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Summary— The feasibility of direct numerical calculations of

antenna integral equations is investigated. It is shown that integral

equation of Hallen's type is the most adequate for such applications.

The extension of Hallen's integral equation to describe thin wire

antennas of arbitrary geometry is accomplished, and results are

presented for dipole, circular loops and equiangular spiral antennas
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K. K. MEI** MEMBER, IEEE

INTRODUCTION

During the past seven years, the advancement of antenna

design has been characterized by an exhaustive utilization of anten

na geometry. Broad-band antennas are notable examples. In the

study of antenna theory, a knowledge of the current distribution is

of fundamental importance. Such data may be obtained either by

measurement or by solving the antenna integral equation. Integral

equations are difficult to solve even for the simplest case of a

dipole antenna, however, as a result of the development in modern

high speed computers, the range of application of the integral

equation method has been greatly enlarged. The purpose of this

paper is to present an investigation of the feasibility of direct

numerical calculations of antenna integral equations. To simplify

the discussion, the trapezoidal rule of integration is assumed

throughout, although it is realized that in a practical calculation

better integration schemes, such as quadratic rule etc. , may need

to be used. Typical results of calculations are presented.

'"This research was supported by the National Science Foundation
Grant GP-2203.

**Department of Electrical Engineering, Electronics Research
Laboratory, University of California, Berkeley, California.
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NUMERICAL SOLUTIONS OF DIPOLE ANTENNAS

It is well-known that the axial component of the electric field

produced by the current on a cylindrical dipole antenna is given by

d

dz
J j d^f'> G(z,c;z«c')dc'dz' +k2 Jj J(z«)G(z,c;z',c')dc'dz'

= jW€ E(z)

where the symbol J(z') represents the surface current density, $dc'

represents the integration around the periphery of the cylinder, and

G(z,c;z',c') is the free space Green's function,

,-Jk|7-7»|
G(z, c;z', c') =

4 it r - r

(1)

/<For simplicity we shall omit the integration Pd.c' in the discussion

that follows, i. e. , the symbol / dz' will represent the surface

integral over the cylinder.

When the electric field on the surface of the antenna is con

sidered, (1) reduces to

A J J'(z') G(z, z») dz' +k2J J(z') G(z, z') dz' = -jco€E^(z) (2)

where E1 (z) is the electric field produced by the generator. Eq. (2)
z

is an integrodifferential equation for the current, which may be solved
numerically by a combination of the difference equation method and

the numerical integration method. The disadvantage of such an approach
is that difference equations are generally unstable and critical to the

errors in the approximation. An alternative approach is to transform

*R. King, "The Theory of Linear Antennas, " Harvard University Press:
Cambridge, Mass. ; 1956.
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(2) into a pure integral equation. Eq. (2) may be readily transormed

into such an equation of one of several familiar forms. The one used
2

by Pocklington is

L J(z') 9j- G(z, z") +k2G(z, z»)
dz

dz' = -jcoe E (z) ;
Zr

integrating both sides of (3), say from 0 to z, gives

J J(z,)["Vz- G<z'z') +k2( G(£,z')d£~]dz' =-jcoe f E*(g)dg +A.

The integral equation used by Hallen is,

/ JVJ(z') G(z, z') dz' = B cos kz —Zpj- sin k z
L 2Z,0

In these integral equations, the constants of integration A and B

are to be determined by the condition that the current vanishes at

both ends of the antenna; V and Z, are respectively the voltage

applied and the intrinisic impedance of free space.

The numerical solution of an integral equation may be

effected by approximating the integration with a finite sum at n

different points. The resulting algebraic equations will have the
3 4

following form: '

S. A. Schelkunoff , "Advanced Antenna Theory, " p. 132, John Wiley
and Sons, New York; 1952.

3
F. B. Hildebrand, "Method of Applied Mathematics, " pp. 448-451,

Prentice-Hall, New York; 1954.

