

Copyright © 1979, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

TECHNIQUES FOR PROCESSING OF AGGREGATES

IN RELATIONAL DATABASE SYSTEMS

by

R. Epstein

Memorandum No. UCB/ERL M79/8

21 February 1979

TECHNIQUES FOR PROCESSING OF AGGREGATES

IN RELATIONAL DATABASE SYSTEMS

by

Robert Epstein

Memorandum No. UCB/ERL M79/8

21 February 1979

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

TECHNIQUES FOR PROCESSING OF AGGREGATES
IN RELATIONAL DATABASE SYSTEMS

by

Robert Epstein

(University of California at Berkeley)

ABSTRACT

Extremely rich and powerful semantics are possible when
multiple aggregates are allowed within a single query, and
when aggregates are allowed to be nested inside each other.
Such queries, however, can be extremely difficult to pro
cess. This paper describes a system for processing of arbi
trarily complex aggregates on data in relational database
systems. The topics include processing scalar aggregates
and aggregate functions, combining the processing of multi
ple aggregates, linking of aggregate functions, optimizing
domain references, computing multivariable aggregates, and
computing aggregates on unique values. The algorithms
described have all been implemented as part of the INGRES

relational database system.

Research sponsored by the U.S. Army Research Office Grant
DAAG29-76-G-02M5.

Processing of Aggregates R. Epstein

INTRODUCTION

This paper describes a system for processing arbi
trarily complex aggregations of data within a relational
database system. Examples will be given using QUEL
[HELD75], the query language of the INGRES relational data
base system. For other discussions on the syntax and seman

tics of aggregation see [DATE77] and [ASTR76].

This paper begins by defining the two classes of aggre
gates: scalar aggregates and aggregate functions. It is not
difficult to process these aggregates when only a single
aggregate appears in a query. Languages such as QUEL allow
arbitrarily complex aggregation because extremely rich and
powerful semantics are possible when multiple aggregates are

allowed within a single query, and when aggregates are

allowed to be nested inside each other. Such queries, how

ever, can be extremely difficult to process. In sections
II, III, and IV this paper presents simple efficient algo

rithms for processing these aggregations. There are several

optimization techniques particular to aggregates which can

dramatically improve the processing cost of a query. These

optimizations are discussed in sections V and VI. Lastly,
section VII contains an overview of the processing strategy.

The examples presented in this paper are all based on

the two relations:

employee(number, name, salary, manager, startdate)
dept(number, name, store, floor, manager)

-3-

Processing of Aggregates R. Epstein

I- IIPES OF AGGREGATION.

Aggregates can be divided into two catagories which we
shall call scalar aggregates and aggregate functions. A
scalar aggregate can be computed independently of the query
it is contained in, and when computed will yield a single
scalar value. For example, the query to find the average

salary in the employee relation can be expressed as:

range of e is employee

retrieve (avgsal = avg(e.salary))

This query will compute a single tuple with one domain named
"avgsal" whose value will be the average of the salary
domain of the employee relation.

Aggregates can have an optional qualification. For
example, what is the average salary of those people who work
for manager 128?

range of e is employee

retrieve (avg128 = avg(e.salary
where e.manager = 128))

Aggregate functions differ from scalar aggregates in
that they return a set of values. The data to be aggregated
is logically partitioned by one or more attributes. For
example one could ask how many people work for each manager?

retrieve (cnt = countCe.name by e.manager))

This query would yield a separate count value for each
unique manager in the relation. It is convenient to name
the value being aggregated as the aggregate expression and
the value determining the set grouping as the by-list (in
this case !,e.manager") . The "by-list" is not limited to a
single domain but rather it can be an arbitrarily complex
comma separated list of expressions. If the by-list has
more than one expression, then it is defined to be the con
catenation of the expressions.

