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ABSTRACT

In this paper we present a property of certain linear multistage

problems. To solve them, a method which takes this property into account,

is presented. It requires the resolution of 2N-1 subproblems if there

are N stages in the original problem. A sufficient condition is given

on the matrix of the constraints for the property to be true.

When only a submatrix has this property we propose to use the

Dantzig Wolfe decomposition. We then can solve the subproblem with

the proposed method.

Applications to linear and nonlinear programming are presented.
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I. Introduction

General methods exist to solve multistage linear programming

problems (see [6] for example). Here we focus our attention on a

special property of some problems of this family. Provided a certain

hypothesis is true we give an efficient method to solve them.

In section I we describe the method and give a sufficient condition

on the matrix of the constraints for the hypothesis to be true.

In section II we show how to use this method when only a submatrix

satisfies the sufficient condition. Examples of applications are

given.

II. The Method

Let us consider the following multistage linear program

r

Vl = bl

<»<

i-1

A-x. + jit L4 4x- = b. i = 2,...,1 i *^ ij j i
M

x± > 0 i = 1,...,M

M

I
v. i=1

m

MAX Y* C.x.
r-i i i

the matrix of the constraints is shown below

Al

L21 A2

Ha hljM-l ^

M

M

-2-



We call (P.) the following subproblem

A.x_. =

~T
MAX C.x.

1 i
v.

<i =bi- S V! (1

(2) ( x± >0

(if i>2)

where x* is given j = l,...,i-l such that the first i-1 stage constraints

are satisfied.

(3)

We call*-}) the dual problem of (2)
r

ATX. > C,
l i — i

MIN X

HYPOTHESIS

T fc1

J=l J J

The solution of (3) is (when it exists) independent of x* (j=l,...,i-l)

With this hypothesis we can solve (1) with the following algorithm.

Step (0) Set i = M, CM = CM

Step (1) Solve ^Q.; get X (the optimal solution) then compute

M

C.'i-1 "" ^i-1 ^-» LiiXij=i+l 3± 3

Set i = i-1

if i = 1 go to step 2 else go to step 1.

Step (2) Solve P.; the right hand side is b- if i = 1.

i-1

b^ - 2Lrf ^..x » otherwise
j=l

get x.; set i = i+1

if i = M+l stop else go to step 2.
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Proposition

i) x = (x-x^,...,x^) is optimal solution of (1)

ii) X= (X1,X2,...,XM) is " " of the dual of (1)

Proof;

- x is admissible for (1) by construction

- X is admissible for the dual of (1) by construction also

for we have

r
Tr

Wu i c- - c-M M

aTx. > C. = C<V± i c± - 4 l:.x
j=i+l

. .x.

Tr
M

T r

j=i+l J1 J 1

These constraints satisfied by X. (j=l,...,M) are the constraints of

the dual problem of (1) by definition.

- Moreover, since the hypothesis holds, we have at each iteration of

the step 2.

~T- -T / V* - \ ~T_ -T
C.x. = X. b, - V, L. .x. for i > 2 and Cnx_ = X-b-l i i\i ^ ij j/ - 11 11

by adding up in each side of the equalities we have

M T M i-1

E c£± =E *5>± - S sj E l.
i=l i=l i=2 * j=l

~T
if we remember what is C. we then have

l

±3*1

for i = 1.

M M m-1 M M _T i-1
E c±x =E ^?± +E E wn*± - E *i E \f*
i=l • i=l 1 1 i=l j=i+l 3 J1 X i=2 x j=l 13 3

it is easy to see that the two last terms in the equality are equal and

so the proof is complete.
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Note:

It would not be difficult to show that if one h). has not any

solution then the original problem has no finite solution (provided a

feasible one exists).

II.1 A Sufficient Condition

We now give a sufficient condition for the hypothesis to be true,

i) b± >_ 0 V±

ii) -L.. is nonnegative V ,V. < i

iii) A may be reordered (by interchanging lines or columns) in a matrix

A described as below.

- A is a triangular by blocks of one row each

- all the elements of the non-diagonal blocks are negative or equal to

zero.

sl
0

S2

<L °

T 1pi
T

p2
s

p

The problem P.

r i-1

i.x. = b. - 2 L^.x*11 ! jti i] J

/ x. > 0
i -t —

MAX cTx
V*.

can be written now

Ay = b

MAX dy y >: 0

(i>2)
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that is the same as

r m. m-
i-1

£ sijyij= 6i - 2 Vj; .? sijyij= bij=l J J j=l J J j=l

W ( i = 2,...,p

P —i
max E E d„y„
^ i=l 3=1

ij'ij

m. is the number of elements of S.

p is the number of row of A

y is the vector [y ,...,y±,...,y ]

and y. has m. elements y...
J i i iJ

(4) is still a multistage linear problem. We are going to see that

the hypothesis is true for its subproblems.

The subproblems of (4) (equivalent to the P. for the original

problem) are now

r m.
i-1

52 s..yJ# = b., - Y. T..y*

(5) < y.. > 0
^ 13 ~

mi .
max E d1Jy1.

for i > 2

(5) has only one constraint and^-Q. is

r
X. > d,, ./s. . if s.. > 0
l - i3 13 13

j X. < d. ./s.. if s,. < 0
< l - 13 13 i3

min X •(b, - E T..y*J

i-1

Since i) and ii) hold we have: b. - £ T..y* ^0 Vy*. So if max d /s .
1 i=i 1] ^ J s >0 J J

J i3

<_ MIN d
s. .<0
13

../s .(+«> if £ s . < 0) then X = MAX d. ./s (independent of

Sij
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y* and bJ else the dual has no solution, and, as the primal has a feasible
3 i

solution, it has no finite solution (we suppose it exists at least one

s . > 0 in each diagonal block S , otherwise (2) has obviously no feasible

solution).

