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ABSTRACT

This paper considers, in a general algebraic framework, the design

of a unity-feedback multivariable system with a stable plant. The

method is based on a simple parametrization of the four closed-loop

transfer functions in terms of P, the plant transfer function, and

Q = H .In particular the I/O transfer function H = PQ- Using

the framework of rational transfer functions, we show that the closed-

loop system will be exp. stable if and only if Q is exp. stable.

Furthermore if both P and Q are strictly proper then the controller is

also strictly proper.

Algorithms are given for obtaining strictly proper controllers

such that the resulting I/O map is decoupled, all its poles can be chosen

by the designer, and the same holds for zeros except, of course, for the

C.-zero prescribed by the (D,-zero of the plant. A discussion is included

to temper these results by the constraints imposed by noise and plant

saturation.



I. Introduction

In the past several decades, the problem of multi-variable design,

e.g., closed-loop stability, pole-zero assignment, disturbance rejection,

etc., has been investigated intensively by many authors (see e.g. the

paper collections [MacF. 1, Part IV], [Sai. 1]). In general, the design

methods can be classified into two categories: 1) the time-domain approach,

and 2) the frequency-domain approach. In the time-domain approach, the

system is described by a state-space model and the design specifications

are expressed in terms of an appropriate (in particular, quadratic)

performance index; the feedback design is obtained by solving the corre

sponding optimal control problem (see e.g. [IEEE 1], [Kwa. 1], [And. 1]

Based on transfer-function matrices, the frequency-domain approach tackles

the design problem in various ways (see e.g. EMacF. 1, pp. 303-317],

[MacF. 2]): we mention more specifically the algebraic approach (see e.g.

[Ros. 1], [Pec. 1], [Des. 1]), the geometric approach (see e.g. [Won. 1])

and the complex-variable approach (see e.g. [MacF. 3]). Sain has recently

emphasized the importance of algebraic thinking in system engineering

[Sai. 2].

In this paper, we study the design of linear, unity-feedback systems

with a stable plant. Using the work of several authors, we formulate a

refined version of a stability theorem in a general algebraic set up by

using the parametrization proposed by Zames in [Zam, 1], Considering

rational transfer-function matrices, we propose a design method for

obtaining a decoupled I/O map with pole-zero assignment in each (decoupled)

I/O channel. This design is based on the fact that, in the unity-feedback

configuration, the I/O map of the closed-loop system is simplyrelated to

that of the plant. The design algorithm displays clearly the constraint(s)

imposed by the (B.-zeros of the plant on the decoupled I/O map. The proposed
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design method, although described for the rational transfer function case,

applies to any algebra of transfer functions within which algorithms are

available for obtaining coprime factorizations of transfer functions.

The paper ends by a discussion of the limitations inherent in the

algebraic approach resulting from saturation and system noise.

In Appendix A, we perform a number of useful calculations in an arbitrary

noncommutative ring: thus by following these calculations the reader has

performed several of them for the price of one (see Table I)!

Notations

a := b means "a denotes b." ]R := field of real numbers; <C := field of

complex numbers; ]R, := set of nonnegative real numbers; (C,, (<C ) :« set of

complex numbers such that Re z ^ 0, (Re zjc 0, resp.) . For any set A, A11*11
o

denotes the class of all nxn arrays with elements in A, and A denotes the

interior of A. Thus <E_ denotes the open left half-plane. C (s),(C (s))

denotes the class of all proper, (strictly proper, resp.), rational functions

with coefficients in (C. R(0), (R (0)) denotes the class of all proper,

(strictly proper, resp.) elements of <E (s) that are analytic in <CL. If
p J +

d(s) is a polynomial, 3d := degree of d, Z[d] := set of zeros of d. If

P € R (s) , Z[P] := set of zeros of transmission of P, P[P] := set of

poles of P.

II. Algebras of I/O Maps

We consider inputs, errors and outputs to be functions defined on T

(typically, T « ]R+ for the continuous-time case,T= IN for the discrete-
n. n n

time case), into some normed space 1/ (typically, l/ = H x, 31 e, ]R °or
n. n n

i e o
<C , C , (E ). The function space F := {f : T -»• I/} is a linear space

over 1 orl, Let (L,I«B) denote a Banach subspace of F, i.e.,

f € L:= f : T + 1/ and OfII < «
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(typically, L«L^ Ln, Ln, A* ...). Call Lg the corresponding extended

space of L [Des. 2] [Vid. 1].

