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ABSTRACT

We consider the problem of generating memory reference strings that are
representative of real programs where the generator is based on the Least
Recently Used (LRU) Stack Model of program behavior. A method to
transform the stack distance probability mass function that drives the generator
is proposed which results in memory reference strings that are considerably
shorter in length while preserving most of the essential characteristics of the
original string. The reduced string can be processed in much the same way as
the original string for virtual memory studies that deal with memory sizes
greater than or equal to k, the parameter of the transformation.
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1. Introduction

Trace driven simulation is a frequently used method for studying the performance of vari
ous aspects of paged virtual memory computer systems [BELL66, LAUE79, MATS70]. The
trace data used in these studies consists of a record of all the memory addresses (data and
instruction) generated during the execution of a program. The major drawback of this approach
is that simulation studies dealing with realistically long trace data (a few million references) are
very costly both in space and time. Smith [SMIA77] has studied two methods for reducing
these costs by compressing the trace data while preserving its essential characteristics. The first
of his methods, the Stack Deletion Method with parameter fc, removes from the original trace
data all references to pages that are elements of the set of k—1 most recently used pages. The
second method studied by Smith, the Snapshot or Reference Set [LAUE79, PRIB74] with sample
interval 7, on the other hand removes from the original trace data all references that are re-
references to pages within a given sample interval of length T. The claim that these compres
sion techniques preserve the essential characteristics (such as page fault rate and mean working
set size) of the original reference string has been verified experimentally when they are pro
cessed by a wide variety of paging algorithms [SMIA77]. An alternative approach to reducing
the space cost of such studies is to use a model of the program behavior such as the Independent
Reference Model (IRM) [AHOA71, BASF76, SPRJ72] or the Least Recently Used Stack Model
(LRUSM) [LENJ, RAUB77, SPRJ76] in conjunction with a random number source, thus
obtaining a generative model [SPRJ77]. Since most such models require a small fixed number
(usually proportional to n, the number of pages contained in the program) of parameters to
identify them, arbitrary length memory reference strings can be generated one reference at a
time with essentially no space cost. Note that from the viewpoint of the simulator, the trace
driven and the generator driven methods are identical. Although extremely compact in space
requirements, generator driven simulations are usually more costly in time than trace driven
simulations. This is due to the fact that it usually requires more computation to generate a
reference than to simply read it from the trace data.

In this paper we propose a method for improving the time cost of generator driven simu
lations by reducing the number of references generated. We show that the method is the paral
lel of the Stack Deletion Method for trace data compression in the realm of trace driven simu
lation.

t This material is based upon work supported by the National Science Foundation under Grants No. MCS
7824618 and MCS 7807291
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Furthermore, by the Elementary Renewal Theorem,

lim £
Ni(m,tx)

as well. Both equations (3.1.1a) and (3.1.1b) hold with probability 1.

For ti<oo 9however,

Pr
Nxim,^)
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where

<r2- Var{Nx(m,h)lh) - <ft.(l-0«)>/'i

for any c>0.

(3.1.1b)

(3.1.2)

(3.1.3)

Note that € , + 6 is a level (1 =-) confidence interval for X.

Now consider a second generator (G2) that is driven by the following transformed stack
distance pmf:

D2 - (a'l.a* • • • »a'*-i» R<*k. *<**+! . ' " , Ra„)

where k is the parameter of the transformation and J? is a constant.

Note that the transformation of a, , (l</<&—1) is left unspecified; the only constraint it has
to satisfy is

E^-i-fla-jS*-,) (3.1.4)

so that D2 is indeed a pmf.

As before, let N2(m,t2) be the number of faults generated by time t2 for a memory size m.

We are now in a position to state the transformation method.

Proposition : For all memory sizes m^k, the transformation with /?—/?*= 1/(1—£*_i) minim
izes t-Jt\ while preserving the size of the confidence interval of the steady state fault rate X for
any given confidence level.

N (m t }
Proof: Note that for G2, the statistic —=-^— is an unbiased estimate of X.

