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LINGUISTIC DECISION ANALYSIS USING FUZZY SETS*

Richard M. Tong
Piero P. Bonlssone

Computer Science Division
Department of Electrical Engineering and Computer Sciences

and the Electronics Research Laboratory
University of California, Berkeley

1. Introduction

The application of fuzzy set theory to the problem of making a decision

when only incomplete or uncertain information is available has been the

subject of much research over the last decade (see Kickert^ for a recent

review). The basic premise behind the work is that there are situations

where it is more natural to handle uncertainty by fuzzy set theory than by

probability theory. Whilst we agree with this, we feel that most published

work does not go far enough in its utilization of the theory.

In this paper we present a technique for fuzzy decision making that is

based on linguistic approximation and truth qualification. The advantage

of our approach is that it generates a linguistic assessment of the decision

and thus makes explicit the subjective nature of any choice made using fuzzy

information.

Our original motivation for this study came from a paper by Watson

et al. in which a single-stage binary-choice decision problem is* analyzed

using expected utility theory. By allowing the probabilities and utilities

to be fuzzy numbers, Watson et al. show how the problem may be made more

"realistic." However, this fuzzification makes the final decision less clear

cut and some further procedure is required to resolve the ambiguity.

Research sponsored by Naval Electronic Systems Command Contract
N00039-78-C-0013.
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In the next section we shall examine the solution proposed by Watson et

al. and argue that any method that generates a numerical assessment of the

decision is inconsistent with the original desire to introduce fuzziness.

We show that our technique produces a more satisfactory statement of the

decision.

In section three we extend our technique so that we can solve any

single-stage multi-choice decision problem. We do not restrict ourselves to

problems arising from an expected utility approach, but require only that

each alternative has associated with it a fuzzy set of "suitability." At

the end of the section we consider a small class of multi-stage decision

problems.

Few authors mention the numerical aspects of computer implementation,

so in section four we discuss the main details of our technique. Essen

tially, we are concerned with the manipulation of fuzzy numbers and the

tools needed in linguistic approximation.

We present two examples in section five which illustrate our concepts.

We analyze in considerable detail the problem given in Watson et al. and a

problem concerned with an investment decision.

Finally, in section six we consider some aspects of a user interface

with the aim of showing how a computer aided decision package might be

developed.

2. Single-stage binary-choice decisions

Consider the decision problem shown diagramatically in Figure 1. This

simple binary decision tree depicts the problem of choosing between actions

A and B. If we choose A, then there is a probability p of an outcome

with utility and a probability 1-p of an outcome with utility Ug.



Conversely, if we choose B, then there is a probability q of an outcome

with utility and a probability 1-q of an outcome with utility U^.
Using the theory of expected utility, we should choose A in preference

to B if and only if

pU^ +(l-p)U2 > qU3+ (l-q)U4

If P» q» U^, Ug, U3 and are know precisely then the choice is clear.

If however some, or all, of them are only imprecisely known then the choice

becomes "fuzzy." We can formalize this imprecision by assigning fuzzy

numbers to the probabilities and utilities. As a result, each side of the

inequality may be evaluated to get the fuzzy expected utility of A,

and the fuzzy expected utility of B, Pg.

Depending upon the choice of fuzzy numbers, the result is likely to be

two overlapping fuzzy sets, perhaps as shown in Figure 2. The problem is how

to select between A and B on the basis of this fuzzy information.

Although the peak in is to the right of (i.e., at a higher utility

than) the peak in pg, the long tail in p^ indicates that there is some

possibility that B might be preferred to A.

It is clear that we need a fuzzy assertion about the choice and in the

remainder of this section we shall consider ways in which this might be

generated.

2.1 The method proposed by Watson et al

Let us examine the method proposed by Watson et al. The first step in

their procedure is to form the cartesian product of the expected utilities,

u^^g, so that
f ] ~
Strictly, we shall only be concerned with convex normal fuzzy numbers. See
section 4.2 for definitions of these terms.



where the symbol A stands for the minimum operation. Next, they specify

a set of binary fuzzy relations, {R^-}, which express the preference for

A over B, or vice versa. One example being, "A Is somewhat preferred to

B" which Is defined by

U|̂ (a,b) = 1 a b+ 0.2

= 0.5 + 2.5(a+b) b+ 0.2 > a ^ b- 0.2

= 0 a < b- 0.2

Then they compute a "degree of support," 6^, for each of rt\e R. given
w 1

AxB. This Is done by extending the truth table for Implication In the

two-valued logic (I.e. XDY = iXUY) to fuzzy sets. The result Is

= A[(I-VIaxB^ '̂̂ )) vy,^(a,b)]
a, b

where the term In square brackets Is the fuzzy Implication, and where the

symbol v stands for the maximum operation.

Whilst this Is quite satisfactory, we feel that this Is a rather arti

ficial way of solving a fuzzy decision problem. Far from generating a

"fuzzy statement about the extent to which A Is preferred to B" (Watson

et al. pp. 3-4), the method simply produces a numerical ranking of some

pre-speclfled preference relations.

This criticism applies to most fuzzy decision techniques which have

appeared In the literature. The result of any fuzzy decision procedure

should surely be a linguistic, rather than a numerical, statement of the

choice. Not only would this be an Intuitively more reasonable basis for

making the decision, but It would also be In accord with the original

motivation for Introducing fuzzlness Into the problem.



2 Truth qualification and linquisitc approximation

Let us reconsider the problem. Given some fuzzy information about

the utility of A and B we wish to choose one of them and to qualify our

choice in some linguistic manner. There are several ways in which we might

do this. The technique we discuss here is efficient and relies on ideas in

truth qualification and linguisitc approximation.

