynomials n1(s),...nm(s) and dl(s),..., dm(s) in

. ' nl(s) nm(s) “%.1)
yZu]_(S) 1= dlag[w secey d—mm] .
such that
a(s) := B(s) lay2u1<s> ' (4.3)

is exp. stable and strictly propex. More precisely, we choose the poly-

nomials nl(s),...,nm(s) and dl(s),...,dm(s), such that, for j = 1,...,m,

(W 2041 < ¢_ (4.4)

(i1t 2 > 2, + oy, e (4.5)

- ° )
Comments: Since P[P l] = I[p] C C_, condition (4.4) guarantees that Q is
exp. stable. Condition (4.5) guarantees that Q(s) is strictly proper.

Step 3. Calculate the required controller transfer function:

o, (s) n_(s)
C(s) = -1 —1 —_—m
s P(s) diag[dl(s)-nl(s) seees dm(s)-nm(s) ] (4.6)
End of Algo. 4.1 =

TFor M(s) € m(s)m, Yj [M] denotes the jth column of M(s) and BYj M]

denotes the largest degree difference between the numerator and the
denominator among the m rational functions in Yj[M].

“14=



Remark 4.1: Eqn. (4.6) shows that, in principle, given any list of

m
polynomials (n i(s))l, a stable controller is always possible by approximate
choice of the polynomials di(s), 1 <i<m

Example 4.1.
Consider
. s2485+10 382475+ 252
P(s) = —m——o 2 € R _(0)
(*2)2(&3) 2842 3s"+9s+8 o

with a right-coprime factorization given by

-1 s+4 3 sz+35+4 2
P(s) =N, () D o(s) "=} 5 41l 5 a4

Since Z[P] = Z[Npr] = Z[det Npr] a (-2} C E:_, we can apply Algo. 4.1.
Now, from (4.3), calculate

As) =) H. (s)

B} T2h _
(3s%+95+8)n, (s) -(3524-73-!-4):12(3)
3@ +2)dl(s) 3(s+2)d2(s)
a2 2 4.7
-2(s+l)n1(s) (s +Ss+10)n2(s)
3(s+2)d1(s) 3(s+2)d2(s)

In order that Q(s) € RO(O)sz, we must have

(1) 20,1 €C_  and Z[d,] C €_ (4.8)

(i) 3d; > 3n; + 2 and 3d, > dm, + 2 (4.9)

2
By choosing ul(s) 2 ny(s) = 1 and d,(s) = dy(s) = (;s—) + /2 (-:—) +1,

n n
with @ > 0, the decoupled 1/0 map Hy o (8) is given by
271
5, ()= L I €R (0)*2 (4.10)
R !
“n “a
which has (i) zero asymptotic error for any step input, since Ey a (s) =1
271 s=0

(ii) corresponding bandwidth of w a rad/s and 5% settling time of

%@- s for each decoupled channel. From (4.5), the required comtroller

n
is given by

-15-



1 1 ]
dl(S)-l ’ dz (s)-l

C(s) = P(s).l diag[

“a 2 2
(?) 35°49s+8  -(3s +7s+4)
sG+ D=2—+1) | -2(s#l)  s’+as+i0
vz W

Note that the pole at s = 0 of C(s) is a direct consequence of Hy o (0) = 1.

271
o

4.2. Design procedure for P(s) with ¢, -zeros

If the plant P(s) has c+-zeros, then P(s)-l has a C_;pole at each
C+-zero of P(s). Then, the use of equ. (4.3) would lead to an unstable
Q(s) and hence unstable closed-loop system by Theorem 3.4. Hence,
the only way to have Q(s) exp. stable is to have Eyzu](?S) cance.il all the
€, -poles of P(s)L.

Algorithm 4.2 (P(s) has €, -zeros)
Data.  P(s) €R ()™, Z[P] N¢,  # ¢
Step 1. Obtain a right-coprime factorization of P(s):

2(s) = N (s) Dpr(s)-l

mxm
where Npr(s)’ Dpr(s) € R [s] .

.= -1
Step 2. Calculate [Yij]mxm : Npr(s) (4.11)

Step 3. Choose the polynomials nl+(s),...,nm_l_(s), where, for each j,

nj+(s) € R [s] is of least-degree such that for i = 1,...,m,
Y1 (s) nj+(s) is analytic in €, (4.13)

Comment: For each j, the polynomial nj +(_s) must cancel all the € i poles
of all the m rational functioms Ylj (s), YZj (8)y eeey ij (s) in the jth column

-1
of Npr(s) .