In summary, the generic form of a scalar aggregate is:

-4-

Processing of Aggregates R. Epstein

agg operator(agg_expression where qualification)

The generic form of an aggregate function is:

agg_operator(agg_expression by by_expression1,

..., by_expressionN where qualification)

The aggregate operators which commonly occur in database

systems are:

count sum avg

min max countu

sumu avgu

The first five aggregates (count, sum, avg, min, max) have
the obvious arithmetic meaning. The "unique" aggregates

(sumu, avgu, countu) guarantee that the set of values of the
expression being aggregated contains only unique values

(i.e. duplicates have been removed).

Scalar aggregates are "local" in the sense that they

are independent of the query in which they are nested.
Aggregate functions are not "local". The attributes in the

"by-list" are logically linked to the corresponding rela

tions in the remaining query. As a simple example consider

the query:

retrieve (e.manager, cnt=count(e.name by e.manager))

Both occurrences of the manager attribute refer to the same

entity. The linking between the two references to "manager"

is implicitly defined. If this linking did not occur then

the query would be the same as:

range of e is employee

range of f is employee

retrieve (e.manager, cnt=count(f.name by f.manager))

This query yields the cross product of all "e.managers" with

the set of counts. Thus defining the "by-list" of an aggre

gate function to be global to the query which contains it

yields an intuitive and useful definition.

-5-

Processing of Aggregates R. Epstein

The linking of the "by-list" will occur as a function
of the variables used — not the attributes used. (A vari

able is a reference to a relation. For example, in the pre

vious query, both "e" and "f" were declared to be variables
which reference the "employee" relation.) As an example of
linking the by-list, consider the query: "List each employee
number together with the count of other employees who work
for the same manager."

range of e is employee

retrieve (e.number, cnt=count(e.name by e.manager))

Since the variable "e" occurs in both the by-list

(e.manager) and elsewhere in the query (e.number), the
aggregate function is linked to the "e.number" field. The
algorithms for determining how to link aggregate function
will be discussed in section III. Note that some database

management systems avoid the problem of linking aggregate
functions by disallowing queries such as the one above.

II. PROCESSING AGGREGATES.

A scalar aggregate consists of an aggregate expression
and an optional qualification. The steps for processing are
straight forward and will surprise no one.

(1) Allocate an initially zero tuple to hold the aggre
gate result. Allocate a counter, initially zero, which
can be used to count the number of tuples which qualify.

(2) For each tuple which satisfies the qualification,
update the aggregate result and increment the counter.

-6-

Processing of Aggregates R. Epstein

The count of the number of tuples which satisfies is used
for computing the avg function and is used for "min" and
"max" for recognizing the first tuple. The aggregate in the
query can then be replaced by the computed scalar value.

Aggregate functions require the maintenance of an
aggregate value, count field, and the actual by-list value
for each unique occurrence of the "by-list". The number of
possible values in the "by-list" is potentially as large as
the cardinality of the relation being aggregated. In the
general case, the set of values can be maintained by creat
ing a temporary relation which has domains for the count
field, aggregate value, and "by-list". For example, the
aggregate:

avg(e.salary by e.manager)

can accumulate its results in a relation of the form:

temp(count, manager, average)

The algorithm consists of:

(1) create a temporary relation with the necessary

attributes.

(2) for each tuple which satisfies the qualification:

(2a) if a tuple with the identical by-list already
exists in the "temp" relation, then update that

tuple.

(2b) else append to the "temp" relation, a new tuple
with the initial correct values.

At the end of processing a relation will exist with exactly
one tuple for each manager. That tuple will hold the
correct aggregate value for that manager.

This algorithm has the property that values of the by-
list will be excluded if no corresponding tuple satisfies

the qualification. For example, the query: "For each
manager, determine how many employees have worked for the
company more than five years."

-7-

Processing of Aggregates R. Epstein

range of e is employee

retrieve (e.manager, oldpeople =

count(e.name by e.manager

where e.startdate < 1975))

If a manager does not manage someone who started before 1975

then that manager will not appear in the "temp" relation.

It is unreasonable to allow the count to be undefined; it

should be zero.