Let 8. denote the zero element in I (L ). Let Ik denote the non-commutative
L e

algebra with identity I, consisting of linear causal maps from Le into

L . Let Abe an algebra of linear causal maps defined on L (but not

necessarily into L ) and such that A is a subring of A (Equivalently, A
e

is a super-ring of Ik ; for example, in the continuous-time case, A includes

the time differentiation operators, hence its range is larger than L
e

since it includes distributions). Let A denote the radical (see

Appendix) of A . Let (B , H*B) denote the Banach algebra of continuous

(linear and causal) elements of /A, i.e.,

B:= {P SA:Ml := sup ]^p <•} .
u€=L

We refer to the elements of B as the B -stable maps: indeed, we have,

for P £ B

11 Pull < Dpi-Bull Vu

§
and

Ipul £ BPB-OuO VT € T, Vu € Le

Let 0 denote the zero element in A , (B ). Let B := A H B . Table I
s s

shows some typical examples of A > A , A » B and B .
s s

III. Closed-loop B -stability

We consider the unity-feedback system shown in Fig. 1. The inputs are

u. and u«, d is the output disturbance; they are all elements in L .

4.

We shall use B•II to denote both the norm in L and the induced norm in B .

ilfBm, with T6T and f € L , denotes the norm of the function f truncated
T e

at T.
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Formally (i.e. assuming that all the expressions involved are well-defined),

."J
the maps H :

yu
and H

eu u.
, representing the closed-

loop system, are given by

H
yu

and

H
eu

Cd+PC)"1 -CPd+CP)"1
PCd+PC)"1 Pd+CP)"1

(I+PC)"1 -Pd+CP)"1
C(I+PC)

-1
(I+CP)

-1

respectively. Note the relations:

and

H =
yu

J H
eu

• J

H = I0
eu 2 " ^yu

J :=
0

-I

I

0 • h
; t3

I

0

0

I

where

(3.1)

(3.2)

(3.3)

(3.4)

2x2
An important consequence of (3.3) and (3.4) is that: H £ A

2x2
°" H £ A , and similarly with A replaced by B (but not true for A

or B ).
s

Definition 3.1.

The unity-feedback system of Fig. 1, with P £ A , C £ A and

H e Ik 2x2
yu

is called the system (P,Q), where

Q := Cd+PC)"1

(3.5)

(3.6)

is an element in A (the latter follows from (3.1) and (3.5)). n

Remarks 3.1.

(a) Assumption (3.5) does not imply that the controller C is an element

of A. For example let A = <C (s) and let p(s), q(s) £ C (s) ,
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We may have c(s) ^ C (s) : take p(s) = 1, q(s) = s/(s+l), hence c(s) = s,

which is not proper.

(b) Assumption (3.5) excludes singular cases by requiring that all the

closed-loop transfer functions be in A.

As a consequence of the assumptions made in defining the system (P,Q),

it turns out (see (A .34)) that

H
yu

H
eu

Q -op

PQ P(I-QP)

and similarly,

"i-PQ -P(I-QP)

Q I-QP

2x2
(3.11)

e A
2x2

(3.12)

The importance of equ. (3.11) and (3.12) is that the closed-loop behavior

of the unity-feedback system shown in Fig. 1 is completely described in

terms of sums and products of P and Q; no inverses are required! (Compare

with (3.1) and (3.2) above.)

Remarks 3.2.

a) For design purposes, the crucial observation is that the I/O map of

the system shown in Fig. 1 has the simple form

H * PQ
y2ul

(3.13)

and, since H , =* H , the map from the output disturbance d to the
y2do elul °

output y„ is:

H , = I-PQ
y2do

(3.14)

b) Note that equ. (3.11) to (3.14) are valid irrespective of whether P

and/or Q are stable.
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Definition 3.3.

The unity-feedback system (P,Q) is said to be B -stable iff

H S B 2x2
yu

or equivalently,

H £B2x2 .
eu

Remark 3.3.

Note that, as a consequence of the unity feedback, H , = -H
' e.d e.u-

1 o 11

and H , = -H , hence, for design purposes, any output disturbance d
2 o 2 1

can be replaced by an equivalent input u. =» -d .

With B-stability defined, we can state and prove the following

stabilization theorem:

Theorem 3.4. (Closed-loop B -stability).

Consider the unity-feedback system (P,Q) of Fig. 1 (hence, by

definition, P,Q S A , C € /A and H G A );

(i) u.t.c, if

P G B (3.20)

then

QS B OH 6 B2x2 (3.21)
^ yu

and

Q6 B ~ H € B 2x2 and C€ A ; (3.22)
^ s yu s

(ii) u.t.c, if

P € B (3.23)
s

Equation (3.21) is a slight generalization of [Des. 3, Theorem III].
Equation (3.22) is a result obtained by Zames in [Zam. 1].
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then

and

QG B o H G B 2x2 and C£ A (3.24)
^ yu

Qe B o H e B 2x2 and C€ A . (3.25)
s yu s s

a

Comments 3.4.

(a) To appreciate the scope of this theorem refer to Table I.

(b) With P e B , (3.21) shows that as Q ranges over all of B , the

B-stability of the closed-loop system (P,Q) is guaranteed; Q € B

parametrizes all B -stable closed-loop systems (P,Q). Note, however, C is

not guaranteed to be B-stable.

(c) Concerning (3.21), P £ B and Q £ B does not imply

(I-PQ)"1 6 /A,

hence the resulting controller C = Q(I-PQ)" may not be in A; by

assumption, it is in A (see Def. 3.1, above).

