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ABSTRACT

A performance analysis of computer systems on which UNIX
runs is made. Measurements done on three very different com
puter systems are presented. No one system presents itself as a
clear best.

Four different approaches to characterizing the work load of a
system are used. Their relative merits are discussed as well as
decisions on the display of the data. A thorough analysis of the per
formance indices is presented in graphical form.

A fully transportable benchmark was used thus allowing for
similar measurements to be easily obtained in any installation in
which UNIX runs.

t UNIX is a trademark of Bell Laboratories.
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1. INTRODUCTION

Since the first release by Bell Laboratories in 1974 of the Timesharing

Operating System UNIX [1], it has run on a wide variety of hardwares. Primarily

among them is the PDP-11 family manufactured by Digital Equipment Corpora

tion. Moreover UNIX also runs on Digital's recently released VAX 11/780 even

though its hardware presents drastic differences with the PDP-11 family. To

mention just one, the VAX 11/780 uses 32-bit words while the PDP-ll's use 18-bit

words.

It has then become of interest to measure the effect that the underlying

hardware has on the performance of the various computer systems on which

UNIX runs. A complete study of this requires benchmarking UNIX in all distinct

hardware configurations on which it runs. Such a formidable task is beyond our

means, but a first step towards its accomplishment is presented here.

In what follows a study of three computer systems is presented. Each was

deliberately chosen to be very different from the other two. In fact not only

their underlying hardware was different but their work loads were quite different

as well. The aim was to observe the effect on performance of leaps in technology

and design rather than to observe the effect on performance of specific changes

made to a configuration (Le. we tried to avoid comparing systems which differed

only in few aspects of their configurations). Nevertheless, each of the systems

selected for study went through a change of configuration while the' study was

being done. This has also permitted us to observe the effect on performance of

these changes.

Moreover the intrinsically different modifications made in each of the sys

tems provide good examples of what may be achieved when one performs such a

change in an installation. In one system a cache memory was temporarily

installed, to the second one megabyte of main memory was added and to the
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third a new disk drive was added.

All the systems studied operate in the Electrical Engineering and Computer

Science Department of the University of California at Berkeley. Measurements

were taken during a span of four months (April through August 1979) beginning

by the third week of the Spring Quarter of 1979. As much as was possible, they

were taken every other week while the systems were in operation.

The rest of this paper is divided as follows: Chapter 2 contains the basic

design decisions about the experiment. Chapter 3 discusses the measurement

techniques and the reduction of the data. In Chapter 4 we present some graphs

which compare the performance of the systems. A discussion of the the data

presented in them is given. Chapter 5 shows the results of the distinct upgrad

ing changes which the systems went through. In Chapter 6 we present some

conclusions.

In the Appendices the bulk of the graphs which reduce the data gathered

are presented. The only exception is Appendix A which contains the script used

together with the files and programs required by it. Appendix B contains all per

centiles and cumulative distribution curves for each event and system con

sidered. Appendix C contains all graphs which show our performance indices

plotted against each of our characterizations of load.
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2. BENCHMARKING UNIX

2.1. Preliminaries

A great advantage in benchmarking an operating system which runs on

several distinct computer systems (whose underlying hardware configurations

may be very different) is that one can define a high-level language benchmark

and use it unmodified in each of the systems. Thus Junctional equivalence of

the benchmark is immediately obtained [4]. That this equivalence corresponds

or not to a resource consumption equivalence will depend on the actual imple

mentation of the operating system. Determining whether or not it yields a

response time equivalence is the main purpose of our study. One would expect

that evolving hardware should produce better response time for a given task

under the same load conditions. But, as we shall see, it can happen that effects

of hardware and software changes may result in the degradation of response

time of a given task. Of course other advantages that these changes may bring

with them might make them acceptable.

Choosing response time as the main observed performance index of our

study is justified by our belief that in any timesharing system, from the user's

point of view, what counts most is the responsiveness of the system to user sup

plied tasks. Nevertheless, using standard UNIX instrumentation we have also

monitored system time and user time for each of our tasks. This has -proven

very helpful in analyzing possible causes for effects noticed while studying the

performance of each system.

Characterizing the work load is a central problem in any benchmarking

experiment. Questions such as: under what conditions should the experiment be

done? or in our case of benchmarking an operating system, under what work

load should one run the benchmark? have been given different answers.
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Perhaps the best way to answer both of them is by setting an experiment where

one runs a benchmark in each system on a stand alone basis and where com

plete control of the work load is achieved by loading the system with some kind

of synthetic, internal or external, driver. This method has as main advantages its

total reproducibility and absolute control of all the activity being-done in the

system.

The main difficulties it presents are related with the availability of tools to

drive the system and with the design of the work load that those tools will imple

ment. The (artificial) work load under which the system is to be studied must be

such that results obtained from its usage should yield information about the

system's performance under its natural work load.

Lack of such tools at the time when we had to make this decision lead us to

the less sofisticated approach of monitoring the systems periodically under

their natural work load with the aid of a shell script • Then, in order to analyze

our results, we had to find satisfactory characterizations of load with respect to

which our performance indices corresponding to a given task would be studied.

We have characterized work load by taking two different, yet related, points

of view which in all yield four different characterizations. Two of them are based

on an outside view of the system (how much work is being done on it) and the

other two are based on an inside view (how much work is being demanded from

the system).

The first point of view is carried out by counting the number of users logged

in when a certain task (in our benchmark) is run while for the second one we

count the number of processes present in the process table. Although these two

9 In UIOX, the shell Is a command language Interpreter through which the user inputs its tasks
to the system [1]. Moreover it Is also a programming language [2] and thus shell programs
(shell scripts) can be written with it.
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characterizations of load prove to work reasonably well, it was felt that they

were too rough. Thus two refinements, one for each characterization, were also

implemented. We named them "Active Users" and "Real Processes". The former

is straight forward to define: it is the number of users logged in which are exe

cuting some task when our benchmark begins to run. The latter attempts to

count processes which are likely to run while one of the tasks in our benchmark

will be running. Its precise definition is the following: a process in the process

table is a "Real Process" if it is not a login shell or a sleeping shell

The three systems we monitored had the C shell [2] running in addition to

the ordinary shell To standarize and make portable our experiment in our

environment, we used C shell facilities in all three systems, although no essen

tial new features of this shell were used. Thus a script for the C shell was written

and run on the background in each of the systems, throughout what constituted

our data gathering period. Its text is reproduced in Appendix A together with

the text of all programs and files used by it. Appendix A also has documentation

regarding usage of the script and changes needed to convert the script into one

for the standard UNIX shell.

