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Abstract

Fixed point methods from nonlinear analysis are used to establish

conditions under which the uniform complete controllability of linear

time-varying systems is preserved under non-linear perturbations in the

state dynamics and the zero-input uniform complete observability of

linear time-varying systems is preserved under non-linear perturbation

in the state dynamics and output read out map. Algorithms for computing

the specific input to steer the perturbed systems from a given initial

state to a given final state are also presented.

As an application, a very specific emergency control of an inter

connected power system is formulated as a steering problem and it is

shown that this emergency control is indeed possible in finite time.
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Section I. Introduction

Controllability and observability are key issues in system theory.

To be specific, consider a class of physical dynamical systems which are

adequately modelled by ordinary differential equations with inputs u

and a static read-out map h: more precisely,

x = f(x,u,t) (1.1)

y = h(x3t) (I#2)

n. n

with xe m ,uS ]R \ yGi °, ttn+ and f, h C° functions; f
satisfies Lipschitz and growth conditions so that solutions exist, are

unique and can be extended to all of ]R . In optimal control, it is well

known (see for e.g. [29]) that controllability has fundamental inter

connections with the existence of optimal controls and their feedback

synthesis. In process control, controllability and observability are

crucial in the study of stabilizability of plants. On a more abstract

level, it has been shown by Willems [23, 24] that if a dynamical system

is completely controllable and observable in a suitably defined

sense, input-output properties (notably, finite gain stability and

dissipativeness) are reflected into properties of the state space

description of the system (as global asymptotic stability in the sense

of Lyapunov and the existence of a storage function, respectively). In

the theory of diffusions arising from dynamical systems the question of the

existence of a probability density for the diffusion, posed by Ito, have

been answered by Elliott [9] in terms of controllability of the under

lying dynamical system. Finally in what is perhaps the best known

application of the concepts of complete controllability and observability

we have Kalman's results (see for e.g. [4]) on the minimal realization
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of linear dynamical systems. The reader will notice that we have been

loose with our use of controllability and observability for a variety

of related but not identical notions. Precise definitions of these for

our purposes are relegated to Sections III and VIII. Also, for the

purposes of this paper the state space, input space and output space are

all vector spaces.

In view of their obvious importance there is a rather large

literature on the controllability and observability of non-linear systems.

We will not be exhaustive in briefly reviewing it, but will point out

what we feel to be three approaches to this issue in the literature:

(i) the differential geometric approach developed by Brockett [5],

Hermann [12], Krener [14], Lobry [16], Sussmann and Jurd.jevic [22]. The

most comprehensive survey appears in a recent paper of Hermann and

Krener [13].

(ii) the nonlinear analysis approach to null controllability (i.e.

controllability to the origin) using classical Lyapunov theory and the

more recently introduced theory of cone valued Lyapunov function. This

approach has been developed among others by Chukwu [6] and Sinha [20].

(iii) the global analysis approach to the zero-input observability

of Morse-Smale dynamical systems, due toAeyels [1]; see also Aeyels and

Elliott [2]. Some other work which does not fit under any of these

headings are the paper on global (complete) observability of non-linear

systems by Yaraamoto and Sugiura [25] and the paper on global (complete)

controllability of non-linear systems by Lukes [16].

The results as they stand in the differential geometric approach

CO

have reached final form for C systems with control u appearing linearly

(i.e., with f(x,u,t) = f, (x) + f„(x)u for suitably chosen f1 :H -»• IR
nxn.

n i °°
and f„ : H •*• IR , C functions) . Implicit in the results is the
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assumption of high differentiability. The results are of necessity local

in nature and the causality of physical dynamical systems is lost in the

formulation of the results. Further, the results are of an "existence "

nature so that they do not explicity give controls for steering the

system between prescribed states.

In the null controllability results using Lyapunov and cone valued

Laypunov techniques,conditions are imposed on the non linearities of the

state dynamics so as to make the domain of null controllability the

entire state space. The results are rather restrictive in that they

discuss only controllability to the origin.

In the global analysis [1,2] approach we have a sufficient condition

for the global (complete) observability of Morse-Smale systems to be the

rank condition of Kalman for complete observability of linear sytems

applied to the linearized dynamics and linearized output map at each of

the (finitely many) fixed points and orbits of the flow. The tools used

are the properties of Morse-Smale systems and a Banach space implicit

function theorem. In the paper of Yamamoto and Sugiura the contraction

mapping theorem (see for e.g. Marsden [17]) is used to obtain some results

for the observability of non linear systems with "small" nonlinearities.

In the paper of Lukes, controllability of an autonomous dynamical system

is treated as a boundary value problem and sufficient conditions for the

controllability of certain perturbed, linear time-invariant systems is

derived using compactness arguments (Arzela-Ascoli theorem) in a Banach

space. In fact, Theorem V.l of the present paper has also been proven

by Lukes. The present proof is of course new.

We now discuss the philosophy of our approach: In the present paper,

we take the engineers view of complete controllability: 3 Te IR+ such
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that given any t , initial time, and any two states x , the initial
o o

state and x^ the final state, there exists a control that will steer

the system from x at t to x. at t + T. The same view is held of
o o 1 o

zero-input observability: 3 T € B- _l such that given any t and the
+ o

output of the system with zero-input on [t , t + T] we can determine
o o

(uniquely) the state of the system at time t . In keeping with our

view point we give, wherever we prove complete controllability, a

procedure for obtaining explicitly a control law to perform any required

steering and wherever we prove complete observability, a procedure for

obtaining explicitly the initial state of the system. Since our results

are global (complete) controllability and observability results for

nonlinear systems which are in some sense close to being linear, we

choose to think of our results as being robustness results for the uniform

controllability and observability of linear time-varying systems (precise

definitions are given in Sections III and VIII) in the presence of nonlinear

perturbations of various types.

The major mathematical tool for the paper is a solvability theorem

for operator equations with a quasibounded nonlinearity, due to Granas

[11], which is reminiscent of the small gain theorem (see for e.g.

Desoer and Vidyasagar [7]). The heart of the theroem lies in the Rothe

(or equivalently the Schauder) fixed point theorems, which are essentially

topoligical tools in nonlinear analysis.

We illustrate the use of our results in the derivation of control

laws, during a very specific emergency, for interconnected power systems,

by posing the emergency control problem as a steering problem. That this

formulation is indeed the right one for emergency control has been suggested

by a recent research report [10]. We mention that another application

may be in economics for establishing the existence of homeostatic

trajectories for certain adapting economic systems which satisfy differ

ential equations rather than inclusions, as is suggested in a paper



of Aubin and Day [3].
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Section II. Notation

The dynamical systems that we study are differential dynamical

systems (DDS) with finite dimensional vector spaces as input, output and
n. n

state space, respectively H 1, ]R ° and ]Rn with the representation

x = f(x,u,t)

y = h(x,t)
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where tS]R+) f is a C° function from ]Rn x ]R xx m -»- ]Rn which

is globally Lipschitz continuous in its first argument (to guarantee

uniqueness of solution to (2.1) when the initial condition is given)
n

and h is a C function from IR x IR + ]R °. Finite Dimensional

Linear Dynamical Systems (FDLS) with a bounded realization are

differential dynamical systems of the form (II:.3),_ (II.4)

x = A(t)x + B(t)u (II.3)

7 = C(t)x (II.4)

with ilA(')fl, Hb(.)K, ic(-)11 bounded on 1R+. (II.5)

Section III. Characterization of controllability for finite dimensional

linear systems.

The definitions and propositions of this section are well known,

though not standardized. We restate them here to establish the

terminology and notation. The definitions aredrawn from Silverman [19]

and the proofs may be found in standard books (see for e.g. [4]).

Definition III.l. (Uniform complete controllability (UCC))

A differential dynamical system represented by (II.1), (II.2) is

said to be uniformly completely controllable if Jt > 0 such that
n.

Vt £ M^ and Vx ,x_ £ ]Rn, 3 an input u € L_x([t ,t +T]) which drives
o + o 1 -1 2 o o

the system from x(t ) = x to x(t +T) = x_ . n
J o o o 1

For FDLS with bounded realization a simple characterization of UCC

accrues from the fact that equation (II.3) can be solved explicitly

n.

on [tQ,to+T] given x(t^) = xn and input u€ L1,1([t/^, trt+T]) to yield

equation (III.l).
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x(t) = *(t,t )x +
0 0

t

4(t,T) B(t) u(t)dt (III.l)
t

Vt € [t ,t +T]
o o

where $(t,t ) ^ IR denotes the fundamental solution of the
o

homogeneous matrix equation

X(t) - A(t) X(t), X(t ) = I

(II.2)

with x(t) e m11*11.

