

Copyright © 1979, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

A STRING MODEL ETCHING ALGORITHM

by

Robert Jewett

Memorandum No. UCB/ERL M79/68

October 18, 1979

A STRING MODEL ETCHING ALGORITHM

by

Robert Jewett

Memorandum No. UCB/ERL M79/68

October 18, 1979

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

A String Model Etching Algorithm

Robert Jewett

Electronics Research Laboratory
University of California

Berkeley, California 94720

ABSTRACT

The basic algorithm and software implementation of a string model for
simulation of surface etching are presented. The algorithm models the time
evolution of a line edge profile by advancing nodes or points on a piecewise
linear curve representing the profile. The specific formulas for the direction
and rate of advance, insertion and deletion of points and deletion of loops are
shown. Complete software documentation in the form of parameter definitions
and a listing of the FORTRAN code for a CDC 6400 machine are included.

This research was in collaboration with research sponsored by Joint
Services Electronics Program, contract F44620-71-C-0087, Air Force
Office of Scientific Research, grant 71-2113 and the U.S. Army
Research Office grant DA-AR0-D-31-124-73-G165.

The string development model described here has been incorporated in
program SAMPLE (Simulation And Modeling of Profiles in Lithography
and Etching) but with several modifications.

A String Model Etching Algorithm

Robert Jewett

Electronics Research Laboratory
University of California

Berkeley, California 94720

Introduction

As the technology of microfabrication is pushed to its limits, it becomes increasingly
important to be able to model each step of the fabrication processes, both to predict the ulti
mate performance of the technology and to understand present techniques. Etching is a step
which appears universally in microfabrication. It may occur as the dissolution of a photoresist
by an organic solvent, the etching ofan oxide by an alkali, or the plasma etching ofan electron
resist. Whatever its physical details, the etching process can in many cases be modeled as a
surface etching phenomenon. The resulting profile is determined by an initial profile which
moves through a medium in which the speed of propagation may be a function of position and
other variables. Several examples are given in appendix Band [1].

Two major assumptions limit the generality of the present algorithm. Firstly, the pattern
to be etched is uniform in one dimension, so the problem can be solved using only two dimen
sions. For most microfabrication problems, the important cases involve the cross-sections of
lines, so the model is directly applicable. In certain other cases, such as round holes, the sym
metry of some cross-sections is such that the algorithm can still be applied.

A second major assumption is that the etch rate is a scalar function of position, and is
independent of the local direction of etch front motion and the history of the front. In some
real situations this does not hold. PMMA for instance has been found to have agel region at
the resist-solvent interface during development, so etch rate is a function of the history of the
adjacent regions as well as the exposure. This gel is somewhat swollen compared to the dry
resist, so that during certain periods of the development, the surface may actually advance into
the solvent. Another case where the second assumption does not hold is in so-called "pre
ferential etching" where etching proceeds more quickly along certain crystal directions, making
the etch anisotropic. A third case that is allowed by the algorithm is simultaneous exposure and
development, so that etch rate may be a function of time as well as position. Such acase would
require the implementation by the user of aspecial rate algorithm.

Two other algorithms have been reported previously, the cell model of Dill et al.[2] and
the ray model of Hagouel[3]. The ceU model divides the region under study into rectangles
Each rectangle can be thought ofas an ice cube in atray ofice cubes that is melting. Only the
cubes on the exposed surface melt, and the time for acube to melt is determined by the local
rate and the number of sides from which it is exposed. This model is inherently discrete
although continuous contours can be interpolated from cell removal times. It is slightly inaccu
rate for certain directions in that circular profiles tend to converge to octagons. The only imple
mentations to date appear to require slightly more computation time than the other alternatives.

The ray model works by analogy to Snell's law ofoptics. The etch rate corresponds to the
inverse of the index of refraction. The etch front is inferred by following the paths of"rays"
being refracted" by the nonuniform etch rate. The ray algorithm is suitable for implementa
tion on a desk calculator and for extension to three dimensions. Some user interaction is
necessary, especially when the gradient of the rate is not defined everywhere.

The algorithm described in the remainder of this report is known as the "string model"
The etch front is simulated by aseries of points joined by straight line segments, forming a

string. During each time increment, each point is advanced perpendicularly to the local etch
front, as in Fig. 1. A major portion of the algorithm adjusts the number ofsegments to keep
them approximately equal in length. Other subroutines input the data and output the etch
front. The algorithm was implemented in FORTRAN and many details were determined by the
available syntax, but the following considerations are largely language independent.