2.2. The Script Driver

Our strategy for monitoring the system's responsiveness was to run periodi

cally a set of predefined benchmarks. This was achieved by using a shell script

which contained these tasks together with commands which gathered statistics

about the system and the time it took the tasks to complete. The script, after

cycling through its instructions once, would go to sleep and then wake up to ini

tiate the cycle again. This was achieved using the command sleep 1200, which

would send the process to sleep for 1200 seconds. In this form we could obtain

an interval of at least twenty minutes between any two runs of the script.
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This data gathering method is not new. It can be categorized as a time-

sampling tool ([3] Section 2.4 pg. 57) and in fact is very similar to Karush's [8]

terminal probe method. The only difference with Karush's method arises from

the units used in presenting the measurements. We use the output of our meas

urement tools while Karush goes through an intermediate step of determining a

unit of responsiveness, based on running simultaneously different number of

copies of the script and measuring the performance indices, and then using that

unit to present the measurements.

In UNIX the natural way to implement a sampling tool of this nature is by

using a shell script. In fact the way to implement any task that one wants per

formed every time a predetermined event occurs is through a shell script. UNIX

itself has scripts embedded in it, to mention just one, every time the system

comes up the file /etc/rc (which may contain several scripts) is executed.

Moreover, for some time now, Robert Fabry has been running here in Berke

ley a script which is similar to ours in its general form. Our knowledge of his

work helped us make design decisions when building ours. The main differences

between the two scripts come from the fact that we gather statistics related

with our internal characterization of load, that we have chosen a different set of

tasks and in the length of completion time of each task.

Although running our script affects the load of the system, and thus its

responsiveness, it was felt that this was irrelevant for a comparison study

because all systems were going to be presented with the same script. In fact the

main purpose of this experiment is precisely to observe how each system reacts

to this stimulus.

Our commitment to use standard UNIX features, for portability reasons as

well as for assuring the functional equivalence of the benchmark, made us

decide upon the usage of the time command [6] as the measurement tool for
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our tasks. The time command returns, upon the completion of the command

with which it is called, three measurements: the elapsed time during the com

mand (response time), the time spent in the operating system (system time),

and the time spent executing the command (user time). These last two are

accurate to one tenth of a second while the first is accurate to one second. The

time command truncates, does not round off, and thus one always obtains lower

bounds of the actual elapsed times.

This low resolution of time together with our desire that no individual meas

urement be off by more than 10% led us to consider tasks which would never

take less than five seconds to complete. The 10% error bound could then be

achieved by adding half a second to the response time given by the time com

mand.

On the other hand we should not come up with a set of tasks that would

overload the system every time they were run, if we were to run them periodi

cally for an extended period of time. Our script was designed as a compromise

between these requirements.

Four tasks were timed at each run: a C compilation, the execution of a

CPU-bound job, the retrieval of the manual page of the on-line copy of the UNIX

Programmer's manual, and a mix, which included the above three plus some 10

bound tasks and two system commands; the mix was called "Script", even

though it did not correspond to the actual script we were running.

Measurement results for each session were kept in files which had to be

extensively edited before the data gathered in them was used. Not editing the

data while it was being gathered was another consequence of our desire to keep

the script as small as possible.
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2.3. The Tasks Chosen

The goal of functional equivalence also forced several decisions on us. Our

original intention was to measure a set of tasks which were representative of the

user's tasks and that would stress distinct aspects of a configuration. Given that

we certainly wanted to look at a CPU-bound job the obvious choice for a mixed

task, given our university environment, was to do a Pascal compilation of a short

CPU-bound job. At the time no Pascal Compiler or Interpreter was available for

the VAX 11/780 and so this solution had to be disregarded. Second best to that,

again due to our environment, was the use of the language C [7].

Our choice of writing a (trivial) CPU-bound program which had nine vari

ables and two constants declared in it, and consisted of two nested for loops,

versus that of writing a one-line program, was motivated by our desire to exer

cise somehow the compiler. We felt that with a simpler program most of the

time of the compilation would be spent loading the compiler instead of running

it. That may very well be true even with our program but, again, the phantom of

overloading the system with the benchmark made us decide on this program.

An obvious alternative would have been to run a precompiled CPU-bound pro

gram and compile a larger program each time.

Our CPU-bound program executes its inner sequence of instructions

100,000 times. In all it performs 1,200,000 integer arithmetic operations plus

those needed for the for loops (100,000 increments and comparisons). It was

decided against using floating point arithmetic because one of the measured

systems, the 11/40, does it in software. This precluded any meaningful

hardware oriented comparison.

As for our third task, rather than having a strictly 10 bound task (such as

copying a file from disk to disk) it was thought to be more interesting to present

the system with a task which would use more features than just the speed of the
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disks and the efficiency of the 10 subsystem. Thus our choice of the command

man man, which retrieves the entry for the manual page out of the on-line copy

of the UNIX Programmer's manual. This command was chosen because as the

on-line copy is kept in compact form on disk (to save space), it is retrieved using

the formatting program nrojf which is a utility program widely used in text pro

cessing. In the script this task was given the name "IObound" although from a

resource utilization point of view it is not a truly 10 bound task.

The last task timed is what we called "Script". For technical reasons (in one

of the three measured systems any given terminal at any given time can not

have more than five processes associated with it) the time command could not

be used in a nested way. Instead we used the date command (as a timestamp

with other measurements) to determine total elapsed time. The error per meas

urement introduced by this method is far less than our 10% goal, but the draw

back is that with it we could not obtain system time nor user time for this task.