4
K. K. Mei and J. G. Van Bladel, "Scattering by perfectly-conduc

ting rectangular cylinders, " IEEE Trans. , Vol. AP-11, No. 2,
pp. 185-192; March 1963.
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rCll^l) + K12J(z2) +. . . + KlnJ(zn) = F(Zl)

K 21J(Z1> + K22J<Z2> +' • ' +K2nJ<Zn> = F<Z2>

Knl J<Z1> + Kn2 J<Z2> + ' ' ' + Knn J<Zn> = F<Zn>

The matrix elements K.. and Ffz^ for Eqs. (3), (4) and (5) are
given respectively, as

K.
ij -Az. \ 3z2

B\ + k2 ]G(z., z«) dz'
3z

F(z.) = -jcoe E^(z.) ,

Kij =l [^G(Zi'Z,) +**]* G^B,)d0
J A z. I— 0 —'

F(Z ) = -jcoe
1 0

K.
ij A z

z.
1

e' (g) de + a ,

G(z., z') dz'

'( z.) = B cos k z.
v i' i izr sink |zi

0

dz1

where Az.'s, the subdivisions of the antenna, as shown in Fig. 1
j

are sufficiently small so that the current in each may be considered

constant.

We notice that the integral in (7) does not converge at i = j.

Whether the often used approximation for a thin antenna of radius a,
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f
-jk[(z - z»)2 +a2]

G(z, c; z', c') dc1 «* 2ira <( -^ ^j^- > (10)
4tt[(z - z')2 + a2]

5-7
can be applied in the divergent integral of (7) is open to question.

An inspection of (6), (7) and (10) indicates that such approximation wilj.

not lead to the correct solution. This is so because, if approximations

(7) and (10) are used, in the limit of small radius a_ Eq. (6) approaches

a diagonal matrix. That is to say, for a very thin antenna, the solu

tion of (6) would then give J(z) a E (z), which is not compatible with

the well founded knowledge of antenna current distributions.

The improper integrals in (8) and (9) at i = j may be integrated

by using Cauchy's principal value. In these cases, we may also use

the approximation (10). Actual computations based on such an approx

imation indeed give correct results. This possibly accounts for the

fact that approximations (7) and (10) have been successfully used in
8 9

variational form, ' since the variational formulation introduces an

additional integration, which in effect suppresses the divergent nature

of the integral.

5
J. Aharoni, "Antennae - An Introduction to Their Theory, "pp. 133-135,

Clarendon Press, Oxford; 1946.

J. G. Van Bladel, "Some remarks on Green's dyadic for infinite
space, " IRE Trans. , Vol. AP-9, No. 6, pp. 563-566; Nov. 1961.

7
C. J. Bouwkamp, "Diffraction theory, " Report on Progress in Physics,

Vol. 17, pp. 35-100; 1954.
Q

C. T. Tai, "A new interpretation of the integral equation formulation
of cylindrical antennas, " IRE Trans. , Vol. AP-3, pp. 125-127; July 1955.

q

C. H. Tan, "Input impedance of arc antennas and short helical
radiators, " IEEE Trans. , Vol. AP-12, No. 1, pp. 2-9; Jan. 1964.
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Of particular importance in the inversion of a large matrix

is the problem of round-off errors accumulated through large num

ber of arithmetic operations. In general, the round-off errors

depend on the orientations of the hyperplanes represented by each

row of the matrix, in the n-dimensional vector space. Qualitatively

speaking, the round-off errors will be small if the hyperplanes are

essentially perpendicular to one another, and the reverse is true

if two or more of them are almost parallel. Inspection of (8)

indicates that for small radius a the coefficient K.. will be small

for i < j, and large for i > j. Hence, in the limit of a very thin

antenna, the matrix elements described by (8) approach those of a

triangular matrix. For the same situation, however, the matrix

elements described by (9) approach those of a diagonal matrix,

which is certainly superior to a triangular one in view of the above

consideration on computational errors. We shall, therefore, use

integral Eq. (5) as the basis of our calculations.

A few typical results of calculation on dipole antennas are

shown in Figs. 2-4. It is of interest to note that calculations

based on the model of a slice generator excitation, and those based

on the model of a magnetic loop current excitation have no notice

able differences in their results.