~16~



Step 4. Choose the polymomials ﬁl(s),...,ﬁm(s) and dl(s),...,dm(s) in

n1+(s)ﬁl(s) n (s)ﬁm(s)
H (s) = diag [-——-—-—- y ey ——_——] (4.15)
Touy dl(S) dm(s)

such that for j = 1,...,m,

(1) Z[dj] Ce_, (4.16)
(ii) the polymomial ;j(s) is chosen freely,
. ~ -1
iii ad, dn,, +0dn, + 9 P . .
(iii) j > 8my oy Yj[ 1 (4.18)

Comments: From (4.3), conditions (4.13) and (4.16) guarantee that Q has

no ¢+-poles; condition (4.18) guarantees that Q is strictly proper.

Step 5. Calculate the required comtroller transfer function: let

uj(s) 1= nj4_nj(s) j=1l,...,m
then
. -1 nl(s) nm(s)
C(s) = P(s) diag[a;z;;:;zz;y,..., ETES::i;f;T] (4.23)
End of Algo. 4.2 B

Remarks 4.2 (a) In Appendix C we show that, for j = 1,...,m, the

polynomial n

j+(s) (in step 3) cancels all the ¢+-poles of the jth

colum of Npr(s)-l if and only if nj+(s) cancels all the C+-poles of
the jth column of P(s)-l. Since calculating the inverse of a polynmomial
matrix is much easier than calculating that of a ratiomal matrix, it is

-1

computationally more attractive to comsider Npr(s) rather than P(s)-l.

-17=-



(b) Equation (4.23) shows that a stable controller is always possible:
indeed, after the polynomials nj+(s) and ﬁj(s), 1 < j < m, have been
chosen polynomials dj(s)'s can always be found so that, for j = 1,...,m,

the polymomial dj(s) - (s) nj(s) is strictly Hurwitz. This conclusion

nj+
agrees with Theorem 2 of [You. 2].

Example 4.2.

Consider 2
3s+8 25+ 63+2

P(s) = —2— |, ) € R ()22
(5+2) " (s+3) ST+6S+2 3sT+75+8

which has a right-coprime factorizationm:

. 3 2|[Pe3s+s o |71
P(s) =N, () D (s) © = st2 3 2 o+4

Since Z[P] = Z[Npr] = Z[det Npr] = {2.5} C C, we use Algo. 4.2. Now,

-1 -1.5 1
Npr(S) s=2.5 §=2.5

0.5(s+2) -1.5
s=2.5 s-=2.5

We choose nl+(s) = n2+(s) = s - 2.5. Then, from (4.3).

(3s247548)8; () =(252465+2)3, ()
as) = -0.5| , 4 d5(s)
-(s +6s+2)nl(s) (33+8)n2(s)
d; (s) d, (s)

To guarantee Q(s) € RO(O)ZXZ, we choose ﬁl(s) = ﬁz(s) = 1 and dl(s),dz(s)

€ R (s] such that
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(1) 3d; > 3 and 3d, > 3

1

(ii) Z[dll ChpA, C E_ and Z[dZ] CaA, C &_, where A, and A, are regions

1 2 1

in &_ of desirable closed-loop poles for channel 1 and channel 2,

respectively.
(iii) dl(O) = dz(O) = -2.5

Then, the resulting decoupled I/0 map is given by

s=2.5 s-2.5
Hy2ul(5) =diag 51?573 E;TETJ

with Hyzul(s) =1 (i.e,, with zero asymptotic error for any step
s=0
input). From (4.23), the corresponding controller is given by

0.5(3s%47s+8)  (s’+3s+1)
dl(s)-(s-Z.S) dz(s)-(s-Z.S)

C(s) = 2
0.5(s +6s+2) -0.5(3s+8)
m) dz(s)-(s-Z.S)J

V. Basic Design Limitations on the Design

The algorithms above suggest that, using unity-feedback around a.
stable plant, we can always obtain a decoupled I/0 map that satisfies
any given design specifications (within the constraints imposed by the
c+-zeros of the plant)! As everyone knows, practical comsideratiouns
impose limitations on the 'achievable benefits'" of feedback, see e.g.

[Hor. 1]. We emphasize here four sources of limitations:+ Plant

dynamics, Saturation, Noise and Uncertainty.