To obtain the desired characterization define, for fixed t e 3R ,, the
o +

n.

linear map^ (called the reachability map) from L-1([t ,t +T]) to

3Rn by

t +T
r o

V-J

Then at t = t + T, equation (III.l) may be rewritten as:

x(tQ+T) = $(to+T,tQ)xo +£Rn (III.4)

The adjoint map of s£_, denoted £,, then is the linear map from 3Rn to
n. R R
L21([to,to+T]) defined by

^x =B (.) $ (tQ+T,-)x (III.5)

Since the realization (II.3) is bounded (say by K)we have from the

Bellman Gronwall lemma that

IU(t,x)H = exp K(t-x) Vt,x S 3R+ (III.6)

Also,

ilB(x)il = K Vx E ]R+ (III.7)

Using (III.6), (III.7) it is easy to check that ^ and ^ are
continuous linear maps.

-8-
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Theorem III.l. (Characterization of Uniform Complete controllability

for FDLS)

The FDLS with bounded realization represented by (II.3) and (II.4)

is uniformly completely controllable <*Vt £ IR , the reachability map
n.

<4 :L0x([t ,t +T]) + ]Rn defined in (III.3) is onto <> Vt € ra the composition
K. Z O O O *»"

of the reachability map and its adjoint namely^^.*rn^Rn is. abijection.

Comment

The second characterization of uniform complete controllability

is particularly handy since it is in terms of the rank of a linear map

a J>^* n n
**JL : 3R -* 3R . The properties of this linear map will be of use in

the sequel and hence we define its representation explicitly.

Definition III.2. (Reachability grammian)

Given t S ]R the matrix representation of the continuous linear

'R(Co>Vmap <^OC :3Rn •*• ]Rn is the reachability grammian, denoted W_[t ,t +T]

e m nxn

Vto'to+T^ =

t +T
t o ^ ^

$(t +T,x) B(x) B (x) $ (t +T,x)dx (III.8)
t
o

Thus, the FDLS with bounded realization given by equations (II.3),

(II.4) is uniformly completely controllable iff WR[tQ,to+T] is non -

singular Vt £ IR ,. Notice, however, that the FDLS can be uniformly

completely controllable with the smallest eigenvalue of wRtt0>t:0+T]

tending to 0 as t -*• °°.

In addition to providing a test for uniform complete controllability

the reachability grammian provides information about the minimum size

of the L„ norm (energy) of the input required to make the transfer

from x 6 ln to x. £ ]Rn in [t ,t +T] as stated below.
O 1 oo
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Proposition III.l. (Least L2 norm of control)

If the FDLS with bounded realization given by equations (II.3),

(II.4) is uniformly completely controllable; then, the least L« norm

of the control required to transfer the system from x at t to x, at

t +T is given by

[(X;L-$(to+T,to)xo) (WR[to,tQ+T]) X(x1-$(to+T,to)xo)] (III.9)

Comment. From Proposition (III.l) it follows that the least L« norm

control required to reach x.. 6 IR at t + T from the origin at t

is given by

* -i I/2
^W'o + T» xl]

Uniform complete controllability does not guarantee that this quantity

is bounded Vx- 6 IR and Vt £l, as was noted after definition (II.2).
1 o + v '

To guarantee this we define a slightly stronger form of controllability.

Definition (III.3). (Strong Uniform Complete Controllability)

A FDLS with bounded realization represented by (II.3) and (II.4)

is strongly, uniformly completely controllable if 3T > °t * > 0 such

that Vt £ m .
o +

WR[tojto + T] " XsX ' (HI.IO)

Comments

(i) The boundedness of the realization guarantees that ^ A, G ^+ such

that Vt 61,
o +

X I = sup W[t ,t + x] (III.11)
L x€[0,T] R ° °
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(ii) It is obvious that it is more costly to reach certain directions

than others (the cost is the minimal L« norm of the input required to

reach a unit norm vector in a certain direction starting from the

origin). Motivated by the condition number of numerical analysis (see

for example, Ortega [28]) we define the reachability condition over T

seconds of a strongly uniformly controllable FDLS.

Definition III.4. (Reachability condition number)

Consider a strongly uniformly controllable FDLS with bounded

realization, let X_ > 0 and X > 0 be defined by
L S

1/2X = sup sup * (Wp[t ,t + T])i/Z (III.12)
L t em t€[o,T] max R ° °

O + L » J

and

X = inf X (W [t t + T])1/2 (III.13)
s t €]R mm R o o

then the reachability condition number over T seconds Xr, is defined by
R

XR = T (III.14)

The burden of this paper consists in demonstrating the robustness

of strong uniform complete controllability of an FDLS in the face of

nonlinear perturbations in the dynamics both bounded and unbounded. Our

methods seem to indicate that FDLS with smaller reachability condition

number are more robust than others with larger reachability condition

number.

Section IV. Solvability of an operator equation with a quasibounded

nonlinearity in normed spaces

The main mathematical tool used in the investigation of the

robustness of controllability is a solvability theorem for an operator
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equation in normed spaces with a quasibounded nonlinearity proved in its

present form by Granas [11]; see also Mawhin [18]. The heart of the

theorem lies in fixed point methods in nonlinear analysis:specifically,

the Rothe fixed point theorem which we state in the Appendix. For

details, the reader is referred to the excellent monograph of Smart [21].

Definition IV.1. [Quasibounded maps]

Given a and U. Banachspaces with respective norms I•I and I•I and

F a map from L to #, F is said to be quasibounded if the number

|F(x)U.
p(F) := inf sup -r-i—* (IV.1)

0<P<o° lxLi P X

is finite and this number is called the quasinorm of F. Q

Comments

(i) A continuous linear map is quasibounded and its quasinorm

corresponds to the usual induced norm.

(ii) If for instance for some c,,c2,c» € ]R

lF<x)l = cjxl + c2 (IV.2)

Vx S {x :|x| = c,}
X 3

(that is, (IV.2) holds for all x£ Xoutside a ball of radius O then

F is quasibounded and its quasinorm is less than or equal to c1. In

particular, if c, = 0 then the quasinorm of F is zero

(iii) If F is a compact map on^" then F is quasibounded

** lF(x)^= cilxlr+ c2 for some ci'c2 Gm'

(Recall that a continuous map F :5f-> %is said to be compact if the

closure of the image of any bounded set is compact).
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Theorem IV.1. (Solvability Theorem)

If F :/<f"*"X is a continuous, quasibounded, compact map on the Banach

space 3f and if

P(F) < 1

then the equation

x + F(x) = y (IV.3)

has at least one solution for every y £^

Proof. Let y be an arbitrary point in^*. We shall prove that ^ x

such thatx + F(x ) = y . Let F :^"->5fbe a compact map defined by

F(x) = y - F(x) for x£ 0(

Now p(F) < 1 implies that

-^i <6<x for |x| >r
|x| ' - 1

where 5 and r, are some constants. Choose e > 0 such that e + 6 < 1

and define r := max(r1»|y |/e). Now Sr = {x Sx:|x| = r} is the

(topological) boundary of the ball B = {x £ X:|x| = r} and for x£ S^

we have

lF(x)l <lyo' ,|F(x)|
' I y\ ' = i—I— + II|x| |x| |x|

hence

nty '= e+ <5 (by the definition of r)

By the definition of £ we have

|F(x)| < |x| Vx € Sr. (IV.4)
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From (IV. 4), F(S ) C b . Since F is a compact map we have by the Rothe
r r

fixed point theorem (see Appendix) that F has at least one fixed point

x €= B . Hence,
o r

* <xJ = yn ~ F<XJ = x«-O O 0 0

completing the proof. n

Comment.

Theorem IV.1 bears a resemblance to the well known small-gain

theorem in the analysis of feedback systems (see for e.g. [7]), if

the operator F were thought of as representing the plant in a unity

feedback gain control system. At the cost of a topological restriction

(continuous, compact) on the plant operator F (there are no topological

restrictions in the small gain theorem) Theorem (IV.1) yields the

existence of a bounded solution to the feedback equation (IV.3) for

every y S Xprovided the "asymptotic gain" (quasinorm) of F is less

than 1.