ARBITRARY THIN WIRE ANTENNAS

The extension of Eqs. (3) and (4) to describe a general curved

wire antenna is immediate, provided a curved cylindrical coordinate

system is used. Fig. (5) describes such a coordinate system, where

S. H. Crandell, "Engineering Analysis, " Sec. 1. 3, pp. 15-18,
McGraw-Hill, New York; 1956.

G. E. Albert and J. L. Synge, "The general problem of antenna
radiation and the fundamental integral equation with application to an
antenna of revolution, " Part 1, Quart. Appl. Math. , Vol. 6, pp. 117-132;
July 1948.
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s is the arc length measured from the feed gap, and £ is the unit

tangent vector at s. If the radius a of the wire is sufficiently small
so that the current density may be considered to be uniform around

the periphery of the wire, the corresponding integral Eq. (3) and (4)

for a curved wire antenna are respectively,

J J^Huf^ G(s.s') - k2G(s,s')£- Sjds'̂ jweE^s)

and

(11)

J j(s') Dl,. G(s, s') -k2 P G(£, s') £•§' d£ ds^J =jcocf EJg) <*£ +A; (12)

The extension of Eq. (5) to describe a general curved wire antenna

is not so apparent. The complication arises in that the kernel of

the closed-cycle type is essential in the conventional way of deriving

integral Eq. (5). Such a kernel has the special property,

-|L K(s,s') =- -A, K(s,s') . (13)

The structures which give rise to kernels of this type are limited
9to straight wires, circular arcs, and helical wires. In the follow

ing we shall attempt to generalize Eq. (5) so as to include wire

antennas of arbitrary geometry.

In accord with the assumptions of a thin wire antenna, the

tangential component of the vector potential and scalar potential on
the antenna are given respectively as

and

=J J(s') G(s\ d») s • s\» diA (s) = / J(s') G(M') s • §' ds' (14)
s
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£-.[*£}. G(s,s,ds.4>(s) = -TTTT- ^Tf^ G(s,s')ds' . (15)

We define a scalar function $(s) as

•(» =-j»t r *(§)dg =r j -^icd.s'xig. (i6)

Integrating (16) by parts and considering J(s) to vanish at both ends,

we obtain

•w --III ^ ^i^d|. (17)

For the s component of the electric field on the antenna to

vanish, it is required that

E (s) + EX(s) = 0 (18)
s s

where E1 (s) is the s component of the incident electric field
when the antenna is receiving, or it is the impressed field of the

source if the antenna is transmitting.

From the well-known equation

E (s) = - VB4> - jwjiA,

we have

k2A(s) - jcoe i$M = -jucE*<B) (19)
d¥
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or

2

d $^S) = -k2Ag(s) - j«€E*(s) . (20)
ds

2
Adding k $(s) to both sides of (20), we obtain

2

d $(2S) + k2*(s) = k2 (ft(s) - A(s) ) - jcoeE*(s) . (21)
ds

The solution of (21) is

fs$(s) = C cos ks + D sin k |s | + / k ($(£) - AJ£) ) sin k(s - £)

s

1 (£) sin k(s - £) d£ .^"o Jo Ee
Since $(0) = 0 , we see that the constant C must vanish. Now

consider the integration

F(s) = k I $(£) sin k (s - £) d£
J0

(22)

= -k J j }J(st) 9Gas»S>) ds' drisink(s -£) d£ . (23)

After changing the order of integration in (23), we obtain

-9-



F(s) = -k J J / J(S,) dGd!!*l) sink(s - ^d^d^ds'

=" J J J(s*) 8CflJV 8l) [l - cos k(s - ti)] d-n ds'

=$(s)+J / J(s') 8C^JV s>) cos k (s - -n) dn ds' .