Segment length criteria

A major problem in developing the algorithm was in choosing suitable criteria for segment
length. Originally it was believed that the segments should be short enough so that any curve
that occured would be well defined, i.e., there should be some maximum angle between adja
cent segments, perhaps 0.1 radian. It was soon found that this criterion led to agreat prolifera
tion ofsegments in regions where the front was either expanding or contracting. Often adjacent
segments would differ in length by several orders of magnitude, which led to apparently insur
mountable problems. Eventually it was decided to make segment length uniformity the sole
length criterion. While this led to unavoidable position errors ofabout one-half segment length,
the resulting algorithm is much simpler and faster. If necessary, the error can be reduced by
decreasing the average segment length with aproportional increase in computation cost.

Time step size

For most cases of interest, the etch rate varies with position. This leads to errors in the
position and in the direction of each point on the string. Errors in position arise from the
rather simple integration algorithm used. The local rate at the start of each time step is
assumed to be constant throughout the step. This can easily lead to position errors as large as
the distance covered in one step. Consider for example an etch front in a photoresist approach
ing an unetchable substrate. A point which is barely outside the substrate at the start of the
time step will advance into the substrate at the rate associated with the resist. An exampie
which could spawn huge errors in position is thin layers of alternating fast and slow etch rates.
With too large a time step, a point could jump over aslow region.

Errors in direction arise from nonuniform rates along the string, and from certain boun
dary conditions. During each step, the perpendicular to the front, which is defined below, is
assumed to be constant in direction. If two adjacent points have greatly differing rates, the
quickly moving point cannot start turning towards the slower point until the end of the time
step. This mechanism tends to introduce relatively small errors in position because the error is
roughly proportional to the cosine of the angle error.

An example of boundary conditions causing this kind of error is shown in Fig. 2. During
the first time step, point 1moves to the left, giving undercutting. Point 2moves straight down.
The exact solution of the problem is shown by the broken line, which is simply a circular arc
joining smoothly with astraight line parallel to the original surface. If the time step were subdi
vided into smaller steps, the path of point 2 would have bent slightly towards point 1, but the
large error in approximating the circular arc would nothave been significantly reduced.

Denning the normal to the string

In the exampie above, it is easy to see what the normal to the string is for point 3, and
therefore what its direction of movement should be. It is not so easy to see what direction
point 2' should take. Three alternatives were considered for the algorithm. First, the point
could travel perpendicularly to the line segment to its left or right. This approximation is easy
to calculate, and can be applied to every point on the string, but it is inherently asymmetrical
since the left or right neighbor must be chosen. A second method is to advance the point nor
mal to a line joining the two neighboring points. In the above example, point 2' would be
moved normal to a line joining 1' and 3'. This is as easy to calculate as the first method, but
the directions of the endpoints of the string must be determined separately. This is not a major
drawback since the directions of the endpoints are usually set by boundary conditions or sym
metry. The third method, which was finally chosen, is to advance the point along the angle

-3

bisector of the two adjacent segments. This requires slightly more computation than the second
method, but gives better results when thesegments differ in length, especially in regions where
the string is contracting.

Endpoint directions

In the present algorithm, the directions of the two endpoints are constants specified by
input data. Usually the boundary conditions or symmetry of the problem will determine the
directions. In the above example, the endpoints are specified as moving parallel to the resist-
oxide interface, which leads to undercutting of the resist. The computation for the example
could be roughly halved by noticing that the problem is symmetrical about the vertical center-
line. Point 3 therefore always travels along the centerline. The problem can be solved by cal
culating for the string 1-2-3, with point 3specified as moving straight down, and then reflecting
the results through the centerline to obtain the complete solution. Use ofsymmetry like this
can cause problems when the centerline is not a region of maximum rate. Neureuther and
0'Toole[4] have encountered such cases in optical-exposure simulations.

Addition of segments

In the example above, the segment between points 1 and 2 will grow indefinitely due to
the nonparallel motion of its endpoints. As it grows, it becomes an increasingly poor approxi
mation to the exact solution, which is just a quarter circle joined to a horizontal segment. Simi
lar cases occur in nearly all simulations since there is usually at least one region in which the
front is expanding. One way to solve this problem is to start with very closely spaced points so
that sufficient resolution is maintained even with considerable expansion. This becomes expen
sive for problems with expansion ratios of more than 10:1, as in optical-exposure standing-wave
problems. A more economical approach is to break each excessively long segment into two
shorter segments. The simplest way to do this is to add the midpoint of the long segment to
the string, as shown in Fig. 3a. This placement of the new point does not approximate very
well the curved surface of the region ofexpansion. In the present algorithm the local curvature
is estimated by calculating the angles formed by the long segment with the two adjacent seg
ments. The larger these angles are, the more the new point should be offset into the region of
expansion, as shown in Fig. 3b.

