
 

 

 

 

 

 

 

 

 

Copyright © 1979, by the author(s). 
All rights reserved. 

 
Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 
lists, requires prior specific permission. 



PRECISIATION OF HUMAN COMMUNICATION

VIA TRANSLATION INTO PRUF

by

L. A. Zadeh

Memorandum No. UCB/ERL M79/73

23 November 1979

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



Precisiation of Human Communication via Translation into PRUF

L. A. Zadeh*

Abstract

It is suggested that communication between humans—as well as between

humans and machines—may be made more precise by the employment of a meaning

representation language PRUF which is based on the concept of a possibility

distribution. A brief exposition of PRUF is presented and its application

to precisiation of meaning is illustrated by a number of examples.

Computer Science Division, Department of Electrical Engineering and Computer
Sciences and the Electronics Research Laboratory, University of California
of California, Berkeley, California 94720. Research supported by the
National Science Foundation Grants MCS77-07568 and MCS79-06543.



1. Introduction

Of the many ways in which natural languages differ from synthetic languages,

one of the most important relates to ambiguity. Thus, whereas synthetic

languages are, for the most part, unambiguous, natural languages are maximally

ambiguous in the sense that the level of ambiguity in human communication is

usually near the limit of what is disambiguable through the use of an external

body of knowledge which is shared by the parties in discourse.

Although vagueness and ambiguity can and do serve a number of useful

purposes, there are many cases in which there is a need for a precisiation

of meaning not only in communication between humans but also between humans

and machines. In fact, the need is even greater in the latter case because

it is difficult, in general, to provide a machine with the extensive contex

tual knowledge base which is needed for disambiguation on the syntactic

and semantic levels.

The traditional approach to the precisiation of meaning of utterances in

a natural language is to translate them into an unambiguous synthetic language

—which is usually a programming language, a query language or a logical

language such as predicate calculus. The main limitation of this approach

is that the available synthetic languages are nowhere nearly as expressive

as natural languages. Thus, if the target language is the first order

predicate calculus, for example, then only a small fragment of a natural

language would be amenable to translation, since the expressive power of

As is pointed out in [81], ambiguity, vagueness and fuzziness are not coex
tensive concepts. Specifically, a proposition, p, is fuzzy if it contains
words with fuzzy denotations, e.g., p * Ruth has dark skin and owns a red
Porsche. A proposition, p, is vague if it is both fuzzy and ambiguous in
the sense of being insufficiently specific. For example, the proposition
p - Ruth lives somewhere near Berkeley is vague if it does not characterize
the location of residence of Ruth with sufficient precision. Thus, a
proposition may be fuzzy without being vague, and ambiguous without being
fuzzy or vague.



first order predicate calculus is extremely limited in relation to that of a

natural language.

To overcome this limitation what is needed is a synthetic language

whose expressive power is comparable to that of natural languages. A candi

date for such a language is PRUF [81]—which is a meaning representation

language for natural languages based on the concept of a possibility

distribution [80].

In essence, a basic assumption underlying PRUF is that the imprecision

which is intrinsic in natural languages is possibilistic rather than probabi

listic in nature. With this assumption as the point of departure, PRUF

provides a system for translating propositions or, more generally, utterances

in a natural language into expressions in PRUF. Such expressions may be

viewed as procedures which act on a collection of relations in a database—

or, equivalently, a possible world—and return possibility distributions

which represent the information conveyed by the original propositions.

In what follows, we shall outline some of the main features of PRUF and

exemplify its application to precisiation of meaning. As a preliminary, we

shall introduce the concept of a possibility distribution and explicate its

role in PRUF.3

2
As will be seen in Sections 2 and 3, PRUF is a language in a somewhat
stretched sense of the term. Basically, it is a translation system in which
only the simpler procedures may be represented as expressions in PRUF. For
the description of complex procedures, PRUF allows the use of any suitable
mathematically oriented language.

3
In our exposition of the concept of a possibility distribution and the
relevant parts of PRUF we shall draw on the definitions and examples in
[79], [81] and [82].



2. Possibility and Meaning

A randomly chosen sentence in a natural language is almost certain to

contain one or more words whose denotations are fuzzy sets, that is, classes

of objects in which the transition from membership to nonmembership is gradual

rather than abrupt. For example:

Hourya is very charming and intelligent.

It is very unlikely that inflation will end soon.

In recognition of his contributions, Mohammed is likely
to be promoted to a higher position

in which the italics signify that a word has a fuzzy denotation in a universe

of discourse.

For simplicity, we shall focus our attention for the present on canonical

propositions of the form "N is F," where N is the name of an object, a

variable or a proposition, and F is a fuzzy subset of a universe of discourse

U. For example:

p * John is yery tall (2.1)

q - X is small

r - (John is very tall) is not quite true

where:

In p, N = John, and very tall is a fuzzy subset of the interval

[0,200] (with the height assumed to be measured in centimeters).

In q, N = X and smal1 is a fuzzy subset of the real line.

In r, N = John is very tall, and not quite true is a linguistic

truth-value [77] whose denotation is a fuzzy subset of the unit interval.

Now if X is a variable taking values in U, then by the possibility

distribution of X, denoted by IL., is meant the fuzzy set of possible



values of X, with the possibility distribution function it^i U-»• [0,1]

defining the possibility that X can assume a value u. Thus,

irx(u) = Poss{X =u} (2.2)

with ttx(u) taking values in the interval [0,1].

The connection between possibility distributions and fuzzy sets is

provided by the

Possibility Postulate. In the absence of any information about X

other than that conveyed by the proposition

P = X is F , (2.3)

the possibility distribution of X is given by the possibility assignment

equation

nx = F . (2.4)

This equation implies that

tx(u) =uF(u) (2.5)

where pj-(u) is the grade of membership of u in F, i.e., the degree to

which u fits one's subjective perception of F.

As a simple illustration, consider the proposition

p = X is SMALL (2.6)

where SMALL is afuzzy set defined by4
4
We use uppercase symbols to differentiate between a term, e.g., small, and
its denotation, SMALL. The notation

F=W*,+Vun (2'9)
which is employed in (2.6) signifies that F is a collection of fuzzy single
tons u-j/u-j, i=l„...,n, with y-j representing the grade of membership of un-
in F. More generally, F may be expressed as F = E,- us/us or F = !n\iclu)/u.
(See [78] for additional details.) i i i 'U r



SMALL = 1/0 + 0.8/2 + 0.6/3 + 0.4/4 + 0.2/5 . (2.7)

In this case, the possibility assignment equation corresponding to (2.5) may

be expressed as

nx = 1/0 + 0.8/2 + 0.6/3 + 0.4/4 + 0.2/5 (2.8)

with nx representing the possibility distribution of X. In this case—and

more generally—the proposition p A- N is F will be said to translate into

the possibility assignment equation

nx=F

where X is a variable that is explicit or implicit in N. To express this

connection between p and the corresponding possibility assignment equation,

we shall write

N is F— nx = F . (2.10)

When X is implicit rather than explicit in N, the possibility

assignment equation serves, first, to identify X and, second, to characterize

its possibility distribution. For example, in the proposition

p = Clara has dark hair (2.11)

X may be expressed as

X = Color(Hair(Clara))

and the possibility assignment equation reads

nColor(Hair(Clara)) * DARK • (2J2)

Before proceeding further in our discussion of the relation between

possibility and meaning, it will be necessary to establish some of the basic



properties of possibility distributions. A brief exposition of these properties

is presented in the following.