= k

X -'o

Next we consider the integration

H(s) = k J A
0

g(g) sin k (s - g) d£

//J0 JL

A

J(s') G(£, s') £ • s' sin k (s - £) d£ ds'

Integration by parts gives

=/H(s) = j J(s') G(|, s1) | • s' cos k (s - |)
L,

7 ds
1 = 0

(24)

(25)

-{ {ps^t.s.*^...,-^^] J(s') cos k(s - £)d£

-I. •J.
(26)

J(s') G(s, s*) s • s' ds» - / J(s') G(0, s') 0 • s» cos ks ds'

. Jso /l [i°pi t•&• +o<e..., 4^] J<s'> "• k<s -«d* •
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Substituting (24) and (26) into (22), we obtain the integral equation

for the current,

J J(s') tt(s, s') ds' = Dsin k |s I + / J(s') G(0, s') 8 • §' cos ks ds'

fs
- J- EX(g) sink(s - g) dg

zo Jo 5

I*, ~\\ r-i~ i\ A A, T raG(g, S') A Air(s,s') = G(s,s') s • s' - J —KTp £ ' s

+ *GL^L+ G(|>sl) ili^8l]co.k(..6)d6 .

The term D sink |s | represents the effect of a slice generator
which is redundant when the integral of Ef is present. Indeed, if

Et (g) = V/2 6(g), where 6(g) is the Dirac delta function, we have

where

(27)

(28)

^JM (g) sink (s - g) dg = -fl^ sink |s| (29)

which is consistant with (5).

To show that Eq. (27) reduces to (5) for a dipole antenna, we

assume the source to be a slice generator, and notice that in this

particular case

9G(g, s') _ 9G(g, s')
~~aT ~ " as'

-11-



and

Hence, (27) becomes

a a ,
g • s = 1

/ J(z') G(z, z») dz1 = / J(z') G(0, z») dz' cos kz - M- sin k Izl . (30)

Comparing (30) with (5), we have

-/B = / J(z') G(0, z') dz'
L,

which may be shown to be correct by considering (5) at z = 0. Con

sequently, the term I J(z') G(0, z') dz' should be replaced by a
-'Xj

constant, which has to be determined by the condition of the current

at the ends of the antenna, otherwise the solution of the integral

equation will not be unique. Therefore, the integral equation describ

ing an arbitrary thin wire antenna is

/ J(s') Tr(s,s')ds' = C cos ks - -J- I E*(g) sin k(s - g) dg .

The specialization of (31) to a circular loop antenna also agrees with
12

that derived by Adachi.

A further check of the integral equation may be effected as

following. We differentiate (31) twice with respect to s, and make

use of the differential relation,

12
S. Adachi and Y. Mushiake, "Theoretical formulation of circular

loop antennas by integral equation method, " Sci. Rep. , RITU,
B-(Elect. Comm.) Vol. 9, No. 1, Sendi, Japan.
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d ff(x) ff(x) a4- g(x,x') dx» = -£- g(x,x') dx' + g(x,x')E Jo g(x,x.)dx. =Jq -9x

and obtain

f'(x) (32)
x' =x

k2 I |° J(s.) [i^il $.fl. +J^il +G(g,s.) iij^Jl]

coskfs - g)dgds' - -^- / J(s') 8G3(sS,'Sl) ds- (33)
,2 fs .

=-kC cosks + j -_ / E*(g) sink(s - g) dg - jw€E*(s) .
^0 J0 * 5

2
Multiplying (31) by k and adding the result to (33), results in

k2 J J(s') G(s,s')4 •3'ds' - -A- J J(s') 8G(9SS,,S') ds =-ju>eE*(s) (34)

which is essentially Eq. (19). Therefore, the integral (31) is shown to

be the correct one.

APPLICATIONS

13Eq. (31) has been applied to circular loop antennas and equiangular

spiral antennas. The representative results are shown in Figs. 6 and 7.

The calculations of current on log-periodic zig-zag antennas are in

progress. We shall report the details of calculations in the near future

when the numerical results are compiled.

13A. Baghdasarian and D. J. Angelakos, "Scattering and radiation from
conducting loops, " to be published as an ERL report, University of
California.

-13-



Az

AZ:

<• - Z.

" - z

Fig. 1. Relevant of a dipole antenna and its subdivisions
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Fig. 4. Current distribution I = I_ + jl. on a dipole antenna of parameters

ft = 2 log 2L/a = 10, kL = 5tt/4.



Fig. 5. A curved cylindrical coordinate system.
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