(d) The most realistic case is P € B ; then (3.25) shows that restricting
s

Q to be in B delivers C in A . In the rational case, a strictly
s s

proper plant P and a strictly proper parameter Q give a strictly proper

controller C. Hence, with P £ B , the problem is to choose Q £ B so
s s

that the other design objectives are satisfied.

Proof.

First, we recall (3.11):

H
yu

Q -QP

PQ P(I-QP)
€A2x2 (3.11)

<= The implications (3.21), (3.22), (3.24) and (3.25), in this direction,

are immediate by (3.11) since Q = H
ylul
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** By (3.11), and the closure properties of the rings B and B ,
5

respectively,

p6i,oei =>H £ B
yu

PGB.QeB^HeB
s s yu s

Hence the first part of the implications (3.21), (3.22), (3.24) and (3.25)

are proven.

Now, calculating in the ring APA^B^B ), we obtain

(I+PC)"1 =I-PCd+PC)"1 (by (A. 4))

» I - PQ € A C /A (by (3.11));

then, by (A.27),

C = Q(I-PQ)"1 € A.

Hence,

P G B C/A and Q € B C A
s s

=> (I-PQ)"1 e Ik (Ac is the radical of A)
s

=> C= Q(I-PQ)"1 € A (A is the radical of A),
s s

A fortiori,

PSb Cb and Q € B =• C £ A
s s s

Finally,

P € B ^ Ik and Q € B C
s s

=* /T T»«\ "™1(i-pq) ^ e ik

=* C = Q(I-PQ)"1 € A.

This completes the proof of equivalences (3.21)-(3.25).
n

Remarks 3.4.

(a) Since H = PQ and H . = I - PQ, the parametrization by Q gives
y2ul 72 o
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us direct control (through Q) of both the input-output map H and the
y2ul

output-disturbance sensitivity operator H . . Note that this does not

imply that we can achieve simultaneously the design goals with respect to

H and H . . However, suppose that the supports of the spectrum of

the reference input u., and the output disturbance d are essentially the

same, then by (3.13) and (3.14),

H = I OH . a 8

y2ul y2do

with the same degree of approximation over the frequency band of interest

Note that the output-disturbance desensitization requirement is more

restrictive than the requirement that the I/O map H be "nice." For
y2Ul

example, for the I/O map

H

y2Ul
(s)

dx(s) X^ (s) ...

x21(s) d2(s) ^
•

x - (s)
mlv '

xlm(s)

€R(0)
mxm

(3.35)

Vs>

to have good control capability, we would like to have, over the band

of interest, all the off-diagonal elements, |x..(ju))|'s small and

|di(jo))| «-l i - 1,... ,m, %o € band, (3.36)

(together with $ d (juO's that yield acceptable step responses). Since

H (s) = I - H (s) -
y2do y2Ul

l-d1(s) -x12(x)

-x21(x) l-d2(s) .
"Xlm(s)

"V^ 1-d»(8)
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For output-disturbance desensitization, we must have, over the band of

interest, all |x (jo>)|'s small and

ll-d^jco)! ^0 1-1,...,*. 03Q)

Note that (3.38) is equivalent to

*t(M =1 i-l,...,m, %)€band, (3^39)

which is more restrictive than (3.36).

(b) In many applications, e.g., in afail-safe closed-loop system or
for ease of maintenance, we would like to have the resulting controller C
in Bsor in B. Since with Pin Bg, the condition Q6Bsdoes not imply
that C€ b g, it would be desirable to have a numerically convent

description of the class of all Qia Bgwith its corresponding controller
C in B .

s

(e) With the plant Pfixed in B (or B,), when the design parameter Q
ranges over all B (or B,), the corresponding input-output map is given

by Hy2Ul "P(5 («•• (3-13)); hence, the I/O map is restricted by the presence
of the left factor P. We will see later that this implies limitations on
the achievable H

y2ul

Theorem 3.4 has therefore the following design implications that we
formulate as the

Design Theorem 3.5

Suppose that we wish to design a unity-feedback system (P,Q) as

shown in Fig. 1. Then, given any. P€ B ,¥H € B such that
^^ y2UT S

^2*1 SPQ for i2Sl QSBs 3C€ Ag for which the system (P,Q) is
B-stable and has the specified I/O map H

y2ul
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Remark 3.5: Since in a number of algebras of transfer functions there

are procedures for stabilizing by feedback any unstable transfer function

(see e.g. [You. 1], [Cal. 4], [Che. 1], [Ant. 1]), the theorem above applies

to any P € /Ag provided that, whenever P £ B, P is first stabilized by

local feedback.

If the plant P in Fig. 1 is nonlinear, then from (3.1), it is easy

to show the following result:

Corollary 3.6. (Nonlinear System B -stability)

Let B ^ be the class of nonlinear B -stable maps from L into L
e e

(more precisely,

P€BNL ~ 3y<*>- k" B^Q2* - Y(P)*>e2i, Ve 6 L) .