The basic concept is that we shall express our preference for A over

B, or B over A, as a truth qualified proposition in the manner suggested

by Zadeh. Thus our decision will have the form "A is marginally preferred

to B is very true," "B is definitely preferred to A is moreorless true," etc.

These should be viewed as the fullest statements we can make about our

choice. They have three elements. Firstly, there is the basic binary

decision of A over 8, or B over A. Secondly, there is the strength

of this preference; marginally preferred, definitely preferred, etc. Then

thirdly, there is some qualification in terms of degree of truth.

The first step in arriving at our decision is to compute the

"difference" between A and B. We do this by forming a fuzzy set, Z,

defined by

viz(u) = V [li^Ca) Avig(b)]'
a ,b

s.t.: a-b= u

which is simply the extension principle (see section 4.1 for a definition)

applied to algebraic difference. We note in passing, that there are some

interesting computational problems associated with calculating A more

detailed discussion is left until section 4.

The fuzzy set Z is thus a measure of the preference we have for one

of the two alternatives. If it is "positive" we favor A. If it is



"negative" we favor B. Depending upon the problem, Z might be similar to

any of the typical fuzzy sets shown in Figure 3.

Intuitively, the difference between and Z^ is that in the former

we only slightly prefer A to B whilst in the latter we strongly prefer

A to B. Similarly, Z^ indicates a strong preference for B. The situa

tion represented by is one in which we have no preference, that is, we

are indifferent to the choice.

This kind of reasoning clearly suggests that the first two levels of

our decision are determined by the "sign" and "magnitude" of Z. Thus the

second step in the decision process is to define some primary fuzzy sets

of strength of preference to which we will give labels such as "indifferent"

or "marginally preferred."

The penultimate step is to define what we mean by "true," "moreorless

true," etc. Following Zadeh^ we shall do this by assigning fuzzy sets to
each of these labels. In particular, "true" will be the fuzzy set shown

in Figure 4.

At first sight, this definition of "true" may seem counter-intuitive.

However, it arises quite naturally from the way in which we translate our

decision statements. Notice that fuzzy sets of truth are defined on the

closed interval [0,1] of truth values.

Zadeh's meaning representation language PRUF allows truth qualified

propositions of the form AisPtoBisx where P is our preference

and where x is the linguistic truth value. Such propositions are trans

lated into a fuzzy set with the same meaning, a concept which is called

"semantic equivalence." The equivalent set, denoted L, is defined by

= y^(yp(u))



So that if T Is the "true" set we get This means that

qualifying a statement with the truth value "true" leaves its meaning

unchanged.

We have now fixed what we mean by statements such as "A is marginally

preferred to B is very true"; we mean the fuzzy set L that is semantically

equivalent. Since the universe of discourse of L is the same as that of

Z, the final step in our decision process is to find an L which corres

ponds in meaning to Z.

To do this we shall utilize some recent work by Bonissone^ on pattern

recognition techniques applied to linguistic approximation. Section 4.3 of

the paper gives some of the relevant technical details so we will limit

ourselves to a sketch of the method.

Firstly, we generate a set of decision statements called the term set.

This will contain statements similar to the ones already introduced but will

also contain more complex ones like "A is from marginally preferred to

strongly preferred to B is very true" where the construction "from to

is a suitably defined fuzzy set (see appendix 2).

Then we extract those elements of the term set which correspond, in a

broad way, to the Z computed for the current problem. The selection is

made not by comparing membership functions, but by comparing a small number

of "orthogonal features" which characterize them. This is very efficient

and greatly simplifies the task.

Finally, we select from amongst this subset the statement whose member

ship function most closely matches the membership function for Z. This

statement is the linguistic solution to the decision problem.
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2.3 Other approaches

There are, in fact, several other ways in which we might produce linguis

tic decisions. We outline two which we feel are most promising.

The first of these is a rule based procedure. For this we need to

construct a rule-set which exemplifies the conditions under which we would

choose A over B, or B over A. Each rule would be an implication

statement of the form X,Y D P is t. Then, with a suitable choice for the

definition of fuzzy implication and for compositional inference, we have

a fuzzy modus ponens which generates a conclusion L from the given A

and B. Linguistic approximation is then used to label L.

The second method is essentially a variation of the method described

in section 2.2. Instead of translating "A is P to B is t" into L, we

compute an unlabelled truth set, T, perhaps by using the extension prin

ciple. That is, we have something of the form

y-p(t) = f(yp(u),y2(u))

We then use linguistic approximation to label T from a suitably defined

term set of truth values.

3.0 Multi-choice decisions

The technique we have just described may be regarded as a solution to

the 'core' decision problem of choice between two alternatives. In this

section we develop an extended technique which allows us to make multi-

choice, and also multi-criteria, decisions.



3.1 Single-stage decisions

The basic problem is to select from a set of alternatives,

{a^: i =l,...,m}, given some fuzzy information about the "suitability" of

each of them. We shall assume that this information is given by a set of

fuzzy sets, {S^: i =l,...,m}, where each of the S. is defined by a

membership function which maps the real line onto the closed interval [0,1].

We interpret suitability as a measure of the ability of an alternative

to meet our decision criteria. In general, the S. will be computed from

some basic structural relationships defined by the problem and are simply an

aggregation of all the relevant information about each alternative. Thus

for the binary-choice problem described in section 2, we would have two

suitability sets, and Sgj which correspond to the fuzzy expected

utility of A and the fuzzy expected utility of B. (In section 5 we give

an example where the S^. are computed from a linguistic assessment of the

alternatives with respect to four criteria.)