Script, besides including the other three tasks, also includes six short 10

bound tasks, appending the contents of the temporary user file YYYl to six

other user files, a couple of date commands and two commands which gather

data about the system. In factps - alx produces a long listing of all processes in

the process table, who gives data about users logged in, and wc -1 counts the

number of lines of a file given as input. In our case we used it to count the

number of lines who gave which is exactly the number of people logged in the

system at that moment. Script is thus a fairly balanced task.
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2.4. The Systems Measured

Our main motivation when choosing which systems to monitor was diversity.

We wanted to have systems which were as different as possible from each other.

Our decision to monitor only three systems was mainly due to the large amount

of personal care that had to be given to the script and files during the whole

data gathering period. To mention one, the growth of the file PS is so big that it

had to be transferred to tape every other day in order not to use up too much

disk space.

Our choices were the following:

[1] PDP 11/40 with 200K bytes of main memory, one DIVA disk controller

with three DIVA disk drives which have 50M bytes disk packs. This sys

tem has 23 ports and no floating point arithmetic unit.

[2] PDP 11/70 with 1.3M bytes of main memory, a 2K byte cache memory,

one DIVA disk controller with four DIVA disk drives which have 50M

bytes disk packs. This system has 81 ports.

[3] VAX 11/780 with 512K bytes of main memory, 8K byte cache memory,

one Digital disk controller with one RP08 disk drive with 177M bytes

disk packs. This system had 16 ports.

•

Throughout the rest of this paper we shall refer to them as the 11/40, the 11/70

and the VAXrespectively.

The configurations described above correspond to the predominant

configurations each system had during our data gathering period. As we men

tioned earlier, each of the three systems underwent changes in its configuration

during our data gathering period.
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The 11/40 was equipped with a 2K byte cache memory for a period of six

weeks. Measurements made before the cache was installed and after it was

removed show no statistically significant difference. Thus the system is con

sidered not to have been altered when considering sample points corresponding

to the period before the cache was installed and after it was removed.

To the 11/70 1M byte of main memory was added two weeks after we had

begun gathering data. It only had 300K bytes of main memory before that

change. Disk configuration remained essentially unaltered.

During the summer the VAX was supplemented with a CDC 9400 disk con

troller and a CDC 9762 disk drive with BOM byte disk packs. Even though we had

sufficient data for our report, it was felt that extending the monitoring period

for this system would provide us with interesting information, as it did. Towards

the end of the summer new ports were added to the VAX configuration but we

had already stopped our data gathering operations.

The work loads of the three systems are as diverse from each other as their

underlying hardwares. The 11/40 is mostly used for administrative matters. The

11/70 is mostly used by undergraduate students in coursework related activities

(thus, a lot of program development and testing is done). The VAX is primarily

used by advanced students in research related tasks.

Given this diversity of natural work loads, the problem of work load charac-

terization in order to compare the responsiveness of the different systems

becomes very important as well as more difficult.

Clearly the ideal situation for a perfect comparison is when one has total

control of the work load in each system and is able to make it the same every

where. But, as we said before, no tools to load the systems appropriately were

available at the time, so we compared the systems from the points of view of our

four characterizations of load described in section 2.1.
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These are:

(i) number of users

(ii) number of active users

(iii) number of processes (in the process table)

(iv) number of real processes (in the process table).

Of course, when analyzing our results, considerations peculiar to individual

system work loads and/or users inevitably permeated into the analysis.
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3. REDUCING THE DATA

Our script provided us periodically with data points which were gathered in

appropriate files. One of these files, PS, had to be written into tape every other

day because of its great growth. This was caused by our desire to retain all the

information obtained from the systems and thus be able to recover any desired

measurement. After the data gathering period, with the help of timestamps, it

was easy to correlate the distinct pieces of information with one another.

We were thus able to plot mean user-time, mean system-time and mean

response-time versus "Users", "Active Users", "Processes" and "Real Processes"

for each task in each system. The procedure is simple: for each performance

variable of interest gather together all data points for a given value of users,

active-users, processes, real-processes, and compute the mean, standard devia

tion and standard error of the sample. The standard error is obtained dividing

the variance by the number of points in the sample and then taking the square

root the result. It is used to determine how "stable" a sample is. A small stan

dard error gives us confidence that our sample is large enough so as to be

representative, or that the measurements are stable enough so that one

requires a small sample to characterize the value.

Whenever we found that the standard error was too large (as normally hap

pens when we are interested in response time) we plotted "percentile" curves.

In this case, instead of plotting the mean of a given distribution we pioted the

percentiles of a distribution ( for example, the 80th percentile of a distribution

is that value below which 80 percent of the observations fall). In percentile

terms the median of a sample corresponds to the 50 percentile. We chose to

plot the 75, 83 and 90-percentile curves to have a variety of views for com

parison, even though our analysis was mostly based on 90-percentile curves in

which the minimum size of a sample was carefully chosen so as to leave out the



- 14 -

outliers.

It is regrettable that in [5] Y. Bard mentions all of these concepts but

makes no use of most of them. We found that for the total elapsed time, which

we have been refering to as response time and we will continue to do so, percen

tile curves provided the best way to analyze the data. Mean curves, ie., when

one plots the mean of a distribution, have the observed property of smoothing

too much the results and, unless one makes statistical assumptions on the dis

tribution of the samples, few things can be said about the likelihood of a

measurement being in the neighborhood of a plotted point. This is not the case

with percentile curves. Nevertheless, for system-time and user-time, which

proved to be very stable performance indices under each of our four characteri

zations of load, one can (and should) obtain meaningful information from mean

curves also.

When comparing the different systems and analyzing the effect of a change

due to tunning efforts or upgrading changes, we chose to use 90-percentile

curves. This choice was primarily motivated by the fact that 90-percentile

curves provide a very good "worst case" analysis with the advantage of not con

sidering most of the outliers. The latter is obtained by choosing appropriately

the minimum size for a sample to be plotted.

Determining the minimum size a sample must have in order to be represen

tative is a very important design decision that normally goes correlated with the

data being collected. This problem appears in any sampling procedure but

becomes specially delicate in our case because we want to make no assumptions

on the probability distribution of the samples. Given that our main interest is

response time and that ocasionaL outliers in a sample may influence tremen

dously the mean and standard deviation of the sample, thus distorting their

meaning, we did not use mean curves for our analysis. They have the
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disadvantage of always considering the outliers that might occur in a sample.