Consider the unity-feedback system in Fig. 1. If P 6 B , then

V SBm2 "Cd+PC)"1 SBnl and (I+PC)-1 €B^
n

Remark 3.6.

Note that the class B is no longer a ring: the right-distributive

law fails I

IV. Design Procedures

Youla et al. have shown that any stabilizing proper controller can be

parametrized in terms of given matrices [You. 1]; however, the resulting

formula for the controller and the closed-loop I/O transfer-function matrix

are rather complicated. Zames discovered that, if the plant is stable, a

simple parametrization exists for both the closed-loop stability and the

output-disturbance sensitivty [Zam. 1]. In the case of unity-feedback

systems with a stable plant, we observed that the relationship between the

closed-loop I/O map H and the plant transfer-function P is particularly
y0u
2~1
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simple if one uses the parametrization proposed by Zames: H =» PO
y2Ul

(see (3.13)). The design procedures described below are based on this

observation.

Although the examples are developed for the rational transfer function

case, it is clear that the procedure will immediately apply to those

cases where the matrix transfer functions can be factorized appropriately

and where the notion of zero makes sense (in this connection for the

algebra 8(0) see [Cal. 1-4].

In this section, we consider a linear, time-invariant plant P(s)

e Ro(0) (equivalently, P(s) is strictly proper and exp. stable) and we

introduce procedures for obtaining a strictly proper controller such that

(i) the closed-loop unity-feedback system in Fig. 1 is exp. stable,

(ii) the I/O map H is decoupled and strictly proper; and
y2 1

(iii) in each diagonal element of H (s), the poles and the zeros
y2ul

(in addition to the C+-zeros of P(s)) can be specified by the designer.

From the previous results, the design starts by choosing an

appropriate diagonal H (s) € R (O)110011 such that
m y0u, o

2"1

(i) equation (3.13), Hv u (s) - P(s) Q(s), has a solution Q(s) in
tnyni

y2ul
^(0) (Hence, by Theorem 3.4, the closed-loop system is exp. stable

and the resulting controller is strictly proper);

(ii ) the decoupled I/O map H (s) satisfies design specifications
y2ul

such as zero asymptotic error for step responses, appropriate bandwidth,

etc.
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We consider two design situations depending on whether the plant P(s)

has <E -zeros or not.

4.1. Design Procedure for P(s) with no € -zeros

Algorithm 4.1. (P(s) has no C -zeros)

Data P(s) 6yo)™, Z[P] C 8_.

Step 1. Calculate P(s)

Step 2. Choose the polynomials n_(s),...n Cs) and d-(s),..., d (s) in
i m l m

n (s) n (s)H (s):=diag[^-,...(1H_] C4.1)

such that

Q(s) :« P(s)"1H (s) (4.3)
y2 1

is exp. stable and strictly proper. More precisely, we choose the. poly—

nomials n1(s),... ^(s) and d1(s),...,d Cs) ,such that, for j =* l,...,m,

(i) Z[dj] cj_ (4-4)
(ii)f 3d > 3n + 3y [P"1] (4.5)

j j j

Comments: Since PfP"1] - Z[P] C <c_, condition (4.4) guarantees that Qis

exp. stable. Condition (4.5) guarantees that Q(s) is strictly proper.

Step 3. Calculate the required controller transfer function:

CCs) =P(S) W d(3L(s) ••••>d(s)-n (s) 1 <*•«>
•*• x mm

End of Algo. 4.1 a

TFor M(s) S ]R(s)m, y [M] denotes the jth column of M(s) and 3y.[M]
*• J

denotes the largest degree difference between the numerator and the
denominator among the m rational functions in y. [M].
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Remark 4.1: Eqn. (4.6) shows that, in principle, given any list of

polynomials (n^s))*, astable controller is always possible by approximate
choice of the polynomials d (s), 1 <. i <. m.

Example 4.1.

Consider

"2 2
sN-8s+lO 3s +7s+4

P(s)
(s+2r(s+3)

2s+2 3s +9s+8
6 Ro(0)

with a right-coprime factorization given by

2

P(s) - N (s) DnT.(s)
pr pr

s+4 3

2 3

s~+3s+4 2

2 s+4

-1

2x2

Since Z[P] = Z[N ] =» Z[det N ] =» {-2} C <c_, we can apply Algo. 4.1.