Given this statement of the problem, we have to rank the a^. on the
basis of the S. and then generate a linguistic statement about our choice.

To help illustrate the technique consider the simple example of choosing

from three alternatives given s^ and s^ as shown in Figure 5.

It is not clear which alternative we should choose here, but intuitively

we would prefer either a^ or a^. To help us rank the a. we shall

introduce the concept of "dominance." This is closely related to Zadeh's®

definition of separation between fuzzy sets.

The separation, a, between two convex fuzzy sets A and B is

given by

a(A,B) = 1 - V(yA(x)Ayg(x))
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We now define the dominance, 6, of A over B by

6(A,B) = V(u<a('')'̂ Ub(x))
X —

where £A is the fuzzy set "less than or equal A" formed from A by

setting
y<;^(x) = 1.0 X< X*

= y;^(x) X> X*

with X* being the leftmost value (i.e. lowest value) of x for which

U^(x) = 1.0. This is illustrated in Figure 6. Clearly, when the peak in

is to the left of, or coincides with, the peak in pg we have
6(A,B) = l-a(A,B). (Notice that whilst (S(A,A) = 1, 6(A,B) f 6(B,A) in

general.)

This is not the only definition of dominance we could have used.

Nonetheless, it does reflect our interest in the behavior, with respect to

A, of the left slope of B. It is important to realize that 6 gives us

no information about the overall shape of B. Thus the set B' in Figure 6

is such that 6(A,B) = 6(A,B') and yet we might easily prefer B' to B.

Our definition allows us to construct a dominance relation, R.,
0

between the S^.. For the example above this would be

1.0 0.8 0.6

1.0 1.0 1.0

1.0 1.0 1.0

where Rp(1,j) Is the dominance of S. over S..

We see that there are two rows with all 1.0's which indicates that Sg
completely dominates and Sg, and that Sg completely dominates S-j
and $2' This confirms our intuition about the choice being between
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alternatives ag and a^. However, inspection of shows that the

dominance of S-j over Sg (= 0.8) is greater than the dominance of S-j
over $2 (= 0.6), and we interpret this to mean that a^ should be
preferred to ^2* In a more complex situation this might not be so obvious

and we need to formalize the idea.

Basically what we do is form a difference fuzzy set, Z, analogous to

the one formed in solving the binary-choice problem. It performs two func

tions. Firstly, it aggregates the information contained in and secondly,

it forms a target set for labelling using the linguisitc approximation

techniques.

The actual procedure is as follows. We define a vector of weights, W,

such that W(i) =AR^(i,j). These represent the overall degree to which
each of the alternatives is dominated by the others.^ Then, for each

element, k, of W which equals 1.0, we define Z as the fuzzy set

induced by the difference function, g, where g itself is given by

m

g(xi,...,x ) = W(k)x. - I W(i)x. / I W(i)
I m K 1

i?^k iT^k

Thus when the x^. are replaced by the S^. we get

m

y7(") = V CAys(xJ](x*!,... »Xj^) i i
s.t. g(x^,...,x^)= u

Notice that when m = 2, g has exactly the same form as the difference

function of section 2.

^It is interesting to note the correspondence between Wand the vector of
preferences, I, derived by Baas and Kawkernaak" in their recent paper on
fuzzy decision making. Some simple manipulations will easily show that W
and I are the same; we leave the demonstration to appendix 1.
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As before, we use some suitable technique to compute Qiven the

Uo and then generate a linguistic decision of the form
^i

"aj^ is P to all-other-alternatives is t"

where P is the strength of our preference and t is the truth qualification

Of course, when there is more than one dominant alternative we shall

have more than one decision. However, if one of these has a higher strength

of preference we would, in general, prefer it to the others. This issue is

not without ambiguity, though, as we shall see in our second example.

3.2 Multi-stage decisions

The solution to the multi-choice decision problem that we have just

given allows us to solve a class of multi-stage decision problems.

Specifically, we can address those problems for which there are a finite

number of outcomes at each stage in the decision sequence.

Our general procedure is to adopt a dynamic programming approach.

That is, we solve all the possible final stage decision problems and then

solve all the penultimate ones using the suitability information associated

with the actions selected at the final stage. This process is repeated

until we have solved all the problems of every stage and have thus formed a

complete solution to the multi-stage problem.

There are obviously only a limited number of problems that can be

solved efficiently in this way. We do believe, however, that our technique

allows us to handle some significant practical problems.
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4.0 Numerical and computational considerations

Our discussion so far has concentrated on the theoretical aspects of the

division problem. Equally important are the numerical techniques employed

to implement the theory. In this section of the paper we shall consider some

of the computational aspects of constructing fuzzy sets induced by mappings.

We shall also describe, in detail, the linguistic approximation technique we

have used.

4.1 Sampled sets and the extension principle

Central to the implementation of the decision techniques we have

discussed in the previous sections is the extension principle (see Zadeh^).

This allows any non-fuzzy function to be fuzzified in the sense that if the

function arguments are made fuzzy sets, then the function value is also a

fuzzy set whose membership function is uniquely specified.

