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Abstract

Many design problems can be formulated as determining a parameter to

satisfy conventional and infinite dimensional constraints. An algorithm,

with quadratic rate.of convergence, for solving such inequalities, is

presented.
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1. Introduction

Many design problems, such as the design of circuits, control systems

and structures [1,2,3], can be formulated as determining a parameter vector

z €H which satisfies:

gJ(z) < 0 , j = l,...,p, (1)

and

4>j(z,ot) <0, j=1 m, (2)

for all a 6 A.. The set A. is a compact interval of the real line. The

infinite dimensional constraint <jr (z,a) < 0, for all a 6 A., j = l,...,m,

may be expressed as:

fj(z) <0 , j= l,...,m, (3)

where

fJ(z) = max{^(z,a), a^A.}y w
Without loss of generality, so as to simplify exposition, we shall

assume that A- = A« -...=A = A = [an,ct J. Polak and Mayne {4J describe
12 m 0 c

an algorithm for minimization subject to constraints CI) and (2); an

improved algorithm, due to Gonzaga, Polak and Trahan, is presented in [5].

Both of these first order algorithms are easily modified to solve

inequalities CD and (2).

In this paper we present an algorithm which solves (1) and (2) and has

a quadratic rate of convergence. It is, perhaps, worth mentioning that it is

easy to extend conventional algorithms, in a formal manner, to cope with

infinite dimensional constraints. However, the resultant algorithms are

conceptual, i.e., at each iteration of the main algorithm an infinite process

is required (e.g. to solve min{<J>(z,a) |a€A}). The achievement in [4] and

[5] is the development of implementable algorithms (i.e., requiring a



finite process at each iteration). Similarly it is easy to extend Newton's

method to solve infinite dimensional constraints; the resultant algorithm,

while it has a quadratic rate of convergence, is conceptual. However, under

certain assumptions which are satisfied by a reasonably wide class of

problems, it is possible to obtain an implementable, quadratically convergent

algorithm.

We present in the next section a locally convergent algorithm with a

quadratic rate of convergence and in §3 we show how the algorithm may be

stabilized to ensure global convergence. Finally, in §4, we present an

implementable algorithm.

2. A Quadratically Convergent Algorithm

To state our assumptions it is helpful to introduce a few definitions.

Let f(-):mn-mm denote (fX(.) ,f2(.),... ,fm(.))T, g(-):IR* -]RP denote

(g (0,g (•),...,gP(-)) and let <j>C, •) :mn xA -*-]Rm denote

(*(•,•),...,<J>m(-,-))T. Let i|>(«): 3Rn +1R be defined by:

iKz) =max{fj(z), jEm; gj(z), j€p} (5)

and let iK')+: TB? +TBL be defined by:

ifKz)+ = max{0,i|;(z)}. (6)

The feasible set F clearly satisfies:

F - (z|f(z) ^0, g(z) <0} = (z|iKz) <0}, (7)

so that z6 F if and only if iKz)+ = 0. The "e-most-active" constraints

are specified by the sets J (z), JS(z) defined by:



J*(z) ={jEm|fj(z)>iKz)+-e}» (8)
jf(z) ={jEp|gj(z)>iKz)+-e}, (9)

where m = {l,2,...,m}, etc. The set of points in A at which <fr(z,a)

is "e-most active" is defined by:

A^(z) ={aEA|cj)j(z,a) >ij;(z)+-e}. (10)

The algorithm makes use of local maximizers of (}>J(z,»), j = l,...,m; the

set of local maximizers in AJ(z) is defined to be:

A^(z) ={a€A^(z)|a is alocal maximizer of ^(z,*)}- (11)

Let eQ >0 be given. For all zElRn, all jEm, let kJ (z)

denote the cardinality of A** (z) . Now suppose that z E ]R is such that
eo

(i) kJ(z) is finite for all jE m.

Cii) for any a£ EA, (z) H(ct^a,), *aa(z,aj) >0, jEm, kEkj (z),
(iii) for any a£ EA (z) such that a£ =a()(ac)> ^(z,a^) <0(>0),

jEm, kE kj(z).

Then

A£ (z) ={a^, »«2'-'-'akj(z)} (12)

and there exists a ball B = {z11 llz'-z"Il<p} (of radius p) together with
z '

continuously differentiable functions <*£(•) •B ->A, jEm, kGr(z),

such that a^(z) =a? for all jEm, kEkp (z) and cj(zf) is alocal

maximizer of (j^Cz',-). For all ajj, E CaQ,ac), (i.e. unconstrained local
maximizers) the existence of such a ball and functions follows from the



fact that <4(z,a£) =0via the Implicit Function Theorem and (U) above.
For all c£ =VV' because of the continuity of <J.j(-,-) and (iii),
there must exist aball ^ such that aj[<z») =ajj. is alocal maximizer of
(^(z1,-) for all z* E B .

z

Next, for all j E m, k E ]j (z), let n?(0 : B * 1 lie defined by
"""* iC Z

n£(z') **j(z\aj[(z')). (13)

If ^(z1) =^(z) for z* Eb,then n?(*) is obviously differentiable and

3ti£(z)
*, - ♦jj(*,,a£(s)) for all z» E B2-2* =- aJ (~i ^Jz-w #,«. «n ~» £= -n . C14)

If ocCz) E (aQ,ct ) is an unconstrained local maximizer, then it must

satisfy

*LCz'°kCz))CC£" "i001 +*L c*»«k(z)) • ° (15)

Hence, because of (ii),

Cli)okCz) ""*aa <z'«4(z»"Mz ^.^C2))' (15a)

Consequently n£(.) is again differentiable and (^)nj[(z) is given again by

0/3z)nj[(z) -<^(z,oj[(z)) +^(z,c4(z))[0/3z)c^(z)]

-♦Ju.oJm) (16)

Thus, (16) holds because either -L c^(z) ,or ^(2,^(2)) a0. Since the
formulas C13), (14) and (16) are not always valid, we shall use the formal

definition nj[(z) -+(z,a£), a£ €A£ (z) and its "gradient" 7t^(z) ,defined by:



vn^(z) *^z(z,c4(z))T (17)

in place of Vnjj(z).