Joint, Marginal and Conditional Possibility Distributions

In the preceding discussion, we have assumed that X is a unary variable

such as color, height, age, etc. More generally, let X = (X,,...,X ) be

an n-ary variable which takes values in a universe of discourse U = U, * ••• *U ,
1 n

with Xi, i = l,...,n, taking values in U.. Furthermore, let F be an

n-ary fuzzy relation in U which is characterized by its membership function

Up. Then, the proposition

P = X is F (2.13)

induces an n-ary joint possibility distribution

nx4n(xv...,xn) <2-14>
which is given by

n(Xr...,Xn) =F- (2-15)

Correspondingly, the possibility distribution function of X is expressed by

7T(Xr...,Xn)(uV"un) =MV""1^ » u' («1.---.un) eU
= Poss{X1 =u1,...,Xn =un> .

As in the case of probabilities, we can define marginal and conditional

possibilities. Thus, let s= (i-j,.. .,i'k) be a subsequence of the index

sequence (l,...,n) and let s' denote the complementary subsequence

s' » (Jr...,jm) (e.g., for n= 5, s= (1,3,4) and s' = (2,5)). In

terms of such sequences, a k-tuple of the form (A. ,...,A. ) may be
]1 \



expressed in an abbreviated form as A/x. In particular, the variable

X(s) = ^Xi '•••»xi ) Wl11 be referred to as a k-ary subvariable of
X = (X,,...,X ), with X/ ,x = (X. ,...,X. ) being a subvariable

v } Jl Jm
complementary to X/ y

The projection of ILY Yx on U, %* U. x...xu. is a k-ary
vA-j»"*»An/ is; i-j i^

possibility distribution denoted by

IL * pr0j n (2.16)
X(s) U(s) ^xr---xn)

and defined by

wX(s)(u(s))isupu(s.),rX(uT-—un) (2-17)

where ir„ is the possibility distribution function of nv . For
X(s) x(s)

example, for n = 2,

V^ "SUV(XTX2)(Ul,U2)
is the expression for the possibility distribution function of the projection

of II/X x % on U.|. By analogy with the concept of a marginal probability

distribution, nx will be referred to as a marginal possibility

distribution.

As a simple illustration, assume that n = 3, U, = IL = IU = a+b or,

more conventionally, {a,b}, and II/Y Y Y v is expressed as a linear form
* 1 2' *?'

n/Y Y Y v = 0.8aaa + laab + 0.6baa + 0.2bab + 0.5bbb (2.18)

in which a term of the form 0.6baa signifies that

Poss{X1 =b, X« =a, X- =a} =0.6 .



To derive II,x x v from (2.18), it is sufficient to replace the value

of X3 in each term in (2.18) by the null string A. This yields

n(X X ) =°-8aa + laa +°-6ba +0-2ba +0.5bb

and similarly

- laa + 0.6ba + 0.5bb

IIY = la + 0.6b + 0.5b
Al

= la + 0.6b

An n-ary possibility distribution is particularized by forming the

conjunction of the propositions "X is F" and "X, N is G," where X, x is
is; [s)

a subvariable of X. Thus,

n„[ny =G] = FHG (2.19)
X X(s)

where the right-hand member denotes the intersection of F with the cylin

drical extension of G, i.e., a cylindrical fuzzy set defined by

yg(ur...,un) =uG(u. ,...,ui ) , (u1,...,un) € u1x.-.xun . (2.20)
I IN

As a simple illustration, consider the possibility distribution

defined by (2.18), and assume that

n(X X ) =°'4aa +0,9ba +0,1bb •

In this case,

G = 0.4aaa + 0.4aab + 0.9baa + 0.9bab + O.lbba + O.lbbb

FOG = 0.4aaa + 0.4aab + 0.6baa + 0.2bab + O.lbbb

and hence
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n(Xn,X ,X J^fX ,X )=G^ =°-,4aaa +0-4aab +0.6baa +0.2bab +O.lbbb .

There are many cases in which the operations of particularization and

projection are combined. In such cases it is convenient to use the simpli

fied notation

X/ n[nx =G] (2.21)
X(r) X(s)

to indicate that the particularized possibility distribution (or relation)

n[nY =G] is projected on U/x, where r, like s, is a subsequence

of the index sequence (l,...,n). For example,

XlxX3nCn(X3>X4) =G]

would represent the projection of n[n^ ^ j=G] on U-, xu3. Informally,
(2.21) may be interpreted as: Constrain the X, * by Hv =G and read

K } (s)out the X(rj. In particular, if the values of X(sx—rather than their
possibility distribution—are set equal to G, then (2.21) becomes

x n[xro =G] .
X(r) (s)

We shall make use of (2.21) and its special cases in Section 3.

If X and Y are variables taking values in U and V, respectively,

then the conditional possibility distribution of Y given X is induced

by a proposition of the form "If X is F then Y is G" and is expressed as

n(Y|X)' w^tn the understanding that

*(Y|X)(VIU) =Poss{Y =v|X =u} (2.22)

where (2.22) defines the conditional possibility distribution function of

Y given X. If we know the distribution function of X and the conditional



n

distribution function of Y given X, then we can construct the joint

distribution function of X and Y by forming the conjunction (- = min)

^(X^)^'7) =irx^u^ir(Y|X)tvlu) * ^2'23)

Translation Rules

The translation rules in PRUF serve the purpose of facilitating the

composition of the meaning of a complex proposition from the meanings of

its constituents. For convenience, the rules in question are categorized

into four basic types: Type 1: Rules pertaining to modification; Type II:

Rules pertaining to composition; Type III: Rules pertaining to quantification;

and Type IV: Rules pertaining to qualification.

Remark. Translation rules as described below relate to what might

be called focused translations, that is, translation of p into a possi

bility assignment equation. More generally, a translation may be unfocused,

in which case it is expressed as a procedure which computes the possibility

of a database, D, given p or, equivalents, the truth of p relative

to D. A more detailed discussion of these issues will be presented at a

later point in this section.