Rti



For the transformation to preserve the length and level of the confidence interval for X, it is
necessary that

Pr
Nentsi)

-X >€ Pr
N2(m,t2)

-X >€ (3.1.5)

Substituting equations (3.1.2) and (3.1.3) into equation (3.1.5) and simplifying, we obtain

t2 _ l-R(l-fim) (3.1.6)

where we have also made use of the fact that a', - Ra, since we only consider memory sizes
greater than or equal to k.

Let g(m,R) - fj/'i denote the running time ratio of G2 to Gl. To minimize g{m,R) as a
function of R, we formulate the following optimization problem :

minimize g(m,R)

subject to 0 < R < -j—g—

m > k

where the constraints simply ensure that D2 is avalid pmf. The problem can be solved easily
and has the solution A-/**- t^J— D

1 Pk—l

The function g(m,R) represents the ratio of the G2 string length to the Gl string length.
From the above result, the minimum value for the function is given by

Pk-\

Pm

Note that

g(m,R')<j7<l

with the first equality holding when m»*. This °°se™tl™ ^length of the string generated by G2 need only be at most \/R th of the length of that due to
Gl to achieve the same size confidence interval of Xfor agiven confidence level and for all
memory sizes greater than or equal to k.

Recalling the form of D2 and equation (3.1.4), the stack distance pmf transformation
implied by the optimal value of R is of the form

D2- (0,0 0,R ak,R a*+i * ««>

We make the following observations about the transformation method:



?

[1] The transformation preserves the long run relative occurrances of stack depths greater
than or equal to k i.eM ajaj - a'Jct'j for all /and j^k.

[2] G2 produces no references to stack depths less than k, while it references depths greater
than k—\ with increased probabilities. This result shows the analogy between the above
scheme of generating memory references and the Stack Deletion Method of compressing
existing memory reference trace data.

[3] The optimal value of R, R \ has the interpretation of the expected number of references
* until the first reference that is to a stack depth greater than k—l. This confirms our ear

lier observation that G2 suppresses those references to the top k pages of the stack.

3.2. Mean Memory Occupancy Characteristics

In the previous section, we have shown that the proposed method preserves the page fault
rate characteristics of the original string in an environment managed by a fixed partition policy
(namely LRU). Due to its strong interaction with the process scheduling mechanism and
significant impact on overall system performance, mean memory occupancy in a variable parti
tion is another important property associated with a reference string. As an example of a vari
able partition policy, we will consider the behavior of the output of G2 when processed by the
working set [DENP68] algorithm.

Let cu(t) denote the steady state working set size with parameter (window size) r. Recal
ling the definitions of the LRUSM and the working set policy, the steady state working set size
distribution can be expressed through the recursive relationship

Pr{«(r)-/} - j3,Pr{o»(T-l)-=/} + (l-0,_,)Pr(«>(r-l)-/-l) (3.2.1)

where Pr{<o(l)-l} - 1

As applied to the LRUSM that drives G2, equation (3.2.1) becomes

PrMr')-/} - /^PtMt'-I)-/} + (l-i3'/_l)Pr{o(T'-l)-/-l} (3.2.2)

where 0', = (fif-pk^i)/(l-pk.\) and t' = (l-j3k_i)T - r/R *since each reference generated by
G2 advances the clock by R* ticks rather than one. If a, are non zero for all />&, equation
(3.2.2) which is valid only for />£ has the closed form solution [LENJ]

PrMr)-/} - 2- J Pj ' k^i^n (3.2.3)
j-k nwj-M

l-k

l*J

0, i<k

Having the distribution of «j(t) at hand, we can obtain the mean, o»(r), trivially.