Since AJ is a set of local maximizers which always includes

the global maximizer of <j>J(-z,«) it follows that <j>J(z,a) <_ 0 for all a E A

if an only if n£(z) <. 0 for all jEm, all kE ka(z); (i.e.,

^(z) =max{ri^.(z) |kEk3(z), jEm}). The latter, finite, set of inequalities will

be employed in the algorithm which is, in essence, Newton1 s method applied

to these inequalities.

Algorithm 1.

Data: zQ E ]R , e > 0.

Step 0: Set i = 0.

Step 1: If g(z±) <0and n£(z±) <0for all j6J^ (z±), all kEkJ (z±),
stop.

Step 2: Compute v to solve: min{llvll |gJ (z.) +<VgJ (z±) ,v> £0 for all

J€j| (z±); n^.(zi) +<Vn^(z),v> <0, for all jEj* (z±), all kEkj(z±)}.
Step 3: Set z. . = z.+v,. Set i = i+1. Go to Step 1. O

A straightforward extension of Newton's method would require the

replacement of the finite set kJ(z.) (corresponding to A~ (z.)) by an
i e0

infinite set corresponding to A (z.)). Of course Algorithm 1 is still conceptual

since the determination of the local maximizers requires an infinite process.

We will show later how an implementable version of the algorithm may be

obtained. Firstly, however, we establish the (local) convergence properties

of Algorithm 1. Our assumptions are:

Assumption 1. g(•) :]Rn + 3Rm and <f>(', •) :3Rn xA —»• IR are three times

continuously differentiable.



Assumption 2. For all zE]Rn, all eE [0,eQ], all jEJf(z), Aj(z)
is a finite set.

Assumption 3. For all zE 6F = {z11i/«(z,)=0},forall aE P (z), for all
f £o

j 6J (z),
^0

(i) if a E (aQ,ac), then 4>aa(z,a) > 0;

(ii) if a = aQ, then $ (z,a) < 0;

(iii) if a = a , then <J> (z,a) > 0.

Assumption 4. For all zEF, {Vgj(z), jEjS (z); Vn£(z), kEkj(z),
f e0 *

jEj£ (z)} is a set of linearly independent vectors. •
*0

We require the following preliminary result:

Lemma 2.1. Let z* E 6F. Then there exists an e > 0 such that for all
z

zE B(z*,e ), for all kE kj(z*), for all jE j* (z*), there exist
e0

o£(0:-BCz*,e )—*- R and corresponding njj.C'): B(z*,e )—* ;r ,

well defined and continuously differentiable, such that aj(z) E A (z) and
e0

\(z) =<j>J(z,c£(z)) for all zEb(z*, ez).

Proof. For all kEkj(z), for all js/ (z), oj(z) is asolution of:
e0

<J)a(z,a) = 0 (18)

The desired result follows from Assumptions 1-3 and the implicit function

theorem. •
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Our main result, which establishes the (local) convergence properties of

Algorithm 1, follows:

Theorem 2.1. Suppose Assumptions 1-4 are satisfied and let {z } denote an

infinite sequence generated by Algorithm 1. For any z* E 6F, for any

Y E (0,1), there exists an E* E (0,«>), an e E (0,e*] and a ME (0,«)

such that:

(i) llv(z)|| < Yilz-z*l| and M||v(z)il < y for all z E B(z*,e*).

(ii) Ilv(A1(z))|| <M||v(z)lr where A^z) =z+v(z), for all zEB(z*,e*).

(iii) If zQ E B(z*,e) then z± E B(z*,e*) for all i = 0,1,2,... .

(iv) If zQ E B(z*,e) then z± -»- zE 6FOB(z*,£*), with a quadratic rate

of convergence, as i -*• <».

Proof. To simplify the notation in the proof, we restrict our attention to

the case where p = 0 and m = 1, i.e., F = {z|(J)(z,a) £0, aEA}. Hence

we discard g(-) and replace $J(»), j=l,...,m, by $(•), ^(^ by
0^(0, A^(-) by A£(.), #.(.) by A£(-), kj(.) by k(-), etc. The
extension of the proof to the general case is simple but tedious.

For all z6l let v(z) denote the solution (if it exists) of:

min{livi!2|nk(z) +<Vnk(z),v> <0, kEk(z)} (19)

Let z* E 6F and let K C k(z*) be defined by:

K= {kEk(z*)|nk(z*)>-£()/2} (20)

There exists a neighborhood B(z*,e1) of z* in which K C k(z) for all

z in this neighborhood. (Note that an arbitrarily small perturbation in z

can convert a stationary point of <j>(z,») into a local maximum, thus



increasing the set A (z). However, if T\Az) = -en, an arbitrarily small
E0 .

perturbation in z can cause ol (z) to leave A (z).) From Implicit Function

Theorem and Lemma. 2.1, there exists an e0 E (0,e,] and an e > 0 such that:
' 2 ' 1 a

(a) the maps 0^(0 map B(z*,e2) into B(ak(z*),e), kEK,andare

continuously differentiable (so that Va(z) = Viv(z) for all

z E B(z*,e1), all k E K);

(b) the sets B(ok(z*) ,ea), kE K, are disjoint;

(c) KC k(z) for all zEB(z*,e2).

Let A denote UB(ol (z*),e ). For all z E B(z*,e0), max{(f>(z,a) | aE^}
kEK k a ^ 2

=max{rik(z) | kEK} and max{(J>(z,a) |aEAc} =max{nk(z) | kEk(z)\k(z*)}.
Since z* E 6F, ty(z*) » 0. Let 6 = max{(f>(z*,a) | a E Ac} < 0.

There exists an z^ E (0,e2] such that, for all zE B(z*,e3):

nk(z) = (J>(z,ok(z)) £ 6/2 , (21)

for all k E k(z)\K, since, for such z and k the uniqueness property

of the implicit function theorem implies ct, (z) E Xc.