Modifier rule (Type I). Let X be a variable which takes values in a

universe of discourse U and let F be a fuzzy subset of U. Consider

the proposition

P " X is F (2.24)

or, more generally,

p = N is F (2.25)

where N is avariable, an object or a proposition. For example,
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p = Lucia is young (2.26)

which may be expressed in the form (2.24), i.e.,

p - Age(Lucia) is young (2.27)

by identifying X with the variable Age(Lucia).

Now, if in a particular context the proposition X is F translates into

X is F— nx=F (2.28)

then in the same context

Xis mF -* nx=F+ (2.29)

where m is a modifier such as not, very, more or less, etc., and F+ is a

modification of F induced by m. More specifically: If m = not, then

F = F' = complement of F, i.e.,

P +(u) = l-Pp(u) , u6 U . (2.30)
F h

If m= yery, then F+ = F2, i.e.,

u+(u) =uF2(u) » u€u.
F h

(2.31)

If m = more or less, then F+ = #, i.e.,

P +(u) =^^ul , uG U . (2.32)
F

As a simple illustration of (2.31), if SMALL is defined as in (2.7),

then

V 1c vow email ». TtXis very small -*• nY= F2 (2.33)
where

F2 =1/0 +1/1 +0.64/2 +0.36/3 +0.16/4 +0.04/5 .
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It should be noted that (2.30), (2.31) and (2.32) should be viewed as

default rules which may be replaced by other translation rules in cases in

which some alternative interpretations of the modifiers not, yery and more

or less may be more appropriate.

Conjunctive, Disjunctive and Implicational Rules (Type II). If

XisF-^nx=F and YisG-*nY =G (2.34)

where F and G are fuzzy subsets of U and V, respectively, then

(a) Xis Gand Yis G-h. n,x Yj =FxG (2.35)
where

yFxG(u,v) "uF(u)~pG(v) ' <2-36)

(b) Xis For Yis G-v n(XjYj =FUG (2.37)

M FxV , GAUxG (2.38)

UfuG(u,v) =uF(u)-uG(v) . (2.39)

(c) If Xis Fthen Yis G—- n(Y|X)= F'® G (2.40)

where II(y|x) denotes the conditional possibility distribution of Y given
X, and the bounded sum © is defined by

Pj?.eg(u,v) =1~(l-uG(u)+uG(v)) . (2.41)

In stating the implicational rule in the form (2.40), we have merely

chosen one of several alternative ways in which the conditional possibility

distribution n(Y|X) may be defined, each of which has some advantages and
disadvantages depending on the application. Among the more important of

where

and
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these are the following [1], [41], [62]:

(c2) If Xis Fthen Yis G-* 11^.^ =F'UG (2.42)

(c3) If Xis Fthen Y is G-* ^/y\^\ =FxGUF'xV (2.43)

(c4) If Xis Fthen Yis G— ir(Y|x)(vl") =! 1f ^G(v) >yp(u) (2.44)
yG(v)

S^UIJ othe^ise

(c5) If Xis Fthen Yis G— *(Y|X)Mu) =1 if us(v) >yp(u) (2.45)
= yG(v) otherwise

Quantification Rule (Type III). If U={^,...,uN>, Q is aquantifier

such as many, few, several, all, some, most, etc., and

X is F—• nx= F (2.46)

then the proposition "QX is F" (e.g., "many X's are large") translates into

nCount(F) =Q (2-*7)

where Count(F) denotes the number (or the proportion) of elements of U

which are in F. By the definition of cardinality of F, if the fuzzy set

F is expressed as

F=Pl/Ul + y2/u2 + ... + yN/uN (2.48)
then

N

Count(F) = I y. (2.49)
i=l

where the right-hand member is understood to be rounded-off to the nearest

integer. As a simple illustration of (2.47), if the quantifier several is

defined as



then
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SEVERAL = 0/1 + 0.4/2 + 0.6/3 + 1/4 + 1/5 + 1/6 + 0.6/7 + 0.2/8 (2.50)

Several X's are large —»• n N (2.51)

^largeK5
= 0/1 + 0.4/2 + 0.6/3 + 1/4 + 1/5 + 1/6 + 0.6/7 + 0.2/8

where yLARGE(ui) is the grade of membership of the ith value of X in the
fuzzy set LARGE.

Alternatively, and perhaps more appropriately, the cardinality of F

may be defined as a fuzzy number, as is done in [79]. Thus, if the elements

of F are sorted in descending order, so that vn <v if n>m, then
the truth-value of the proposition

p* F has at least n elements (2.52)

is defined to be equal to yn, while that of q,

q = F has at most n elements , (2.53)

is taken to be 1-un+1. From this, then, it follows that the truth-value
of the proposition r,

r* F has exactly n elements , • (2.54)

is given by yn~(l -yn+1).

Let F+ denote F sorted in descending order. Then (2.52) may be

expressed compactly in the equivalent form

FGCount(F) = F+ (2.55)

which signifies that if the fuzzy cardinality of F is defined in terms of
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(2.52), with G standing for greater than, then the fuzzy count of elements

in F is given by F+, with the understanding that F4- is regarded as a

fuzzy subset of {0,1,2,...}. In a similar fashion, (2.53) leads to the

definition

FLCount(F) = (F+J'-l (2.56)

where L stands for less than and subtraction should be interpreted as

translation to the left, while (2.54) leads to

FECount(F) = (F+) n ((F+)'-1)

where E stands for equal to. For convenience, we shall refer to FGCount,

FLCount and FECount as the FG cardinality, FL cardinality and FE cardi

nality, respectively. The concept of FG cardinality will be illustrated in

Example 9, Section 3.

Remark. There may be some cases in which it may be appropriate to

normalize the definition of FECount in order to convey a correct perception

of the count of elements in a fuzzy set. In such cases, we may employ

the definition

FENC0U"t(F) "Ma^gff^)) • (2-57)

Truth Qualification Rule (Type IV). Let t be a linguistic -truth-value,

e.g., yery true, quite true, more or less, true, etc. Such a truth-value

may be regarded as a fuzzy subset of the unit interval which is characterized

by a membership function y : [0,1] -»- [0,1].

A truth-qualified proposition, e.g., "It is t that X is F," is expressed

as "X is F is t." As shown in [79], the translation rule for such proposi

tions is given by



17

Xis Fis t— HX=F+ (2.58)
where

u +(u) =yT(yp(u)) . (2.59)

As an illustration, consider the truth-qualified proposition

Susana is young is yery true

which by (2.58), (2.59) and (2.31) translates into

nAge(Susana) =\RU£2(lJY0UNG(u)) • <2-60)
Now, if we assume that

yY0UNG(u) =(1 +̂ 2) > u€ [0,100] (2.61)
and

pTRUE(v) =y2 • vG1°'^
then (2.60) yields

EAge(Susana) =(1 +<&> )

as the possibility distribution of the age of Susana.