More formally, if the scalar function, f, takes n arguments

(x^,X2,...,x^) denoted x, and if the membership functions associated with

each of these is given by u-j(x-,),U2(x2),...,yn(x^) then

s.t. f(x) =y

Whilst this is straightforward, the linguistic approximation techniques

that we use require the membership functions to be sampled. That is, the
V\-A.veL.

fuzzy sets should ^ finite discrete supports. This introduces some problems

which are best illustrated

Suppose we wish to fuzzify y = x-j-X2 and that y-j(x^) and ^2(^2'
are as in Figure 7. If we sample Ui(xi) so that we get a finite discrete

set, y^, such that
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= {0.5/1.5, 1.0/2.0, 0.5/2.5}

and if we sample

y* = {0.5/2.0, 1.0/3.0, 0.5/4.0} ,

then the result of using the extension principle is the finite discrete set

shown in Figure 8.

There are several important features of this result. Firstly, there

are eight points in the support of more than in either of y^ or
y|. Secondly, only three of the sampled membership values are actually

correct (cf. the correct solution shown as a dashed line). Then thirdly,

the spacing between the sampled points is no longer regular.

Increasing the number of samples in y^ and y| is no help since we
generate many more sample points in the result. In the worst case, we

could have as many points in the support of the result as the product of the

number of points in the support of each of the operands. Furthermore, we

are not even guaranteed a more accurate representation.

Clearly, we need a more efficient and accurate representation of the

fuzzy sets and in the next section we show how the work of Prade and Dubois®

can be utilised for our problem.

4.2 Fuzzy numbers

Afuzzy number is simply a fuzzy subset of the real line and is completely

defined by its membership function such that

y: IR [0,1] .

For our purposes, we further restrict this definition to those fuzzy numbers

which are both normal and convex. Thus in addition to the above constraint
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we have

normality: V u(x) =1.0 x e F
X

convexity: u(Xx^ +(l-xjxg) >y(x^) Â (xg) VX e [0,1]

All such numbers may be characterized by a 4-tuple (a,b,a,B) where,

as shown in Figure 9, [a,b] is the closed interval on which the membership

function is equal to 1.0, a is the "left-bandwidth" and 6 is the "right-

bandwidth." Notice that crisp numbers are easily represented in this form

by writing (a,a,0,0) and that non-fuzzy sets may be written (a,b,0,0).

If we now limit the shape of the left and right slopes of the membership

function to be an even function, S(.)» such that S(-x) = S(x) and

S(0) = 1, then,if $(•) is also monotonically decreasing on [0,+a>),

the simple algebraic operations can be written as formulae involving the

parameters in the 4-tuple.

So, if m= (a,b,a,3)2 ^ (c,d,Y,6)g with the understanding
that the left slopes are given by S(—) and S(—), and the right slopes

ot Y

by then Table 1 gives the formulae for addition,

subtraction, multiplication and division.

Note that the last six formulae are only approximate in that the left

and right bandwidths of the result are not exact. However, they introduce

very little error and in practice have proved themselves to be of great value.

(For a more detailed discussion of this point and others pertaining to fuzzy
q

numbers see Bonissone .)

We now have a compact way of representing the kind of fuzzy sets in

which we are interested. Furthermore, because we can perform algebraic

operations with these representations we do not need to use the extension

principle but can compute the output set induced by a mapping in a direct way.
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Table 1: Basic operations with fuzzy numbers

Operati on Result Conditions

m+ h (a+Cj b+d, a+Y, 3+6) all m, h

m- n (a-d, b-c, a+6, 3+y) all m, fi

(ac, bd, ay+ca-ay, b6+dB+36) m> 0, ft > 0

(ad, be, da-a6+a6, -by+c3-3y) ffi<0, ft>0

(bd, ac, -b6-d3-36, -ay-ca+ay) m< 0, n < 0

m-r h
/a b a6 + da by + cS\

c' d(d+6)' c(c-y)^ m> 0, h > 0

/a b ca-ay d3-b6\
x' d' c(c-y)' d(d+6)' m< 0, n > 0

/b a -by-c3 -a6-da^
d' c(c-y)' d(d+6)^ m< 0, n < 0
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Sampling needs only then to be performed on the output set, at which stage

we can fix the number of sample points in accordance with our requirements.

4.3 Linguistic approximation

Given a fuzzy set Z which represents our preference for one action

over others, our problem is to find a decision statement which, when inter

preted as a fuzzy set, has the same meaning as Z.

The first step towards a solution is to generate a set of possible

decision statements which we call the term set, jC. Each element in this

set will be considered as a sentence in a synthetic language and, as such,

can be generated using a context free grammar in the manner of Zadeh.^^ Thus

if the grammar G is a 4-tuple (V|̂ ,Vy,S,P) where V,^ is the set of

non-terminals, Vj is the set of terminals (the vocabulary), S is the

starting symbol and P is the set of productions, then our choice of these

will determine the size and form of the term set. Obviously, this will be

problem dependent, but in general £ should be large enough so that there

is a wide choice of possible decisions. It should also be dense so that

decisions can be reasonably precise and it should also be understandable.

Having formed £ we need to search amongst its elements, L^., for the
one which is closest in meaning to the unlabelled Z. It is extremely

inefficient to make pairwise comparisons for all L^. and so we us-e a
technique commonly employed in pattern recognition. This consists of repre

senting each of the by a pattern, P^., of characteristic features, and

then searching in this low order pattern space for possible decision statements

A more formal description of this approach is as follows. Assume that

the universe of discourse, U, on which the L. are defined is finite and

discrete and that |U| = D. Then, we define a function F such that
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F; [0,1]" , N« D

which maps each L^. onto the N-dimensional pattern space P. Each element

In P is a point (denoted by the vector P^) corresponding to the values of

the characteristic features of L,j. Thus

F(ul^.(x)) = =(p],p?,...,p^) .
Note that whilst u, (x) fully characterises L., P. is not a

i '
complete representation in P since it can happen that for some L. f L.,

"I 0

The choice of the components of F is crucial, since the correct

selection of features determines the success or failure of almost any

pattern recognition process.