"These four limitations are the results of many discussions with many
people, J. C. Lozier and G. Zames, in particular.
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5.1. Plant Dynamics -

(i) Any plant has some intrinsic dominant time comnstants; these
may be in the milliseconds, seconds, minutes or hours range. This,
together with saturation, imposes a time scale on the achievable 1/0
maps of the closed-loop system.

(ii) A plant sometimes exhibits a zero of transmission on the
jw-axis or in the open right half-plane. Again, because of saturationm,
a zero close to the jw—axis imposes limitations on the achievable loop
gain about that frequency. A right half-plane zero attracts, under
increasing loop gains, closed-loop eigenvalues; hence, stability
requirements impose a limitation on the achievable loop gain, hence

desensitization.

5.2. Saturation

The linear model of the plant remains valid provided that the plant
input-signals remain below the saturation level; otherwise, the linear
model is no longer applicable. As an illustration of how saturation

could occur in a linearly designed feedback system, we consider a s.i.s.o.

system with plant given by p(s) = ;?;f%;zy . A compensator

c(s) = l%é%;%é%jll is used to achieve required pefformance specifications
of a) velocity error comstant > 5 sec.-l, b) phase margin >45°, c) 1.2 <
maximum magnitude of closed-loop frequency respomse < 1.5, and d) 25
rad/sec < bandwidth < 60 rad/sec. [Sau. 1, P. 492]. Then, even though
the closed-loop sysfem may behave reasonably well with an error signal

of certain magnitude at w = 0.5 rad/s, any error signal at w = 30 rad/s

with the same magnitude will very likely saturate the plant because

[c(j30)| = 6.1 [c(j0.5)|. Note also that, in Example 4.1 with bandwidth

<20~



w =15 rad/s, then |ny1u1(j15)| = IQll(jl.S)I = llIQll(jO)I = luy " GO | ;

171
hence, inputs of frequency in the neighborhood of 15 rad/s must be kept
small to avoid plant saturation. Note that the saturation level always

specifies the largest signal possible at the output of the plant.

5.3. Noise

To actually control the plant, we need actuators to drive the input
and sensors to measure the output; hence, in order to effectively control
the plant, we must make sure that the noise sources associated with

actuators and sensors do not swamp the input signals and the measurements,

respectively.

5.4, Uncertaintzf

For design purposes, it is convenient to distinguish two types of
uncertainty which deteriorate the system performance when the feedback
system is designed on the basis of a nominal plant:

(1) the modeling uncertainty caused by approximations in the modeling
of the dynamics: e.g., by linearizing nonlinear dynamics, by neglecting
high-frequency modes, delays, small interactioms, etc.

(ii) the parameter uncertainty (i.e., variation of the plant

parameters) caused by manufacturing tolerances, loading, aging, etc.

5.5. A more realistic design problem formulation

With the above considerations in mind, we suggest that one way to

bring some realism in the design process is as follows:

*For a general discussion of this point see [Zam. 1].
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Let us consider two noise inputs: ome associated with the system
input uy and one associated with the measurement of Yor These two
noises enter the system at the summing point. Since Q(ju) = Hylul(jm)
with u, 2 0), if, over the band of interest,+ ﬂQ(jm)ll2 =0 ., [(Gu] is
too large, then these noises will saturate the plant. Thus the con-

sideration of noises and the plant saturation forces us to put a bound

on
cmax[Q(jm)], over the band of interest (5.1)

More precisely, suppose that the designer chooses a bound L comnstant
over the band, then the choice of Q in algorithms 4.1 and 4.2 is subject

to the additional constraint:

Orax QW) ] < L Yo € [0,0, ] (5.2)

where Wy is the highest frequency in the band of interest.

4s an illustration of this approach, in Example 4.1, the chosen
Q(s) (implicit in (4.10)) is parametrized by W and hence the problem is
to choose an "optimal" w,- This can be done by nonlinear programming
using Q(s) specified by (4.7) and subject to inequality (5.2) with, say,
Wy > 1.5 W - In view of the smooth nature of Q(s) in (4.7), the infinite
set of inequalities (5.2) can, for design purposes, be replaced, say,
by a dozen inequalities by choosing frequencies equally spaced over
[0,mb]. This problem is being investigated at present.

It is our conviction that algebraic methods of design as described
in Sec. 4 make sense only when they are incorporated with inequality

constraints such as (5.2).