Areasonable function for the length s can be derived by considering a regular polygon
expanding outward, approximating a circle. In that case 0»tf>, and s-ttZ,tan(0/4) This is
approximated in the algorithm by s-Z.0/8, where 9 is chosen to be the smaller of the two adja
cent angles. This underestimates s for all cases, so the adjustment never overcompensates for
curvature. A segment is divided like this whenever its length exceeds some maximum value
such as twice the length ofthe segments in the original string.

Afaster algorithm due to S. N. Nandgaonkar[3] offsets the added point from the midpoint
of the long segment by afraction of the vector difference of the two adjacent segments.

Regions of contraction

Most simulations also have regions of contraction in which the segments become shorter
Consider the development of the idealized exposed line in Fig. 4. The etch rate in the unex
posed region is unity, and is three in the exposed region. Contraction occurs at the points A-
A-A , where the two straight fronts are colliding. The details ofthe collision are shown in Fig.
4b. °*

Ideally, the algorithm should move the point at he corner to follow the locus ofthe inter
section of the two straight fronts as they advance. This theoretical point of intersection actually
moves faster than the two fronts by a factor of l/sin(0/2), where 9 is the angle included
between the two fronts, just as the cutting point of a pair of scissors moves faster than the
wades. This increase mvelocity can only occur for two intersecting fronts, so any algorithm to
correct the local rate would have to check three consecutive angles to determine whether the
middle vertex was in fact such an intersection.

-4-

Rather than perform this additional checking, the corner is allowed to lag behind, as
shown by the third string in Fig. 4b. Segments adjacent to the corner decrease in length, and
are deleted when they are less than a minimum value, such as 75% of the initial segment
length. For some obtuse angles of intersection, this is a satisfactory solution. In some simula
tions a much sharper angle occurs as in Fig. 5. Segment AB may not contract to less than the
minimum allowed length prior to point Acrossing the string between Band D, resulting in the
situation of Fig. 5b. This process is refered to as "loop budding". Point Bwill subsequently
move to the left rather than the right because the sense of the angle has changed. The loop
will start expanding eventually requiring the addition of points such as B' and B". Loop forma
tion is beneficial in that the intersection point Xcan move with increased velocity because it is
not actually a calculated point. If the loop grows too large, the additional computation for its
segments becomes burdensome.

Loop deletion

Prior to the output of the front, loops are deleted, except for very small loops. This is
done by checking each segment against following segments for intersection in two steps. First
the coordinates of the left endpoints of the two segments are compared in the x and y direc
tions. If the difference in either dimension is larger than twice the maximum allowed segment
length, the pair cannot intersect. Otherwise, the pair may intersect, and a more careful check is
performed by the following algorithm.

Suppose complex numbers z{ and z2 give the endpoints of segment A, and z3 and z4
define segment B. Let

ZA Gz)—(1—d)z\Jraz1

be any point along the extension ofA, determined by a real parameter a. Similarly
Zfl(£)-(l-6)z3+fe4

gives any point along the extension ofB. IfAand Bare nonparallel, ZA (a)°-ZB(b) has a solu
tion, and solving for a and bgives:

_ lm((zi-zi)(z4-z0*)
1m((z2-zx)(z4-zi)m)
lmazl-zi)(z2-zl)*)

" Im((z4-z3)(z2-zl)*)
where *denotes the complex conjugate. If aand bboth have values between 0 and 1, the seg
ments A and B intersect at z5-(l-a)z1+az2-(l-6)z3+fe4, see Fig. 6. When intersection is
found tooccur, the loop isdeleted and the point of intersection is added to the string.

Details of the FORTRAN implementation

The above aspects of the algorithm are fairly independent of the programming language.
The following ,details pertain to the implementation of the algorithm in FORTRAN by the RUN
compiler on a CDC 6400 computer[5]. Much of the algorithm is based on the use of complex
arithmetic to easily manipulate magnitudes, directions and angles. The x coordinate
corresponds to the real part of the complex number, and the y coordinate to the imaginary part.
It is important to note that y increases downward, and usually represents depth below the initial
surface.