This problem can be avoided if the "temp" relation is

initialized with the by-list values. Thus before actually

processing the aggregate function, if it is qualified, pro

ject the by-list into the "temp" relation. This guarantees

that every value of the by-list will be present and have the

default value of zero. The query above can be processed in

two steps:

range of e is employee

retrieve into temp(count = 0, manager = e.manager)

followed by the actual aggregation into "temp". There is a

general problem of what value to give an aggregate operating

on an empty set; that is, one for which no tuples satisfy?

It is generally reasonable to define sum and count on the

empty set as equal to zero. Avg, min, and max could also be

defined as zero. If the "null" value is supported, it may

be reasonable to define avg on the empty set as equal to

"null". Min and max could be initialized to the largest and

smallest (respectively) possible values of the domain, or +-

infinity if the computer hardware supports such values.

Regardless of what is chosen for the default value, if the

aggregate is qualified, it must be initialized to the
i

default value.

Notice that in step (2a), the "temp" relation is always

accessed by equality on the manager domain. It will be

accessed once for each tuple in employee which satisfies the

i

For the INGRES implementation, we have chosen to de
fault to zero in all cases. One reason for this is that the
host hardware (PDP-11) does not support undefined or infin
ite values. We feel that the cost to simulate such values

in software is prohibitive.

-8-

Processing of Aggregates R. Epstein

qualification. The optimal storage structure for "temp" is
to key on manager.

An alternative processing strategy for computing an

aggregate function is to first project the needed domains
and then sort on the by-list being careful not to remove

duplicates. Results will still be accumulated into a tem
porary relation but the reference pattern will be different.
Since the tuples are sorted in order of the by-list, each
tuple read will have either the same by-list as the previous
tuple, or it will be an entirely new by-list and there will
be no more references to any previous by-lists. If the

tuples were unsorted, then it is possible that each tuple
read would have a different by-list than the previous tuple

and the references to the temporary relation would be some

what random. The trade-off is the cost to project and sort

verses the cost to randomly search the temporary relation.

We shall now briefly analyse when each method wins.

Suppose we know that:

N = number of tuples to be aggregated.

U = number of unique values in the by-list.

P = number of pages needed in the aggregate temp relation.

(U / number of tuples per page)

B = number of main memory page buffers available.

We will assume that "temp" relation is either in a hash

structure or some order preserving structure such as B-tree

or ISAM. The following table summarizes the logical page

accesses for each case.

hash b-tree or isam

random distribution

sorted distribution

The minimum access is P accesses. Let's now conjecture that

-9-

Processing of Aggregates R. Epstein

B >= P. In this case, all page accesses will be in core and

there will be only P physical page accesses in any of the

above cases. Since most aggregate function result tuples

are small, there are many per page. In addition, the value

of U tends to be small in many typical cases. Thus the

assumption that B >= P is commonly true in practice. To the

extent that this holds, the best structure to use is hash,

and sorting does not help. If B < P and U is large, then

sorting clearly wins.

III. NESTED AGGREGATION AND LINKING OF AGGREGATE FUNCTIONS

The order in which several different aggregates are

performed may be critical. Here are two examples.

range of e is employee

retrieve (tiny = min(e.salary

where e.salary != min(e.salary)))

retrieve (cheap = min(e.salary),

costly = max(e.salary))

The first query asks for the second smallest salary. One

aggregate is nested inside the other. Since the outer

aggregate is dependent on the result of the inner aggregate,

they must be done in the order of innermost first. In the

second query, it is immaterial* which aggregate is processed
first since they are not nested inside each other.

All aggregates are nested either in another aggregate
or in the main query. While aggregates may be deeply
nested, for processing purposes, one need only keep track of
one level of nesting. For simplicity we shall refer to the

-10-

Processing of Aggregates R* Epstein

query in which an aggregate is immediately nested as the
"outer query". The aggregate itself we shall refer to as
the "inner query" or "inner aggregate".