In Fig. 3.2.1, we present the distribution of working set size that results for a sample
LRUSM where the model parameters were generated through

fi, - (l-Ar^/a-An-K)
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Figure 3.2.1 Working set size distribution of example LRUSM

where A and K are often known as the lifetime parameters of a program [SPRJ77].
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Figure 3.2.2 Mean working set size

Note that setting /r«=l results in the null transformation and reduces G2 to Gl. Fig. 3.2.1



indicates that the distortion of the working set size distribution increases proportional to k. In
Fig. 3.2.2 however, we see that the transformation preserves the first moment of the distribu
tion even for large k particularly when the working set parameter r is large. For the example at
hand, the relatively large errors encountered for small values of r are simply due to the scaling
that is performed on the window size (which happens to be t'—t/10.6 when k=5).
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In an effort to identify the region of validity with respect to k, we plot percentage error of
w(t) and the reduction ratio (g(n,R*)) as a function of k in Fig. 3.2.3. For the particular
value of t being used, the error in 5>(t) is very close to zero for all /c<6. These values of k
are such that the following inequality is satisfied

t' - (l-/3fe_i)T > n (3.2.4)

where n is the number of pages in the program. This condition parallels the one requiring
memory sizes greater than k-\ to be used in the study of fault rate statistics under LRU
management. Fig. 3.2.3 also points out that a substantial reduction ratio in string length is
obtained for these set of transformation parameter values.

The above results for the mean working set size are directly applicable to the steady state
fault rate observed under working set memory management since one can express the fault rate
as the first differencef of the mean working set size [SPRJ77]

X(t) ™ <u(t)—5>(t—1)

4. Comparison with the Stack Deletion Method

In the previous section we have seen that the Stack Deletion Method and the proposed
transformation method are very similar to each other. We note however that the page names
associated with the references in the strings resulting from the two methods are not the same.
This can be explained by observing that while the transformation method generates no

t This is the discrete time analog of the first derivative
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references to stack depths less than k, the Stack Deletion Method processes all of the refer
ences in the original string, thus causing stack updates at each reference. In other words, the
two methods produce results that have similar distance strings (the d,'s) but different reference
strings (the r,'s).

TABLE I*

RATIO OF Gl STRING LENGTH TO G2 STRING LENGTH (g(n.R')~l)

Parameter k WATFIV FFT APL

3 4.735 4.017 5.79

4 7.484 7.698 -

5 10.704 26.6 -

6 14.514 36.2 22.6

8 . • 46.2

12 - - 109.2

The reduction in string length due to both methods is given by 1/(1-Pk-\). Table I indi
cates the length reduction obtained when we apply the transformation method with various
values of the parameter k to the LRUSM of three sample programs. More dataabout the traces
from which the LRUSM for the three programs were obtained can be found in references
[SMIA776a] and [SMIA77].

4.1. Simple Modifications

Through some simple refinements of the stack updating algorithm, the transformation
method and the Stack Deletion Method can be made to have similar reference strings as well.
As described, the reference string generated by the transformation method differs from that of
the Stack Deletion Method simply because the top k-l pages of the stack remain un updated.
If, at the time of generating a reference, the true permutation of these k-l pages were known,
we could duplicate Stack Deletion exactly. In fact, since we are only interested in memory sizes
greater than k-l, it suffices to know just the identity of the page occupying the /r—1st position
of the stack (this is one of the pages of the so called push-pull pair [COFE71]). Through the
following analysis, we can derive a probability distribution for the identity of this page amongst
those currently in the top A:—1 positions of the stack.

Consider the Markov chain where the state space consists of all possible permutations of
the integers l,2,...,Jt-l corresponding to the relative ordering of the pages currently occupying
the top Ac—1 stack positions. Given state s,»{si,s2,..., s,.i,s,,s,+i,... ,s*-i), the transition
probability to state Sj is at if and only if s/-{s/,si,s2,.. . ,Si-\,st+\,... ,sk-\). Let P denote
the single-step transition probability matrix for this chain. Given an initial state s,-, whatwe are
interested in is the probability that the page currently at position /will be in position k-l after
exactly R references to the top k-l slots of the stack. This is given by

Pr{5jfc_i-/ after R references | s,} « £ p*s,.sy
Sj€6

where ©is the set of Ofc-2)! states such that s^Wand P\.», is the (s,,sy)th element of the
A-step transition probability matrix.t Having obtained the distribution, the page that is to be
pushed down to the k th stack position is selected amongst those currently in the top k-l slots

XReproduced from [SMIA77]
t The /{-step transition probability matrix, P*. is obtained by raising the single-step transition probability ma
trix, P, to the Rih power. Being strictly a function of the original LRUSM parameters, this matrix need be
computed only once and stored for repeated use.
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according to this distribution. Otherwise, the method is not altered.