The negative effects caused by outliers are minimized when the size of the sam

ple is large, say 100, and in this case they become quite irrelevant. In our case,

though, such large samples are practically impossible to obtain for each value of

the variable characterizing load in each of the systems.

An added advantage of 90-percentile curves is that once one has obtained

one for a given task on a given system, the sole assumption that the work load of

the system will remain constant enables us to assert that the task will perform

in at most the time given by the curve with .9 probability.

The idea of arbitrarily clustering samples, i.e., of considering in one sample

all the measurements which correspond to a predetermined number of values of

the variable, allows one to obtain larger samples but has the possible drawback

of rounding up too much. We prefer to plot means and standard errors of

smaller samples and also percentile curves. The 90-percentile curves obtained

this way certainly provide estimates that in an absolute sense may be pessimis

tic but, for the purpose of relative comparisons, are perfectly valid. If one clus

ters too many samples, what normally happens is that fine resolution is lost.

Perhaps the best experimental way to determine a sufficient sample size is

to gather measurements until the standard deviation and the standard error are

essentially stable. By this we mean that one should keep track of both quanti-

ties while new data-points increase the sample size and, when a monotonic

nonincreasing behavior is observed, decide that the sample is large enough. In

our case that would have meant to leave the length of the data gathering period

open which was not reasonable to do. The moments of high load in a system are

few during each day and so to require large numbers of data points per sample

really implies a data gathering period of several months.
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To determine the minimum size of a sample we opted for a mixed strategy.

For each system we determined the largest value of the variable to be plotted

for which we had a sample of at least nine measurements. This value was then

taken as the upper bound of values to be plotted for that system. Then begin

ning from the smallest value to be plotted, we clustered samples (if necessary)

until we had at least sixty points and only then, from the larger sample, the 90-

percentile measurement was found. If the final sample had been obtained from

clustering several samples the value of the x-coordinate was chosen to be the

average of the first and last values of the x-coordinates considered in the clus

tering.

The size nine (9) was chosen because with high probability it would provide

three distinct data points for the 75, 83 and 90-percentile curves. The minimum

sample size of sixty (60) was used because it proved to effectively leave out glo

bal outliers for each measured task. By using the histogram of a task one can

determine these outliers and then by observing the output obtained by plotting

with different sample sizes one finds the desired minimum sample size.

Analyzing our histograms of sample size for the distinct characterizations

of load we discovered that most of our samples had at least 20 points. We even

had a 225 point sample for active users on the VAX. In retrospective, we feel we

had sufficient data for the VAX with 1368 sample points, a fair amount for the

11/40 with 536 sample points, but due to the large amount of ports that the

11/70 has we did not have enough with the 1007 sample points we gathered for

that system. If our present experience can be taken as a model, one should try

to obtain at least fifty measurements per value of the variable that character

izes load. This would almost certainly guarantee that outliers will not be present

in 90 percentile curves without having to cluster samples.
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4. COMPARISON AND ANALYSIS

In the following two chapters as well as in Appendices B and C graphical

presentation of our measurements is given. Appendix B contains all histograms

and cumulative distributions for each task measured in each of the three sys

tems. Appendix C contains graphs of our performance indices for each task

versus our four characterizations of load. There we have included graphs of

mean response time with the standard error plotted (at correct scale) as verti

cal lines whose midpoint is the mean, and also percentile curves for response

time.

In one graph three percentile curves; 75, 83 and 90-percentile are given. It

is in those graphs where one can appreciate the differences among these curves

when considered as representing responsiveness. It also becomes apparent from

them the need to determine a proper minimum size for a sample to be plotted.

All percentile curves presented in Appendix C were plotted using the 9-point cri

terion mentioned in Chapter 3. As one can easily check from reading the

corresponding histograms, outliers were plotted in several occasions.

Of our four characterizations of load there is one which turned out not to be

very useful for comparisons between systems. That one is the "Number of

Processes". Its dependence on the number of ports a system has is so big that

often makes two systems not readily comparable under it. Nevertheless, we

could observe that on a given system and for a given task it was under this char

acterization of load that one obtained the greatest variations of response time

as can be seen in the graphs presented in Appendix C. As for comparisons, the

"Real Process" variable provided us with the greatest overlap between systems

an thus gave the best overall view as to how they performed relative to each

other. Of course if we had been monitoring systems which had similar number

of ports, the variables "Active Users" and "Users" would also have provided
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excellent overlapping.

Before going any further a word of caution must be given once more: our

characterizations of load do not even attempt to model the actual work load

that a system has. Moreover, each system has its own peculiar work load and

that might appear in our measurements in ways that may make it look compara

tively inferior or superior. We must thus analyze all aspects of the data before

asserting supremacy.

With the following four sets of three graphs each we are able to compare our

four measured tasks from three points of view. All graphs presented in this

chapter are 90-percentile curves. The exact number of sample points con

sidered per task can be obtained from the histograms and cumulative distribu

tion curves given in Appendix B. They are roughly as follows: 536 samples for

the 11/40, 1007 samples for the 11/70 and 1368 samples for the VAX.

4.1. C Compilation

It can be said that the relative

ranking for this task is the 11/70

first, the VAX second and the 11/40

last. Due to the configuration of the

systems we know that with respect to

the 11/70, the other two systems

must begin swapping with less load.

This may account for some of the

differences in 'slope' of the response

time curves.

It is interesting to notice that

under the characterization of load by
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164-

187-

Real Processes the VAX shows better

responsiveness than the 11/70. This

is not the case when analyzing our

other two characterizations of load.

It seems clear that at the level of 43

real processes, 30 users and 24

active users the 11/70 becomes

saturated. The slope observed in the

saturated region of the 11/70 is

larger than the one observed in the

other two systems but close to being

equal to the one observed in the

11/40.