A more general type of translation process in PRUF which subsumes the

translation rules given above is the following.

Let V={D} denote acollection of databases, with D representing

a generic element of P. For the purposes of our analysis, D will be

assumed to consist of a collection of possibly time-varying relations. If

R is a constituent relation in D, then by the frame of R is meant the

name of R together with the names of its columns (i.e., attributes). For

example, if a constituent of D is a relation labeled POPULATION whose

tableau is comprised of columns labeled Name and Height, then the frame
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of POPULATION is represented as POPULATIONllNamelHeightl or, more simply,

as POPULATION[Name;Height].

If p is a proposition in a natural language, its translation into

PRUF can assume one of three—essentially equivalent—forms.5

(a) p —*• a possibility assignment equation

(b) p-* a procedure which yields for each D in V the possibility of D

given p, i.e., Poss{D|p}

(c) p—»• a procedure which yields for each D in V the truth-value of p

relative to D, i.e., Tr{p|D}

Remark. An important implicit assumption about the procedures involved

in (b) and (c) is that they have a high degree of what might be called

explanatory effectiveness, by which is meant a capability to convey the

meaning of p to a human (or a machine) who is conversant with the meaning

of the constituent terms in p but not with the meaning of p as a whole.

For example, a procedure which merely tabulates the possibility of each D

in V would, in general, have a low degree of explanatory effectiveness if

it does not indicate in sufficient detail the way in which that possibility

is arrived at. On the other extreme, a procedure which is excessively

detailed and lacking in modularity would also have a low degree of explana

tory effectiveness because the meaning of p might be obscured by the maze

of unstructured steps in the body of the procedure.

The equivalence of (b) and (c) is a consequence of the way in which

the concept of truth is defined in fuzzy logic [77], [2]. Thus, it can

readily be shown that, under mildly restrictive assumptions on D, we have
5~
It should be noted that (b) and (c) are in the spirit of possible-world
semantics and truth-conditional semantics, respectively. In their conven
tional form, however, these semantics have no provision for fuzzy proposi
tions and hence do not provide a sufficiently expressive system for our
purposes.
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Tr{p|D} = Poss{D|p}

which implies the equivalence of (b) and (c).

The restricted subset of PRUF which we have discussed so far is adequate

for illustrating some of the simpler ways in which it may be applied to the

precisiation of meaning. We shall do this in the following section.
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3. Precisiation of Meaning - Examples

There are two distinct and yet interrelated ways in which PRUF provides

a mechanism for a precisiation of meaning of propositions. First, by express

ing the meaning of a proposition as an explicitly defined procedure which

acts on the fuzzy denotations of its constituents; and second, by

disambiguation—especially in those cases in which what is needed is a

method of differentiation between the nuances of meaning.

In what follows, we shall illustrate the techniques which may be

employed for this purpose by several representative examples, of which

Examples 6, 7, 8 and 9 relate to cases in which a proposition may have two

or more distinct readings. Whenever appropriate, we consider both focused

and unfocused translations of the given proposition.

Example 1

p - John is yery rich (3.1)

Assume that the database, D, consists of the following relations

P0PULATI0N[Name;Wealth] (3.2)

RICH[Wealth;y]

in which the first relation, POPULATION, tabulates the wealth, Wealth., of

each individual, Name.., while the second relation, RICH, tabulates the

degree, y.., to which an individual whose wealth is Wealth, is rich.

Unfocused translation: First, we find John's wealth, which is given by

Wealth(John) =WeaUhP0PULATI0N[Name =John] . (3.3)

Second, we intensify RICH to account for the modifier very by squaring RICH,

6If the frame of RICH is RICH[Wealth;y] then the frame of RICH2 is
RICH2[Wealth;y2], which signifies that each y in RICH is replaced by y2.
This representation of very rich is a consequence of the translation rule
(2.14).



21

2
and substitute Wealth(John) into RICH to find the degree, 6, to which

John is very rich. This yields

6=(uRICH[Wealth=WeaUhP0PULATI0N[Name =John]])2 . (3.4)

Finally, on equating <S to the possibility of the database, we obtain

John is very rich

-*ir(D) =(yRICH[Wealth=WealthP0PULATI0N[Name =John]])2 . (3.5)

Focused translation: On interpreting the given proposition as a charac

terization of the possibility distribution of the implicit variable

Wealth(John), we are led to the possibility assignment equation

John is very rich - nfcalth(John) =RICH2 - (3.6)

which implies that

Poss{Wealth(John) =u} =(uRICH(u))2 (3.7)

where uRICH is the membership function of the fuzzy set RICH, with u

ranging over the domain of Wealth.

Example 2

p ± Hans is much richer than Marie (3.8)

We assume that the database, D, consists of the relations

POPULATION[Name;Wealth] (3.9)
and

MUCH RICHER[Wealthl;Wealth2;y]

in which y is the degree to which an individual who has Wealthl is much

richer than one who has Wealth2.
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Unfocused translation: Proceeding as in Example 1, we arrive at

Hans is much richer than Marie —*•

ir(D) = MUCH RICHER[WeaUhPOPULATION[Name =Hans];

WealthPOPULATION[Name =Marie]] . (3.10)

Focused translation:

Hans is much richer than Marie —»•

n(Wealth(Hans),Wealth(Marie)) =MUCH RICHER (3-11}

which implies that

Poss{Wealth(Hans) =uv Wealth(Marie) =u2> = yMUCH RICher(uvu2' (3-12)

Example 3

p - Vera is yery kind (3.13)

In this case, we assume that kindness is not a measurable characteristic

like height, weight, age, wealth, etc. However, we also assume that it is

possible to associate with each individual his/her index of kindness on the

scale from 0 to 1, which is equivalent to assuming that the class of kind

individuals is a fuzzy set KIND, with the index of kindness corresponding

to the grade of membership in KIND.

Unfocused translation: Assume that D consists of the single relation

KIND[Name;y] (3.14)

in which y is the degree of kindness of Name. Then

Vera is very kind -• tt(.D) =( KIND[Name =Vera])2 . (3.15)
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Focused translation: A special type of possibility distribution which

we need in this case is the unitor, 1, which is defined as

Tij^v) =v , 0 <v < 1 . (3.16)

In terms of the unitor, then, we have

Vera is very kind - HK1ndness(Vera) =i2 (3.17)

which implies that

Poss{Kindness(Vera) =v} =v2 , 0 <v <1 . (3.18)

This follows at once from (3.15), since

Kindness(Vera) = KIND[Name =Vera] . (3.19)

Example 4

p ^ Brian is much taller than most of his close friends (3.20)

Unfocused translation: For the purpose of representing the meaning of

p, we shall assume that D is comprised of the relations

P0PULATI0N[Name;Height] (3.21)

FRIENDS[Namel;Name2;y]

MUCH TALLER[Heightl;Height2;y]

M0ST[p;y]

In the relation FRIENDS, y represents the degree to which an individual

whose name is Name2 is a friend of Namel. Similarly, in the relation

MUCH TALLER, y represents the degree to which an individual whose height

is Height! is much taller then one whose height is Height2. In MOST,
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y represents the degree to which a proportion, p, fits the definition of

MOST as a fuzzy subset of the unit interval.