Once a scalar aggregate is processed, it can be
replaced in the query by its scalar value. When an aggre
gate function is processed, it can be replaced by a refer
ence to the domain in the "temp" relation which was used to
process the aggregate. Aggregate functions have an addi
tional complexity — the by-list must be linked to the query
in which the aggregate was nested. For example the follow
ing query:

range of e is employee

retrieve (e.manager,
manavg = avg(e.salary by e.manager))

is transformed into

range of t is temp

retrieve (e.manager, t.avg)
where e.manager = t.manager

where "temp" contains the manager and average salary by the
processing algorithm in section II. The qualification
(e.manager = t.manager) was added to correctly link the
relation holding the aggregate function (temp) to the
remaining query. This is a direct result of the definition
that the variables in the by-list are global to the query.

A more complicated example is

retrieve (e.manager,

manmin = min(e.salary by e.manager),
manmax = max(e.salary by e.manager))

after processing the aggregates, this becomes

range of t1 is tempi

range of t2 is temp2

retrieve (e.manager, tl.min, t2.max)
where e.manager = t1.manager

and e.manager = t2.manager

-11-

Processing of Aggregates R« Epstein

The algorithm for linking a single aggregate function
to the query it is nested in, is as follows:

(1) Generate a list of all variables which occur in the
outer query or in the by-list of any aggregate functions
contained in the outer query. Do not include variables
which appear in scalar aggregates or in the non by-list
portion of an aggregate function.

(2) Generate a list of all variables in the by-list of

this aggregate.

(3) If the variables in the by-list intersect the vari
ables in the outer query, then link the aggregate "temp"
relation to the outer query on all the by-list domains.

It may happen that there are no variables in common
between the by-list and the outer query. In that case no
linking is required.

Suppose that aggregate2 is nested inside aggregatel
which is nested inside the main query. Aggregate2 is local
to aggregatel only. If any linking is done it is to link
the "temp" relation of aggregate2 to the variables in aggre
gated For example, for each manager find the second
highest paid employee:

retrieve (e.name, e.manager)

where

e.salary = max(e.salary by e.manager
where max(e.salary by e.manager)

!= e.salary)

This will be processed in three steps.

(1) Compute max(e.salary by e.manager) into "tempi".

(2) Replace the aggregate with its value set. The query is
now:

range of t1 is tempi

retrieve (e.name, e.manager)

where

-12-

Processing of Aggregates R. Epstein

e.salary = max(e.salary by e.manager

where tl.max != e.salary

and t1.manager = e.manager)

(3) Compute the next aggregate into "temp2". The remaining
query is now:

range of t2 is temp2

retrieve (e.name, e.manager)

where

e.salary = t2.max

and

e.manager = t2.manager

IV. MULTIVARIABLE AND UNIQUE AGGREGATION.

Multivariable and unique aggregates can be processed by
first projecting those tuples which satisfy the qualifica
tion of the aggregate into a temporary relation. The aggre
gate can then be expressed in terms of the temporary rela
tion and processed as previously described.

For example, suppose we want to know how many people
who earn more than $10,000 work on each floor:

range of e is employee

range of d is dept

retrieve (d.floor, people =

count(e.number by d.floor

where e.salary > 10000

and e.manager = d.manager))

1) First reduce the aggregate to one variable:

-13-

Processing of Aggregates R- Epstein

retrieve into tempi(e.number, d.floor)

where

e.salary > 10000

and

e.manager = d.manager

2) Next process the aggregate into "temp2"

range of t1 is tempi
count(t1.number by t1.floor)

3) The remaining query is now:

range of t2 is temp2
retrieve (d.floor, t2.count)

where d.manager = t2.manager

If the aggregate calls for unique values, then the tem
porary relation (in this case "tempi") will have to be
sorted to remove duplicates. The optimal sort order is to
sort on the by-list first. Thus when the results are aggre
gated, the tuples will already be sorted into the correct
sets.

Suppose we want to know how many managers there are.
Consider the queries:

range of e is employee
(1) retrieve (mancnt = count(e.manager))
(2) retrieve (mancnt = countu(e.manager))

Query 1 will give the number of occurrences of e.manager;
this is of course only the cardinality of the employee rela
tion. Query 2 gives the count of unique occurrences; which
is the desired result. This query can be processed in the
identical manner as the query above:

1a) First reduce the aggregate

retrieve into temp(e.manager)

1b) Next eliminate duplicates.