Considering that the address

space of the 11/40 is only 64K bytes

and the fact that it only has 200K

bytes of main memory, the amount of

swapping in that system must be pro

portionally larger than in the other

systems. So, we may assume that

the 11/40 is working at the satura

tion level as soon as a minimal

amount of load exists. However,

given the size of the C compiler, we

do not expect the slope to drop very

much for this task in this system if

more memory were added.
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When comparing the 11/70 and the VAX, we can not fail to notice the linear

ity of the VAX's responsiveness under every characterization of load. This gives

us some hope that more memory (as well as adding a second disk drive to be

able to overlap 10 activity) would improve the responsiveness of the VAX, and

perhaps we might observe that in the higher range of load the VAX would per

form as well as the 11/70.

We believe that the excellent behavior shown by the 11/70 before it reaches

its saturation is due to the fact that the C compiler was almost custom made for

the 11/70 while a more portable version of the compiler, which was partially gen

erated using automatic tools, is used in the VAX, and also because the 11/70

configuration is much better balanced than the others.

One must also have in mind that the program we compiled was small and

thus we might not be measuring as much of the C compiler activity as we would

ideally like and thus deficiencies in the 10 subsystem of the VAX may be affecting

its rating.

4.2. CPU-bound Job

In this task, whose main purpose is to establish a rating according to speed

of the CPU (we assume that scheduling is essentially the same in all systems),

the VAX ranks first while the 11/40 ranks third. It is here that we can appreci-

ate a marked difference between the three systems. At low load the VAX

responds much faster that the other two systems while the 11/40 clearly shows

to be a slower machine. Under our external characterizations of load we see

that the rate of growth of response time of the VAX and the 11/70 are almost

identical. In contrast to this a much better behavior of response time for the

VAX is observed when plotted against Real Processes. We believe this change of

behavior is due to the quality of users the VAX has $.

%The VAX 11/780 la the computer used for research computing in the Computer Science
Division, EECS Department at the University of California, Berkeley. All the reduction of the

data and the plots for this project were made on the VAX.
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Real Processes seems to us to be

the best yardstick by which to com

pare the systems, because, even

though it does not differentiate

among types of processes (say

between editing and a lisp program),

it appears to take better into

account the amount of work

demanded from the system. With

this characterization of load one user

that has several jobs running on the

background makes the system's load

jump to a higher state than what a

user running one job does.
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In the graphs per task included in Appendix C we can appreciate the great

difference in the amount of user time that the cpu-bound job takes in each sys

tem. We have that at the five user level the 11/40 took on the average 21.0

seconds, the 11/70 8.5 seconds end the VAX 5.66 seconds. At the fourteen user

level the 11/70 took 8.61 seconds while the VAX took 5.81 seconds. We feel that

user time for this task is a very good indicator of the responsiveness of the sys

tems and the speed of computation of the machines. The VAX does show to be a

faster machine. The difference between the 11/40 and the VAX is remarkable.

As it was expected for this task, the observed behavior of response time as

a function of each characterization of load is almost linear. As no 10 is done and

the size of the program is small, the probability of being swapped out to disk

while on the system is remote, and thus effects of 10 bottlenecks and/or satura

tion are absent. Even in the 11/40, which has a rather small main memory, we

do not perceive the effects of swapping at higher loads (which are normally

observed in terms of a non linear behavior of the curve). Response time for the

11/40 does show to have a larger rate of growth than the other two systems.

4.3. "Man man"

The execution and response time of the command man man came as a

surprise. What is an obviously functionally equivalent task turned out to be a

very different task from the points of view of resource consumption and

response time. As it turned out, the three systems retrieved texts of different

length and the way they were processed (using nroff ) also depended on the sys

tem.

The file retrieved by the 11/40 has 744 characters in 136 words, the one

retrieved by the 11/70 has B66 characters in 162 words and the one retrieved by

the VAX has 1B57 characters in 866 words.
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Nroff, as a program, is also

different in each system. On the VAX,

for example, it knows and has to go

through more macro libraries than

what it does on the other two sys

tems. Moreover, the number of

entries in the VAX version of the

manual is larger than the other two

systems and so not only the VAX

processes a longer text but also more

time is spent searching through the

proper directories to find the desired

entries.
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In each of our external characterizations of load the 11/40 and the VAX are

pretty much in a tie, although the 11/40 appears to perform slightly better.

When using Real Processes, however, the VAX shows better performance but here

the nature and complexity of the jobs run on the VAX shows up making this

curve very noisy even though samples of size sixty are used. This task, when run

on the VAX, turns out to require a fair amount of resources; on the average 5.71

seconds of user time and 3.57 seconds of system time. Thus, its response time

is very sensitive to all resource consuming demands the system may have, being

they CPU demands or 10 demands.

That the processing of this task is different in each system can also be

appreciated by observing the ratios of mean user time over mean system time

in each system. While in the 11/40 the ratio is 0.47 in the 11/70 it is 0.65 and in

the VAX it is 1.60. The reverse of the general trend in the VAX can be explained

in terms of the larger amount of macros that are encountered in the (com

pacted) VAX version of the manual on disk.

Only in the curves corresponding to the 11/70 we can appreciate a non

linear behavior of response time. The saturation points are the same as for the

C compilation. Specially the 24-active user level seems to point to where intense

swapping begins.

The large slope of the VAX curves are most probably due to the 10 limita-
»

tions of the system. We would expect the slopes to decrease with the addition of

a new disk drive and appropriate re-configuration of the file system. A similar

comment applies to the 11/40 but there, given the size of nroff and the small

amount of main memory the system has, one would also need to add more main

memory to decrease substantially the amount of swapping.
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4.4. Script

Under each of our characterizations of load we see that the 11/40 takes a

longer time to complete this task and moreover, the rate of growth of the 11/40

curve is the largest of all three curves. It is interesting to notice that under low

load the VAX responds quicker than the other two systems. This suggests that

with a better configuration we might get the VAX to outperform the 11/70. One

would clearly need more main memory to increase the threshold of load that

saturates the system and also more disk drives to increase parallelism in 10 ser

vice.

Our main hope that these upgrading changes would improve the VAX's rat

ing come from the fact that when plotting against Real Processes the VAX's

curve growth is comparable to the growth of the 11/70 curve when the 11/70 is

saturated. In the Real Processes plot we can also appreciate that for almost half

of the range the VAX performs better than the 11/70.