The following sections define each variable, and give a description of each routine in the
algorithm. A listing of the program is in appendix A.

Variables in blank COMMON

XY one-dimensional complex array of 200 elements, stores the current coordinates of the
etch front

•LABEL one-dimensional integer array of 20 elements, stores the title of the simulation. At
10 characters per word, there are 200 characters in the title.

*XMAX maximum x-dimension, normally used only in plotting programs when no x-
dimension is specified by the user. Could be used in RATE to specify RATE — 0
when X > XMAX.

*YMAX maximum y-dimension, similar to XMAX

*NPTS The number of points in the string, not greater than 200. If more points are
required, the following must be changed:

All blank common statements (XY)

The line following line 6 in CHKR

Dimensions of XT and YT in PLTOUT

READIN limits the initial value of NPTS to less than 101 and greater than 4.
complex variable giving the direction of the left endpoint of the etch front, the cardi
nal directions could be given as:

left (-l.,0.)

right (l.,0.)

up (0.,-l.)

down (0.,1.)

*CXYR corresponds to CXYL, for the right endpoint
*NBCHK number of times the etch front is stepped forward between checks ofsegment length

by CHKR

•NBOUT number of checks between each output by PLTOUT. The total number of steps
between each output is NBCHK times NBOUT.
time between outputs

time of each minor step, usually TOUT/NBCHK/NBOUT

normally equals NBCHK, the number of steps taken by CYCLE. If the user imple
ments a subroutine that changes the value of TSTEP, NSTEP will be adjusted in
CYCLE to correspond to the changed time step. No such subroutine currently exists,
elapsed time in CYCLE, equals TOUT/NBOUT
total time of simulation

integer variable, equal to 0 if no segment length exceeds the bounds of SMAX and
SMIN, and equal to 1 if one does. Value is determined in CYCLE.
largest allowed segment length
smallest allowed segment length

number of output contours,, less than 21

flag to request RTEST, equal to 2HRT for atest, ignored otherwise

•CXYL

♦TOUT

TSTEP

NSTEP

ET

TTOT

IFLAG

SMAX

SMIN

*NOUT

LRT

• denotes user specified variables.

Program ETCH

The main program ETCH calls the various subroutines and cycles through the etching
simulation. It initially calls:

READIN to input data cards

LINEAR to initialize the string between the user-specified endpoints
PLTBGN to output the title, XMAX, and YMAX to the output file, TAPE21
RATEF to initialize the function RATE

The program then calculates the upper and lower bounds on segment length and initializes
the time parameters. If the user has asked for atest of the rate function, RTEST is called.

The do-loops to lines 4 and 5 advance the etch front with CYCLE, correct segment
lengths when necessary with CHKR, remove loops with DELOOP, and output the etch front to
TAPE21 with PLTOUT.

Variables in ETCH

DUMMY dummy variable in call to RATEF

M main do-loop counter

N minor do-loop counter

SMID beginning segment length
X dummy input variable to RATEF

Subroutine READIN

This subroutine reads in data cards, checks for appropriate values, and prints the input
data. The cards are first read as alphanumerics into the array LINES, so they can be printed out
exactly as punched. The input file is then rewound and the variables are read in by appropriate
formats:

8A10 for LABEL

F15.7 for floating point numbers

13 for integers

The data are reprinted as interpreted by the various formats. This allows the user to correct
mispunched data without reference to the format statements in the program.

The data are partially checked for reasonable values, and KRASH is called for out-of-
range inputs. The allowed ranges are:

NPTS from 5 to 100

NOUT from 1 to 20

NBCHK from 1 to 10

NBOUT from 1 to 50

The directions for the left and right endpoints (CXYL andCXYR), are normalized to unit
magnitude.

The first 18 data cards are mandatory. If the user supplies fewer cards, the subroutine
prints out the cards as read into LINES and stops. LRT is read on the 19th data card. This
card should have "RT" punched in the first two columns if a rate test by RTEST is desired.
This is strongly recommended for any new rate function. If there is no 19th data card, LRT is
set equal to "NO".

Variables in READIN

LINES an 18x8 array used to store the characters on the first 18 data cards. The total
number of characters is 18x80, at 10 characters per word.