Section V. Robustness of strong uniform complete controllability under

bounded perturbations in the dynamics

In this section we consider the uniform, complete controllability

of the F.D.L.S. of (II.3), (II.4) whose dynamics are perturbed by a
n.

bounded C function h :]Rn x m 1x ]R -• ]Rn which is in addition

globally Lipschitz continuous in its first argument (to assure uniqueness

of solution of the resulting differential equation, given the initial

condition) to give the state evolution equation of (V.l)

x(t) = A(t)x + B(t)u + h(x,u,t) (V.l)

with
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sup |h(x,u,t)| = K < « (V.2)
n. °

x€R ,uQR x,t€]R ,

Such a perturbation might arise from the study of a DDS of the form

(II.1) which is in addition "almost linear" in the sense of (V.l), (V.2)

above. Yet another application of the study of such perturbation is

illustrated in Section X for emergency control of an interconnected

power system. In Section (V.l) we prove the main result of this

section which is the following theorem.

Theorem V.l. (Robustness of uniform complete controllability under

bounded perturbations in the dynamics)

Given that the FDLS with bounded realization of equations (II.3),

(II.4) is strongly uniformly completely controllable over T seconds,

the perturbed system represented by equations (V.l), (V.2) is uniformly

completely controllable over T seconds. a

In Section (V.2) we give an algorithm for the computation of an

input u to take the perturbed system from any initial state x £ ]Rn

(at t ) to any final state x- £ Rn (at t +T). The proof of the
o 1 o

existence of accumulation points in the algorithm involves the use of

the Arzela Ascoli theorem.

V.l Proof of Theorem (V.l)

Fix t S ]R • x S ]R the initial state: define xn (t), x„(t)
o + o 12

to be the state of the FDLS and the perturbed FDLS respectively at

time t £ [t ,t +T]. Then, we have
o o

and

x (t) = A(t) x-(t) + B(t) u(t), x.(t ) = x (V.3)
1 1 1 o o

x (t) = A(t) x_(t) + B(t) u(t) + h(x9(t),u(t),t), x (t ) = xo (V.4)
l I I Zoo
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Subtracting equation (V.4) from (V.3) and defining Ax := x~ - x we have

Ax = A(t)Ax + h(x2(t),u(t),t), Ax(t ) = 8n (V.5)

To obtain a bound on |Ax(t +T)| define the continuous linear map

<£from Ln([t ,t +T]) to ]Rn by
i. o o

t +T

r °
<£(v) = $(t +T,x) v(x)dx (V.6)

Jt
o

with $(tQ+T,•) as defined in equation (III.2) (continuity of £ follows

from the boundedness of the realization and equation (III.6)). Then,

|Ax(to+T)| = W. !lv(-)«

where |«| stands for the Euclidean norm in ]Rn

11*11 stands for the usual L„ norm on [t ,t ,Tl
2 o' o J

I j stands for the operator norm induced on a linear map from

Ln C[t ,t +T]) to Hn by the above
zoo

with v(t):= h(x2(t),u(t),t).

From (V.2) we have Vt £ [t ,t ,+T]
o o

|v(t)| = K

so that

and

lv(.)« = KT1/2,
o

norms.

Ax(t +T) | = 1^! .K T1/2 Vu€L9x([t ,t +T]) (V.7)
o ' ' 'i o 2 VL o* o

Now, think of Ax(t +T) as the value of a (continuous) map
n. °

Nx :L2 ^to,to+T^ t0 "^ ^the SUDScriPc x emphasizing that the map
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N depends on x ) with
o

Ax(t +T) := N (u) =
O X

o

t +T
o

$(x +T,x) h(x (x),u(x),x)dx (V.8)
t ° *
o

where x (•) satisfies (V.4). Then, observe that N is a quasibounded
o

nonlinear map (actually bounded) with quasinorm 0 (independent of x ).

Also, with the definition of £ from Section III
R

xn(t +T) = £(u)+ 4>(t +T,t )x1 o R o o o (v 9)
and

x_(t +T) = iU) + K (u) + *(t +T,t )x
L O R X O O O

o

Uniform complete controllability of the FDLS guarantees that ^t is
R

onto. To show the uniform*complete controllability of the perturbed

system we will show that ££+N ) is onto for each x € R • Infact
R x o

o

we will show that the image under £+ N of a finite dimensional subspace
R X

n. o

of L x([t ,t +T]) is 3Rn using Theorem (IV.1).

Define 7l^ := <£(]R ),an n dimensional (by uniform complete
R

n.

controllability) subspace of L2x([t ,t +T]). Clearly<£ is a bijection

of 7/}onto B. and we can define the inverse of ;£, on "1A\ £ : IR •*• 771
R R

a continuous linear map with II* II = X where X is as defined in
R S s

Definition III.4 (equation (III. 13)). Now consider the map (I+<Z^ ^K )
o

: Ht+ "111. Clearly^" N is a compact map CM is finite dimensional
R x ,

o

and N is continuous with quasinorm 0. Hence, by Theorem (IV. 1)
xo

I +o£«1N is onto ~ffl and further gL + N is onto ]Rn. Since x S ]Rn
R x R x„ °

o o

and t £l are arbitrary we have proved that the perturbed DDS of
o +

(V.l), (V.2) is uniformly completely controllable over T seconds.

Q.E.D.
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Comments: (i) Strictly speaking strong uniform complete controllability

of the FDLS is not required for the proof of the Theorem V.l - uniform

complete controllability suffices.

(ii) Since we have shown that the subspace Jft of controls is sufficient

to steer the system from any x at t to any x. to t +T it should be
J J o o 1 o

possible to give the specific input required to make the required

transfer. This question is taken up next.

V.2. Algorithm for the computation of an input to transfer the perturbed

system from x. € IRn at t to x £ 1 at t + T—,L = q 0 2. Q

Step 0. Set k = 0,x°(t) = x ,u°(t) =9 Vt S [t ,t +T]
c— o n. o o

Step 1. Define

xk+1(t) =<{>(t,t )x +f $(t,x) B(x) uk(r)dxo o Jt
o

ft k k$(t,x) h(xK(x),u (x),x)dx (V.10)
t

0 -1
uk+1(-)=4tfR4> [Xl -«(eo«.t0)x(

t +T
/* o , ,

$(t +T,x) h(xK(x),u (x),x)dx] (V.ll)
t °
o

Step 2. Set k = k+1; go to Step 1

Proposition V.l. (Convergence of Algorithm)

(i) There exists at least one accumulation point (in the L

k °°
sense) of the sequence of (x (•)),- say x (•) with corresponding

K.=J. eo

input u (•) defined on [t ,t ,T] satisfying x (t ) = x and x (t +T) = x. .
oo 00 oooo°°0 1

k oo
(ii) For any accumulation point (in the L^ sense) of (x (•)),_-,

say x (•)» 3 a control u (•) such that x (t ) = x and x (t +T) = x,.
' oo % ' ' —i coN' co^o' o oo^o 1

-18-



Proof. From equation (V.ll) and the fact that

< n-
(i) |h(x,u,t)| = k vx e m11, u€ m 1, t e R

o +

(ii) £ = B (•) <J> (t +T,-) with B (•) and cf>*(t +T,-) bounded on
K. O O

[t ,t +T] (since the FDLS has a bounded realization) we may conclude

k °°
that the (u ),- are uniformly bounded on [t ,t +T] , i. e. for some K-

independent of k

uk(t)| = R\ Vt € [t ,t +T]
1 o o

We use this bound in equation (V.IO) to conclude that the sequence of

k °°
continuous functions(x (*))i n is uniformly bounded on [t ,t +1]:

lc=l o o

i.e. |xk(t)| = K Vt e [t ,t +T],
L O O

k, NN»
for some K_ independent of k and that the sequence (x (•))., is

equicontinuous by the following series of inequalities with

t,s € [t ,t +T] :
o o

k+1 k+1(i) \xL(t) -k^1(s)\ <|*(t,toM(s,to)|1| x

rt

$(t,x) B(x) u (t)dx - $(s,x) B(x) u COdx

+ I $(t,x) h(xk(x),Uk(T),x)dX

fS

$(S,X) h(xk(x),Uk(T),x)dX

rs

(ii) I $(t,x) B(x) u*(x)dx - $(s,x) B(x)u (x)dx

$(t,x) B(x) u (x)dxl + [I-$(t,s)]<K(s,x)B(x)u (t)dx

= K,|t-s| + Kgjl-$(t,s)|. for some K,,K independent of k.
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(iii) |«(t,tQ) - ♦(s,to)|i |xq| =K6|I-*(tfs)|±

(iv) By steps similar to (ii) above

* k k*<t,T) h(xK(x), uK(x),x)dx
fS

$(s,x) h(xk(x), uk(x),x)dx

= K_|t-s| + Kg|l-*(t,s)|. for some K ,K independent of k.