Given the balanced nature of

this task and its over all exercising of

the systems we can say that the pas

sage from the 11/40 series to the

11/70 ones was very beneficial from

the response time point of view. An

added advantage to this change is

the fact that the maximum size a

process could have was doubled. This

is a clear software improvement.
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As for the VAX, we can see that

under one characterization it

behaves as the 11/70 but under the

external ones its responsiveness is

lower. This phenomenon has been

constantly observed in each of the

component tasks of Script and its

justification, as pointed out before,

lies in the nature of the VAX's users.

It is interesting to note the fairly

smooth behavior of response time as

a function of our characterizations of

load. Only when plotted against

"Active Users" we see that in one sys

tem, the 11/70, behaves somewhat

different. It seems to us that the

neighborhood of 20 active users is

the border line where intense swap

ping activity begins in the 11/70.

This explains the irregularities that

can be seen in each curve

corresponding to a task which

somehow depends nontrivially on the

10 subsystem. We believe that this

phenomenon is not clearly observed

in the 11/40 and the VAX due to the

small amount of main memory that
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these two systems have. In them swapping of large processes, like the C com

piler or nroff, must occur at almost all levels of our characterizations of load.
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5. EFFECTS OF UPGRADING CHANGES

As was mentioned in the Introduction, the three measured systems

underwent configuration changes during our data-gathering period. In this

chapter we shall see the effects of those changes. Unfortunately for us, the

number of measurements we had for the 11/70 before more main memory was

added, 175, is not large enough to provide significant information. Nevertheless

we shall present them for the sake of completeness. In the case of the 11/40

our curves were based in 239 measurements without the cache memory and 303

measurements with the cache memory. As for the VAX, we used 934 measure

ments with one disk drive and 433 measurements with two disk drives.

We have chosen to present the effects of upgrading changes from the

viewpoints of those load characterizations involving users, since they provide a

more immediately understandable interpretation. From reading the graphs one

can see the relative advantage (or disadvantage) of a change in terms of how

many users (or active users) can now be accommodated at a given value of

response time, our main performance index, compared to the number that

could before the change was made.

All graphs presented in this chapter are 90-percentile curves where the size

of samples has been chosen, as before, so as to exclude global outliers from

appearing in the graphs. In the cases of the 11/40 and the VAX, we used samples

of size 60, but for the 11/70 we used samples of size thirty. We had to use

smaller size samples for the 11/70 because with 175 sample points one can get

at most three-point curves with samples of size sixty. Given the large range of

the variable users in the 11/70 three-point curves are not acceptable.
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5.1. ADDING A CACHE MEMORY TO THE 11/40.

Perhaps the most spectacular use of a histogram of all measurements

taken on a given system for a given task is that of witness to a basic

configuration change. The phenomenon of multiple peaks in performance

indices such as user and system time is almost certainly associated with a basic

configuration change. This can be seen in all the histograms included in Appen

dix B corresponding to tasks measured in the 11/40. In effect the addition of

the cache memory was responsible for shifting the peaks to the left in each of

the three basic tasks.

Most remarkable is the case of the cpu bound job where the peak in user

time went down from 23.0 seconds to 19.6 seconds, mean user time decreased

from 23.13 seconds to 19.71 seconds and the standard deviation of the user time

11/40: Cpu-bound; user time.

HERN 21.22 STANDARD DEVIATION 1.72 HERN 21.22 STANDARD DEVIATION 1.72
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11/40: CPU-bound job
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11/40: "man man"
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11/40: Script
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sample decreased from 0.25 to 0.20. System time also improved dramatically for

this task, mean system decreased from 0.68 seconds to 0.33 seconds and the

standard deviation of this sample decreased from 0.88 to 0.36.

Because of the amount of measurements we had. plotting with samples of

size 60 made us have three and four point curves for each task in our com

parison graphs. Given that the range of the free variable in these graphs is

seven we do not think this is a drawback. Moreover in each graph the

differences appreciated are so big that one can with no doubt assess the positive

efect of the change. Most memarkable is the better responsiveness obtained at

low levels of load, which, given the small amount of main memory that this sys

tem has, is the best indicator of how much improvement one could hope to

obtain if we had an appropriate amount of main memory.

If in the previous chapter we had presented only those measurements

obtained with the cache memory the curves for the 11/40 would have looked a

lot smoother and the system better.

It can certainly be stated that both responsiveness and throughput are

enhanced when a cache memory is added. It is then only a matter of cost-

benefit analysis to determine its size and type.

5.2. ADDINGMAIN MEMORY TO THE 11/70

It is very unfortunate that we did not have enough samples before this

change was made. The four graphs presented in this chapter with respect to

this upgrading (or expansion) change almost succeed in proving that the system

took longer in each task with the addition of more memory. We do not believe

this to be so and here one must be warned about the usage of 90-percentile

curves with an insufficient amount of data: they may present a biased behavior.
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11/70: "man man"
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We had far too few measurements before the memory was added (175) and a

fair amount after the change (830). Thus the curve for the case with 1.3M bytes

of main memory is realistic as to what to expect from the system, while most

points of the curve with 0.3M bytes of main memory were chosen from small

samples and they might just be too optimistic. Moreover, the fact that all the

points of the 0.3M byte curve were obtained from measurements made at the

beginning of the academic quarter makes them likely to be the result of a not

too loaded system. It is known that students push the system much harder

towards the end of the quarter when their sofistication has improved.

Nevertheless we can appreciate some of the expected effects of such a

change specially in the C compilation, where the curve with more memory shows

a smaller slope at low levels of load and it takes longer for it to saturate.

Another effect that can be appreciated is when we consider the task Script,

where we can observe that the overall rate of growth of this task is smaller when

the system has more memory. The 0.3M byte configuration shows saturation at

a lower level of load than what the 1.3M byte configuration does. Given the bal

anced nature of this task, as well as the overall exercise of the system it pro

duces, makes us believe in the positive effect that this change had in the 11/70.

Given our insufficient data, what we can not assert is how much the system

improved.