Subroutine RTEST

This subroutine checks the rate function in the region of interest. The area between x =
0 and x =» XMAX, and y - 0 and y - YMAX is divided into a 30x30 grid. The rate at each
grid point is read into the array RTS, and the maximum and minimum rates are kept in RMAX
and RMIN. RTS is then normalized so that the maximum value is .99. This allows a compact
printing format for the array of rates. The subroutine also looks for the maximum and
minimum rates along the starting string. The printed output includes:
1. The minimum and maximum rates observed in the 30x30 grid
2. The minimum and maximum rates along the starting string
3. The "worst case error coefficient", which is found from:

Q - RMAXTSTEP/SMIN

This gives some indication of the accuracy of the simulation.
4. The founds and dimensions of the test grid
5. The values of the rates in the test grid, normalized to aspecified value.

The subroutine also prints out the CPU time required by itself. This gives the user an
indication of how quickly RATE is operating.

Variables in RTEST

DT the smallest time increment in the simulation
DX the x-distance between grid points
DY the y-distance between grid points
N do-loop counter

NX do-loop counter for the x-direction

NY do-loop counter for the y-direction
Q the "worst case error coefficient"

RL temporary value of the rate along the starting string
RLMAX maximum rate along the string
RLMIN minimum rate along the string
RMAX maximum rate in the test grid
RMIN minimum rate in the test grid
RNORM a value 1% greater than RMAX
RTS a 30x30 real array of rates

RXY atemporary value of the rate at the current grid point
TIME The CPU time in seconds spent in subroutine RTEST
TIME1 starting time

TIME2 ending time

X the real part of the location of the grid point
Y the imaginary part of the location of the grid point

-8-

*

Subroutine CHKR

This subroutine adds and deletes segments when CYCLE has detected asegment length
error. At the start of the subroutine, the current simulated time, the number of points in the
string, and the total CPU time are printed out. This allows the user to follow the course of the
simulation without a plotted output, and to estimate the calculation time required for more or
less resolution and accuracy.

The subroutine next checks to see if the rates at the two left-most points are both zero.
If they are, the left endpoint is deleted. This saves computation time when the left end reaches
a region of zero rate (i.e. the substrate). To use this feature, the user should arrange to start
the left end of the string in a region of maximum rate.

The subroutine then checks each segment length against the limits of SMAX and SMIN.
If asegment is out of bounds, its index is stored and the number of changes required is incre
mented. After all the errors have been located, the subroutine deletes short segments (line 7
to line 10) and splits long segments (line 6 to line 7). If an attempt is made to create more
than 200 points, KRASH is called.

Variables in CHKR

ANG an angle used when adding a point near the midpoint of a long segment. It is one-
eighth of the smaller convex angle formed by the long segment and its neighboring
segments.

ANG1 The angle between the long segment and its left neighbor
ANG2 the angle between the long segment and its right neighbor
C the magnitude of the current segment length
CI the square root of -1, used for 90 degree rotation.
I do-loop counter

INDEX array for indices of segments having length errors
J temporary integer variable

K do-loop counter

M index of current segment to be modified, calculated from the previously found index
and the number of segments already added or deleted.

MLAST The last value of M. Checking MLAST prevents the deletion of two adjacent seg
ments on the same pass through CHKR.

N do-loop counter

NADD number of segmentsadded so far, may be negative
NCHNGEnumber of changes needed

NSTOP used to stop one place short of NPTS on somedo-loops
T length of the current incorrect segment
TCPU CPU total elapsed time in seconds

Subroutine DELOOP

This subroutine finds and deletes the loops that form in regions of contraction of the
string. Because it is a rather slow routine, it is normally called just before each output.

Each segment is checked for intersection with all following segments with a few excep
tions. No segment is checked against the two segments following it. While this allows small
loops to be output, it saves a considerable amount of time by eliminating needless exact checks.
Also, the last four segments are not checked against each other.

A preliminary check is made on each pair of segments to be tested. This is done by look
ing at the magnitudes of the real and imaginary separations of the left endpoints of the two

segments. If either of these separations is larger than twice the maximum allowed segment
length (SMAX), it is impossible for the segments to intersect, and the subroutine goes on to
the next pair of segments.

If the left endpoints are closer than the test limit, an exact check is done. This requires
the calculation of the point of intersection of the segments if they were extended, and a check
to see if that point lies interiorto both segments.

If the two segments are found to intersect by the exact check, all the segments on the
loop are deleted, and the point of intersection becomes the joint between the two parts of the
string. Since the intersection may be near one end of an intersecting segment, one of the
resulting segments may be shorter than the minimum allowed segment length. This is not
adjusted prior to outputting the string, and will normally be adjusted during the next call to
CYCLE.