To represent the meaning of p we shall express the translation of p

as a procedure which computes the possibility of D given p. The sequence

of computations in this procedure is as follows.

1. Obtain Brian's height from POPULATION. Thus,

Height(Brian) = He- ^POPULATION[Name= Brian] .

2. Determine the fuzzy set, MT, of individuals in POPULATION in relation

to whom Brian is much taller.

Let Namei be the name of the i individual in POPULATION. The

height of Name, is given by

HeightfName^ =H.htPOPULATION[Name ^Name^ .

Now the degree to which Brian is much taller than Name, is given by

6. =^MUCH TALLER[Height(Brian),Height(Namei)]

and hence MT may be expressed as

MT = I. 6i/Namei , Namei e NameP0PULATI0N

where NameP0PULATI0N is the list of names of individuals in POPULATION,

6. is the grade of membership of Name, in MT, and 7. is the union of

singletons 6./Name..

3. Determine the fuzzy set, CF, of individuals in POPULATION who are

close friends of Brian.
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To form the relation CLOSE FRIENDS from FRIENDS we intensify FRIENDS

by squaring, as in Example 1. Then, the fuzzy set of close friends of Brian

is given by

CF =yxName2FRIENDs2[Namel =Brian^> •

4. Form the count of elements of CF:

Count(CF) = J\ ycp(Namei)

where ycp(Name..) is the grade of membership of Name, in CF and J. is

the arithmetic sum. More explicitly

Count(F) =£. UpRIENDS(Brian,Name.) .

5. Form the intersection of CF and MT, that is, the fuzzy set of those

close friends of Brian in relation to whom he is much taller.

H A CFHMT .

6. Form the count of elements of H

Count(H) =I. yH(Name.)

where uH(Name.) is the grade of membership of Name, in H and £. is

the arithmetic sum.

7. Form the ratio

r - Count(MTHCF)
r Count(CF)

which represents the proportion of close friends of Brian in relation to whom

he is much taller.
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8. Compute the grade of membership of r in MOST

6=yM0ST[p =r] .

The value of 6 is the desired possibility of D given p. In terms

of the membership functions of FRIENDS, MUCH TALLER and MOST, the value

of 6 is given explicitly by the expression

6 = yM0ST
-Vori an,name., j^

. (3.22)
•^u^tHeightfBrianhHeightfName..)) - y2p(Brian,Name^

2
^u^fBriaMame^)

Thus,

Brian is much taller than most of his close friends —• tt(D) = 6 (3.23)

where 6 is given by (3.22).

Focused translation: From (3.23) it follows at once that

p""* ^HeightfBrian)^ ' Poss{Height(Brian) =u} (3.24)
rI.jyMT(u,Height(Name..)) ~yCp(Brian,Name..)^

"PM0STl I.y2p(Brian,Name.) J
Example 5

p * Lane resides in a small city near Washington (3.25)

Unfocused translation: Assume that the database consists of the

relations

RESIDENCE^.Name;C.Name;Population] (3.26)

SMALL[Population;y]

NEAR[C.Namel;C.Name2;y]

In RESIDENCE, P.Name stands for Person Name, C.Name for City Name,
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and Population for population of C.Name. In SMALL, y is the degree to

which a city whose population figure is Population is small. In NEAR, y

is the degree to which C.Name! and C.Name2 are near one another.

The population of the city in which Lane resides is given by

PopulationRESIDENCE[P'Narne =Lane] <3-27)

and hence the degree, 6, to which the city is small may be expressed as

61 =uSMALL[populat1onRESIDENCE[P.Name =Lane] . (3.28)

Now the degree to which the city in which Lane resides is near Washington

is given by

62 = NEAR[C.Namel =Washington; C.Name2 =cNameRESIDENCE[P.Name =Lane]]

(3.29)

On forming the conjunction of (3.28) and (3.29), the possibility of D—

and hence the translation of p—is found to be expressed by (~ - min)

Lane resides in a small city near Washington —* tt(D) = <5-| ~<$o (3.30)

where 6] and 62 are given by (3.28) and (3.29).

Focused translation: The implicit variable in this case may be

expressed as

X * Location(Residence(Lane)) . (3.31)

Thus, the goal of the focused translation in this case is the computation of

the possibility distribution of the location of residence of Lane.

To illustrate the effect of choosing different databases on the trans

lation of p, we shall consider two cases each of which represents a

particular assumption concerning the relations in D.
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First, we consider the simpler case in which the constituent relations

in D are assumed to be:

SMALL[C.Name;y] (3.32)

NEAR[C.Namel;C.Name2;y] (3.33)

In SMALL, y is the degree to which the city whose name is C.Name is

small. In NEAR, y is the degree to which cities named C.Namel and

C.Name2 are near each other.

From NEAR, the fuzzy set of cities which are near Washington is found

to be given by

c#NamelxyNEAR[C.Name2 -Washington] .

Consequently, the fuzzy set of cities which are near Washington and, in

addition, are small is given by the intersection

SMALL n c Namel NEAR[C.Name2 =Washington] .

With this expression in hand, the focused translation of p may be expressed

as

Lane resides in a small city near Washington —• (3.34)

nLocation(Residence(Lane)) = SMALL n C.NamelxyNEARtc-Name2 -Washington]

In the case to be considered next, the relations in D are assumed to

be less directly related to the denotations of words in p than the relations

expressed by (3.32) and (3.33). More specifically, we assume that D

consists of the relations
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LIST[C.Name;Population] (3.35)

DISTANCE[C.Namel;C.Name2;Distance]

SMALL[Populations]

NEAR[Distance;y]

In LIST, Population is the population of C.Name. In DISTANCE,

Distance is the distance between C.Name! and C.Name2. In NEAR, y is

the degree to which two cities whose distance from one another is Distance

are near each other. As for SMALL, it has the same meaning as in (3.32).