Now, from (4.3), calculate

Q(s) :=• P(s)"1 H (s)

(3s*+9s+8)n- (s) -(3s +7s+4)n-(s)

3(s+2)d1(s)

-2(8+1)1^(8)
3(s+2)d1(s)

In order that Q(s) € R (0) 2x2

3(s+2)d2(s)

(s2+8s+10)n2(s)
3(s+2)d2(s)

we must have

(i) Z[dx] C c. and Z[d2] C c

(ii) 3dx >_ Sn^ + 2 and 3d2 >_ 3n2 + 2

(4.7)

(4.8)

(4.9)

By choosing n. (s) =* n9(s). » 1 and d-(s) =» d0(s) * (—) + /2 (—) + 1,
± *• X L CO CO

with co > 0, the decoupled I/O map H (s) is given byn y^

H (s>
y2ul

(—) +/2 (—)+l

i e r (0)
o

2x2
(4.10)

(s) «Iwhich has (i) zero asymptotic error for any step input, since H
y0u.
2"1 s=»0

(ii) corresponding bandwidth of co rad/s and 5% settling time of

3^2
s for each decoupled channel. From (4.5), the required controller

is given by

-15-



C(s) = P(s)"1 diag[ ldx(s)-l ' d2(s)-l

CO

s(f + 1)(—^— + 1)
Z /2 co

n

3s2+9s+8 -(3s2+7s+4)

-2(s+l) s2+8s+10

Note that the pole at s = 0 of C(s) is a direct consequence of H (0) » I.
y2ul

n

4.2. Design procedure for P(s) with <C -zeros

If the plant P(s) has C -zeros, then P(s) has a C -pole at each

<C+-zero of P(s). Then, the use of equ. (4.3) would lead to an unstable

Q(s) and hence unstable closed-loop system by Theorem 3.4. Hence,

the only way to have QCs) exp. stable is to have H Cs) cancell all the

C -poles of P(s) .

Algorithm 4.2 (P(s) has C+-zeros)

Data. P(S) €^(0)™, Z[P] HC+ + <f>

Step J- Obtain a right-coprime factorization of P(s):

P(s) =Npr(s) Dp^s)"1

where N (s), D (s) € * [si*3™,
pr pr

Step 2. Calculate [y,,1 := N„(s)'1 (4.11)
ij mxm pr

Step 3. Choose the polynomials n.,(s),...,n ,(s), where, for each j,
1+ m+

n.+(s) € ]R[s] is of least-degree such that for i = l,...,m,

Y-mCs) Qj+(s) is analytic in <E+ (4.13)

Comment: For each j, the polynomial a. Cs) must cancel all the. <C - poles

of all the m rational functions y,.Cs), y„.Cs), ..., y .Cs) in the ith. column
lj 2j mj —

of N (s)"1.
prv
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Step 4. Choose the polynomials n.(s),...,n (s) and d.(s),...,d (s) in
s x m l m

n1+(s)n1(s) n (s)nm(s)
H
y2«1 _ -r~, -m,(s) :- diag [* (>i ...., a (." 1 (*.")

such that for j = l,...,m,

(i) Z[d ]C5_, (4.16)

(ii) the polynomial n.(s) is chosen freely,

(iii) 3d. > 3n^+3n. + SyJp"1]. (4.18)

Comments: From (4.3), conditions (4.13) and (4.16) guarantee that Q has

no (D -poles; condition (4.18) guarantees that Q is strictly proper.

Step 5. Calculate the required controller transfer function: let

n (s) :=» n n (s) j = l,...,m

then

1 nl^ nn/S^C(8)-P(8)" diag[ s) (.).---.d(sW (.)!
II m

(4.23)

End of Algo. 4.2 n

Remarks 4.2 (a) In Appendix C we show that, for j =» l,...,m, the

polynomial n (s) (in step 3) cancels all the <E+- poles of the jth

column of N (s)" if and only if n.,(s) cancels all the C - poles of
pr J+ +

the jth column of P(s)~ . Since calculating the inverse of a polynomial

matrix is much easier than calculating that of a rational matrix, it is

computationally more attractive to consider Nor(s) rather than P(s)
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(b) Equation (4.23) shows that a stable controller is always possible:

indeed, after the polynomials n. (s) and n.(s), 1 <_ j <_ m, have been

chosen polynomials d.(s)'s can always be found so that, for j = l,...,m,

the polynomial d.(s) - ti,+(s) n. (s) is strictly Hurwitz. This conclusion

agrees with Theorem 2 of [You. 2-].

Example 4.2.

Consider

P(s) - -
(s+2)*(s+3)

3s+8 2s+6s+2

s2+6 s+2 3s2+7 s+8
6 R (.) 2x2

which has a right-coprime factorization:

P(s) = N (s) D (s)
pr pr

-1
3 2

s+2 3

s2+3s+4 2
2 s+4

-1

Since Z[P] = Z[N 1 =» Z[det N ] =» {2.5} C <C+ we use Algo. 4.2. Now,

N (s)
pr

-1 -1.5 1

s-2.5 s-2.5

0.5(s+2) -1.5
s-2.5 s-2.5

We choose n1+(s) = n2+(s) = s - 2.5. Then, from (4.3).

(3s2+7s+8)n1(s) -(2s2+6s+2)n2(s)
Q(s) » -0.5

d1(s) d2(s)
-(s"+6s+2)n1(s) (3s+8)n2(s)

dx(s) d2(s)

2x2To guarantee Q(s) S Rq(0) ,we choose ^(s) =« n2(s) =1 and d1(s),d (s)

€ H [s] such that
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(i) 3dx .> 3 and 3d2 >. 3

(ii) Z[d-] C a C C_ and Z[d2] CA.C (E_, where A1 and A2 are regions

in <C_ of desirable closed-loop poles for channel 1 and channel 2,

respectively.