Combining (i)-(iv) we have

|xk+1(t)-xk+1(s)| =(K4+K7)|t-s| +(K5+K6+K8)(|l-$(t,s)|.)

showing uniform equicontinuity By the Arzela Ascoli theorem, there exists

i k.
a subsequence of (x (•))> say (x (•))•_•! converging uniformly on

k °°[t ,t +T]. By an argument similar to the previous one the (u (•))._•,

are uniformly equicontinuous and bounded; so that there exists a further
k.
i °°subsequence of (u (*)).„-, converging uniformly on [t ,t +T]. Let the

limits of these sequences be x (•) and u (•) respectively from the
00 00

continuity of h(x,u, t) we obtain

and

x (t) = $(t,t )x +
ooN 0 0

ft

«(t,x) B(x)u_(T)dx

#(t,x) h(xM(x), Um(x),x)dx

»-(•>• 4^4)"1txi-.
t +T

o

<KtQ+T,x) h(Xoo(x), Uco(x),x)4t

- ♦(to«,tQ)x ]

(V.12)

(V.13)

Using (V.13) in (V.12) we obtain xw(t +T) = xn and it is clear that

uoo(*) is the required control to transfer the system from x to x. on

[t ,t +T]. This proves part (i) of the Proposition.Part (ii) is

procedural and is left to the reader. n
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Comment.

i_ —

(i) Notice that the sequence of (u (*)).. G Hfl, a closed n -
n. fc L

dimensional subspace of Lx[t ,t +T], so that um(.) E Jff, as claimed in

the Proof of Theorem (V.l).

Section VI. Robustness of strong uniform complete controllability under

quasibounded perturbations in the control channel and state

dynamics

In this section we state conditions under which a strongly uniformly

completely controllable (over T seconds) FDLS remains uniformly

completely controllable under unbounded but quasibounded perturbations

separately in (i) the control channel and (ii) the state dynamics.

More explicitly, the FDLS (II.3.5) is said to have a quasibounded

perturbation in its control channel if

x(t) = A(t)x + B(t)u + f(u,t) (VI.1)

n.

where f is a C° function from IR xx]R-»-]Rri and for some constants
T

Y(f), s(f) e ir,

n.

|f(u,t)| = yCf) |u| + 3(f) Vu S ]R x, vt 6 IR+ (VI.2)

By comment (iii) after Definition (IV.1) it follows that (VI.2) is

equivalent to the quasiboundedness (uniformly in t) of f. Further,

it is easy to verify that inf{y(f) :3 3(f) such that (VI.2) holds} is

the quasinorm (uniformly in t) of f. Thus y(f) can be chosen arbitrarily

close to the quasinorm (uniformly in t) of f. The FDLS (II.3-5) is

said to have a quasibounded perturbation in its state dynamics if

x(t) = A(t)x + <J>(x,t) + B(t)u (VI.3)
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where f is a C° function IRn x IR+ Hn which is globally Lipschitz

continuous in its first argument (to guarantee uniqueness of solution

of VI.3), and Jyfy) < °° and 80j») < • such that

|tKx,t)| =Y(*) |x| + $(*) vx e ir11, vt e m+ (vi.4)

As before yW may be chosen arbitrarily close to the quasinorm

(uniformly in t) of ^.

VI.1. Robustness of uniform complete controllability under quasibounded

perturbations in the control channel

We start with an FDLS with a bounded realization which is strongly

uniformly completely controllable over T seconds. Then, define

Y(B) := sup |B(t)|. < « (VI.5)
tern. X

Recalling the definition of the map ^,

rfv-

t +T
o

♦ (t +T,x) v(x)dx Vv e L?([t ,t +T]) (VI.6)
o zoo

o

we define the intrinsic grammian of the system.

Definition VI.1. (Intrinsic grammian)

The intrinsic grammian of the FDLS of (II.3), (II.4) with bounded

realization is the matrix representation of the continuous linear map

£ •£ :IRn -* IRn given by

t +T
r o

W[t ,t +T] = $(t +T,t) *"(t +T,x)dx (VI.7)
0 0 J o o

o

From this definition follows the idea of an intrinsic drift factor of an

FDLS over T seconds.
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Definition V.2.. (Intrinsic drift factor)

The intrinsic drift factor u of an FDLS with bounded realization

over T sees is defined to be

1/2u := sup sup (X a (W[t ,t +x))x/^ (VI.8)
tet r€[0)T] max o o
O T

Comment. (i) From inequality (III.6) it follows that y =

n

f2KT ,1/2
e -1

2K

and thus is finite for a bounded realization. Using these notions', we

have

Theorem VI.1. (Controllability of the system perturbed in the input

channel)

If the FDLS with bounded realization represented by (II.3) is

strongly uniformly controllable (over T seconds) then the perturbed DDS

represented by equations (VI.1), (VI.2) is uniformly completely controllable

(over T seconds) if

X

Y(f) <~f (VI.9)

where X is as defined in Definition (III.4) and u is as defined above,
s

Comments. (i) As may be easily checked by the reader, \i and X of
—~~~~""~~~— Li

Definition (III.4) are related by the inequality

Y(B)u = X (VI.10)
s

so that (VI.9) implies that

*i£l <-i- = 1 (VI.11)y(B) xR 1 K }

where x is the reachability condition number.
R
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(ii) Comment (i) shows that if uniform complete controllability is

preserved then the ratio of the gain of f to the gain of B is small

compared to the inverse of the reachability condition number.

Proof of theorem: Fix x S ]Rn, the initial state and t £ Hx- Let
o o t

x_(t) and x (t) be the state of the FDLS and the perturbed system at
n.

t ^ [t ,t +T] in response to an input u(-) e Lx([t ,t +T]). Then, we

have

x- = A(t)x. + B(t)u, x_(t ) = x (VI.12)
1 1 loo

and

x9 = A(t)x + B(t)u + f(u,t), x0(t ) = x (VI.13)
£. £. ZOO

Defining Ax := x_ - x we have

Ax = A(t)Ax + f(u,t), Ax(tQ) = 6 (VI.14)

By the same estimates as in Section V, and with the same notation

|Ax(to+T)| ^ \L |± llv(.)«

with v(t):= f(u(t),t).

Now, from (VI.2)

lv(.)H = Y(f) Hu(')ll + 6(f)

and

so that

Ax(tQ+T)| < \i Y(f) Bu(.)B + P8(f) VtQ € IR+ (VI.15)

we write
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xl(to+T) -*R<U>+ «eo«'to>xo
and

x2(tQ+T) = (5^+N)(u) + c|.(to+T,to)xo

where N(u) := Ax(tQ+T) is a quasibounded, continuous map (independent

of xQ) with quasinorm = UY(f). As before, to use Theorem IV.1 we

restrict the domain of 3^ to T/\ :=^(]Rn) and define jf"1 as before.
Then £ N :7Y\ + 7f\ is a continuous quasibounded map (between finite

dimensional Banach spaces and hence compact) with quasinorm = yy(f) |*C I-

Further, |i [. = -=- . By the same arguments as in Theorem (V.l)
s

uniform complete controllability over T seconds is guaranteed if

UV(f) ,
I Q.E.D.
s

VI.2. Robustness of uniform complete controllability under quasibounded

perturbations in state dynamics

Theorem VI.2. (Controllability of the system perturbed in state dynamics)

If the FDLS with bounded realization represented by (II.3) is

strongly uniformly completely controllable over T seconds then the

perturbed system represented by equations (VI.3), (VI.4) is uniformly

completely controllable over T seconds if

Y(*) < \it; (VI. 16)

Furthermore if the zero solution of the FDLS with no input is

uniformly exponentially stable, with

< "CAT*(t+x,t)|. =ke A Vt,x e IR ' (VI.17)

then the perturbed system is uniformly completely controllable over

T seconds if
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/CA
YOJO < 1/? (VI.18)

^X0T1/ZkA

If in addition the FDLS is time invariant and exponentially stable,

then the perturbed system is uniformly completely controllable, if

X^L> < I fVI 1911/2 „ a/2 (VI.19)
X . (A+A*) *' 2x„T
mm ' *R

where X . (A+A*) is the smallest eigenvalue of A+A* £ IR
min °

nxn
n

Comment. Equation (V.19) supports the inituitive notion that in some

sense uniform complete controllability should be preserved if the gain

of if> is small compared to the "gain of A." The theorem shows that "gain

of A" should be replaced by the "gain of the symmetric part of A."