For our purposes, we need a relation which tabulates the degree to which

each city in LIST is small. To this end, we form the composition of

LIST and SMALL, which yields the relation

G A SMALL[C.Name;y] * LIST[C.Name;Population]oSMALL[POPULATION;y]

(3.36)

in which y is the degree to which C.Name is small. Actually, since

LIST and SMALL are functions, we can write

yG(C.Name) =ySMAL,(Population(C.Name)) (3.37)

in which the right-hand member of (3.37) expresses the degree to which a

city whose population is Population(C.Name) is small.

Now from DISTANCE we can find the distances of cities in LIST from

Washington. These distances are yielded by the relation

DC * C.NamelxDistanceDISTANCECc-Nan,e2=Washin9t0^ • <3-38>

If the membership functions of R[X;Y] and S[Y;Z] are expressed as yR(x,y)
and ys(y,z), respectively, then the membership function of the composition
of R and S with respect to Y is given by

PRoS(x,z) = sup (yR(x,y)-y$(y,z)) .
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Furthermore, on forming the composition of this relation with NEAR,

we obtain the relation

H[C.Name;y] = (3.39)

NEAR[Distance;y] °CfNamelxDistanceDISTANCE[C.Name2 =Washington] .

In H[C.Name;y], y represents the degree to which C.Name is near

Washington. More explicitly:

y„(C.Name) =y^n(Distance of C.Name from Washington)

in which the distance of C.Name from Washington is obtained from DC by

expressing the distance as a function of C.Name.

At this point, we have constructed from the given database the relations

which were given initially in the previous case. With these relations in

hand, the translation of p may be expressed compactly as

nLocation(Residence(Lane)) =GnH (3-4°)

where G and H are defined by (3.36) and (3.39), respectively.

Example 6

p - Vivien is over thirty (3.41)

The literal reading of p may be expressed as

p, - Age of Vivien is greater than thirty

which translates into

P1 -*• Age(Vivien) >30 . (3.42)
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In many cases, however, the intended meaning of p would be

P2 - Vivien is over thirty but not much over thirty .

In this case, the translation of p2 into PRUF would be expressed as

nAge(Vivien) =(30>10°J n AgelxyMUCH 0VER'[Age2=30] (3.43)

in which (30,100] is the age interval 30 < u <_ TOO;

MUCH 0VER[Agel;Age2;y] is a relation in which y is the degree to which

Agel is much over Age2; and MUCH OVER' is the complement of MUCH OVER.

More explicitly, (3.43) implies that

Poss{Age(Vivien) =u} = 0 for u < 30 (3.44)

=1"yMUCH 0VER(u'30) ' for u > 30 '

Example 7

p - John is not yery smart (3.45)

Assuming that D consists of the relation

SMART[Name;y]

in which y is the degree to which Name is smart, the literal translation

of p may be expressed as (see Example 3)

p-*HY =(l2)' (3.46)
where

X = SMART[Name =John]

2
and (1 )' is the complement of the square of the unitor.
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However, if the intended meaning of p is

p. - John is very(not smart) (3.47)

then the translation of p into PRUF would be

nx=(i-)2 (3.48)

Note that (3.48) implies that

Poss{X =v} = 1 -v' (3.49)

whereas (3.46) implies that

Poss{X =v} = (1-vr • (3.50)

Example 8

p - Naomi has a young daughter (3.51)

There are three distinct readings of p:

p.j - Naomi has only one daughter and her daugher is young

P2 - Naomi has one or more daughters of whom only one is young

P3 - Naomi has one or more daughters of whom one or more are young

Assume that D consists of the relati on

DAUGHTER[M.Name;D.Name;yDy]

in which M.Name and D.Name stand for Mother's name and Daughter's name,

respectively, and yDy is the degree to which D.Name is young.

The translation of p^, p2 and p3 may be expressed as follows

P1 -»• ir(D) = <51 - u-, (3.52)
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where

and

and

6.| = ! if Naomi has only one daughter, i.e., if

Count(D NameDAUGHTER[M.Name =Naomi]) =1

6, = 0 otherwise;

y-j - the degree to which Naomi's daughter is young, i.e.,

y, « , DAUGHTER[M.Name =Naomi] .
1 UDY

Turning to p2 and p3, let the set of daughters of Naomi be sorted in

descending order according to the degree of youth. For this set, then, let

yi - degree of youth of i youngest daughter of Naomi.

Now applying the concept of fuzzy cardinality (see (2.52)) to the set in

question, we obtain at once

and

Example 9

p2 -*ir(D) =y] ~(l-y2) (3.53)

P3 — ir(D) = y] . (3.54)

p - Naomi has several young daughters (3.55)

In this case, we assume that D consists of the relations

DAUGHTER[M.Name;D.Name;uDY]
and

SEVERAL[N;y]

in which the first relation has the same meaning as in Example 8, and y in

SEVERAL is the degree to which an integer N fits one's perception of several
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Furthermore, we assume that p should be read as p3 in Example 8.

With these assumptions, the translation of p may be expressed

compactly as

p-• ir(D) =sup((>o SEVERAL) n FGCount(D>Nffln DAU6HTER[M.Name =Naomi]))
(3.56)

where FGCount is defined by (2.55); sup F is defined by

sup FA supueu yp(u) (3.57)

where F is a fuzzy subset of U and yp is its membership function; and

>° SEVERAL is the composition of the relations >_ and SEVERAL, i.e., (see

footnote)

U>oSEVERAL(u) =^SEVERAL(n) for nMmax

= 1 for n > n
— max

nmax ~sma11est value of n at which ^seveRAL^ = 1 *

Intuitively, the composition of >_ and SEVERAL serves to precisiate

the count expressed in words as "at least several." The intersection of

(>°SEVERAL) and the FGCount of the daughters of Naomi serves to define

the conjunction of "at least several" with the FGCount of daughters of Naomi;

and the supremum of the intersection provides a measure of the degree of

consistency of "at least several" with the FGCount in question.

As a concrete illustration of (3.56), assume that the fuzzy relation

SEVERAL is defined as

SEVERAL * 0.5/2 + 0.8/3 + 1/4 + 1/5 + 0.8/6 + 0.5/0.7 . (3.59)
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Then

>o SEVERAL = 0.5/2 + 0.8/3 + 1/4 + 1/5 + 1/6 + ••• . (3.60)

Furthermore, assume that

D.NamexyDAUGHTER[M-Name=:Naomi] =VEva +0.8/Lisa +0.6/Ruth (3.61)

so that

F6Count(D>Na|||exuDAU6HTER[M.Name» Naomi]) =1/1 +0.8/2 +0.6/3 . (3.62)

From (3.60) and (3.62), we deduce that

(>o SEVERAL) nF6Count(D<Name DAUGHTER[M.Name» Naomi]) (3.63)

= 0.5/2 + 0.6/3

and since

sup(0.5/2 + 0.6/3) = 0.6

we arrive at

ir(D) = 0.6 (3.64)

which represents the possibility of the given database given the proposition p,

4. Concluding Remark

The above examples are intended to illustrate the manner in which PRUF

may be employed to precisiate the meaning of propositions expressed in a

natural language. Such precisiation may be of use not only in communication

between humans, but also—and perhaps more importantly--in communication

between humans and machines.