Now let v1(z) denote the solution of:

o

min{[|v|| |nk(z) +<Vnk(z),v> <0, kEK} . (22)

It follows from Proposition A.l of the Appendix and the linear independence

of Vnk(z*), kEK, that Ilv^z)! —> 0 as z •»• z*. Hence there exists an

e4 G (0,e3] such that, for all zE B(z*,e,):

r)k(z) + <Vnk(z),Vl(z)> < 0 , kEK,

and (using (21)):

rik(z) + ^nk(z),v1(z)> < 6/4 < 0, kE k(z)\K ,



since flVnk(z)ll is bounded in B(z*,£ ). Hence, for all z EB(z*,£,),

Ilv(z)H _< !Iv1(z)|| (so that llv(z)ll —* 0 as z -»• z*). Consequently, for all

z E B(z*,e4)

rik(z) + <Vnk(z),v(z)> < 6/4 < 0 , for all k E k(z)/K.

Hence, for all z E B(z*,e4), the constraints in (19), with k E k(z)\K ,

remain inactive and may be neglected. Thus, for all z E B(z*,e,), v(z) =

v^z) so that, for such z, v(z) is a Newton step for the problem of

determining a zEIt to satisfy the finite set of inequalities nk(z) <. 0,

kEK. It follows from Proposition Al of the Appendix that there exists an

e* E [0,e4] such that (i) and (ii) hold.

To prove (iii) and (iv) suppose that i E [0,Y£*] satisfies

Uv(zQ)H < (1-y) £* for all zQ EB(z*,i); such an i exists by virtue of

(i). Also from (i) and (ii), llv(A1(z))ll < Mllv(z) llllv(z)II < y(!v(z)(I for all

zE B(z*). Hence, if zQ E B(z*,£), z± = Zq+v^) E B(z*,e+[|v(Z;l) II)

where llv(z]L)[| <yHv(z0)II <y(1-y)2£* <(l~Y)e*. Hence i+Ilv(z1)|| <
Y£*+(1-Y)e* = e* so that z^ E B(zQ,£*). Suppose now there exists a

finite sequence {zq^, ... ,z } such that zQ E B(z*,i), z E B(z*,£*),

and z± =^(z^ =zi_1+v(zi-1) for i=l,...,j. Then zj+1 =A1(zj)
exists and:

Hzj+1-z0!I < I llv(Zj)II <[i+Y+Y2+...+YJ]||v(Zo)[| <||v(z0)II/(1-y)

Hence Oz ^-z*!! <_ Hz0-z*ll + !Iv(z0)II/(1-y) ±ye* + (1-y)e* « e* so that

^•Z0,zl'*,,,zi+1^ satisfies zqEB(z*,e), z. E B(z*,£*) and z. ° A-(z. -)

for i = l,...,j+l. By induction there exists an infinite sequence {z.}

satisfying zQ E B(z*,i), z± EB(z*,£*) and z± =Ai(zi_i) for

10



i=1,2,3,.... Also z± -zEB(z*,£*). Since {z±} is an infinite

sequence, so that the stopping condition in Step 1 is never satisfied, it

follows that z E 6F.

3. A Stabilized Algorithm

The quadratically convergent algorithm described above is merely locally

convergent, i.e.,it will generate asequence converging to z* E 6F if the

initial point of the sequence lies in G1 =B(z*,e*). To stabilize the

algorithm (i.e. to make it globally convergent) we make use of an algorithm

model specially designed for this purpose [6, Algorithm model 3]. Let

A (•): G, + TB? be defined by Steps 1 and 2 of Algorithm 1, i.e.

A1(z) -z+v(z) (23)

where v(«) is defined in (19). An infinite sequence {z±} generated by

Algorithm 1 satisfies z±+1 = \(z±) * *a 09lt29... .
A.

Proposition 3.1. Suppose {z±} is an infinite sequence such that z± + z

and Hv(z.)D + 0 as i -*• «. Then z E F.

Proof. Since for each ,. *Cz) =^te) ft* some kek(«). it follows from

Step 2 that for all i

Kz4) +<vVl (z,), v(2i)> <0for some k^ €k(Zi) <23a>
1 K J- 1

zi

Now, Hz±) -*(z) by continuity, y(«t) *0by assumption, andVn^^^) is
bounded for all i. Consequently, (23a) implies that *<S) <IS CK^)
+<7iv (z^, vCz^)) <. 0which completes our proof. C3

11



To stabilize the algorithm we test the Newton step v(z); if v(z) is

unsuitable we employ a (first order) algorithm specified by a map A«(»):

3R •*• TR , i.e., a sequence {z.} generated by the first order algorithm

satisfies z
i+1

« A2(z,), i = 0,1,2,... . The first order algorithm

employs, for all zE]Rn, all £ > 0, a search direction w (z) defined

to be the solution of the quadratic program (see [8])

9£(z) =mintjllwn +max{<Vg:I(z),w>, jEj|(z); <V $J (z,a) ,w>,
aEAJ(z), JEJ^(Z)}

=» min{|ilwll2|wEco{Vgj(z), jEjS(z). 7^(2,a),
E Z

«€A^(z), jEjf(z).} (24)

The map A2(») can now be defined:

A2(z) =z+*(z)w£(z)(z) (25)

where £(z) is the largest £ E {1,1/2,1/4,...} U{0} such that for a given

6 E (0,1]:

6£(z) < -6£, (26)

and X(z) is the largest XE {l,3r3 ,...}, such that for a given 3 E (0,1)

<Kz +Xw£(z)(z))-w(z) < -X6£/2. (27)

It follows from [8] and Lemmas 1 and 3 of [6] that for all zEfc there

exists a u > 0 and a p > 0 such that

<KA2(z'))-iKz') <-u» (28)

for all z» E B(z,p). The stabilized version of Algorithm 1, based on

Algorithm Model 3 of [6] can now be presented.