In choosing these, we try to have the minimum number consistent with a

good representation of the original data. We in fact take note of four

features which have proved themselves to be efficient in practice (see
4

Bonissone for a more detailed discussion of this point).

The first feature is the power of the fuzzy set. That is

1 ^
Pi I Pi ^^k^ •
^ k=l '-i ^

The second is a measure of the fuzziness of the set. Using a definition
12

proposed by Loo

' ^ 2
Pi =

D o ^0.5
I H(pl (X|̂ ))

^k=l 1

where H(h) = h, 0.0 £ h < 0.5, and H(h) = l-h, 0.5<h<1.0. The

third and fourth features are the first moment of the membership distribution
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Of L^. (a measure of "center of gravity") and Its skewness (a measure of

asymmetry).

We need also to define a distance In P. Since It Is a Euclidean space,

use a weighted Euclidean distance, d^, defined bywe

<ll(Pl.P2) =U wf{pi-pi)2}V2

The weights W^. play an Important role since they allow different features

to be emphasized. They are defined as W^. = Is the length of
the range of values that p^ takes over all the points In the data set, and
I^. Is obtained from the user by means of palrwise comparison tests. (The

reader should refer to Bonlssone^^ for a more thorough discussion of the
weights.)

The pattern space search thus consists of finding the set of L^.,
denoted LA[Z], which satisfy d(Pj»p2) E where E Is a parameter which
defines our tolerance In judging the similarity.

This prescreening process thus yields a small set of decision statements

which are close In meaning to Z. If we want a unique answer, we have to

apply some further metric between each element of LA[Z] and the unlabelled Z,

The metric we use Is a modified form of Bhattacharya distance that Is

def1ned by

=[1 - R(L^-.Z)]^^^ , L^. e LA[Z]

where R Is called the Bhattacharya coefficient. In the discrete case

this Is given by

-i1/2up L^. • K'- K' -|

[power(L^.)power(Z)J
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Thus finally, the linguistic decision statement corresponding to Z

is that L^. for which d2(L^.,Z) is smallest. We denote this L^.

5. Examples

We have chosen two examples to illustrate and further illuminate our

ideas. The first is the single-stage binary-choice problem considered by

Watson et al. We present several solutions to this so that the reader can

get a feel for the main features of our technique. The second example is a

single-stage multi-choice, and multi-criteria, investment decision problem.

It is somewhat artificial, in the sense that it does not correspond in detail

to a real-life situation, but it does show how such problems are naturally

solved using the fuzzy approach.

5.1 The naval task force commander^ problem

The commander of a small naval task force is cruising just off an enemy

coastline. An aeroplane is approaching from the direction of the coastline

and the commander has to decide whether or not to fire on the plane. Before

he learns if it is a friend or an enemy, he has to decide if he should shoot

at it with intent to kill. If it turns out to be an enemy and he either

hasn't shot at it or has shot and missed; then there is the danger that the

plane might bomb his task force and score a hit.

The problem he faces is represented by the decision tree shown in

Figure 10. There are four probabilities associated with this problem, namely

p^ - the probability that the plane will be shot down (killed) if shot

at. This is the same whether it is an enemy or a friend.

Pg - the probability that the plane is friendly-
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P3 - the probability that an enemy plane would score a hit on the task

force after being shot at but not killed.

P4 " the probability that an enemy plane would score a hit on the task

force if it has not been shot at.

These lead to eight possible outcomes, each of which has a different utility.

The expected utility of shooting is therefore

A= P2(UiPi +(1-Pi)U2) + (l-Pj) (^1 + '

and the expected utility of not shooting is

B= UgPg + (1-P2)(U7P4 +Uq(1-P4)) .

The difference function is thus given by Z = A-B. If Z > 0 then the

coiranander should prefer shooting and if Z < 0 then he should prefer not

shooting.

Obviously, if the probabilities and utilities are known exactly then

the problem is straightforward. If some, or all, of them are only imprecisely

known, then we have a fuzzy decision problem. We shall consider five combi

nations of probability and utility.

Case 1. We assume that the p's and U's are non-fuzzy. The utility

values are just those given by Watson et al. and the probability values are

the mid-point values of their fuzzy probabilities. Thus

Pi'= 0.7 P2 = 0.8 P3 = 0.2 P4 = 0.35

"l == -10.0 •^2 = -3.3 "3 = 5.8 >^4 = -26.9

"5 == - 1.2 "6 = 0.0 "7 = -28.8 "8 = - 2.5
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Using these values in the corresponding formulae, we calculate that

Z = -3.6194. As expected, this is consistent with the solution given by

Watson et al., which is that the commander should not shoot at the plane.

Case 2. Here we leave the utility values as in Case 1, but make the

probabilities fuzzy. Figure 11 shows the membership distributions. Note

that they differ only very slightly from those given by Watson et al. In

fact, we have used linear S(*) type fuzzy numbers to simplify the computations

The resulting fuzzy Z is shown in Figure 12 together with the

difference membership distribution, computed by Watson et al. Also

shown are the corresponding linguistic approximations and This

clearly illustrates the way in which the linguistic approach to. decision

making emphasizes basic similarities rather than numerical differences.

Indeed, the only difference between and is in the truth qualification.