36

5. References and Related Papers

1. W. Bandler and L. Kohout, "Fuzzy relational products and fuzzy implica
tion operators," Proc. Third Workshop on Fuzzy Reasoning, Queen Mary
College, London, 1978.

2. R. E. Bellman and L. A. Zadeh, "Local and fuzzy logics," in Modern Uses
of Multiple-Valued Logic (G. Epstein, ed.). Dordrecht: D. Reidel,
pp. 103-165, 1977.

3. M. Black, "Reasoning with loose concepts," Dialogue 2 (1963) 1-12.

4. D. Bobrow and A. Collins (eds.), Representation and Understanding.
New York: Academic Press, 1975.

5. R. F. Boyce, D. D. Chamberlin, W. F. King III and M. M. Hammer,
"Specifying queries as relational expressions," in Data Base Management.
(J. W. Klimbie and K. L. Koffeman, eds.). Amsterdam: North-Holland,
pp. 211-223, 1974.

6. R. J. Brachman, "What's in a concept: structural foundations for
semantic networks," Int. J. Man-Machine Studies 9 (1977) 127-152.

7. V. M. Briabrin and G. V. Senin, "Natural language processing within a
restricted context," Proc. Int. Workshop on Natural Language for Inter
actions with Data Bases, IIASA, Vienna, 1977.

8. N. Chomsky, "Deep structure, surface structure, and semantic interpre
tation," in Semantics: An Interdisciplinary Reader in Philosophy,
Linguistics and Psychology (D. D. Steinberg and L. A. Jakobovits, eds.).
Cambridge: Cambridge University Press, 1971.

9. M. J. Cresswell, Logics and Languages. London: Methuen, 1973.

10. F. J. Damerau, "On fuzzy adjectives," Memorandum RC 5340, IBM Research
Laboratory, Yorktown Heights, New York, 1975.

11. D. Davidson, "Truth and meaning," Synthese 17 (1967) 304-323.

12. A. DeLuca and S. Termini, "A definition of a non-probabilistic entropy
in the setting of fuzzy sets theory," Information and Control 20 (1972)
301-312.

13. K. Fine, "Vagueness, truth and logic," Synthese 30 (1975) 265-300.

14. C. Frederiksen, "Representing logical and semantic structure of knowledge
acquired from discourse," Cognitive Psychology 7 (1975) 371-458.

15. B. R. Gaines, "Foundations of fuzzy reasoning," Int. J. Man-Machine
Studies 6 (1976) 623-668.



37

16. B. R. Gaines and L. J. Kohout, "The fuzzy decade: a bibliography of
T^HxSystems and closely related topics," Int. J. Man-Machine Studies 9
(1977) 1-68.

17. J. A. Goguen, "Concept representation in natural and artificial
languages: axioms, extension and applications for fuzzy sets," Int. J.
Man-Machine Studies 6 (1974) 513-561.

18. H. P. Grice, "Utterer's meaning, sentence-meaning and word-meaning,"
Foundations of Language 4 (1968) 225-242.

19. S. Haack, Philosophy of Logics. Cambridge: Cambridge University Press,
1978.

20. J. I. Harris, "Fuzzy sets: how to be imprecise precisely," DOAE Research
Working Paper, Ministry of Defense, Byfleet, Surrey, U.K., 1974.

21. H. M. Hershand A. Caramazza, "A fuzzy set approach to modifiers and
vagueness in natural language," J. Experimental Psychology 105 (1976)
254-276.

22. E. Hisdal, "Conditional possibilities: independence and noninteraction,"
Fuzzy Sets and Systems 1 (1978) 283-297.

23. G. E. Hughes and M. J. Cresswell, An Introduction to Modal Logic.
London: Methuen, 1968.

24. J. P. Jouault and P. M. Luan, "Application des concepts flous a la
programmation en languages quasi-naturels," Inst. Inf. d'Entreprise,
C.N.A.M., Paris, 1975.

25. J. Kampe* de Feriet and B. Forte, "Information et probability," Comptes
Rendus, Academy of Sciences (Paris) 265A (1967) 142-146, 350-353.

26. J. J. Katz, The Philosophy of Language. New York: Harper & Row, 1966.

27. A. Kaufmann, Introduction to the Theory of Fuzzy Subsets, Vol. 2.
Applications to Linguistics, Logic and Semantics. Paris: Masson and Co.,
1975.

28. H. Khatchadourian, "Vagueness, meaning and absurdity," Arner.* Phil.
Quarterly 2 (1965) 119-129.

29. W. Labov, "The boundaries of words and their meanings," in New Ways of
Analyzing Variation in English, Vol. ! (C.-J. N. Bailey and R. W. Shuy,
eds.). Washington: Georgetown University Press, 1973.

30. G. Lakoff, "Hedges: a study in meaning criteria and the logic of fuzzy
concepts," J. Phil. Logic 2 (1973) 458-508. Also in Contemporary
Research in Philosophical Logic and Linguistic Semantics (D. Hockney,

^W. Harper and B. Freed, eds.). Dordrecht: D. Riede!, pp. 221-271, 1973.

31. G. Lakoff, "Fuzzy grammar and the performance/competence terminology
game," Proc. Meeting of Chicago Linguistics Society, pp. 271-291, 1973.



38

32. K. Lambert and B. C. van Fraassen, "Meaning relations, possible objects
and possible worlds," Philosophical Problems in Logic (1970) 1-19.

33. W. Lehnert, "Human and computational question answering," Cognitive
Science 1 (1977) 47-73.

34. D. Lewis, "General semantics," Synthese 22 (1970) 18-67.

35. L. Linsky, Reference and Modality. London: Oxford University Press,
1971.

36. R. C. Lyndon, Notes on Logic. New York: D. Van Nostrand, 1966.

37. K. F. Machina, "Vague predicates," Amer. Phil. Quarterly 9 (1972)
225-233.

38. E. H. Mamdani and S. Assilian, "An experiment in linguistic synthesis
with a fuzzy logic controller," Int. J. Man-Machine Studies 7 (1975)
1-13.

39. J. McCarthy and P. Hayes, "Some philosophical problems from the standpoint
of artificial intelligence," in Machine Intelligence 4 (D. Michie and
B. Meltzer, eds.). Edinburgh: Edinburgh University Press, pp. 463-502,
1969.