+cmax[M], for M € mmxm’ denotes the largest singular value of M. (See e.g.
[Ste. 1]).
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VI. Conclusions

The thrusts of this paper are the following:

I) Within a general algebraic framework, the closed-loop tranmsfer
functions Beu and Hyu can be given a simple parametric form in terms of
P and Q (see (3.11) and (3.12)). 1II) Based on [Des. 3], [Zam. 1] and
[Des. 1], we proved that: if P € ]Bs’ then Q € IBS °Hyu € ]Bs and
c € ﬂls. Hence the problem of guaranteeing the closed-loop stability
and the strict properness of the controller C is automatically solved by
taking Q € B s’ furthermore, nothing is lost by doing so! III) For
design purposes, the important observation is that Hyzul = PQ, where
PEB s is given and if Q is chosen in B s? stability is guaranteed!

IV) Using coprime factorizationms, for any given exp. stable P, our
algorithms construct a strictly proper controller that results in a
decoupled I/0 map Hyzul in each channel of which we can prgscribe the
poles and also the zeros (of course in addition to the € -zeros required
by those of P.) WNote that in any case, we can always choose the poles
so that the resulting controller is exp. stable. This coantribution
should be viewed as an extension of [Pec. 1]. V) The results above

must be tempered by the realization that these algebraic results must
face the limitations imposed by system noise and by saturation.
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Appendix A. Algebraic Manipulations in Rings

Let R denote any non-commutative ring with identity I, (see e.g.

[sig. 1], [MacL. 1]). Let R be a super-ring of R (i.e., R is a subring
of i). Let Rs denote the radical of R [Nai. 1], i.e., by definition,

RSCRandMERS iff WNER
(i) My € Rs, NM € Rs (A.1)
and
i) (ot er, @l er (a.2)
It is easy to see that the radical Rs is a subring of R. Note that
ROROR

The reader may want to keep a specific example in mind: take

R=R)™™ R=R _ (s)™, R ={PER (s)™™ and strictly proper}.
P S P Strictly

Lemma A.l.

Let M € R and (I+M)-l € R, then

(I-s-M)'l I- M(I+M)'l (A.4)

I- (I+M)’1M (A.5)

)= 1
Proof: The right-hand sides of (A.4) and (A.5) are respectively equal to

[T - M@0t = @™l (by left distributivity in R)T

and

[}

a0 @) - M) = (™1 (by right distributivity in R)

Remark A.1. (Nonlinear case): (A.4) holds for nonlinear M (since only

the left-distributive law has been used); (A.5), however, does not.

+By "left distributivity"” we mean that the multiplication is distributive
to the left [Bou. 1].
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Lemma A.2.

Let P,C € R.
(1) (@ec)ytere (r+ep)ler ' (Aa.7)
and
-1 _ -1
(I+CP) = 1 - C(I+PC) P (A.8)
(1i) 1If (I+PC)-1 € R (or equivalently, by (i), (I+CP)-1 €R),
then
P(1+cp) L = (I+Pc)'1P € R (A.9)
o
Proof:

(i) = By assumptiom, (I+PC)-1 € R. We claim that (I+CP)—1 is given

by (A.8). Using repeatedly the distributive law in R, we obtain

(T+CP) [I - C(I+PC) 1P] = I+CP - (IT+CP)C -(I+PC) 1P
= T+CP - C(I+BC) - (I+8C) 1P
=1

[I - C(T+PC) 1P] (I+CP) = T+CP - C(I+PC) 1- P(I+CP)
= T+CP - C(I+PC) L(T+PC)P
=1

Hence, (I+CP) "L = I - C(I+PC)™'P €R
< Repeat the calculation with P and C interchanged.

(ii) Using left and right distributivity in R, we obtain

(I+PC)P = P+PCP = P(I+CP); (A.10)
then by pre- and post-multiplying (A.10) by (I+PC)-1 and (I+C}?)-1

respectively, (A.9) follows. "

Remark A.2: When P is nonlinear, right distributivity does not hold and

hence (A.7), (A.8) and (A.9) are not true.

Lemma A.3.

Let
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P,CER and (I+PC) L €R (A.21)
Let

Q := c(z+ec) L (A.22)
(hence, Q € R by (A.21)). U.t.c., the following equalities hold and all

expressions are in R:

@) (+pc)”t = 1 - Py (A.23)
equivalently,

T+PC = (I-PQ) L. (A.24)

(11) (Rl =1 - qQp; (A.25)
equivalently,

I+CP = (I-QP)’l. (A.26)

(1i1) € = Q(I-PQ)"t (A.27)

)=

Comment A.3:
The equivalence stated in (i) and (ii) are immediate by inverting
both sides and noting that P, C, Q and I € R imply that I+PC, I+CP, I-PQ

and I-QP € R.