When a loop is deleted, the subroutine prints the number of points before and after the
deletion and the total simulated time.

Variables in DELOOP

AA a parameter that tells how far along the first segment the point of intersection is. If it
is between 0 and 1, theintersection occurs within thesegment.

ADENOMa temporary variable used in calculating AA
BB similar to AA, for the second segment
BDENOMsimilar to ADENOM

J do-loop counter for segment deletion
JSTART starting value for J

JSTOP stoping value for J

M the index of the left endpoint of the second segment
N the index of theleft endpoint of the first segment
NOLD the former value of NPTS, prior to the deletion
S twice SMAX, used for the preliminary check
XN the real part of the the left endpoint of the first segment
YN the imaginary part of the left endpoint ofthe first segment

Subroutine LINEAR

This subroutine establishes an evenly spaced string of points between specified endpoints
The user supplies the values ofNPTS, XYQ), and XY(NPTS) through subroutine READIN.

Variables in LINEAR

N do-loop counter

NSTOP upper limit on N, equal to NPTS-1
XYSTEP complex variable equal to the increment from one point to the next
XYSTRT complex variable giving the starting location of the string, actually one step prior to

the start

Subroutine CYCLE

This subroutine advances the string perpendicular to itself according to the local etch rates
and the specified time increment. The minimum and maximum segment lengths are retained,
so that CHKR can be called to correct any length error.

xrcT^?16 subroutine Qist initializes variables to be used in the do-loop. The number of steps,
NSTEP, is calculated from the total time to be simulated, ET, and the time step increment for

-10-

*"? SSP' TSTEP- CSTEP is a complex variable incorporating both the magnitude of TSTEP
and a 90 degree rotation.

For each TSTEP, each point is advanced along the angle bisector of the adjacent segments
a distance proportional to the local etch rate. The endpoints are advanced in the directions
specified by the user.

At the end of the subroutine, the minimum and maximum segment lengths are checked
and IFLAG is set if an error has occured. '

Variables in CYCLE

CI square root of -1.

CSTEP complex variable equal to CI*TSTEP
DL unit vectoralong segment to the left
DR unit vector along the segment to the right
DT DL+DR, giving a direction 90 degrees from the angle bisector
M do-loop counter for the index of XY
N do-loop counter for NSTEP

NSTOP upper limit on M, equal to NPTS-1
T magnitude of the current segment length
TMAX observed maximum of T

TMIN observed minimum of T

Subroutine KRASH

This subroutine prints an error message and stops execution. The input variable is
expected to be a Hollerith constant of ten characters, which states the cause of termination.

Variable in KRASH

WORD integer variable expected to be the error message

Subroutine PLTOUT

This subroutine writes the output on TAPE21. The first call to the subroutine is through
entry PLTBGN, which writes LABEL, XMAX, and YMAX on TAPE21 by a binary format.
Subsequent calls are through the normal entry, and cause the number of points, NPTS, the x
coordinates and the y coordinates to be written on TAPE21 in a binary format.

Variables in PLTOUT

N do-loop counter

XT temporary array for the x coordinates
YT temporary array for the y coordinates

Function RATE(Z)

The RATE function will usually be supplied by the user. The exampie function simply
returns a value of 1.0 for the rate at all positions.

The entry RATEF must appear in the function RATE. It is called by ETCH prior to any
direct call to RATE. It is intended to allow the user to calculate constants, establish look-up
tables, read in parameters from data cards, etc., prior to using the function. This can often
result in the saving of a great deal of computation time.

The input variable, Z, is a complex variable giving the position of the point for which the
rate is to be calculated.

-11-

Acknowledgements

The author wishes to express his gratitude to A. R. Neureuther, and P. I. Hagouel, who
made numerous suggestions during the initial development of the algorithm; to M. O'Toole,
who has incorporated the program, with many changes, into an exposure and development
simulator, and especially to T. Van Duzer, who has provided continuous encouragement,
suggestions, and computer funds.