Proof of theorem. Fix t £ IR , and x G Rn, the initial state. Let
o+o

x-j^t), x2(t), Ax(t) be defined as in the proof of Theorem (VI.1) with

xx = A(t)xx + B(t)u, x1(tQ) = xq (VI.20)

x2 = A(t)x2 + ip(x2,t) + B(t)u, x2(tQ) = xq (VI.21)
and

Ax = A(t)Ax + i|;(x9,t), Ax(t ) = 9 (VI.22)

By the same arguments as in Theorem (VI.1)

sup |Ax(x)| » uyOIO I'x (•)" +UB0/O (VI.23)
x^[t ,t +T] L

1 o o

and

«x2(.)ll =T1/2[ sup (|x (t)|+|Ax(t)l)] (VI.24)
tS[t t +T]

o o

It is also relatively simple to realize that
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<

sup |x, (t)| = Xilu(-)H + sup U(t,t )x I (VI.25)
t€[t t+T] l L t€[t ,t +T] ° °

o o o o

Using the estimates from (VI.25), (VI.24) in (VI.23) and noting that

(VI.16) -> uyOJOT172 < 1/2 we obtain

sup |Ax(t)| =2yY(^)T1/2 XT Ilu(-)D + c. (x ) (VI.26)
t€[t ,t +T] L 1 o

o' o J

where c.(xQ) £ IR does not depend on Hu(•> B but does depend on x .

As before, we may writje

x9(t +T) = dCu + N (u) + $(t +T,t )x .
I o R x o o' o

o

where N (u) := Ax(t +T) is a quasibounded continuous map with quasinorm

< °l/2 ~= 2uyOI>)T Xl from (VI.26) and uniform complete controllability over

T seconds is guaranteed for the perturbed system by Theorem IV,1 if

2UY0JOT172 \^\± <1

or if

Y(*) < ^TT? (VI.16)
2XRUT1/2

(VI.17) and (VI.18) are procedural and are left to the reader. Q.E.D.

Clearly the results of Theorems (VI.1) and (VI.2) can be combined

to state a condition for the uniform, complete controllability of a

system perturbed both in state dynamics and control channel as

x = A(t)x + *(x,t) + B(t)u + f(u,t) (VI.27)

where ^ and f satisfy the conditions listed previously. Then, we have
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Theorem VI.3. (Controllability of the system perturbed in the input

channel and state dynamics)

If the FDLS with bounded realization represented by (II.3) is

strongly uniformly controllable over T seconds then the perturbed DDS

represented by (VI.27) is uniformly completely controllable over T

seconds if

*^+2y(*)pT1/2Xr[1 +4^ ]<1 (VI.28)
X R X
s s

Comment. (VI.28) in particular implies that

^|} +2y(«0hT1/2(1 +̂ ) <1/Xr (VI.29)

Proof: Is routine and omitted for brevity. n

VI.3. Algorithm for the computation of an input to transfer the

perturbed system from x G Rn at t to x. G Hn at t + T.
•* ' o o 1 o

Under the conditions of Theorems (VI.1), (VI.2), and (VI.3)

algorithms yielding at their accumulation points inputs belonging to
n.

the subspace % of LX([t ,t +T]) for making the requisite transfer may

be obtained. To keep the section simple we prove the existence of

limit points of the algorithm model for the case of the input perturbed

system satisfying the conditions of Theorem (VI.1). The same algorithm

model may however be used for the other two cases as well.

Algorithm Model

Step 0. Set k = 0; x°(t) = x ,u°(t) =8 ,Vt € [t ,t +T]
— o' x.* o o

1

Step 1. Define
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k+1
xKTX(t) = $(t,t )X +

' o o

ft k
*(t,x) B(x) uK(x)dx.

t
o

rt k$(t,x) f(u*(x),x)dx (VI.30)
t
o

t +T
f °k+1, x j* ,j j»* -1

Step 2. Set k = k+1; go to Step 1.

Proposition VI.1. (Convergence of Algorithm)

(i) There exists at least one accumulation point (in the L »sense)

of the sequence of (x (*)),„1 say x^O) with corresponding input uoo(«) defined

on [t ,t +T] satisfying x00(t ) = x and x (t +T) = xn for the control u (•)•
o o o o » o 1 eo

\e oo
(ii) For any accumulation point (in an L sense) of (x (•)), -, say

x (•) ^ a control u (•) such that x (t ) = x and x (t +T) = xn for
oo -i oov ' WOO » O 1

the control u (•).

*(t0+TfT) f(uk(x),x)dx]
o

Proof. The proof proceeds through a sequence of claims.

k °°Claim 1. The sequence (u (*))i =1 is bounded in L„ norm by

(|x1|+|<J,(to+T,to)xo|)(Xs-pY(f))"1 <-(by (VI.10)).

Proof. The (easy) proof is by induction, n

Claim 2. The sequence (u (•)),-, is bounded in La, norm.

Proof. sup |uk(t)| = X"1 y(B) sup |$(t+T,x)[. Uuk(*)
t€[to,to+T] s tqt0,t0+T]

because u (•) e ^ (Hn)

Since the sequence of norms (Hu (OH), -. is bounded by Claim 1, the

sequence (u (O)^™-, is bounded in L norm. n
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k °*Claim 3. The sequence (x (•)),-, is bounded in L norm and is uniformly

equicontinuous.

Proof. Follows from the arguments of Proposition (V.l) and Claims 1 and 2

a

Now, the proof of the proposition follows exactly the same lines as

that of Proposition (V.l). n

Section VII. Robustness of Strong Uniform Complete Controllability under

Unbounded Lipschitz Continuous Perturbations

In this section we examine the uniform complete controllability over

T seconds of an FDLS perturbed as in equation (VII.1)

x = A(t)x + B(t)u + eh(x,u,t) (VII.1)

n.

with e Gl and h:IRnx]R L x l •> Rn is a Lipschitz continuous
+

function satisfying

h(8 ,9 ,t) = Q Vt e m (VII.2)
n n. n + N '

l

n.

and for some c € IR , Vx € IRn, Vu,v £ IR x and Vt € IR

|h(x,u,t) - h(y,v,t)| = cju-v| + cjx-y| (VII.3)

Given that the FDLS is strongly uniformly controllable (in the DDS of

(VII.1) with e = 0) we will prove the existence of an interval I centered

at 0 so that the system of (VII.1) is controllable for all e G I. It

is of course clear that FDLS can actually lose the property of complete

controllability from e large as is evidenced by the scalar system

7~2 2
x = u + e/u +x x,u S ]R

- 30 -
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losing complete controllability for |e| =1 (indeed, in that case

V(x,u)x = 0).

In Section (VII.1) we estimate the interval I on which the

perturbed system remains uniformly completely controllable and in

Section (VII.2) we give an algorithm which converges to a (unique) element
n.

u of WCl ([t ,t +T]) required to transfer the system from x to x..
ZOO O J.

VII.1. Estimate of the interval I on which the perturbed system is

uniformly completely controllable (over T seconds)

Theorem VII.1. (Controllability of the perturbed system)

If the FDLS with bounded realization represented by (II.3) is strongly

uniformly completely controllable over T seconds then the perturbed

system represented by (VII.1), (VII.2), (VII.3) is uniformly completely

controllable on [t ,t +T] V e€] -e , e [ where
u o o J oo

~ =XR-2coyT1/2(l+Y(B)X X"1 sup sup |«(t +T, tQ+ T) | (VII.5)
o t sir , x£[o,t]

o + L

Proof. Fix t € IR • x G IRn. Define x. (t) , x„(t), Ax (t) as before with
o+o 1 2

xx = A(t)x1 + B(t)u, x1(tQ) =» xq (VII.6)

x9 = A(t)x0 + B(t)u + eh(x0,u,t), x„(t ) = x^ (VII.7)
Z Z Z ZOO

and

Ax =A(t)Ax + eh(x2,u,t), Ax(t )=8 ' (VII.8)

Using (VII.3) and the techniques of the previous section we obtain

sup |Ax(t)| = yT1 ec sup {|Ax(t)|+|x.(t)| (VII.9)
te[to,tQ+T] ° te[to,to+T]

+ |u(t)|}
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Note that |h(x2,u,t)| = |h(x2,u,t) -h(x;L,u,t)| + |h(x1,u,t)|

so that from (VII.2) and (VII.3)| h(x2,u,t)| = C |x(t)| + cQ|x1(t)|

+ c |u(t)|. Using the estimate

< ~

sup |xt(t)| = X. llu(.)H (VII.10)
tG[to,to+T]

1/2
and the fact that e < e f> ec Ty< 1/2 we obtain from (VII.9) that

sup |Ax(t)| =2ec yT1/2{Cl(x )+ XTilu(-)N
nr .™t ° 1 O Lt^[t ,t +T]
1 o* o

+ sup |u(t)|> (VII.11)
t€[t ,t +T]

o o

where c-^(x ) is some constant depending on x but not on u.