Proof:
@) (@+ee)”t = 1 - pe(mee)”t (by (A.4))
=1-PQ (by (A.22))
(1) (et = 1 - ceee)le (by (A.8))
=1-Qp (by (A.22))

(iii) = C(I+PC)-1 (I+PC)

Q
)

Q(I"'l’Q)_1 (by (A.22) and (A.24)).
-]

Remark: Note that, in Lemmas A.l, A.2 and A.3, the ring R is arbitrary;

in applications, R is chosen to suit the needs. R
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Lemma A.4.

~

Let PER and CER

Let

cee) ™t cr(mem)TH| o
H_ := € R (A.32)

yu pc(I+pc) L p(T+cp) ~t
Let
Q := c(1+1>C)'l (A.33)
(hence Q € R by (A.32)). U.t.c.,
Q - | .
L € p2x2 (A.34)
v PQ P(I-QP)
=4
Proof:
By inspection, H = Q and H = PQ. Since H and H are
1% Yo% 3] Y142

in R by (A.32), using (A.4), we conclude that (I-%-'PC)-l €ERCR and

(I+CP)-'l € R CR; now, performing calculations in the ring R DR, we obtain

H = -CP(1+CP) T = -c(1+pc) lp (by (A.9))
%
= —QP
H = p(1+cp) T = P(I-QP) (by (A.25))
oA
Hence, formula (A.34) is established. ]
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Appendix B: The Radical of g(O).

By definition [Cal. 1], 3(0) consists of all transfer function f
of the form f = n/d, where n € R_(O), ie KT(O). By definition, éo(O)
consists of all elements Q € 3(0) such that é(s) + 0 as Isl + @ in C,,

in the precise sense described as follows: ¥e > 0, 39 > 0 such that

Is| > p and Re s > 0 imply that |g(s)| < e. (B.1)

Lema: B (0) is the radical of 8(0).

Proof. a) yf € 3(0) and ¥g € 30(0), we have f(s)g(s) + O in ‘the sense
of (B.l): indeed, for all sufficiently large p, there is an M < « such
that If(s)l.i M, ¥s € €, with |s| > p; hence the conclusion follows since
g €B_(0).

b) We claim that ¥f € B(0) and ¥g € B_(0), [1+ (fg) )17 € 8(0).
Using (A.l), and the boundedness at infinity of E, we see that for p
sufficiently large

2> |1+ (f0)(s)| > 1/2  ¥s € ¢, with [s| > p.
Hence, by [Cal. 1, Thm 3.7], the inverse of 1+%§ is in é(O).

c) 1If § € %(0), but é & 30(0), then w + g(jm) is asymptotically,
for lml + «, almost periodic. Then it is easy to choose an £ € é(O) such
that [1 + (fg)(s)]_l has an infinite number of ¢+rpoles, hence is not in
B(0).

Appendix C. '
Theorem C.l. Let P(s) = I\Im_(s)Dpr(s)"l be a right coprime factorizatiom,
then for j = 1,...,m, the jth column of P(,s)-l has a pole p with highest
order zj if and only if the jth columm of Npl_(s)-l has a pole p with

highest order zj.
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Proof: This theorem is easy to prove using the Smith-McMillan form.
For our purpose here, we need only consider p € C+. Furthermore, we
have det Dpr(s) # 0 in ¢+ by stability of P(s). Consider the Laurent
expansion of the jth column of Npr(s)'l; call £ the ¢ -vector made

up of the coefficients of the term in (s-p)-zi. Since P(s)-l

= Dm:(s)t‘lpr(s)“l and since Dpr(s) is analytic in € and nonsingular in
c+, the corresponding ¢®-vector made up of the coefficients of the term
in (s-p)-zj in P(s)-l is

. =D .
n pl:(1:') EJ

i o
Since det[Dpr(p)] #0, gj # em if and only if n, # em.

3
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Table I: Examples of A, A, /As, B and '.FBs

A c(s) c(s) ™"
A ¢, (s) ¢, ()™ B(0) B(0)™™
A ¢ & | ¢ ™| B B_(0)™™
R(0) R(0) ™ A_(0) A(0) ™=@
.| RO R_(0)™™ A | A_@™®
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Fig. 1.

Figure Caption

The unity-feedback system (P,Q).
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