References

[1] A.R. Neureuther, R.E. Jewett, P.I. Hagouel and T. Van Duzer, "Surface Etching Simula
tion and Applications in IC Processing", Kodak Microelectronics Seminar Proceedings, Mon
terey, California, October 1975

[2] F.H. Dill, A.R. Neureuther, J.A. Tuttle and E.J. Walker, "Modelling Projection Printing
of Positive Photoresists", IBM Research, February 2, 1975, RC 5261

[3] P.I. Hagouel, "X-ray Lithographic Fabrication of Blazed Diffraction Gratings", Ph.D.
Dissertation, University of California, Berkeley, 1976

[41 M.M. O'Toole, "Simulation of Optically Formed Image Profiles in Positive Photoresist",
Memorandum No. UCB/ERL M79/42, Electronics Research Laboratory, University of
California, Berkeley, June 1979

[5] CAL RUN Fortran Guide, Computer Center, University of California, Berkeley, Fall 1974

String points

Resist

Exact solution

String
segments

Local normal

to the etch front

Fig. 1. String model approximation to the etch front

Oxide

Fig. 2. Uniform rate etching of an oxide with undercutting.

Fig. ?a . Reducing the length of a long
segment by bisection.

~zr

Mew Doint

Fig. ^b. Improved position for the new point

s=f(e,jrf,D

Fig. 4a.

Idealized exposed

line

Fig . '4b. Detail of the

region of contraction

•* t corner A

* Unexposed resist

Fig. 5a. Region of

contraction with a very

acute angle of intersection.

Fig. 5b. Loop budding

Fig. 5c. Loop expansion

12

Z5 = (1-a)Z1 + aZ2 = (1-b)Z? + bZ'J

Fig. 6. Checking segment intersection using parametric

equations. Intersection shown for a = 1/3, b = 1/2

Appendix A

The following is a listing of the etching algorithm for the RUN compiler on a CDC 6400
computer.

PROGRAM ETCHONPUT, OUTPUT, TAPE1 -INPUT, TAPE20, TAPE21)
COMMON//XY(200), LABEL(20), XMAX, YMAX, NPTS, CXYL, NBCHK, NBOUT,
C CXYR, TOUT, TSTEP, NSTEP, ET, TTOT, IFLAG, SMAX, SMIN, NOUT
C LRT

COMPLEX XY, CXYL, CXYR
CALL READIN
CALL LINEAR
CALL PLTBGN

DUMMY-RATEFOO
SMID-CABS(XY(1)-XY(2))
SMIN-.75*SMID
SMAX-2.*SMID
TTOT-0.

ET-TOUT/NBOUT
TSTEP-ET/NBCHK
IF(LRT.EQ.2HRT) CALL RTEST
D0 4M-l,NOUT
D0 5N-l,NBOUT
CALL CYCLE
DF(IFLAG.EQ.l) CALL CHKR

5 CONTINUE
CALL DELOOP
CALL PLTOUT

4 CONTINUE
END ETCH

SUBROUTINE READIN

COMMON//XYC200), LABELC20), XMAX, YMAX, NPTS, CXYL, NBCHK, NBOUT,
C CXYR, TOUT, TSTEP, NSTEP, ET, TTOT, IFLAG, SMAX, SMIN, NOUT
C ,LRT
COMPLEX XY, CXYL, CXYR
DIMENSION UNES(18,8)
REWIND 1

READ 1, LINES
IF(EOF,l)6,7

1 FORMATC8A10)
7 CONTINUE

PRINT 8, LINES
8 FORMATCIHI, 'INPUT DATA CARDS FOR PROGRAM ETCH AS PUNCHED*,//,
C X, 'VARIABLE *, 10CDATACARD*), //,

CX,'LABEL •, 8A10, /, X, *LABEL •, 8A10,/,
C X, •LABEL *, 8A10, /,
C X, *XMAX *, 8A10, /, X, 'YMAX •, 8A10, /,
CX,*NPTS *, 8A10,/, X,'CXYL RE •, 8A10, /,
CX,*CXYLIM •, 8A10,/, X,'CXYR RE •, 8A10, /,
C X, *CXYR IM *, 8A10, /, X, *XY(1) RE •, 8A10, /,
C X, *XY(1) IM •, 8A10, /, X, •XY(NPTS)RE*, 8A10, /,
C X, *XY(NPTS)IM*, 8A10, /, X, TOUT •, 8A10, /,
C X, •NOUT •, 8A10, /, X, *NBCHK *, 8A10, /,
C X, *NBOUT •, 8A10, ///)
REWIND1
READ 1, LABEL

2 FORMATCF15.7)
READ 2, XMAX, YMAX

3 FORMAT03)
READ 3, NPTS
READ 2, CXYL, CXYR, XY(1), XYCNPTS), TOUT
READ 3, NOUT, NBCHK, NBOUT
PRINT 4, LABEL, XMAX, YMAX, NPTS, CXYL, CXYR, XY(1), XYCNPTS),