Also, as before, we define

N u := Ax(t +T)
x o
o

we prove that N is quasibounded on "7]/\.
o

On 7ft, sup |u(t)| = y(B) ~ _1 sup sup |$(t +T,t +x) L

l|u(Oll
t^V^+T] s toS'R+ t€[0,T]

(VII.12)
Hence N is a quasibounded, continuous map on "Tfl with quasinorm less

o

than or equal to

1/2 1/9 ~1/9 ~ l SUP SUP 1*0= +T,k+x|.}2£coyT1/2T1/2{ XL1/2 +Y(B)XS-1 toeIR+ xe[o,T] ° ° 'l

Clearly, theorem (V.l) guarantees uniform complete controllability of the

perturbed system if equation (V11.5) is satisfied.

Q.E.D.

- 32 -



Comment.

In the instance that

. ,< -K. (t-x)
|<f>(t,x)|= CAexp A

for some C^, KA positive constants (i.e. the zero solution of the zero

input FDLS is uniformly exponentially stable), equation (VII.5) may be

restated as

"~ Y(B)CA<^
e =

° XR /2 c CA
o A

{1 +
XTX
L s

} (VII.13)

VII.2. Algorithm for the computation of an input to transfer the perturbed

system from x £ IR at t to x, £ ln at t + T—j- 0 0 1 0

Step 0. Set k = 0, x°(t) = x ,u°(t) =6 Vt € [t ,t +T].
c— o' n. oo

l

•k+1
Step 1. Define x (•) to be the state trajectory on [t ,t +T] satisfying

the differential equation

xk+1 =A(t)xk+1 +B(t) +ch(xk+1,uk>t))Xk+1(C )=

i.e. xk+1(t) =«(t,t0)xo + rfc k
♦(t,t0) B(x) uK(x)dx

t

x
o o

rt

+ £ $(t,x) h(xk+1(x), uk(x),x)d x

Also, define

uk+1(.) =<tfR<rlCxl " •(t«.t0)«<

+ e

t +T
o

♦(t +T,x) h(xk+1(x),uk(x),x)dx]
o

Step 2. Set k = k+1; go to Step 1.
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Comments. (i) The algorithm proposed above has interesting heuristics

— that of iterated "missed distance correction."

(ii) The reader will note that this algorithm is different from

those proposed in Sections V and VI, as a comparison of equation (VII.14)

with equation (V.IO) and equation (VII.15) with equation (V.ll) will show

(x (•) is used in equation (VII.14) and (VII.15) and xk(.) in equations

(V.IO) and (V.ll)).

Proposition VII.1. (Convergence of Algorithm)

If the conditions of Theorem VII.1 are satisfied then the algorithm
n.

given above converges to aunique uj.) €i^1 ([t0,tQ+T])which transfers

the system from x at t to x, at t +T.
o o 1 o

k+1 k k+1 k
Proof. Define Axl := x - x and Au := u - u . Then, from (VII.14)

we have

sup |Ax. (t)| = X IIAu. A')W
t€[t ,t +T] * L k_1

o* o J

1/2+ ec T " [ sup |Axk(t)|
te[to,to+T]

+ sup |Au ,(t)|] (VII.16)
t€[t ,t +T] K_1

o* o

and from (VII.15) we have

1 I/O

||A„ (.)|| =_ £C T y[ sup (|Ax^(t)| + [Au, ,(01)1 (VII.17)
X ° t€[t ,t +T] * *C~1
s o* o J

1/2 1Using the fact that (VII.15) => ecqT 'y<y in (VII.16) we have

sup |Ax.(t)| = 2XJlAu (.)» + sup |Au, .(t)| (VII.18)
t€[to,to+T] * L k"x t€[to,to+T] ^
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Using (VII.18) in (VII.17) and inequality (VII.12) for sup |Au, (t)|
t€[t ,t+T]

o o

i/2 ^B) SUP |«(t -PT,T)|
„ 2eC TX/ u t€[t ,t +T] ° 1[|A (.)|| * _^ {l + ?_J>^

K X L X k-lv
s s

i.e. llAuk(.)H s pilAuk_1(.)

where by.equation (VII.17) p < 1. Hence, by the contraction mapping
n.

theorem applied to Ln"L([t ,t +T],lim IIAu, (-)W = 0 and the algorithm
Z O O , K.

converges to a unique limit point say uw(0 ^ /Kin the L« sense. From

equation (VIII.16) and (VIII.15) and the continuity of h it is clear

that the control u (•) is the control that drives the system from x at
oo •> o

t to x_ at t +T. It is not difficult to show that the convergence is

also in the L sense since for all elements u €= 7VL
00

Y(B) sup |*(t +T,x)|.llu(-)«
T€[t t +T] ° X

sup |u(t)| = 2__2 (VII.12)
t€[t t +T] X

0 0 s _,
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Section VIII. Characterisation of zero-input observability for FDLS

Definition VII.1 (Zero-input uniform complete observability)

A differential dynamical system represented by equations (II#1),

(II*2) is zero-input uniformly completely observable if ^ T > 0 such that

a) Vt £ IR+ the zero-input response of the DDS with initial state
n

x(t ) = x say y belong to L« ° ([t , t +T]), and b) this response y
u 1 1 zoo 1

is not identical to y2, the zero-input response with any other initial

state x(t ) = x0 ^ x,.
o z l

To obtain a characterization of zero-input uniform complete observability

for the FDLS with bounded realization represented by (II.3), (II.4) we define

for given t ^ IR , j£ to be the linear map (called the observability map)
n

from IRn to L °([t ,t +T]) defined by
Z O O v

afQx =C(0*(«,t^,x (VIII.1)
* n

The adjoint of £ denoted by i is the linear map from L °([t ,t +T])
o o zoo

to IR defined by

t +T

<£ou = j $*(T,tQ))C*(T)y(x)dx) (VIII.2)
o

As before, the boundedness of the realization guarantees that ^ and
*

^ are both continuous linear maps.
o

Theorem VIII.1 (Characterization of Zero Input Uniform Complete Observability

for FDLS).

The FDLS with bounded realization described by equations (II.3) and

(II.4) is zero-input uniformly completely observable ^ Vt e IR, the
n o +

observability map £ : IRn ->• L.°([t ,t +T]) is injective *> Vt S m
o zoo o +

the composition of the adjoint of the observability map and the observability

map £0 X : &n •*- IRn is a bijection. a
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Definition VIII.2 [Observability grammian].

Given t £ IR the matrix representation of the linear map

j> * tj> n n
<oZ.0 : ^ "*" ^ is the observability grammian, denoted W[t ,t +T]

given by

t +T
r o

WQ[to,to+T] = I **(x,t P*(x)C(x)<Kx,t )dx (VIII.3)
11

o

The FDLS with bounded realization is zero-input uniformly completely

observable over T seconds iff W [t ,t +T] is nonsingular Vt € ]R.

However, its smallest eigenvalue may tend to 0 as t -»• ». As before, we

define a slightly stronger form of observability.

Definition VIII.3 (Zero-input strong uniform complete observability).

A FDLS with bounded realization represented by (II.3) and (II.4)

is zero-input strongly uniformly completely observable if ^ T, v > 0

such that Vt £ IR_
o I

W [t ,t +T] > v2I. (VIII.4)
o o o — s v '

Let v be the largest v satisfying (VIII.4). a
s s

Comment: As before, the boundedness of the realization guarantees that

3 vT £ ET such that Vt € IR,
—' L + o +

v?I > sup W [t ,t +x] (VIII.5)
L "x€[0,T] ° ° °

The next proposition shows how to identify the initial state of an

FDLS at time t given the undriven output of the uniformly

completely observable FDLS on [t ,t +T].

Proposition VIII.1 (Formula for initial state)

Given the zero-input response y on [t ,t +T] of a zero-input

uniformly completely observable FDLS with bounded realization, the

initial state x(t ) = x is given (uniquely) by
o o

= (1*£ )_1^*y (viii.6)X , .. ._ .
O 0 0

Q
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Section IX Robustness of zero-input strong uniform complete observability

under perturbations in the state dynamics and output channel

In this section, we state conditions under which a zero-input strongly

uniformly completely observable (over T seconds) FDLS remains uniformly

completely observable under Lipschitz continuous perturbations in the

state dynamics and continuous perturbations in the output channel.