12



Algorithm 2.

Data: y, 3E(0,1), 6E(0,1], kE[l,«), Z()Emn.

Step 0: Set i = 0, j = 0.

Step 1: If ^(z.)+ = 0, stop.

Step 2: 3f asolution v(zt) of (19) exists and llv(z )fl <Icy**, set z »\(z±>*
set j » j+1, set i « i+1 and go to Step 1. Else proceed.

Step 3: Set z +1 =» A2(zi), set i » i+1 and go to Step 1. D

Theorem 3.1. Let {z } be a sequence generated by Algorithm 2:

(i) If {zi> is finite, its last point is feasible,

(ii) If {z^} is infinite and bounded ,any accumulation point z* of

{z^ is feasible and there exists an integer Nsuch that z . « A-(z.)

for all i ^ N (so that z. -*• z* quadratically).

Proof, (i) This follows from Step 1.

(ii) Suppose {z } is infinite and bounded.

(a) If there exists an integer N such that z » A«(z ) for all

i .> N it follows from [8] that any accumulation point z* of {z } lies

in F.

(b) If (a) does not occur then there exists an infinite subset S of

{0,1,2,...} such that z±+1 -^(z±) for all iE S; thus there exists an

accumulation point z* and a subset S- of S such that z •*• z* as

i-»• «, iESr Hence j-»• «; since [IvCz±>0 <kr1, IhKz^D •* 0 as
!-»•«, i E S-. From Proposition 3.1 z*Ef. Clearly,referring toTheorem 2.3,forsomefinite

iE S1, z± EB(z*,i) is such that IvCz^D <y. Because Bv(z )D <fc^.

Zi+1 "^^i^* From T^016* 2«1» Bv^zi+i^ <YUv(z )B <ky^+1 so that
2i+2 "^^i+l^ 1#e# the sequence tz±>z±+1>z±+2>•••* is generated by A-
and so converges quadratically to a z E 6FOb(z*,£*) as i -»- «. Hence

z • z*.

(c) We now show that (a) does not occur so that the conclusions of (b)

always hold (i.e. z± -»• z* E 6F quadratically) if {z^ is abounded, infinite

13



sequence. If (a) occurs, j remains constant at J, say, for i > N.

Since {z^ is compact it has an accumulation point z* in F. If z* is

in the interior of F, then, by virtue of the test in Step 1, {z } is a
i

finite sequence; hence z* E 6F. From Theorem 2.1 there exists a finite

I^N such that zt EB(z*,e*) and Dv<zx>B £YJ- Since j=J when
i = I >_ N it follows that zI+1 = A^z^ which contradicts the assumption

that zi+1 = A2(zi) for all i :> N. Hence (a) does not occur. •

4. An Implementable Algorithm

Algorithm 2, although it replaces the infinite set A by the finite

sets £^» J ^ 5» Is conceptual since Step 1 requires the computation of

ty(z)+ and Steps 2 and 3 the determination of the set of local maximizers of

4>j(z,0, jEm.

To make the algorithm implementable we approximate A = [an,a ] by the

finite set:

Aq = {aEA|a»a0+kAq, k» 0,1,2,... ,q} , (29)

where Aq - (ac-aQ)/q. The points in A will be referred to as mesh points.

Similarly f~('), an approximation to f^(«), jE m, is defined by:

fq(z) =max{<J>J(z,a)|ctEA }. (30)

The functions *(•) and $ («)+: Kn •* H are defined by:

*q(z) -max{gj(z), jEp; f^(z), jSm}, (31)

^q(z)+ " max{i|> (z),0} . (32)

The approximate £-most-active constraint sets are defined as follows:

Aq,£(z) •^EAq|<J)J(z,aq) >*q(z)+-e} , (33)

Aa.£(z) * ^a€A^ p(z)|a is a left local maximizer of ^ (z, •)}, (34)

14



Jq,£(2) "{Je?lfq(2)>^q(z)+-£>, (35)

Jq,£(z) "^€PlsJ(z)l^q(z)+-e>. (36)

In (34), a left local maximizer is defined as follows: if AJ (z) =
q,£

{cL,a9,...,a } then a. is a left local maximizer of d>J(z,») in A^ (z)
j- *• a i q,£

if <t>hz,a±) >^(z.a^) and (j>j (z,a±) ><j>j (z,ai+1).
We first discuss an implementable version of A-(»). We recall that

A1(z) = z+v(z) where v(z) is defined as the solution of:

min{||v||2|gj(z) +<Vgj(z),v><0, jEj§ (z); nP (z) +<Vn? (z) ,v> <0,
f 1 °i^JZ (z), kEkJ(z)}. (37)
E0

It follows from (17) that the second set of constraints in (37) is

equivalent to:

<J>j(z,a) +(J>^(z,a)v <0, (38)

for all a£Aj (z), all jE jf (z).
e0 e0

In the implementable version of the algorithm, the set of local maxi

mizers A? (z), 3 e jI (z) is not available. The set A^ (z) of
£0 £0 . <l>e0

approximate local maximizers (whose cardinality is kJ(z) <k*(z)),

3 e J. e (z)is available. However, for aE {an,a },we can employ our knowledge of <J> and

its partial derivatives at (z,cH (z)) to obtain a better estimate of the
q,k

left hand side of (38) than that obtained by replacing P (z), jE Jf (z) ,
-j f . £0 G0

by A (z), j E J (z). Expanding <p£(z, -) to first order yields:

4>^(z,a+6a) =<^(z,a) +<^a(z,a)6a+e (39)

Setting the left hand side of (39) equal to zero,and ignoring e, yields the

16a, 6a (z,a) say, which, for given z, approximately reduces <j>J to

15



zero. Clearly

6aJ(z,a) =-^(z.a)"1 <j>a(z,a). (39a)

Substituting this 6a into the linearized constraint inequality:

<J>j(z,a) +(j£(z,a)6a+ [^(z,a) + 4>;j (z,a) fia] 6z <0 (40)

yields (with v « &z) a possible replacement for (38):

[<|>d (z,a) -(J)da(z,a)"1<|)a(z,a)2]
+[^(z,a) -<f>az(z,a)<|>do(z,a)"1<|)d(z,a)]v <0, (41)

for all aEX^£ (z), jEjq g(2). However, as discussed in §2, ^(z.a)"1
is not necessarily bounded. For all q > 0, all j E m, let 5ad(«,«) be

defined by:

«a£ (z,a) A6aj(z,a) if |6aj(z,a)| <2Aq and (a+6a) 6A
- 2Aq if 6aj(z,a) >2Aq and (a+2Aq) EA

=a - a if a+ 6aJ(z,a) >a and a+ 2Aq >a
c c c

=-2Aq if 6aJ(z,a) <-2Aq and a-2Aq EA
^aQ-aifa+a6<0 and a - 2Aq <a
A»0if a•a and 4>J(z,a) >0^
. . > overrides the above

=0if o-aQ and ^(z,a) <0J. (42)
Our replacement for (38) is:

[(J)j(z,a)+(|)a(z,a)6ad(z,a)]
+ [^(z,a) +<j>az(z,a)6a^(z,a)]v <0 (43)

for all aeP (z), j€J* (z).
q,t0 q,eo

Our approximation Aq>1 to ^ can now be specified:

Aq>1(z) iz+vq(z) (44)

where vq(z) is defined as the solution of:
16



O i • • • •

min{[|vll gJ(z)+g^(z)v<0; j€jf (z) ; [^ (z,a) +^(z,a)6aj (z,a)]
. . 0 a q

+ [<^(z,a) +<JrL(z,a)6ad(z,a)]v<0, a€Ajn c,jEjf (2)]} .
z az 4 ~* q» o q' 0

(45)

Before proceeding to analyze A . we examine the closeness of the
q»i

approximation (43) to (38). Let z* E 6F. For all jEJf /9(z*) let
Kd Ckd(z*) be defined by:

Kj ={kEkj(z*)|nj[(z*)>-£0/2}. (46)

We require the following preliminary result:

Lemma 4.1. There exists an £* > 0, an ea > 0 and an integer q* such

that:

(a) for each kEK3, jEJ£ y£(z*), o£(0 is continuously differentiable
from B(z*,£*) into B(aj*(z*),E );

(b) for each jEj£ /2(z*), the sets B(c£(z*) ,£a), kEKj are disjoint;
(c) K3 CkJ(z) for all jEJf /9(z*), for all zE B(z*,£*);

3 °(d) (J) (z,«) has a unique maximizer, a3 (z) say, in P (z) nB(CLd (z*) ,£ )

and |o^(z)-a^k(z)|<Aq for all kEKj, all j€j|/2(z*), all
q > q*.

Proof, (a), (b) and (c) are slight generalizations of Lemma 2.1 and state

ments (a), (b) and (c) occurring in the proof of Theorem 2.1. It is evident

that £* can be chosen so that J* /9(z*) C jf (z) for all zEB(z*,£*).
e0/z e0

(d) follows from the strict positivity of <t> (z*,a) for all a E K^/{an,oc }, all
f

1 e J£0/2^z*^, and Assumption 1 so that £* can be chosen so that for all
f i3 e Je0/2^z*^» ♦ (z»#) is strictly convex, in each of the disjoint intervals

B(c£(z*,£a)), kEKj. D

17



Lemma 4.2. Let z* E 6F. Then there exists an £* E (0,«), an £ E (0,»),
Ufc

a cE (0,«) such that for all jE jf /9(z*), all kE Kj, all zE B(z*,e*), *
£0'^

all a^z*) EtaQ,ac}, all aEB(a3 (z*) ,sa):

(i) |(a3(z)-a)-6aj(z,a)| <c|aj[(z)-a|2
(ii) |(J)j(z,a3(z))- [(|)j(z,a)+<j>:l(z,a)6a:i(z,a)]| <c|aj[(z)-a|2

(iii) |<f>z(z,aj[(z))- [^(z,a)+cDaz(z,a)6ad(z,a)]| <c|a3(z)-a|2
where 6a3 (z,a) is defined as in (39a).

Proof. Let cE (0,«) be such that max{ \£ (z,a) |, \^{jz9a)'l\} <Cf|*J (z,a)|<cand

l*oaa(z,a) I-c for a11 ^eJe /2(z)> a11 k^Kj, all aEB(aj[(z),£a),
all zEB(z*,£*). From the definition of oj[(z):

0-$a(z,aj[(z)) =* <J>a(z,a)+(()da(z,a)(ad(z)-a)+e3(z,a) (47)

where, from the mean value theorem, |e^(z,a)| <c|aj|(z)-a|2 for all j, k,
a and z satisfying the above conditions. Comparing (47) with the defini

tion of 6a3(«) (see (39a) yields (i). To prove (ii) we note that:

<f>j(z,aj[(z)) -<f>3(z,a) +<f>a(z,a)6aj(z,a)
+4>a(z,a)[(aj[(z)-a) -6aj(z,a)] +e^(z,a) (48)

where |e^(z,a)| < c|aj[(z)-a|2 for all relevant j, k, a and z. Part
(iii) is similarly proven. •

We can now establish a major property of A ,(•).
q»i

Theorem 4.1. Let z* E 6F, cE (0,»), Y^ (0,1) be given, and let {z±},
{q.} be infinite sequences satisfying zJt, « z.,+v (zj,
1 i+1 i q. i''

q± >c/flvq (z1)II, i=0,1,2,... . Then there exists an e* E (0,«), an »

£ E (0,£*3, an M E (0,») and an integer q* such that:

(i) [|v (z)[| < Mllz-z*il and Mllv(z)ll£Y for all zEB(z*,£*), all
q q

q > max{c/llv (z)II,q*}

18



(ii) !lvqf(z,)H ±Mllv (z)il2 for all z' =z+v(z), all zEB(z*,£*),
all q>max{c/Ovq(z)ll,q*}, all q' >_ max{c/ilv ,(z') 0,q*}

(iii) if zQ E B(z*,i) then z± E B(z*,£*) for all i= 0,1,2,...