40. G. A. Miller and P. N. Johnson-Laird, Language and Perception.
Cambridge: Harvard University Press, 1976.

41. M. Mizumoto, S. Fukame and K. Tanaka, "Fuzzy reasoning methods by
Zadeh and Mamdani, and improved methods," Proc. Third Workshop on
Fuzzy Reasoning, Queen Mary College, London, 1978.

42. M. Mizumoto, M. Umano and K. Tanaka, "Implementation of a fuzzy-set-
theoretic data structure system," Third Int. Conf. on Very Large Data
Bases, Tokyo, 1977. a

43. Moisil, G. C, "Lectures on the logic of fuzzy reasoning," Scientific
Editions, Bucarest, 1975.

44. R. Montague, Formal Philosophy (Selected Papers). New Haven: Yale
University Press, 1974.

45. C. A. Montgomery, "Is natural language an unnatural query language?,"
Proc. ACM National Conf., New York (1972) 1075-1078.

46. V. V. Nalimov, Probabilistic Model of Language. Moscow: Moscow State
University, 1974.

47. C.V. Negoita and D. A. Ralescu, Applications of Fuzzy Sets to Systems
Analysis. Basel, Stuttgart: Birkhauser Verlag, 1975.

48. A. Newell and H. A. Simon, Human Problem Solving. Englewood Cliffs,
N.J.: Prentice-Hall, 1972.



39

49. H. T. Nguyen, "On conditional possibility distributions," Fuzzy Sets
and Systems 1 (1978) 299-309.

50. K. Noguchi, M. Umano, M. Mizumoto and K. Tanaka, "Implementation of
fuzzy artificial intelligence language FLOU," Technical Report on
Automation and Language of IECE, 1976.

51. B. Partee, Montague Grammar. New York: Academic Press, 1976.

52. H. Putnam, "The meaning of 'meaning'," in Language, Mind and Knowledge
(K. Gunderson, ed.). Minneapolis, Minn.: University of Minnesota Press,
iy/o.

53. W. V. Quine, Philosophy of Logic. Englewood Cliffs, N.J.: Prentice-Hall,
1970.

54. N. Rescher, The Coherence Theory of Truth. Oxford: Oxford University
Press, 1973.

55. B. Rieger, "Fuzzy structural semantics," Proc. Third European Meeting
on Cybernetics and Systems Research, Vienna, 1976.

56. E. Sanchez, "On possibility qualification in natural languages,"
Electronics Research Laboratory Memorandum M77/28, University of
California, Berkeley, 1977.

57. D. H. Sanford, "Borderline logic," Amer. Phil. Quarterly 12 (1975)
29-39.

58. R. C. Schank (ed.), Conceptual Information Processing. Amsterdam:
North-Holland, 1975.

59. P. K. Schotch, "Fuzzy modal logic," Proc. Int. Symp. on Multiple-Valued
Logic, University of Indiana, Bloomington, pp. 176-182, 1975.

60. L. K. Schubert, "Extending the expressive power of semantic networks,"
Artificial Intelligence 2 (1972) 163-198.

61. J. Searle (ed.), The Philosophy of Language. Oxford: Oxford University
Press, 1971.

62. B. S. Sembi and E. H. Mamdani, "On the nature of implication in fuzzy
logic," Proc. 9th Int. Symp. on Multiple-Valued Logic, Bath, England,
pp. 143-151, 1979.

63. H. A. Simon, "The structure of ill structured problems," Artificial
Intelligence 4 (1973) 181-201.

64. J. F. Staal, "Formal logic and natural languages," Foundations of
Language 5 (1969) 256-284.

65. S. P. Stitch, "Logical form and natural language," Phil. Studies 28
(1975) 397-418.



40

66. M. Sugeno, "Theory of fuzzy integrals and its applications," Ph.D. thesis,
Tokyo Institute of Technology, Japan, 1974.

67. P. Suppes, "Elimination of quantifiers in the semantics of natural
languages by use of extended relation algebras," Revue Internationale
de Philosophie (1976) 117-118, 243-259.

68. A. Tarski, Logic, Semantics, Metamathematics. Oxford: Clarendon Press,
1956.

69. T. Terano and M. Sugeno, "Conditional fuzzy measures and their
applications," in Fuzzy Sets and Their Applications to Cognitive and
Decision Processes (L. A. Zadeh, K. S. Fu, K. Tanaka and M. Shimura,
eds.). New York: Academic Press, pp. 151-170, 1975.

70. B. C. van Fraassen, Formal Semantics and Logic. New York: Macmillan,
1971.

71. F. Wenstop, "Deductive verbal models of organizations," Int. J.
Man-Machine Studies 8 (1976) 293-311.

72. S. C. Wheeler, "Reference and vagueness;' Synthese 30 (1975) 367-380.

73. W.A. Woods, "What is in a link: foundations for semantic networks,"
in Representation and Understanding (D. B. Bobrow and A. Collins, eds.).
New York: Academic Press, pp. 35-82, 1975.

74. L. A. Zadeh, "Fuzzy languages and their relation to human and machine
intelligence," Proc. Int. Conf. on Man and Computer, Bordeaux, France.
Basel: S. Karger, pp. 130-165, 1972.

75. L. A. Zadeh, "Outline of a new approach to the analysis of complex
systems and decision processes," IEEE Trans. Systems, Man and Cybernetics
SMC-3 (Jan. 1973) 28-44.

76. L. A. Zadeh, "Calculus of fuzzy restrictions," in Fuzzy Sets and Their
Applications to Cognitive and Decision Processes (L. A. Zadeh, K. S. Fu,
K. Tanaka and M. Shimura, eds."]"! New York: Academic Press, pp. 1-39,
1975.

77. L. A. Zadeh, "Fuzzy logic and approximate reasoning (in memory of Grigore
Moisil)," Synthese 30 (1975) 407-428.

78. L. A. Zadeh, "The concept of a linguistic variable and its application
to approximate reasoning," Part I, Inf. Sci. 8 (1975) 199-249; Part II,
Inf. Sci. 8 (1975) 301-357; Part III, Inf. Sci. 9 (1975) 43-80.

79. L. A. Zadeh, "A theory of approximate reasoning," Electronics Research
Laboratory Memorandum M77/58, University of California, Berkeley, 1977.
To appear in Machine Intelligence 9.

80. L. A. Zadeh, "Fuzzy sets as a basis for a theory of possibility," Fuzzy
Sets and Systems 1 (1978) 3-28.



41

81. L. A. Zadeh, "PRUF—a meaning representation language for natural
languages," Int. J. Man-Machine Studies 10 (1978) 395-460.

82. L. A. Zadeh, "Possibility theory and soft data analysis," Electronics
Research Laboratory Memorandum M79/59, University of California,
Berkeley, 1979. To appear in Proc. AAAS Symp. on Soft Data Analysis,


	Copyright notice 1979
	ERL-79-73