-14-

Processing of Aggregates R. Epstein

remove duplicates from temp

2) Process the one variable aggregate

range of t is temp

retrieve (mancnt = count(t.manager))

3) The remaining query is now:

retrieve (mancnt = CONSTANT)

The issue of unique values is clearly defined when
there is only one relation involved. For multi-variable
queries, the definition of non-unique aggregates is vague.
To solve a multivariable query, it is necessary to reduce
the query to one variable and then aggregate. Presumably
the aggregate processor can call the normal query processor

to solve an aggregate-free, multi-variable query. The pres

ence or absence of duplicates in the resulting relation

depends on how the query is actually processed [Y0US78].
Furthermore, in a system which makes dynamic processing

decisions, the manner in which a query is processed can

change as the information about the relations change. The
definition is vague primarily because allowing duplicates

does not fit in well with relational theory [C0DD70].

As examples, consider the query: "What is the average

salary for employees on each floor?"

range of e is employee

range of d is dept

retrieve (d.floor, flooravg =

avg(e.salary by d.floor

where e.manager = d.manager))

If there are two people with -the same salary on the same
floor, then "avg" will yield a different answer than "avgu".

When reducing the query to one variable, those duplicates

must be preserved. Now consider the query:

range of e is employee

range of d is dept

-15-

Processing of Aggregates R. Epstein

retrieve (e.manager, mancnt =

count(e.number by e.manager

where e.manager = d.manager

and d.number > 10))

Suppose there is a manager who manages two different depart

ments. In that case, the employees of that manager may be

counted twice, depending on how the query is processed. The

solution in this case is to use a "countu" instead of a

"count".

V. COMBINING AGGREGATES.

There are many cases when more than one aggregate can

be processed in one scan through the data. Doing so is
purely an optimization step and is not in any way essential
to the semantics of the query. The advantages of recogniz
ing such cases are enormous. For only a slight increase in
algorithmic complexity, multiple aggregates can be processed
for nearly the same cost as doing just one. We will
describe a sufficient set of conditions for determining

whether two or more aggregates can be processed at the same

time. Most of the rules are intuitively obvious.

Rule 1 - Not nested.

Two aggregates cannot be run together if one is nested
inside the other since one aggregate depends on the

final result of the other.

Rule 2 - Same dependence on uniqueness.

Aggregates can be divided into three catagories: (1)
unique aggregates (sumu, countu, avgu), (2) non-unique
aggregates (sum, count avg), and (3) don't care aggre
gates (min, max). Unique and non-unique aggregates can

-16-

Processing of Aggregates R. Epstein

never be run on the same data since by definition, one

requires that any duplicate tuples be removed, and the

other requires that duplicates remain. The following

table describes the conditions under which two aggre

gates can be combined.

unique non-unique don't care

unique ? never ?

non-unique never always always

don't care ? always always

The "?" in the above table means that the answer depends

on the expression being aggregated. If both aggregates

are on the same expression then the two aggregates can

be safely combined otherwise they cannot.

Rule 3 - Same by-lists

If two aggregate functions are being combined, they must

have the same by-lists otherwise the "temp" relation

cannot be guaranteed to have exactly one tuple for each

occurrence of the by-list.

Rule 4 - Same qualifications.

The reason for combining two aggregates is to save scan

ning the relation being aggregated. If two aggregates

had different qualifications, they might require dif

ferent access paths. The simpliest rule to adopt is

that if the qualifications are not identical, do not

combine the aggregates.

Rule 5 - Must range over the same variables

If the aggregates expressions are not over the same

variables, then the inclusion of one with the other

might involve the generation of duplicates which other

wise might not be present. This rule is essential if

rule 4 is relaxed, otherwise, the queries which fall in
this catagory are usually not meaningful queries.