(iv) if zQ E B(z*,e) then z± + zE 6FHb(z*,£*), with a quadratic

rate of convergence, as i ->• « .

Proof. Again, for simplicity, we consider the case when p = 0 (no conven

tional constraints) and m = 1 (one infinite dimensional constraint).

Hence we discard the superscript "j" in the sequel.

Let z* E 6F, y e (0,1) and £*, £ , c and q* be as in Lemmas 4.1

and 4.2. From (45), v (z) is the solution of:
q

min{ilvll2 [<|>(z,a) +(f> (z,a)6a (z,a)]
u q

+ [<L(z,a)+<j> (z,a)6a (z,a)]v<0, aEA (z)} (49)
£• zu q — <l»eo

From (22) v-^z) is the solution of:

f 21 *
minillvll <J)(z,a)+4> (z,a)v£0, aEA (z) HA} (50)

Z £0

where, as above:

A= UB(0L(Z*),£)
kEK * a

We define v ,(•), our approximation to vn(«), as follows:

min{Ilvll2|[<Kz,a)+6 (z,a)6a (z,a)]
+ [<!> (z,a)+<J> (z,a)6a(z,a)]v<0, aEA c (z) HA} (51)z za q — q,£g

From Lemma 4.1(a), for all z E B(z*,£*), all q >_ q*, A (z) n£ = {a. (z) |
- e0

k€K}' Aq,£ (z)nA ={aqjk(z)|kEK} and Ic^Cz) - aq k(z) | <Aq for all
kEK. From Lemma 4.2 (i), |6a(z,a . (z)) I < la, (z) - a , (z) I

q,K — k q,k '

+ c|ak(z) - aq^k(z) | , for all (z,k) EQ= the set of (z,k) satisfying

19.



zEB(z*,£*), ok(z)E{a(),ac}, kE k. FromLemma 4.1(d),|6a(z,a k(z))| £Aq+cAq2
so that q* can be chosen so that if cl (z) E {ct_,a }, so does a ,(z) and

k u c q,k

|Sa(z,a (_z))| <2Aq (and 6a,(z,a •fc(z)) =6a(z,ak(z))) for all (z,k) E q, with

q >_ q*. Hence, from Lemmas 4.1 and 4.2, v (z) may be expressed as the solution of:

min{IIvIl2|B(z)v+b(z)£0} (52)

and v .(z) as the solution of:
q>i

min{0vII2|B (z)v+b (z)£0}, (53)

where:

ilB(z)-B (z)ll < cAq2, (54)
and:

[|b(z)-bq(z)j| <cAq2, (55)

for all zEB(z*,£*), all q > q* (from (50), the elements of b(z) are

<J>(z,a), aEA (z)flA and the rows of B(z) are <f> (z,a), aEA (z)flA:
0 z e0

bq(z) and B (z) are similarly constructed using (51) instead of (50)).

It follows from Proposition A2 in the Appendix that £* can be chosen

so that:

llv 1Cz)H < Milz-z*ll (56)

Mllvqa(z)ll £ y (57)

llv , (zf)|| <Mllvn .(z)tl (58)

for all zEB(z*,£*), all z!=z+v(z), all q > max{c/||v ,(z)||,q*},
q q»i

all q1 ^max{c/llv , ^z^ll.q*}. Since <|)(z*,a) < 6 < 0 for all a E Ac,
q ,x —

since <f>a(«,«), *z(',#) and <J>za(*,*) are continuous, since
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16a (z,a)| £ 2Aq for all (z,q) and since v- (•) satisfies (56), it is
4 l,q '»

clear that £* and q* can be chosen so that:

[(J)(z,a) +(()a(z,a)6aq(z,a)] + [<|>z(z,a) +<J>za(z,a)6a (z,a)]v1 (z) <0
(59)

for all zEB(z*,£*), all q > max{c/llv. (z)II,q*}, all aEA (z) nAC;
"" 1»(i q»e0

it follows from (49) and (51) that, for (z,q,a) satisfying these conditions,

v (z) satisfies the constraints in (49), so that llv (z) II < llv, (z)||.
,4 q — i>q

Hence:

[<|>(z,a) + <j> (z,a)6a(z,a)] + [<f> (z,a) + <f> (z,a)6a (z,a)]v (z) < 0
« • 4 z za q q

(60)

for all zEB(z*,£*), all q > max{c7[|v (z) II,q*}, all aEA (z) OAC;
q q,e0

hence v (z) = v- (z) for such (z,q). Hence:
q l»q n

llvq(z)|| £ Y^(z) (61)

MOv (z)|| £ y (62)

Hvqt(z,)[l £M||vq(z)U (63)

for all z E B(z*,£*) such that z' = z+v (z) EB(z*,£*), all

q>max{c/llvq(z)fl,q*}, all qf >max{c/llv f(z')ll,q*}. This proves (i) and

(ii); (iii) and (iv) follow directly from (i) and (ii) as shown in the proof

of Theorem 2.1. •

To stabilize the algorithm we require a globally convergent first order

algorithm. We employ the obvious modification (essentially removing f°) of

Algorithm II (with tt = 2) given in [5]. For all £ > 0, all q > 0 this

algorithm employs a search direction w (z) defined as the solution of:
q»£
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9 e(z) = minOvlr +max{g3(z)v, jEjf(z); <J>3(z,a)v, aEA3(z),

j€J*(z)}}. (64)

Our final (implementable) algorithm is:

Algorithm 3.

Data: y9 3E (0,1), 6E (0,1], kE [1,«>), c, M, £Q, u, VE (0,~), q^,

a positive integer, z E]Rn.

Step 0: Set i = 0, j =0.

Step 1: Set £ = £ .