Recalling that the standard form of the decision is "A is P to B is t,"

then gi ves

A: not shooting

P: from marginally better than to indifferent with

B: shooting

T: true

and gives

A: not shooting

P; from marginally better than to indifferent with

B: shooting

T: venj
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Csse 3. We shall now see what happens when both the probabilities and

utilities are fuzzy. The membership distributions are shown in Figures 13a

and 13b. Whilst these are close to those used in Case 2, there are some

significant changes. Principally, these are an increase in the utility of

killing an enemy plane and a less fuzzy probability that the plane is friendly.

The resulting Z and L2 are shown in Figure 14. Notice that Z is

much "sharper" now (a result of changes in Pg) and that is correspond
ingly less fuzzy. The decision is now

A: not shooting

P: between marginally better than and indifferent with

B: shooting

t: moreorless true

This is as expected. Our decision whilst still favoring not shooting has a

sharper but lower strength.

C^se 4. The only difference between this case and Case 3 is that Pg
(the probability of the plane being friendly) is now as shown in Figure 15.

This reduction in value has an interesting effect as we see in Figure 16.

Here Z is almost symmetrical about zero and so L2 corresponds to

A: not shooting

P: between marginally better than and marginally worse than

B: shooting

T: very true

Or, in other words, we are indifferent to the two possible courses of action.

\
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Case 5. If we make a further reduction in pg so that it is as shown
in Figure 17, then Z and L2 are as shown in Figure 18. The decision

now becomes:

A: shooting

P: from indifferent with to marginally better than

B: not shooting

T: very true

Thus we have a reversal of our original decision brought about simply by

reducing the value of P2. This is not too surprising since an analysis of

the formulae for the expected utilities of A and B shows them to be

primarily dependent on the probability that the plane is friendly.

In concluding this example we would like to re-emphasize the main advan

tage of our approach which is that decisions are linguistic rather than

numerical. The technique is thus genuinely a fuzzy decision procedure, at

least at the highest level, and because of this, small numerical changes in

the definition of primary sets and errors introduced in computing Z are

relatively unimportant.

5.2 An investment decision problem

A private citizen has a moderately large amount of capital wh.ich he

wishes to invest to his best advantage. He has selected five possible

investment areas, {apa2»a2,a^,ag}, and has four criteria, {c^ ,C2»C2,c^},
by which to judge them. These are

a-j - the commodity market

a2 - the stock market

a^ - gold and/or diamonds
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- real estate

ag - long term bonds

25

c-j - the risk of losing the capital sum

C2 - the vulnerability of the capital sum to modification

by Inflation

C3 - the amount of Interest received

c^ - the cash reallsablllty of the capital sum

His rating of the alternatives with respect to the criteria {r..: 1=1,...,5,
^J

j =l,...,4} Is expressed linguistically as shown In Table 2. His problem

Is to select one of the a^. with the additional constraint that he does not

consider the criteria to be equally Important but gives them linguistic

weights, {a^as shown In Table 3.

' The first step In solving this problem Is to compute a suitability set

for each of the alternatives. Since the linguistic ratings and weights are

appropriately defined fuzzy numbers (see Appendix 3), we just use a fuzzy

weighted sum to give

'i ° ^a.r.. .1 j=i J iJ

The results are as shown In Figure 19.

We then compute the dominance relation to be

1.0 1.0 .81 .49 1.0

1.0 1.0 .90 .58 1.0

1.0 1.0 1.0 .85 1.0

1.0 1.0 1.0 1.0 1.0

.77 .79 .63 .34 1.0
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Table 2

Criteria

high moreorless
high

very
high fair

fair fair fair moreorless
good

low

from fair
to

moreorless
low

fair good

low
very
low

moreorless
high bad

very

low
high moreorless

low
very
good

Table 3

"1 "2 "3 Clii
4

moderately
important

moreorless
important

very

important
moreorless
unimportant
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and we see that (real estate) dominates all the others. The weights

are thus [.49 .58 .85 1.0 .34] and the corresponding Z and are as

shown in Figure 20. Recalling that the standard form of decision is "aj^ is
P to all-other-alternatives is x" then we have

aj^: real estate

P; from indifferent with to marginally better than

t: moreorless true

It is interesting to compare this linguistic statement with the dominance

weights derived from R^. In some sense, the W(i) over-emphasize the

differences making it seem that real estate is a clear cut choice. The

linguistic statement, however, is rather more cautious. It picks out real

estate, but makes us realize that the preference is only marginal.

This characteristic feature of the linguistic approach is, we feel,

particularly valuable. In any decision problem where there is uncertainty

in the data, there must be uncertainty in the decision itself. Obviously,

one of the alternatives has to be selected, but we should be aware of the

consequences of fuzzifying the problem.

Let us pursue this discussion by slightly modifying the problem. Suppose

the investor changes his assessment of the importance of c^. Instead of
being simply "moreorless unimportant" he feels it is "from moreorless

unimportant to moderately important." This gives a new set of suitability

sets (see Figure 21) and a new dominance relation

«6 =

1.0 1.0 .91 .58 1.0

1.0 1.0 .99 .72 1.0

1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0

1.0 .96 .81 .51 1.0
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The corresponding dominance weights are

W= [.58 .72 1.0 1.0 .51]

and we see that two alternatives, a^ and a^, completely dominate the
others. This means that we need to form two difference sets; one for real

estate, Z^, and one for gold/diamonds, Z^. In fact these are sufficiently

similar that they have the same (see Figure 22). Thus our decision is

that the investor is now indifferent to real estate and gold/diamonds and that

aj^: both real estate and gold/diamonds

P: from indifferent with to marginally better than

t: moreorless true

This is a very interesting result. Inspection of Figure 21 might have

led us to believe that real estate would be preferred. However, we see that,

once again, the linguistic approach emphasizes basic similarities rather

than numerical differences.