There is another aspect to this change worth mentioning; it certainly

increases the amount of multiprogramming the system handles before satura

tion and that has a very positive effect in trivial tasks (say a who or a date com

mand). That type of effect is not measured by our script and so we can not

report on it directly, although it does play a role in the response time of our

task Script.
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5.3. ADDING A SECOND DISK DRIVE TO THE VAX

The addition of a CDC 9762 disk drive with a CDC 9400 controller and 80 M-

bytes disk packs to the VAX configuration was a mixed blessing. It proved to

yield an overall improvement in the responsiveness of the system, as can be

observed from the graphs with Script data, but for one type of task it proved to

be disadvantageous.

Cpu-bound jobs took longer to finish with the two disk configuration. When

analyzing the histograms of user time and system time for this task for the one-

disk configuration and the two-disk configuration, we see that mean user time

remained essentially unaltered; 5.68 seconds with one disk and 5.69 seconds

with two disks. Moreover the standard deviation (0.21) of the user time sample

did not change.

This is not the case for system time. Mean system time increased from 0.29

seconds in the one-disk configuration to 0.41 seconds in the two-disk
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VAX: C compilation

78

71 -

UJ
64-

57-
tO

^qn-50

43-

36-

29-

22-

15

n-65

CO

59-

53-

47"

to Hl
UJ
tc

35-

29-

23-

17-

11

80 PERCENTILE CURVES

—— ONE DISK DRIVE

^m TMO OISK DRIVES

80 PERCENTILE CURVES

—— OKE OISK DRIVE

«— TMO OISK DRIVES

-39-

I
8 9 10 11

NUMBER OF USERS

r
7 8 9 10

NUMBER OF RCTIVE USERS

11

14



VAX: CPU-bound job
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VAX: "man man"
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VAX: Script
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configuration. The standard deviation of the sample increased from 0.33

seconds in the one-disk configuration to 0.38 seconds in the two-disk

configuration. We believe this increase in system time to be directly related to

the cause of the longer response time observed, because it probably is an indi

cation that now jobs get interrupted more often due to completed 10 requests

and thus sent to wait queues more times than before. This of course degrades

their response time.

On the other hand, as was expected, tasks with 10 activity which can be

overlapped with CPU activity, like C compilations, did run faster with the two

disk configuration. This was achieved by reconfiguring the file system in such a

way that temporary files, like those created by the compilers, the editor, and

several other utility programs, were placed on a different disk than user files.

It can also be observed that the rate of growth of response time has

decreased in each of the three basic tasks as well as in Script. This makes more

plausible the possibility of augmenting the number of users in the system with

less risk of reaching the point of saturation.

Another aspect to consider in this type of upgrading change is the effect of

the change in the storage capacity of the system. It is undoubtly advantageous

for most applications to have large disk storage capacity. From this point of

view the addition of 80 M-bytes of disk storage capacity is a major leap forward.
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6. CONCLUSION

The increasing amount of different hardwares on which the same timeshar

ing operating system, UNIX, runs calls for a performance evaluation study

oriented towards assessing the influence of the equipment on a system's global

performance. In this report we have done that for three very different systems.

Our aim has been to observe the effect that evolving hardware has on perfor

mance.

Lack of portable tools that would enable us to load systems in a controlled

way made us decide for the "terminal probe method". We thus designed and run

in the background on each system a script that periodically "probed" it. In this

way we measured the response the systems had with their natural work load to

our tasks. We are aware of the theoretical difficulties of this method, with

respect to conclusions to be drawn from such a study, but from the results

obtained we feel that a useful comparison can be made this way. We also believe

the method not to be too expensive in terms of resources used. Roughly speak

ing it uses 3% of the cpu cycles. This amount does depend on the system.

The four characterizations of load used, "Users", "Active Users",

"Processes" and "Real Processes" turned out to represent fairly well the load

each system had. The substantial consistency in the results obtained made us

believe in the final curves obtained from our measurements. Best of all we think

that a great advantage of this method is its total portability. New systems can

now be easily added to our study. We do believe, though, that one has to observe

more than one of these characterizations of load at the time to draw solid con

clusions from such a study. The instability of the natural work load and the

rather rough characterizations of load we use require this.

For purposes of comparison, we feel that our notion of Real Process is the

best. Its drawbacks (say of not distinguishing between different types of
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processes in the process table) are amply compensated by the overlap between

systems it provides and by reflecting much better the amount of work

demanded from the systems.

Our approach to determine the minimum size a sample must have for it to

be representative, and thus plottable, seems to go a long way in solving the

conflicting problems of insufficient number of data-points, presence of outliers

in the samples, large variance of some samples and finite amount of resources.

As discussed in Chapter 3, we determined the minimum size of a sample by the

iterative method of plotting the curves with different size samples until we

observed that the global outliers (for a given task) were not plotted. This

method can be taken as a criteria to stop gathering data on a system when run

ning our experiment. As soon as the curves are smooth for all values of the vari

able it means that we have enough points. In our case we had to cluster sam

ples, when necessary, to obtain the size (60) we wanted. The clustering normally

took place for the high values of the variables.

No one system presented itself as a clear best although it is obvious that a

configuration involving a PUP 11/40 lags behind the other two. It is also clear

from our study that it is vital for the performance of a system to have a bal

anced configuration. Moreover certain additions, such as a cache memory,

prove to be almost indispensable.

Having observed that the change from PDP 11/40* s to PDP 11/70's was very

beneficial (faster cpu, better responsiveness, larger address space), the ques

tion was whether the same conclusion could be reached for the change from the

PDP 11/70 to the VAX 11/780. The main obstacle against drawing strong con

clusions from our study was the marked difference in each system's

configuration. Unfortunately the VAX 11/780 did not have as much main

memory as the PDP 11/70 and it only had one disk. Moreover, the size of UNIX
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had grown in the VAX implementation, thus leaving proportionally less core

space for user processes.

Nevertheless, we could observe that the VAX does indeed have a substan

tially faster cpu. Responsiveness for cpu-bound jobs is clearly better. Better

yet, when a second disk was added to the VAX configuration, it performed tasks

such as C compilations faster and more stably than before, ranking now very

close to the 11/70. The performance that such tasks now achieved make us

believe that each system is at least as good as the other. At this point it has to

be emphasized that the C compiler for the VAX is a fairly portable one, while the

one that the PDP 11/70 has was essentially custom made. This is of course an

advantage for the VAX.