Step_2: Determine q±, the minimum qE {q^+l.q +2,...} such that

q± _> c/llvq (z±)U. If v (z±) exists for qE {q±_v ... ,q±} and if

I,vq (z^N IkY3 then: set z±+1 =z±+v (z±), set j=j+1, set i=i+1
•*• i

and go to Step 1. Else proceed.

Step_3: Determine q ,the minimum q€{q. ,,q, -+1,...} such that P A(zJ
x j-~-L i~l q, ,U i

does not contain two adjacent mesh points for all j 6 m,

SteP 4: If §q ,e(zi) >-«e, ££u/2q± and * (z±)+ £v/2q±f set q± =q±+l
and go to Step 1. If 0 (z ) > -6£ but either £ > y/2q. or

qj>^ *• i

^a (zi>+ > v/2(*-f> set e = e/2 and go to Step 2. If 6 (zj < -6e
Hi -1- qj.E i -

proceed.

,2.Step_5: Compute \±i the largest XE {M,3M,3 M,...} such that:

\(Zi+X\,£(Zi)) "\(Zi) £~a6£/2' SSt "i+1 =Zi+XlWq.,£(2i>-
Set i = i+1 and go to Step 1. •

Theorem 4.2. Let {z^} be an infinite bounded sequence generated by

Algorithm 3. Then, any accumulation point z* of {z.} is feasible and

there exists an integer N such that z.,, = z,+v (zJ) for all i > Ni+1 i qi i —
so that z. -*• z* quadratically.
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Proof. Again we assume p = 0 and m = 1.

(a) Suppose there exists an integer N such that Step 3 is entered

for all i 21 N. It follows from Theorem 3 in [5] that any accumulation

point z* of {z±} is feasible.

(b) If (a) does not occur, then there exists an infinite subset S of

{0,1,2,...} such that Step 2 is entered for all i E S: hence z
i+1

zi+vq (zi) for a11 iG S. There exists an accumulation point z* of

W^iEs and a SUDset si of s such that z. •*• z* as i •*• <», iE S .

Since j •* « as ±+«, iE S. and since l|v (z.)Il£ky* for all
q. i

i E S, it follows that [|v (zi)|| ->• 0 as i -»• ~, i € S-. Since q is

increased by at least unity and time Step 2 is entered it follows that

q± -* «> (Aq± -> 0) as i+ ~, iS S][. It follows from (42) that, for all

ai GAqj£ (z±), |6aq (zi,a±)| -»- 0 as i-• «, ±€ s±. It then follows

that z* E F (for, if not, tJj(z*) > 0, and, since z -*• z* and q •»- •

as i -> co, i E S1> it follows from (49) that there exists an integer i

and a y > 0 such that <J>(z,,a ) > 0 for some aEA (z.) for all

i > \i i e S1; hence, from (49), there exists a v > 0 such that

Hvq (z±)ll >v, for all i >. i1, iEs^ contradicting the convergence of
llv (z.)II to zero).

The remainder of the proof is identical to the corresponding portion

of the proof of Theorem 3.1, with Theorem 4.1 replacing Theorem 2.1 in

the proof. •

5. Conclusion

An algorithm, with a quadratic rate of convergence, for solving both

finite and infinite dimensional inequalities has been presented. The key

assumption is that the function specifying each infinite dimensional
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inequality has a finite number of local maxima (see Assumption 2). It is

thus plausible that Newton's method, applied to these local maxima, will

constitute a quadratically convergent algorithm. In essence, this paper

presentsa stabilized, implementable version of such a procedure. Stabiliza

tion is achieved by employing a first order procedure, presented in [5],

whenever the Newton step is unsatisfactory. Implementability is achieved

by employing a discrete mesh A in place of the (infinite-dimensional)

set A, and refining the mesh suitably at each iteration to ensure qua

dratic convergence. The final algorithm (Algorithm 3) is a slight modifica

tion of the first order algorithm in [5]; an extra step (Step 2) computes

the Newton step and employs it if satisfactory; a quadratic program is, in

any case, required for the first order algorithm (see (64)) so here the

extra programming to compute v (z.) (see (45)) is slight.
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Appendix

The analysis in the main text requires an analysis of Newton's method

applied to a finite number of inequalities. Thus, in the proof of Theorem 2.1,

it is shown that the step v(z) is a Newton step for the problem of solving

i\(z) £ 0, kEK. In this appendix, therefore, we consider the problem of

satisfying the inequality b(z) £0 where b(«): 3Rn -»-]R is twice continuously

differentiable. For all z E]Rn let B(z) = b (z). Let F, denote the
z b

feasible set {z|b(z)^0}. Let v.(z) denote the solution, when it exists,

of min{llvll2|B(z)v+b(z)£0}.

Proposition Al. Suppose that:

(i) z* E 6Fb, Y G (0,1) ;

(ii) b(-): ]R +TR , t £ n, is twice continuously differentiable ;

(iii) Vb (z*), i = l,...,t are linearly independent .

Then there exists an £* E (0,») and an M E (0,«) such that:

(i) llv1(z)ll £ Mflz-z*ll and M||v(z)II£y for all zE B(z*,£*) ;

(ii) llv1(z,)ll £Ml|v1(z)H2, for all zEB(z*,£*), all z' =z+v(z).

Proof. The proof is standard, and is repeated to provide a basis for the

perturbed problem considered in Proposition A2. Since B(z*) has t

linearly independent rows , then t £ n and there exists a permu

tation matrix P such that

B(z*) = [B1(z*),B2(z*)]P (Al)

where B^z*) Em is invertible. Let B.(«), B2(«) be defined by:

B(z) = [B1(z),B2(z)]P (A2)
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Since B1(«): 3Rn +mtXt is continuous and B (z*) is invertible, there

exists [7] an e± E (0,») and an ^ E (0,«) such that B^z) is invertible
and llB1(z)~1|| £ tt± for all zEB(z*,£ ).