Specifically, we restrict attention to zero-input observability of the linear

system perturbed in state dynamics represented by

x = A(t)x +Mx,t) (IX.1)

y = C(t)x (IX.2)

where if is aC function: IRn*IR+ -»• IRn which is Lipschitz continuous

in its first argument to guarantee uniqueness of solution of (IX.1) with

<Ken,t) = en vt e irx (ix.3)

and for some y(^) < °°

|^(x2,t)-^(x,t)| 4 y(i|;)|x2-x11 Vt £1+ , ¥xx»x2 G^
(IX.4)

The system perturbed in the output channel is represented by

x = A(t)x (IX.5)

y = C(t)x + f(x,t) (IX.6)

where f is a C function: IRnx IR ->• lRn with

f On,t) = en vt e m+ dx.7)
o

and

lf(x,t)[
sup sup r~j =: Y(f) < • (IX.8)
ten _TOn 'Xl

+ x=IR
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Further, let

Y(C) := sup |c(t)| < « (IX.9)
t€m+ i

IX.1 Robustness of observability

Theorem IX.1 (Observability of the system perturbed in state dynamics)

Given that the FDLS with bounded realization represented by

(II.3), (II.4) is zero input strongly uniformly completely observable

then the perturbed system represented by (IX.1), (IX.2) (for the

instance that the input is zero) is uniformly completely observable

over T seconds if

YW <2»TY(C)Y(») <«.10)
where

Y($) := sup sup |$(t ,t+x)|. (IX.11)
t em t€[o,t] ° ° 1
o + * J

Proof. Let x-(t), x«(t) be the state of the FDLS and the perturbed system

respectively, i.e.

and

x. = A(t)x1} x. (t ) = x (IX.12)
1 1 1 O 0

x2 = A(t)x2 +iKx2,t), x2^0) = x0 (IX.13)

With Ax := x? - x_, we have

Ax » A(t)Ax + iKx„,t), Ax(t ) = 0 (IX.14)
z on

and

Tl/2
sup |Ax(t)| 4 y yU0 [ sup |Ax(t) |+y($) |x |

t€[t ,t +T] t€[t ,t +T]
o o o o

vt e n, (ix.15)
o +

by the same arguments as before.
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c1-'*:^"1*:^-)
t
o

k+1
<K-,x)<Kx ,x)dx] (IX. 24)

Step 2 Set k = k + 1 and go to Step 1.

Proposition IX.1 (Convergence of Algorithm)

Under the conditions of Theorem (IX.1) the algorithm given above

converges to a (unique) limit which is the required initial state.

Proof: The proof follows the same lines as the proof of the contraction

napping theorem and it is obvious that the limit of the sequence of

*y (^pt.n namely yw(«)=y(*) • The details are omitted for brevity. n

Comment (i) Similar algorithms can be obviously stated for systems

satisfying Theorems (IX.2) and (IX.3).

Section X An application-emergency control of an interconnected power

system

In this section we state a model for an interconnected power system

and show how the results of Section V may be used to formulate control

laws for steering the power system to an equilibrium point in the event

of unanticipated line breakages. As we point out in Section X.l, the

possibility of steering of the power system in the absence of constraints

is easily established. In the event of constraints on the capacity of

generation, frequency deviation of the generators, and the thermal

(heating) limits of the lines the problem of steering the system is non-

trivial and this is discussed in Section X.2.

X.l Model of interconnected power systems and its controllability

The model we use for an interconnected power system is standard and

may be found for instance in Elgerd [8].We restate the model and

assumptions explicitly to establish the notation. The power system is

assumed to consist of a network of transmission lines interconnecting

buses representing nodes of generation and supply.
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1/2
(IX. 10) implies in particular that y(ty)}iT <; 1/2 [since

Y (C)y(*)T >. \ L v ] so that (IX.15) yields

sup |Ax(t)| 4 2V y($)T1/2y('4;)|x |.
t€[t ,t +T]

o o

n
oIf y1(«) and y2(») ^ l2 ([tQ,tQ+T]) are the outputs of the FDLS and the

perturbed system respectively then

!|y1(-)-y2(0iI <2y yOJOy(c)t y($)|xJ (ix.16)

Now, y (•) = / (x )
1 0 0

and we represent

y2(0 = £U) +N(x )
Z 0 0 o

n

where N:IR -»• L2 ([t ,t +T]) is a continuous map. From the fact that

i|>(6 ,t) = 6 Vt we have N(9 ) = 0 and from the fact that t|> is Lipschitz
n n n

we have from an argument similar to that leading to (IX.16) that

!In(x2)-n(Xi)II <2y yCIOy(c)t y(*)|x2-X;l|
n

Given that the map ^ is injective from IRn to L °([t ,t +T]) (and
o Zoo

in fact, a bijection from IR to ^ (IR )) we demand that £ + N be one

to one. By the contraction mapping theorem (see for example Marsden [17]),

^ + N is one to one if

2u yOJOy(c)t y(«) y"1 <1 (IX.17)
s

This completes the proof of the theorem. Q.E.D.

Theorem IX.2 (Observability of the system perturbed in the output channel)

If the FDLS with bounded realization represented by (II.3), (II.4)

is zero input strongly uniformly completely observable over T seconds,

then the perturbed system represented by (IX.5), (IX.6) (for the zero

input case) is uniformly completely observable over T seconds if
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Y(f) <-y7§ (IX.18)
TX/ y(*)

Proof: is routine the left to the reader.

The results of Theorems (IX.1), (IX.2) can be combined for systems

having nonlinear perturbations both in the state dynamics and output

channel, that is

x = A(t)x + <Kx,t) (IX.19)

y = C(t)x + f(x,t) (IX.20)

with* and f satisfying (IX.3), (IX.4) and (IX.7), (IX.8) respectively.

Theorem IX.3 (Observability for the system perturbed both in state

dynamics and output channel).

If the FDLS with bounded realization represented by equations

(II.3), (II.4) is zero-input uniformly completely observable over T seconds

then the perturbed system represented by (IX.19), (IX.20) (for zero input)

is zero-input uniformly completely observable over T seconds if

1/2 1/2
Y(f)T y(«&)U+2uy(<I0T } + 2Y(C)TYCJ0U Y($) < Y (IX.21)

s

Proof: The proof is routine and omitted. n

IX.2 Algorithm for the identification of the initial state x of the—= = Q

perturbed system given the zero input response on [t ,t +T].

Algorithm

n

Given output y € L.°([t ,t +T])
Z 0 0

Step 0 Set k= 1, xl = (£*Z )~l £*y
U 0 0 o

Step 1 Define

ik+1 =A(t)xk+1 +*(xk+1>t), xk+1(t )- xk (IX.22)
o o

k+1 „, N k+1
y = C(t)x (IX.23)
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Al. (Generators at each node). We assume that there is a generator

coupled to each bus.

As a consequence, the state space of the interconnected power

system is a vector space. If there were load buses (i.e. without

generators) in the network then nonlinear algebraic constraints on the

angles of the generator buses would be present, and hence the state

space of the interconnected power system with load buses may be a

manifold, under appropriate transversality conditions.

A2. (Power delivered by the transmission line). If two buses i and j are

connected by a line of susceptance B.. (at the synchronous frequency of the

system) and conductance G.., and if 9. and 9. are the phase angles of the
13 i 3

buses with respect to a synchronously rotating reference frame, then the

average power leaving bus i is given (approximately) by B.. sin(9.-9.)

+ G (l-cos(9 -9.)) (in per unit terms; assuming bus voltage magnitude

to be lper unit and the average power leaving bus j is given by

B sin(9 -9±) + G..(l-cos(9 -9.)). Notice that the sum of these two

powers is always >. 0 and represents the power lost (to heat) in the line.

A3. (Swing equations of the generators).

The classical swing equation model represents the dynamics of a

synchronous generator. For our purposes, the transient reactance of

the generator is neglected. Thus, for the jLth generator we have

M.o>. + D.w. =-£ [B, .sin(9 -9.) + G. .(l-cos(9.-6.) ]+ P.

(X.l)

where

8± = u±f i - l,...,n (X.2)

M,,D. = moment of inertia, damping constant with appropriate units

oj. = angular speed of generator shaft
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P. = net input power at bus i. (Mechanical power input minus

electrical demand at bus i.)

Note that Y\ [B.. sin(9.-9.)+G..(l-cos(9.-9.))] is the outputrf± ij 1 J ij * J
electrical power from bus i.