If we wish to choose between real estate and gold/diamonds we have to

apply other criteria to Z2 and Z^ (or and S^) such as selecting the
one with least fuzziness or the one with the highest first moment. Alter

natively, we might treat the problem as a single-stage binary-choice problem

and apply the methods of Section 2.

Abetter approach would be to assess the relative dominance of a^ and
a^ with respect to the non-dominant alternatives. By that v/e mean that two

sub-problems should be considered; the dominance of a^ over a^ ag and
ag, and the dominance of a^ over a^, and a^. Thus we form a
dominance relation for each of these reduced problems by striking out the

appropriate row and column in R^. This gives
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Rpj = relative dominance of real estate

1.0 1.0 .58 1.0

1.0 1.0 .72 1.0

1.0 1.0 1.0 1.0

1.0 .96 .51 1.0

Rq = relative dominance of gold/diamonds

1.0 1.0 .91 1.0"

1.0 1.0 .99 1.0

1.0 1.0 1.0 1.0

1.0 .96 .81 1.0

The corresponding dominance weights are

= [.58 .72 1.0 .51]

and

Wg = [.91 .99 1.0 .81]

If we now define two fuzzy differences

fW^djSi +Wr(2)S2 +W,^(4)S5>

and

' I vLrrr+ W^C2J +W^(4)

, ^Ws(l)ST+We(2)S2 +W5(4)S5G• ^3 " 1 Wg{1) +Wg(2) +Wg(4) }

then we get a substantially different picture of the preference for real

estate and gold/diamonds. Figure 23 shows Zj^ with Lj^ which corresponds
to

aj^: real estate

P: between indifferent with and marginally better than

t: moreorless true
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and Figure 24 shows Zq and Lq which correspond to

gold/diamonds

P: between marginally worse than and marginally better than

t: true

Obviously, there is now a much stronger decision in favor of real estate.

Even though the difference is clear in this example, we should observe

that, in general, this is not necessarily a straightforward problem. It

might easily have been the case that and Lg differed in only the

smallest detail; the difference between moreorless true and true for example.

In such a case we might not be justified in unequivocally choosing the

decision with the highest truth value.

To summarize, it does seem that if there are two, or more, dominant

alternatives, then we should form a deicsion for each of them without attempt

ing to say which is best. We may well perform additional comparisons but we

should certainly not insist that one alternative is to be preferred.

6. Some aspects of a user interface

In this section we want to indicate how the techniques we have been

describing might be incorporated in a computer aided design package. At

several points in our discussion we have emphasized the subjective, user

oriented, nature of fuzzy decision making. Indeed, the techniques depend

upon so much user generated information that the obvious way to use them is

in an interactive computer program. This should have a modular structure,

perhaps like the one shown in Figure 25.

At each stage the user would be interacting with the program providing

it with information about the problem. Some indication of the interaction
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is shown to the right of the figure.

Clearly, an essential part of any such package would be a device for

graphical input and output. So too would be an internal structuring of the

decision so that the user could discover, in whatever detail required, exactly

how the decision was made. Implementation would require a language in which

fuzzy sets can be manipulated easily. The computation required by the

examples in this report was performed using APL which seems particularly

suited to this kind of work.

7. Conclusions

The basic conclusions to be drawn from this study have already been

outlined. To summarise, we firmly believe that there are situations in which

fuzzy sets are an appropriate way of representing uncertainty. It seems to

us self evident that in such cases any decisions taken are inherently fuzzy

and it is clearly not appropriate to give the final choice some artificial

precision. That is, decisions should be linguistic rather than numerical.

In developing a technique which generates linguistic decisions we have

drawn heavily on the notions of linguistic approximation, pattern recognition

and fuzzy numbers. This has meant that our procedures are complex, though

not complicated, and necessitate the use of a digital computer.

However, the result is an easily used tool for structuring and solving

fuzzy decision problems. The decision maker can interact with the decision

procedure at every level and, as a consequence, we feel that our method is

of direct practical benefit.
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Appendix 1: Demonstration of the equivalence of Wand I

In their paper on fuzzy decision making Baas and Kwakernaack® develop
a fuzzy set, I, which characterises the extent to which alternative a.

is the best alternative. In this appendix we shall show that when the

suitability sets are convex normal fuzzy numbers I and W are equivalent.

Given the suitability sets {S^.: i =l,...,m} Bass and Kwakernaack form

the cartesian product set, P, such that

m

H) Up(x^,...,X|̂ ) = •

Then they define a conditional fuzzy set I|P such that

(2) ^I|P^^ ^ ^ ^i - ^j ^ ^
- 0 otherwise

Then finally, they form I by

° •
*1 *ni

We should note two important aspects of these equations. Firstly,

equation (2) simply defines a sequence of subspaces in {R.: i =l,...,m},

each of which is bounded by a set of m-1 constraints, x. > x. Vj ^ i. That
^ J

is, R. is the subspace in which x. is the largest element. Secondly,

equation (3) can then be seen as a way of computing, for each i, a match

between P and the corresponding subspace.