-17-

Processing of Aggregates R. Epstein

VI. ELIMINATING SOURCE VARIABLES BY USING THE BY-LIST

It frequently happens that references to the original

source relation can be replaced by references to the by-

list. The goal is to reduce the number of variables in the

query. An example should serve to illustrate the technique.

We already have seen that the query:

range of e is employee

retrieve (e.manager,cnt=count(e.name by e.manager))

will be transformed into

range of t is temp

retrieve (e.manager,t.count)

where e.manager = t.manager

Since the domain "t.manager" is itself a complete projection

(with duplicates removed) of "e.manager", the references to

"e.manager" can be replaced yielding:

retrieve (t.manager, t.count)

where t.manager = t.manager

We are detecting that the two occurrences of "e.manager" are

the same. This greatly simplifies the query as it reduced

the number of relations involved from two to one. Whenever

this type of by-list replacement is done, the linking term

(e.manager = t.manager) becomes unnecessary and can easily

be detected and removed.

There are, of course, many cases when the replacement

would serve no purpose, for example in the query:

retrieve (e.number, e.manager,

mancnt = count(e.name by e.manager))

After processing the aggregate, this would be transformed

into:

retrieve (e.number, e.manager, t.count)
where e.manager = t.manager

-18-

Processing of Aggregates R. Epstein

Replacing only "e.manager" in the target list would serve no
particular purpose since "e.number" would still be refer
enced and the query would still involve two relations. Note
also that a "blind" application of by-list replacement can
yield semantically incorrect transformations:

retrieve (e.number, t.manager, t.count)
where t.manager = t.manager

This would lose the crucial linking information between "e"

and "t".

The general algorithm for by-list replacement must be
able to replace all occurrences of a variable or else not do
any replacements. The algorithm is:

(1) For each aggregate function nested in the query, do

steps (2) through (5).

(2) If the variables remaining in the query, intersects
the variables in the by-list of this aggregate function,

proceed; else go to (1)

(3) Examine the query looking for expressions which are
identical to one of the by-list expressions.

(3a) If an expression is found, then record its
address and which part of the by-list it matches.

Also record the variables which the by-list

replaces.

(3b) If an expression is found which does not match
any of the by-list, record the variables it contains
if any.

(4) Compare the variables remaining in the query (the
list from 3b) with the list of those which could be

replaced by the by-list (the list from 3a).

(5) If these lists intersect, then do not modify the
query; else actually perform the by-list replacement.

(6) If any replacement was actually done, then scan the

-19-

Processing of Aggregates R- Epstein

qualification of the query and remove unnecessary
clauses (e.g. clauses of the form expression equals
itself).

Here is an example of the by-list replacement algorithm:

range of e is employee

retrieve (e.manager, e.startdate,
manmax = max(e.salary by e.manager),
mancnt = count(e.number by

e.manager,e.startdate) ,
datmax = max(e.salary by e.startdate))

The three aggregate functions would be processed first. The
"max by manager" aggregate into "tempi", the "count by
manager and startdate" aggregate into "temp2", and the "max
by startdate" aggregate into "temp3". The query would then
be:

range of t1 is tempi

range of t2 is temp2

range of t3 is temp3
retrieve (e.manager, e.startdate,

tl.max, t2.count, t3.max)

where

and

and

and

e.manager = t1.manager

e.manager = t2.manager

e.startdate = t2.startdate

e.startdate = t3.startdate

Now perform the by-list optimization:

(1) Consider the aggregate max(e.salary by e.manager)

(2) The query contains variables e, t1, t2, and t3. The
aggregate by-list contains variable e. Therefore, we
proceed to step (3).

(3) Step 3a will find that e.manager occurs three times

-20-

Processing of Aggregates R. Epstein

in the query and can be replaced by t1.manager. Step 3b

will find the e.startdate, t1.manager, t2.manager,

t2.startdate, and t3.manager will still be remaining if

the replacements found in 3a are done.

(4) The list from 3a uses variable e. The list from 3b

uses variables e, t1, t2, and t3.

(5) Since the two list intersect, no replacement is done

and we return to step (1).