Equations (X.l), (X.2) constitute a state space model (DDS) for the

interconnected power system. We wish to study the controllability of

the DDS described by the 2n differential equations (X.l) and (X.2).

Note that the model is time-invariant, hence complete controllability,if

any,will be uniform. It is relatively simple to realize that the DDS

described by the 2n differential equations (X.l) and (X.2) is completely

controllable. In fact, given any trajectory in the state space

(9,oi) £ IR .on [0,T] with the added requirement that 9_ - w,there

exists a vector of controls P_ on [0,T] so as to steer the system along

that trajectory and this vector of controls is given explicitly by

equation (X.l) upon substitution of the desired trajectory (9^j).

However, in a physical power system there are constraints on the

power generation capacity of each of the generators, so that controllability

as we have established it so far for the interconnected power system is

not very useful from a practical standpoint. Also, there are constraints

on the initial and final values of the power generation P S iRn

arising from the need to steer the power system to a specific equilibrium

point. These constraints are described precisely in the next section

and constrained steering (controllability) described therein.

X.2 Applications to the emergency control of power systems

Without going into the details of the exact definitions of

emergency control of power systems (for these the reader is referred to

Fink and Carlsen [26], Blankenship and Fink [27]) we will try to state

as clearly as possible the control policy for an interconnected power

system in theevent of line breakages between buses.
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In the event of line breakage the problem of emergency control

involves steering the power system from the pre-disturbance equilibrium

state vector (9 ,0) - IR at time 0 to a post-disturbance equilibrium

state vector (0 ,0) G ir at time T with the constraint that the vector

of power injections at time T be the same as that at time 0.

More precisely: at the pre-disturbance equilibrium for a vector of

constant power injections if^ IR , the state of the power system is the

vector(9 ,0) G IR satisfying the equilibrium load flow equations

*J =I [B..Sin <0]vej) +6.. (1-Cos(9^-0J] i= ,...,n
(X.3)

and

oj=0 i = l,...,n. (X.4)
x

Of course, one of the 9.'s in equation (X.3) may (arbitrarily) be

chosen to be zero. With this in mind, it is assumed that for fixed* P ,

the constant solution (9 ,0) of equations (X.l) and (X.2) is asymptotically

stable in the sense of Lyapunov. If, after line breakage, there exists a

2
new asymptotically stable solution 9 of the load flow equations (with

the B.., G.. replaced by B ,.. G .. ), it is desirable (for reasons of optimal
13 13 ij' 13

load dispatching power supply commitments) to steer the system from (9 ,0)

2 1
to (e ,0) through the p.' s. The constraints are that p.(0) = p. and

P(t)=PVt>
i i = T for i=l,..., n (so as to keep the power system in the

2
equilibrium stable state (9 ,0) Vt > T) and P.(«) is smooth function of time

r

(C for some r). To account for the new constraint we introduce a new

set of variables v^lR with

p. = v. i = l,...,n (X.5)

so as to make each P. a state. We augment the DDS of (X.l), (X.2) (with B..
i 3-3 :

G.. replaced by B!.,GI.) with the equations (X.5). The sate space is

now of dimension 3n. To check the completely controllability of the DDS

described by equaitons (X.l), (X.2) and (X.5) through the v,we notice

that the "nonlinear part" of equations (X.2), namely
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Y B.. sin(9 -9.) + G..(l-cos(9 -9.)) is bounded by £ (IB..I+2G..)j^± lj i 3 13 i 3 7 ff± '13 ' 13
so that the DDS of equations (X.l), (X.2) and (X.5) is completely

controllable if the linear system described by the equations

MA +Vi =?i (x*6)

e± = w± (X.7)

P± = v± , i = l,...,n (X.8)

is completely controllable. It is easy to check that this corresponds

to n decoupled FDLS each in controllable canonical form and hence

controllable VT> 0. Hence the DDS of equations (X.l), (X.2) and (X.5)

is uniformly completely controllable VT > 0 and there exists a v = C

(for time-invariant systems the functions in ofD(IR ) are also C ) so
R

11 2 1
as to drive the DDS from (9 ,0,P ) to (9 ,0,P ) in T seconds. From

the power system operators viewpoint the resulting trajectory of P(t)

is the required control.

Often, however, the problem of steering the system from (9 ,0,P )

2 1
to (9 ,0,P ) has added constraints: the thermal capacities of the lines,

the maximum possible frequency deviation of the generators (oj.) before

frequency protective devices trip, the maximum generating capacity of

the generators, etc. All of these introduce affine constraints on the

region of IR in-which the (9,oj,P) trajectory can lie. For instance if

C. is the thermal (heating) limit of the line between buses i and j;

|9.-9.| <. sin "UC. .-2G. .) JB. ,)could be the constraint on the state space
1 i 3 13 13 *J

of 8,'s. It is required that the control law v(*) keep the trajectory

in the desirable region of the state space while making the transfer.

It is clear that the desirable region of the state space is a collection

11 2 1
(possibly more than one) of polytopes. If (9 ,0,P ) and (9 ,0,P ) both
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belong to the same polytope we contend that it is possible to steer the

11 2 1
system from (9 ,0,P ) to (9 ,0,P ) with the trajectory staying inside

the compact polytope.

Proposition X.l (Emergency control of the power system)

Given two points (g^OjP1) € ]R3n and (g^O,?1) S ]R3n belonging

to the interior of a compact polytope (P of IR as initial and final states

of an interconnected power system satisfying (X. 1), (X. 2) and (X.5)

(with B. G replaced by 3T ,G\) there exists a control law v (•) defined on
J J 11 2 2

[0,T] which steers the power system from (9 ,0,P ) to (9 ,0,P ) e interior

v keeping the trajectory inside (P,Vt ^ IR .

Proof: Let 4) be the straight line connecting (9 ,0,P ) and (9 ,0,P ).

Since (Tisa convex polytope, belongs to the interoir of P Now with center

(9j. ,0,P ) let 6_ be a ball (Euclidean norm) lying wholly in^(such A ball exists

since (91,0, P1)is interior f. Let jIH 3B = (e >w .?') where' 3B, denotes the

boundary of fc^.. Let g2C fibe a-ball centered at (93,oj3,P-3)intersecting J in
(9 ,o) ,P )and so on. Clearly from the compactness, of If it follows that there

exists a finite sequence of balls in P say d3,,—,£>„ constructed as

2 1
above with (9 ,0, P ) ^ (g . We will choose a (finite) sequence of

1 Ncontrols v ,...,v defined on [0,1-], [T ,T +T2],... so as to keep the

trajectory in the balls $3..,(&«, etc. and to steer the power system from
1 1 333 333 444(9 ,0,P X) to (§ ,oj ,P •*), (? ,oj ,P ) to (9 ,w ,P ), etc. But, it

is easily verified from the estimates in the proof of Theorem (V.l)

(inequality (V.7) and equations (V.7)) that T-jT^,... can be chosen so

as to make this possible. n

Section XI Conclusions

In this paper we have shown that the uniform complete controllability

of linear time varying finite dimensional systems is robust against a
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wide range of addiitve nonlinear perturbations, both bounded and

unbounded which are not "too large". A measure of the degree of

robustness that we are able to establish by our methods seems to be

the reachability condition number defined in Section III. This is

in keeping with standard numerical analysis intuition. Uniform zero-input

observability of linear time varying finite dimensional systems is also

shown to be robust against nonlinear perturbations in the dynamics and

output channel. The nonlinear perturbations are restricted in some

ways: the perturbations in the dynamics keeps the origin to be a fixed

point of the flow (of the undriven "state" equation) and the additive

perturbation in the output channel is unbiased (i.e. the origin of the

state space is mapped to the origin of the output space)- but the

necessity of this restriction is obvious. Finally, the techniques of our

paper have been used to yield some preliminary results on the emergency

control of power systems - which had been so far an analytically

intractable problem. Further results in this direction are expected.
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Appendix. Fixed Point Theorems

A.l. The Rothe Fixed Point Theorems

Let F: K C ^-•^'be a compact map defined on a closed ball K in a
Banach space X* • If F(3K), the image of the boundary 3K of K, lies in

K there exists at least one fixed point of the mapping F.

The Rothe fixed point theorem can be proved using the Schauder

fixed point theorem, namely.

A.2. The Schauder Fixed Point Theorem

Let F : K C/C+ X-De a compact map defined on a closed, convex

subset K of a Banach space ^ . If the image F(K) C K then F has at least

one fixed point.
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