So we have shown that the dual solution of (2) is independent of

x* (assuming the sufficient condition to be true.)

It is easy to see that when there is a finite solution for (2) the

optimal basis matrix is triangular with positive elements on the diagonal

and negative elements in the triangle.

So the inverse is a nonnegative matrix.

Generally in most of the problems where constraints are linear

the property is not true for the matrix of all the constraints.

Only a submatrix has this property ; in next section we see how to use

this fact.

III. Applications

III.l Linear programming

When a submatrix (of the constraints matrix) has the property we

studied in previous section we decompose the original matrix between two

submatrices A and B as shown below.

A
o

B

We then apply the Dantzig Wolfe decomposition principle to this problem.

A will be the matrix of the "master program" and B the matrix of the

subproblem to solve at each iteration.

As B has the property, the resolution of the subproblem is very

fast. We need not to use a simplex algorithm; moreover there is not

any numerical leeway and there is no matrix to store since we solve

-7-



only one constraint linear programs! Then, practically, to solve the

original problem is nearly the same as solving a problem in which

the number of constraints is the row number of the matrix A .
o

Example 1. The dynamic Leontief model.

As described by LASDON (see [1] p. 115) the matrix of the dynamic

Leontief model can be drawn as below.

I-A -B -I

I I -I

I I-A - -B -I

-I I I -I

I I-A -B -I

-I -I I I -I

-I -I -I
etc

By reordering the rows and the columns the submatrix B is then

I I -I

-I I I -I

-I -III -I

-I -I -I

this is a multistage linear structure and the matrix of the subproblem

P (see (2) section I) is

-I

It is obvious that this matrix has the property. It can be

reordered in diagonal blocks of one row. Each block contains 3 elements

+1 +1 -1
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the matrix L . are \ 0 0 -I) and then the sufficient condition is

true. Note that the subproblem of the Dantzig Wolfe decomposition

is then very easily solved and very fast. Now the number of

constraints for the master program is exactly half as many as before.

If A is triangular then we can consider B as the master program matrix

and A as the subproblem matrix.

By reordering,the matrix of the subproblem P. is now

-B I-A

By reordering I-A and I as a block triangular matrix (since A is

triangular) and since -B is negative the sufficient condition is still

true.

Example 2

This example is a production planning problem. It is a middle-large

linear program with 2200 constraints and 2700 variables. By using the

Danztig Wolfe decomposition principle the master program has 470 constraints

and the subproblem is made with five independent problems. For each

problem we proved that the hypothesis as stated in section 1 is still

true although the sufficient condition is no longer verified.

The equations of one of the five problems are

'x(l,k) + xs(l,k) = x(l,0) k = 1,...,T

x(a,k) + xs(a,k) - p(a-l,k) xs(a-l,k) = x(a,k-l)

n
a 3

/xs(a,k) <_ x(a,k-l) + E x(a-j ,k-l) x n p(a-£,k-l)
^ 3=1 *=1

2 < a <M

where x(a,k) and xs(a,k) are the variables
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p(a,k) is a parameter

n is a parameter n < n ,+1
a a — a-1

This is a multistage linear problem. The sufficient condition is not

verified for the subproblems P because of the inequality constraints.

Nevertheless we could show that the hypothesis (as stated in section I)

is still true. For details about the proof see [2],

Thus a problem of 550 constraints and 600 variables was solved

with less than 2/100 sec. on an IBM 370/168 computer. Moreover there

is no matrix to store, in solving this problem and no numerical leeway.

Then at each iteration of the Dantzig Wolfe method.the resolution of the

subproblems is quickly performed. It allowed us to solve the original

problem within 5 mns on an IBM370/168.

In other examples of linear programming problems we can check that

the property (as stated in section I) is true for a submatrix of the

constraints matrix (see for example [3], [4] and [5]).

111*2 Application to nonlinear programming

Let us consider the problem

min f(x)

/ Ax = b

x >. 0

f is a nonlinear differentiable function and the set {x:x>0, Ax=b} is compact

Moreover A is the matrix of a multistage linear problem and the

hypothesis, as stated in section I, is true.

Then if we use the FRANCK & WOLFE method to solve the problem,

finding the direction descent at iteration k is equivalent to solving
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(P)

min<Vf(x ),u>

Ay = b

u >_ 0

and since the hypothesis is true this problem can be solved very quickly

- Suppose now we have to solve

r
min f(x)

Ax = b

x > 0

g (x) < 0 i = 1,...,m
l —

We can apply an interior point unconstrained minimization method

for the constraints g.(t) <_ 0 (see [7]).

We then solve the sequence of problems P .

<

r m r,

min f(x) - zL —7T
i=l 8l(x>

(P,.)
'*'{ Ax = b

x > 0

where r, is a positive decreasing sequence whose limit is zero as k -> ».
K.

As before we can use the Franck & Wolfe method to solve P.. Under

certain assumptions the solution of P, converge towards the solution of

(P). The assumptions could be

- f convex, g (x) convex

- (P) can be solved by mixed interior point and exterior point algorithm.

With this method we don't apply the penalty function, to the equality

constraints. So by solving P, we always have a feasible solution to the

initial problem.

In the case g.(x) are linear we can also directly solve (P) with

the Franck & Wolfe method or another feasible direction method.
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The linear programming problem to solve in order to find the descent

direction can be solved by the Dantzig Wolfe decomposition method where

the matrix A would be the matrix of the subproblem. Solving the

subproblem would be very easy since the property holds for A.
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