It is easily checked that a solution of:

is:

B(z)v+ b(z) = b(z*) <_0

-1

v2(z) = P
' B1(z)"±(b(z*)-b(z)) '

0

(A3)

(A4)

and, hence, that llv^z)!! £ llv2(z)ll £ MLllb(z)-b(z*)II £ M2(Iz-z*ll for all

zE B(z*,£ ) and some M2 E (0,~).

Choose £2 =£1/(1+M2). Then, since flz1+v]L(z)-z*0 £ Ilz-z*Il+M2flz-z*(

it follows that z+V;L(z) E B(z*,£1) for all zE B(z*,£ ). For all z

let z' denote z+ v-(z). A solution of:

xs:

B(zf)v + b(zf) = B(z)v1(z)+b(z) < 0

'-B1(z')"1(b(z')-b(z)-B(z)v1(z)) ,
v3(z') = P

(A5)

(A6)

Since B(z) = b (z) and since b(») is twice continuously differentiable,

it follows that llb(zl)-b(z)-B(z)v1(z) II £M3Hv1(z)ll for all zE B(z*,£2)

and some M3 E(0,»). Hence l|v1(z,)[| £ ilv3(z')l| £M^v^z) II2 for all
z E B(z*,£2).

Setting M=max{M2,M1M3} and £* =min{£2,Y/M2} yields l|v(z)[|£
M||z-z*||, Mi|v1(z)|| £M2||z-z*|| £M2£* £y and [|v;L(z,)!| £M(|v (z)(|2 for all
z EB(z*,£*), thus proving (i) and (ii). •
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The above theorem suffices for Theorem 2.1. Theorem 4.1 requires the

analysis of an algorithm (for solving the inequality b(z) £ 0) which employs

an approximate Newton step v .. (z) obtained by solving min{IlvU B (z) +
q ,1 i q

bq(z)£0} where l|B(z)-B (z)|| £ cAq and Ilb(z)-b (z)ll £ cAq2 for all
zE B(z*,£1), all q >. qx where z* E 6Ffe and cE (0,«)(see (53) -(55),e replacing

£*, q1 replacing q*). For any cE(0,°»), q* > 0 an integer, let Q(z)

= max{H/«v n(z)U,q*}.
q»i

Proposition a2. Let z*, Y and b(«) satisfy hypotheses (i)-(iii) of

Proposition Al. Let v .(•) be defined as above and let B (•) and
q»i q

b (•) satisfy the above inequalities. Let c E (O,00). Then there exists

an £* $ (0,°°), an M E (0,°°) and a positive integer q* such that:

(i) llv (z)ll £ M0z-z*ll and Mllv (z)0£Y for all zEB(z*,£*), all

q > Q(z);

(ii) ^qi^Cz1)" 1 Mllv 1(z)l|2 for all zEB(z*,£*), all q>Q(z),
all z' = z + v (z), all q1 > Q(z').

q.9*-

As before

Proof. As before,

B(z*) = [B1(z*),B2(z*)]P (A7)

where B.(z*) is invertible and P is a permutation matrix. Let B .(•),
J. q, 1

B -•>(•) he defined by:
q,Z

Bn(z) = [Bn T(z),Bn 9(z)]P. (A8)
q q»J- q»^

It follows from our assumptions that B (z) -»• B. (z*) as (z,q) -»• (z*,«)
q y1 1

and, hence, [7], that there exists an z± E (0,«), a positive integer q

and an M_ E (0,*,) such that B„ (z) is invertible and ||B , (z)"1!! < M
q»x q,l — 1

for all zE BU*^). It then follows that a solution of:
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is:

and

B (z)v+ b (z) = b(z*) £ 0

v -(z) a P
q,Z

'B (z)"1(b(z*)-b (z)) 1
q q

(A9)

(A10)

°Vq,l(2)I1 -Dvq,2(z)il <M10bq(z)-b(z*)II £M2[0z-z*fl +1/q2] (All)

for all zE B(z*,£1), all q_> q and some ^ E (0,»).

Choose £2 =ei/[2(l+M2)] and q2 =max{qi, (2M2/£1)1/2}. Then
•lz+vq>1(z)-z*II 1Iiz-z*0+M2[llz-z*a +l/q2] £(£1/2)/(l+M2)+M2(£1/2)/(l+M2)
+£^2 =» elf i.e. z+vq>1(z) EB(z*,£][) for all zEB(z*,£2), all

q 1 q2*

A solution of:

Bqf (zf)v +bqf(zf) »Bq(z)vqjl(z) +b (z) £ 0

where z' =» z + v ,(z) is:
q»i

Hence:

\.3<*'> 'P
V i<z,)"1(ba.C*,)-b (»)-Bfl(zW .(z)) ]
q »j- q q q q»i

o

Dvqfjl(z,)ll £M1Ilb(z')-b(z)+B(z)v 1(z)B +M1c/(q')2
+M^/q2 +ML(c/q)llv 1(z)fl

(A12)

(A13)

(A14)

for all z E B(z*,£2), all q j> q2> If we choose q (and qf) such that

q >c/Qv (z)0 (and qf > c/!lv . -(z1)!!) then, from (All): llv n(z)U <
q»x q fj- q»i —

M2Uz-z*Q +(M2/c2)Dvq>1(z)ll for all zEB(z*,£2), all
q >. max{c/Ilvq^1(z)||,q2}. Hence there exists an e- E (O.eJ and an
M3 > M2 such that:

29



llv ,(z)!l < M,flz-z*|| (A15)
q,l — 3

for all zEB(z*,£3), all q j> max{c/||v 1(z)||,q2}. Similarly, from

(A14) there exists an £, E (0,£3] and an M, E (0,~) such that:

llv , (z»)|| <Mjv n(z)||2 (A16)

for all z EB(z*,£,), all q > max{c/llv n(z)ll,q0}, all z' « z + v n(z),
** — q,l i. q,l

all qT >aax{c/Iv , -.(z'^Uq,,}. The desired result follows from (A15)

and (A16). Q
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