(1) Consider the

e.manager,e.startdate)

aggregate count(e.number by

(2) The query contains variables e, t1, t2, and t3- The

aggregate by-list contains variable e. Therefore, we

proceed to step (3).

(3) Step 3a will find that e.manager occurs three times

and can be replaced by t2.manager. It also finds that

e.startdate occurs three times and can be replaced by

t2.startdate. Step 3b will find t1.manager, t2.manager,

t2.startdate, and t3.manager will still be remaining if

the replacements found in 3a are done.

(4) The list from 3a uses variable e. The list from 3b

contains variables t1, t2, and t3.

(5) Since the two lists do not intersect, the replace

ments are performed. The query now becomes:

retrieve (t2.manager, t2.startdate,

tl.max, t2.count, t3.max)

where

t2.startdate > 1975.

and

t2.manager = t1.manager

and

t2.manager = t2.manager

and

t2.startdate = t2.startdate

and

-21-

Processing of Aggregates R. Epstein

t2.startdate = t3.startdate

(1) Consider the aggregate max(e.salary by e.startdate).

(2) The query contains variables t1, t2, and t3. The

aggregate by-list contains variable e. Since they do

not intersect, we return to step (1).

(1) There are no more aggregates to be considered so go to

step (6).

(6) Since at least one replacement was done, the qualifica
tion is scanned to remove unnecessary equality clauses. The

final query is:

retrieve (t2.manager, t2. startdate,

tl.max, t2.count, t3.max)

where

and

and

t2.startdate > 1975

t2.manager = t1.manager

t2.startdate = t3.startdate

VII. CONCLUSIONS.

The algorithms presented in this paper provide a very

powerful yet relatively simple rriethods for performing aggre

gation. In summary here is an overview of the entire aggre

gate processing procedure:

(1) Generate a list of all aggregates to be processed. The
list must be in innermost to outermost order to

-22-

Processing of Aggregates R. Epstein

guarantee that nested aggregates are done in the correct

order.

(2) For each aggregate in the list, perform steps 3 through

6.

(3) Scan the list of remaining aggregate to see which aggre

gates can be processed at the same time as the current

one; according to the rules of section V.

(4) Process the aggregate.

(4a) If it is an aggregate function, create a temporary

relation to hold the results (call it tempi).

(4b) If the aggregate function has a qualification, pro

ject the by-list into "tempi".

(4c) If the aggregate is multivariable or unique project

the qualifing tuples into "temp2".

(4d) If the aggregate is unique, remove duplicates from

"temp2".

(4e) Compute the aggregate.

(4f) If it is an aggregate function, link "tempi" to the

outer query as necessary according to the algorithm

of section III.

(5) Replace the aggregate(s) in the query with its/their
scalar value(s) or with a reference to the temporary

relation.

(6) If it is an aggregate function, try to replace domains

referenced in the by-list according to the algorithm of

section VI.

-23-

Processing of Aggregates R. Epstein

ACKNOWLEDGEMENTS

Michael Ubell was responsible for writing nearly every

query which unveiled a bug in the earlier algorithms. Both
Dan Ries and Michael Ubell were involved in analysing most

of the algorithms presented here.

REFERENCES

[ASTR76] Astrahan, M. M. et. al., "System:R A Relational
Approach to Data Base Management", ACM Transac

tions on Database Systems 1, No. 2, (June 1976).

[CODD70] Codd, E.F.; "A Relational Model of Data for Large

Shared Data Banks," CACM vol. 13, no 6, June 1970.

[DATE773 Date, C. J., "An Introduction to Database Sys
tems", Second Edition, Addison-Wesley Publishing,

1977.

[HELD75] Held, G.D.; Stonebraker, M.R.; Wong, E.; "INGRES -
A Relational Data Base System", Proc. NCC vol. 44,

1975.

[YOUS78] Youssefi, K. ; Wong, E; "Query Processing in a
Relational Database Management System", Electron

ics Research Laboratory, Memorandum UCB/ERL

M78/17, March 1, 1978.

-24-

	Copyright notice 1979
	ERL-79-8