(iii) d1(0) - d2(0) =» -2.5

Then, the resulting decoupled I/O map is given by

\^ — ffifsf. ^sf]
with H

y2Ul
(s)

s«0

*» I (i.e,, with zero asymptotic error for any step

input). From (4.23), the corresponding controller is given by

C(s)

-0.5(3s*+7s+8) (s*+3s+l)
d1(s)-(s-2.5) d2(s)-(s-2.5)

0.5(s2+6s+2) -0.5(3s+8)
d1(s)-(s-2.5) d2(s)-(s-2.5)

V. Basic Design Limitations on the Design

The algorithms above suggest that, using unity-feedback around a

stable plant, we can always obtain a decoupled I/O map that satisfies

any given design specifications (within the constraints imposed by the

<C -zeros of the plant)! As everyone knows, practical considerations

impose limitations on the "achievable benefits" of feedback, see e.g.

f
[Hor. 1]. We emphasize here four sources of limitations: Plant

dynamics, Saturation, Noise and Uncertainty.

'These four limitations are the results of many discussions with many
people, J. C. Lozier and G. Zames, in particular.
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5.1. Plant Dynamics

(i) Any plant has some intrinsic dominant time constants; these

may be in the milliseconds, seconds, minutes or hours range. This,

together with saturation, imposes a time scale on the achievable I/O

maps of the closed-loop system.

(ii) A plant sometimes exhibits a zero of transmission on the

jco-axis or in the open right half-plane. Again, because of saturation,

a zero close to the jco-axis imposes limitations on the achievable loop

gain about that frequency. A right half-plane zero attracts, under

increasing loop gains, closed-loop eigenvalues; hence, stability

requirements impose a limitation on the achievable loop gain, hence

desensitization.

5.2. Saturation

The linear model of the plant remains valid provided that the plant

input-signals remain below the saturation level; otherwise, the linear

model is no longer applicable. As an illustration of how saturation

could occur in a linearly designed feedback system, we consider a s.i.s.o,

system with plant given by p(s) = ,/2+1n • A compensator

c(s) 3 l+s/85.3— is used t0 achieve required performance specifications

of a) velocity error constant > 5 sec. , b) phase margin >45°, c) 1.2 £

ma-ylmmn magnitude of closed-loop frequency response £ 1.5, and d) 25

rad/sec < bandwidth < 60 rad/sec. [Sau. 1, P. 492]. Then, even though

the closed-loop system may behave reasonably well with an error signal

of certain magnitude at co = 0.5 rad/s, any error signal at co s 30 rad/s

with the same magnitude will very likely saturate the plant because

|c(j30)| * 6.1 |c(j0.5)|. Note also that, in Example 4.1 with bandwidth
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«n =15 rad/s, then |h q(J15)|- |Q (jl5)| -ll|Q (jO)| » |h, (jO)|;
11 ylul

hence, inputs of frequency in the neighborhood of 15 rad/s must be kept

small to avoid plant saturation. Note that the saturation level always

specifies the largest signal possible at the output of the plant.

5.3. Noise

To actually control the plant, we need actuators to drive the input

and sensors to measure the output; hence, in order to effectively control

the plant, we must make sure that the noise sources associated with

actuators and sensors do not swamp the input signals and the measurements,

respectively.

5.4. Uncertainty

For design purposes, it is convenient to distinguish two types of

uncertainty which deteriorate the system performance when the feedback

system is designed on the basis of a nominal plant:

(i) the modeling uncertainty caused by approximations in the modeling

of the dynamics: e.g., by linearizing nonlinear dynamics, by neglecting

high-frequency modes, delays, small interactions, etc,

(ii) the parameter uncertainty (i.e., variation of the plant

parameters) caused by manufacturing tolerances, loading, aging, etc.

5.5. A more realistic design problem formulation

With the above considerations in mind, we suggest that one way to

bring some realism in the design process is as follows:

+
For a general discussion of this point see [Zam. 1].
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Let us consider two noise inputs: one associated with the system

input u1 and one associated with the measurement of y9. These two

noises enter the system at the summing point. Since Q(jco) = H (jto)
ylUl

with u2 =0), if, over the band of interest,1 HQ(j(o) L 3a [(jto)] is
too large, then these noises will saturate the plant. Thus the con

sideration of noises and the plant saturation forces us to put a bound

on

<Jmax[Q(jt»>) ], over the band of interest (5.1)

More precisely, suppose that the designer chooses a bound L constant

over the band, then the choice of Q in algorithms 4.1 and 4.2 is subject

to the additional constraint:

amaxCQ(ja,)] - L Va) € t°><%] (5.2)

where cu^ is the highest frequency in the band of interest.