Now let us consider two cases: yj(i) = 1 and yj(i) l. in the
former, we see from equation (3) that yj(i) = 1 if and only if some, or

all, of the peak in P is within subspace R.. That is, there is a value



35

satisfies the constraints and which makes yp(x^= 1.0
This implies that the peak in S. lies to the right of (i.e. is at a higher

value than) the peaks in the other suitability sets. This is pictured in

Figure A1. Since the notion of dominance is defined by

Ur (i,j) = V(u<c (x) Ap. (x)) .
<5 X - i ^3

[Note the change in notation from Section 3. We have written R^(i,j) as
Up (1»j) to aid the discussion; we shall also write W(i) as Ui,i(i).] It

(5 vi

is clear that in this case

Up (ijj} ~ 1.0 Vj
^6

which means that

m

J- 1 0

= 1.0

Now consider the case when yj(i) 1. This means that the peak in P
is not within subspace R^. (i.e. there is no value x^,...,Xj^ which satis
fies the constraints and makes Up(x^,...,Xj^) =1.0). Since Up(x^,...,x^)
is a convex normal fuzzy set, we see that pp is non-decreasing in R^.. Its
maximum value must, therefore, be attained on a boundary of R..

The boundary will be defined by those original constraints which are

active. These will depend on the actual S-}, but for the case shown in

Figure A2, all constraints of the form

Xj^ £ X. , k > i

are active and all those of the form

A. ,



36

are inactive. Therefore, equation (3) can be rewritten as

(4) Ul(i) =
x^<x.

CUp (Xi| ,. .. ]

m

If we also rewrite equation (1) as

(5)
i-1

Up(Xi »... ,Xj^) = ^
*'3=1 j ^ ^ ^j=i j

" ••••»x^_i)A Pg(x^ J•••>Xjj|) ,

then, because there will be a value of x^,...,x^._^^ which satisfies the
inactive constraints and makes Uy^(x^,...,x.^^) = 1.0, equation (4) simply

becomes

Rewriting this as

^•=Xi+r--=x^

m

PrCi) = VCAPc (x)]
X J=i J

m

= VC A (yc (x) Ay- (x))]
X j=i+l ^i

m

= A [V(yc (x)Ay- (x))]
j=i+l X

m

A 6(S.,S.)
j=i+l ^ ^

m

~ A pp (»J)
j=i+l h

and since S. dominates S. Vj £ i (i.e. y- (i,j) = 1.0 Vj < i) we have



9yl+l=Fl
(P«L)%V

111

=

{i)Irtvo*l=

(f«i)«rlV
^LJ

(f'L)%^V^=(.L)"rt lU

ze

JIO
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Appendix 2: Some fuzzy set definitions

Two comrnon compound fuzzy sets used throughout the paper are "from A

to B" and "between A and B". These are defined as follows. If A and B

are given by their respective membership distributions u^(x) and yg(x)
then

(i) E = "from A to B"

U£(x) = Ap<g(x)
where

p^>(x) = ]i^(x) , X< x^

=1.0 , X > X*

and

U<b(x) =1.0 , X< X*

= » X > X*

with x^ being the leftmost value of x for which p^(x) =1.0 and with
X* being the leftmost value of x for which yg(x) = 1.0.

(i i) E = "between A and B"

P£(x) = nonn[(l -y^^(x)) A(l -u^gCx))]

where norm[ ] denotes the normalised fuzzy set.

These two compound sets are illustrated in Figure A3.
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Appendix 3: Linguistic ratings and weights for example 2

All the ratings and weights used in Example 2 are fuzzy numbers defined

on the closed interval [0,1] of the real line. Furthermore, S(?) is

linear giving a particularly simple form. Only seven basic set shapes are

used to represent the range of linguistic values (see Figure A4). This

means that each set has several interpretations. Thus

shape 1 corresponds to:

shape 2 corresponds to:

shape 3 corresponds to:

shape 4 corresponds to:

shape 5 corresponds to:

shape 6 corresponds to:

shape 7 corresponds to:

"very low"

"very bad"

"very unimportant"

"low"

"bad"

"unimportant"

"moreorless low"

"moreorless bad"

"moreorless unimportant"

"fair"

"neither unimportant nor important"

"moreorless high"

"moreorless good"

"moreorless important"

"high"

"good"

"important"

"very high"

"very good"

"very important"
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List of Figure Captions

Simple binary decision tree.

Simple fuzzy expected utilities.

Range of possible Z-functions.

Fuzzy set "true".

Simple suitability sets.

Example of "less than or equal A".

Examples of two linear fuzzy numbers.

Result of multiplying two linear fuzzy numbers.

Example of a four parameter fuzzy number.

Example 1: decision tree.

Example 1: case 2 fuzzy probabilities.

Example 1: case 2 Zand Z^^, L^ and

. Example 1: case 3 fuzzy probabilities.

. Example 1: case 3 fuzzy expected utilities.

Example 1

Example 1

Example 1

Example 1

Example 1

Example 2

Example 2

Example 2

Example 2

Example 2

Example 2

case 3 Z and L^.

case 4 fuzzy probability pg

case 4 Z and L^.

case 5 fuzzy probability

case 5 Z and L^.

case 1 suitability sets.

case 1 Z and L^.

case 2 suitability sets,

case 2 Z^, Z^ and L^.

reduced problem Z^ and L^.

reduced problem Zg and Lg.

Figure 25. System diagram for a computer aided decision package,
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Figure Al. Example of S. as the highest suitability set.

Figure A2. Example of S^. as an intermediate suitability set.

Figure A3. Example of compound fuzzy sets.

Figure A4. Linguistic ratings and weights for example 2.
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