Last but not least, the VAX 11/780 uses 32-bit words. Now this is a great

leap forward. Only now the system has the potential address space to be con

verted into a virtual memory system. In fact, a paged virtual memory version of

UNIX developed at the University of California, Berkeley, is soon to be released.

Depending on the applications, this fact by itself might be worth the change of

machines.
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APPENDK A:
Documentation for the Script

USE OF THE SCRIPT

In our monitoring experiment we used a shell script to obtain periodic

measurements in each system. It was our only tool for collecting data. In this

Appendix we present it together with all the files and programs it requires. The

script has been written in standard C shell syntax and so it should be portable to

any installation which has the C shell installed within their UNIX system. The

way to use it is simply to run it as a process in the background. We have

included extensive comments in the text of the script so that each command

executed is explained.

The files required to exist when one initiates the script are four: CC, CPU,

MAN and test.c . They should be in the same directory as the script. CC, CPU

and MAN contain commands for tasks to be executed by the system.

CC requests and times the C compilation of test.c. Test.c is a (trivial) CPU-

bound C program. CPU runs and times the result of the compilation done by CC

(which is then a CPU-bound task) and finally MAN requests and times the com

mand man man. As we have discussed in Chapter 2, this command is nbt a truly

10-bound job. Its execution might require a fair amount of user time (up to 6

seconds).

To convert this script to a standard shell script, all one needs to do is to

replace in the text occurences of the files CC, CPU and 10 by commands which

directly execute and time the events. For example, instead of having csh CC we

would have time cc test. c.
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Sep 27 06:00 1979 f11es_needed Page 1, Lfne 1

File CC:

4 W111 run and time a CcompMatlon.

set t1me*0
ec test.c

End of file CC.

File CPU:

# VI11 run and time a CPU-bound job, assumed to be 1n a.out.

set t1me*0
a. out

End of file CPU.

File MAN:

# Will run and time the command "man man1

set t1me*0
man man > /dev/null

End of file MAN.
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Sep 26 10:46 1979 script Page I, Line 1

*

loop:

# We begin by requesting the date. This will be used es a TIMESTAMP for
# Indlvlal measurements of each task and to determine the elapsed time
# of one task, "Script",
date > YYYl

# The following seven files will be updated each time the script runs.
# They contain the raw data.

# Ccomp11at1on Is the file that will contain the measurements correspon-
# ding to the C compilation. Here we timestamp the commlng measurement,
cat YYYl » Ccompllatlon

# CPUbound contains the ones corresponding to the CPU-bound job. Here we
# timestamp the commlng measurement,
cat YYYl >> CPUbound

# manman the ones corresponding to the command manman. Here we timestamp
# the commlng measurement,
cat YYYl >> manman

# Script the ones corresponding to a mix that will be clarified latter.
# Here we timestamp the commlng measurement.
cat YYYl » SCRIPT

# This file grows extremely quickly. It will contain the output of the
# command 'ps -alx'. Exists only to keep all Information gathered,
cat YYYl » PS

# In this one we will keep Information about "Users" and "Active Users".
cat YYYl » USERS

# In this one we will keep Information about "Processes",
cat YYYl >> PROCESSES

# This Is the way we obtain most of the Information from the system. It
# Is from the output of this command that we find the number of "Active
# Users" and the number of processes,
ps -alx > YYY2

# This-appends the number of users logged-1n to the file USERS,
who I wc -1 >> USERS

# Executes the file CC and appends the output to the file Ccompllatlon.
csh CC >>& Ccompllatlon

# Executes the file CPU and appends the output to the file CPUbound.
csh CPU >>& CPUbound

# Executes the file MAN and appends the output to the file manman.
csh MAN >>& manman

# Here we finish the task "Script". We use a second date command to
# determine the elapsed time,
date >> SCRIPT

# Here we append to the file PS the contents of YYY2 before using It to
# decode the Information we want*
cat YYY2 >> PS

# We delete the first line of YYY2 (which brings headings),
•x • YYY2 « 'EOF'
Id
w YYY2

o.
•EOF'
# We count the number of lines YYY2 has and append 1t to PROCESSES.
# they correspond to the number of processes In the process table.
WC -1 YYY2 » PROCESSES

# Now we will find a number that will enable us to find the number of
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Sep 26 10:46 1979 script Page 2, Line 77

# "Active Users" when we process the data. This number will In
# general exceed by at least one the true number of "Active Users".
# The reason Is that we count all those enrles under the TTY column
# that appear more than once. Unfortunately In this column we will
# always have the 7 symbol associated with processes owned by the
# system and may have symbols for different nets. A study of these
# factors has to be done In eaeh system and then used when reducing
# the data. In the same way, each system has to determine the position
# of the column where "TTY" begins. What Is here presented corresponds
# to our VAX 11/780.
ex - YYY2 << 'EOF'
l,$s/ //
l,Ss/ .*//
w YYY3

<1
'EOF1

# The following command does what has been described above,
sort YYY3 I unlq -d I wc -1 > YYY4

# We append the number obtained to the file USERS. Thus two numbers
# get appended to this file every time the script cycles,
cat YYY4 >> USERS

# We remove all temporary files created by the script,
rm YYY* a.out

# We go to sleep for 20 minutes,
sleep 1200

# We go to the beginning of the cycle again,
goto loop
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Sep 25 12:09 1979 test.c Page 1, Line 1

/*

*

*

*

*/

This program attempts to measure CPU activity. It performs 100,000
times the inner sequence of Instructions. All of them are Integer
arithmetics operations. Their relative frequency 1s choice of the
author.

raalnC ) C

1nt 1,j,k,l,m,n,o,0,K ;

0 • 16833333 t

K » 56983122 5

for { j » 0 , j < 40 X j++ > C
for ( 1 « 0 t 1 < 2500 i 1++ >

1 * J * K
m » 0 + K
n « 0 / K
1 - 0 * 0 * K 1

m • m + n

m » J * K
n » 0 / K
1 • m * n

o - K * K * K * K |

/* End of the Inner loop. */
:

/* End of the outer for loop. */

/* End of main. */
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