As an illustration of this approach, in Example 4.1, the chosen

Q(s) (implicit in (4.10)) is parametrized by co and hence the problem is
n

to choose an "optimal" co . This can be done by nonlinear programming

using Q(s) specified by (4.7) and subject to inequality (5.2) with, say,

co^ _> 1.5 coQ. In view of the smooth nature of Q(s) in (4.7), the infinite

set of inequalities (5.2) can, for design purposes, be replaced, say,

by a dozen inequalities by choosing frequencies equally spaced over

[0,co^]. This problem is being investigated at present.

It is our conviction that algebraic methods of design as described

in Sec. 4 make sense only when they are incorporated with inequality

constraints such as (5.2).

JmflvM. for M € (E , denotes the largest singular value of M. CSee e.
[Ste. 1]).
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VI. Conclusions

The thrusts of this paper are the following:

I) Within a general algebraic framework, the closed-loop transfer

functions H and H can be given a simple parametric form in terms of

P and Q (see (3.11) and (3.12)). II) Based on [Des. 3], [Zam. 1] and

[Des. 1], we proved that: if P € B , then QSS ** H SB and
s s yu s

C € Ag. Hence the problem of guaranteeing the closed-loop stability

and the strict properness of the controller C is automatically solved by

taking Q € B ; furthermore, nothing is lost by doing so! Ill) For

design purposes, the important observation is that H = PQ, where
y2ul

p€ Bg is given and if Q is chosen in B , stability is guaranteed!

IV) Using coprime factorizations, for any given exp. stable P, our

algorithms construct a strictly proper controller that results in a

decoupled I/O map H in each channel of which we can prescribe the
y2ul

poles and also the zeros (of course in addition to the <C -zeros required

by those of P.) Note that in any case, we can always choose the poles

so that the resulting controller is exp. stable. This contribution

should be viewed as an extension of [Pec. 1], V) The results above

must be tempered by the realization that these algebraic results must

face the limitations imposed by system noise and by saturation.
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Appendix A. Algebraic Manipulations in Rings

Let R denote any non-commutative ring with identity I, (see e.g.

[Sig. 1], [MacL. 1]). Let R be a super-ring of R (i.e., R is a subring

of R). Let R denote the radical of R [Nai. 1], i.e., by definition,

R C R and M S R iff VN 6 R
s s

(i) MN S R , NM € R (A.l)
v ' s s

and

(ii) (I+MN)"1 e R, (I+NM)"1 <= R. (A.2)

It is easy to see that the radical R is a subring of R. Note that

R D R DR
s

The reader may want to keep a specific example in mind: take

R = m (s)***, R = 3R (s)™, R = {P € m (s)11** and strictly proper}.
N'' p s p

Lemma A.l.

Let M6 R and (I+M)"1 € R, then

(I+M)""1 = I- Md+M)"1 (A.4)

= I- (I+M)"3™ (A.5)

Proof: The right-hand sides of (A.4) and (A.5) are respectively equal to

[(I+M) - M](I+M) = (I+M) (by left distributivity In R)

and

(I+M)"1[(I+M) - M] - (I+M)"1 (by right distributivity in R)

Remark A.l. (Nonlinear case): (A.4) holds for nonlinear M (since only

the left-distributive law has been used); (A.5), however, does not.

+By "left distributivity" we mean that the multiplication is distributive
to the left [Bou. 1].
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Lemma A.2.

and

Let P,C € R.

(i) (I+PC)"1 G R<» (I+CP)"1 GR (A. 7)

(I+CP)"1 =I- Cd+PC)"1? (A.8)

(ii) If (I+PC)"'L € R (or equivalently, by (i), (I+CP)"-1 S R),

then

Pd+CP)"1 = (I+PC)"1? 6 R (A.9)
n

Proof:

(i) =" By assumption, (I+PC)"1 €E R. we claim that (I+CP)"1 is given

by (A. 8). Using repeatedly the distributive law in R, we obtain

(I+CP) [I - C(I+PC)"1P] = I+CP - (I+CP)C-(I+PC)"1?

= I+CP - C(I+PC)•(I+PC)"1P

» I

[I - Cd+PC)"1?] (I+CP) = I+CP - Cd+PC)"1-P(I+CP)

= i+cp - cd+pcr^i+pop

= I

Hence, (I+CP)"1 = I- Cd+PC)"1? €E R

"*= Repeat the calculation with P and C interchanged.

(ii) Using left and right distributivity in R, we obtain

(I+PC)P = P+PCP = P(I+CP); (A.10)

then by pre- and post-multiplying (A.10) by (I+PC)" and (I+CP)"

respectively, (A.9) follows. n

Remark A. 2: When P is nonlinear, right distributivity does not hold and

hence (A.7), (A.8) and (A.9) are not true.

Lemma A.3.