Due to factorial growth, for large k, computing and storing P* can be rather expensive. If
R is large, we can approximate the /{-step probabilities with the steady state probabilities and
simply the problem considerably. Since P is doubly stochastic,* all steady state stack permuta
tions are equally likely, thus the page to be pushed can be selected uniformly over those in the
top k-l stack positions without having to go through the above computations.

Another modification of the transformation method is suggested by the observation that it
'9 results in mean working set sizes that are consistently smaller than those for LRUSM. This is a

consequence of not referencing pages in the top k-l stack positions. This error becomes sub
stantial as the reduction ratio, R\ approaches the window size, r. Use of the Snapshot

* Method, whereby any page in the top k-l positions of the stack which has not appeared in the
trace in the last T time units is issued as a memory reference, along with the transformation
method can reduce this error even for small r.

5. Applications

The application of the transformation method to trace driven simulation studies is
immediate. The simulators being driven by G2 process the references just as before except for
incrementing the clock by the quantity R *as opposed to 1 per reference. Chosing a value of k
to use as the transformation parameter involves a tradeoff between simulation speed-up desired
and the range of validity of the results. Working set management studies should be restricted
to the set of window size values that satisfy inequality (3.2.4), while LRU studies are applica
ble only for memory sizes greater than k-l.

Although we have emphasized trace driven simulation studies as the main application area
for the method, it is potentially suitable for the area of synthetic job [BUCW69] design for vir
tual memory environments. Such a job is a highly parameterized program that consumes con
trolled amounts of system resources. In a virtual memory environment, one consumes
resources (CPU cycles, disk I/O bandwidth, etc.) not only explicitly, but also implicitly (main
memory and paging I/O bandwidth) through the pattern of memory addresses generated. To
vary the memory reference behavior of a program in a controlled manner it is required that the
program have a model for the action built into it. Consider the page reference string r1)/-2,r3>...
where r, € {1,2,...,/!}, whose characteristics (as we have defined them) we would like the syn
thetic job to replacate. The execution of the synthetic job (observed at the memory reference
level) that has simply an LRU stack model of the above string built into it results in
<7i><72> • • • >QQ>f\,q\,...,qQ,r2t... The Qreferences (all to a small set of /pages containing the
code and data for the synthetic job) between each of the target references are due to the ran
dom number generation, distribution transformation, stack updating and other functions that
the program has to perform. To be able to run the synthetic job in real-time, these Q refer
ences are clearly undesirable and will be termed interference references. Suppose that we apply
the transformation method with parameter k to the LRUSM built into the program such that k
is the smallest integer for which #*>(? and k^L Now, the Q interference references appear to
be part of the target reference string and the synthetic job reproduces the paging behavior
specified by the original LRUSM within the applicability of the transformation method with
parameter k in real-time.

t A probability matrix Pis doubly stochastic if£^/j~l and £.P«j~l for all /and j.
J i
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6. Conclusions

We have presented a method for the efficient generation of memory reference strings
based on the LRU stack model of program behavior. The claim that the output of the modified
generator preserves the page fault rate characteristics of the original string when processed by
the LRU policy was proven for memory sizes greater than or equal to k. The range of applica
bility under the working set memory management policy is not as sharplydefined. However, we
have presented conditions that need to be satisfied for the fault rate and mean memory occu
pancy results to be valid.

The method provides a generator that is extremely economical both in space and in time
and can be used as a source of memory references for most simulators that rely on trace data as
input. Another interesting application of the method to the construction of synthetic jobs for
virtual memory environments has also been briefly discussed.
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