Let
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P,C e R and (I+PC)"1 €E R (A. 21)

Let

Q := Cd+PC)"1 (A.22)

(hence, Q €• R by (A.21)). U.t.c, the following equalities hold and all

expressions are in R:

(i) (I+PC)"1 = I- PQ; (A.23)

equivalently,

I+PC = (I-PQ)"1. (A. 24)

(ii) (I+CP)"1 = I- QP; (A.25)

equivalently,

I+CP = (I-QP)"1. (A.26)

(iii) C = Q(I-PQ)"1 (A. 27)

Comment A.3:

The equivalence stated in (i) and (ii) are immediate by inverting

both sides and noting that P, C, Q and IGR imply that I+PC, I+CP, I-PQ

and I-QP € R.

Proof:

(i) (I+PC)"1 = I- PC(I+PC)"1 (by (A.4))

= I - PQ (by (A. 22))

(ii) (I+CP)"1 = I- Cd+PC)"1? (by (A.8))

= I - QP (by (A. 22))

(iii) C = Cd+PC)"1 (I+PC)

= Q(I-PQ)"1 (by (A.22) and (A.24)).
n

Remark: Note that, in Lemmas A.l, A.2 and A.3, the ring R is arbitrary;

in applications, R is chosen to suit the needs. n

-26-



Lemma A. 4.

Let P €E R and C € R

Let

Cd+PC)"1 -CPd+CP)"1
H
yu

PC(I+PC)
-1

Let

-1
Q := C(I+PC)

(hence Q G R by (A.32)). U.t.c,

"Q -QP

PQ P(I-QP)
H
yu

Proof:

P(I+CP)
-1

2x2
€ R

2x2
e r (A.32)

(A.33)

(A. 34)

a

By inspection, H = Q and H « PQ. Since H
yiui y2"l y2ux

and H are

ylu2
-1in R by (A.32), using (A.4), we conclude that (I+PC) 6 R C R and

(I+CP) 6 R C R; now, performing calculations in the ring R 3 R, we obtain

H = -CPd+CP)"1 = -Cd+PC)"1?
y2ul

= -QP

H
-1

yo"
= P(I+CP) « p(i-qp)

2"2

Hence, formula (A.34) is established.
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Appendix B: The Radical of 8(0).

By definition [Cal. 1], 8(0) consists of all transfer function f

of the form f=n/d, where n£ A_(0), dG A~(0). By definition, 8q(0)

consists of all elements g GE 8(0) such that g(s) -*• 0 as |s| -»• » in C,,

in the precise sense described as follows: Ve > 0, Jp > 0 such that

|s| > p and Re s > 0 imply that |g(s)| < e. (B.l)

Lemma: 8 (0) is the radical of B(0).

Proof, a) ¥f GE 8(0) and Vg GE 8 (0), we have f(s)g(s) -»• 0 in the sense

of (B.l): indeed, for all sufficiently large p, there is an M < « such

that |f(s) |£ M, Vs G: c+ with |s| >_ p; hence the conclusion follows since

Se8o(0).

b) We claim that Vf GE 8(0) and Vg ^BQ(0), [1 +(fgKs)]"1 ^8(0)
A

Using (A.l), and the boundedness at infinity of f, we see that for p

sufficiently large

2> |l + (fg)(s)| > 1/2 Vs ^ C+ with |s| > p.

Hence, by [Cal. 1, Thm 3.7], the inverse of 1+fg is in 8(0).

c) If g GE B(0), but g £ 8 (0), then o> «• g(joi) is asymptotically,

for Icaj -»• », almost periodic Then it is easy to choose an f GE 8(0) such

that [1 + (fg)(s)]" has an infinite number of <C+-poles, hence is not in

8(0).

Appendix C.

Theorem C.l. Let P(s) = N (s)D Cs) be a right coprime factorization,
pr pr

then for j » l,...,m, the jth column of PCs)" has a pole p with highest

order I. if and only if the jth column of N Cs)" has a pole p with•j j J— pr

highest order I..
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Proof: This theorem is easy to prove using the Smith-McMillan form.

For our purpose here, we need only consider p GE qj Furthermore, we
+

have det D (s) £ 0 in <E, by stability of P(s). Consider the Laurent
pr +

expansion of the jth column of N (s)~ ; call £. the <t -vector made

-£j -1
up of the coefficients of the term in (s-p) j. Since P(s)

= D (s)N (s) and since D (s) is analytic in <C and nonsingular in
pr pr pr

<C , the corresponding C -vector made up of the coefficients of the term

in (s-p) 3 in P(s) is

n := D (p) 5
J P^ J

Since det[D (p)] t 0, 5. f 9 if and only if n. 9s 6 .
pr j m j m
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Table I: Examples of A , Ik , Ik , B and IB
s s

A <C(s) (C(s)mxm

A Vs> C^s)™1 8(0) 3(0)™**

/As P,0
C (a)™1

p,o
8,(0) 8 (O)1™

o

B R(0) R^)1^ A (0) Aa))"*111

B
s

Ro(0) ' R (0)™
0

Ao (0)
o—

A (O)1™
0-



Figure Caption

Fig. 1. The unity-feedback system (P,Q)
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