C TOUT, NOUT, NBCHK, NBOUT
4 FORMATCX, *INPUT DATA AS INTERPRETED:*, //,
C X, -LABEL *, 8A10, /,
C X,'LABEL. *, 8A10,/,
C X, *LABEL *, 4A10, //,
C X, *X MAX *, E12.4,//,
C X,*YMAX *,E12.4,//,
C X, *NUMBER OF POINTS IN STARTING STRING *, 14, //,
C X, 'DIRECTION OF LEFT ENDPOINT, X AND Y COMPONENTS*, 2F10.4,//,
C X, •DIRECTION OF RIGHT ENDPOINT, X AND Y COMPONENTS*,2F10.4,//,
C X, *X ANDY OF LEFT ENDPOINT *, 2E12.4, //,
C X, *X AND Y OF RIGHT ENDPOINT*, 2E12.4, //,
C X, TIME BETWEEN OUTPUTS •, E12.4, //,
C X, *NUMBER OF OUTPUTS *, 13, //,
C X, *NUMBER OF ADVANCES BETWEEN CHECKS *, 13, //,
C X, *NUMBER OF CHECKS BETWEEN OUTPUTS *, 13, //)
IFCNPTS.LT.5) CALL KRASHC10HNPTS < 5)
IFCNPTS.GT.100) CALL KRASHC10HNPTS > 100)
IFCNOUT.GT.20) CALL KRASHC10HNOUT > 20)
IFCNOUT.LT.1) CALL KRASHC10HNOUT < 1)
IFCNBCHK.GT.10) CALL KRASHC10HNBCHK > 10)
IFCNBCHK.LT.1) CALL KRASHC10HNBCHK < 1) • /
IFCNBOUT.GT.50) CALL KRASHC10HNBOUT > 50)
IFCNBOUT.LT.1) CALL KRASHC10HNBOUT < 1)
CXYL-CXYL/CABSCCXYL)
CXYR-CXYR/CABSCCXYR)
READ 10,LRT

10 FORMATCA2)
IFCEOF,l)ll,12

11 LRT-2HNO
12 CONTINUE

RETURN

6 CONTINUE
PRINT 8, LINES
PRINT 9

9 FORMATCIHI, 'LESS THAN 18 DATA CARDS*)
STOP

END READIN

SUBROUTINE RTEST

COMMON//XYC200), LABELC20), XMAX, YMAX, NPTS, CXYL, NBCHK, NBOUT,
C CXYR, TOUT, TSTEP, NSTEP, ET, TTOT, IFLAG, SMAX, SMIN, NOUT
C LRT

COMPLEX XY, CXYL, CXYR
REAL RTSC30,30)
CALL SECONDOIME1)
PRINT l.ITMEl

1 FORMATCIHI, 'START OF RTEST, CPU TIME - *, F6.3,//)
DX-XMAX/29.
DY-YMAX/29.
RMAX-RATECCMPLXCO.,0.))
RMIN-RMAX
DO2NX-l,30
X-DX*CNX-1)
DO 3 NY - 1,30
Y-DY*CNY-1)
RXY-RATECCMPLX(X,Y))
IFCRXY.LT.0.)GOTO4
RMAX-AMAX1 CRMAX,RXY)
RMIN-AMIN1(RMIN,RXY)
RTSCNX,NY)-RXY

3 CONTINUE
2 CONTINUE

RNORM-RMAX/.99
DO 5 N - 1 , 900
RTSCN) -RTSCN)/RNORM

5 CONTINUE

RLMAX-RATECXYCD)
RLMIN-RLMAX
DO 6 N-2,NPTS
RL-RATECXYCN))
RLMAX-AMAX1CRLMAX,RL)
RLMIN-AMIN1 CRLMIN,RL)

6 CONTINUE

DT-TOUT/NBOUT/NBCHK
Q-DTRMAX/SMIN
PRINT 7, RMAX, RMIN, RLMAX, RLMIN, Q

7 FORMATC1HX, 'MAXIMUM RATE OBSERVED - * E9.3, /,
C X, *MINIMUM RATE OBSERVED - *, E9.3, /,
C X, 'MAXIMUM RATE ALONG STARTING STRING - *, E9.3, /,
C X, 'MINIMUM RATE ALONGSTARTING STRING - *, E9.3, /,
C X,*WORST CASE ERROR COEFF (- MAX RATE X TIME STEP / MIN SEGMENT
C LENGTH) - *, F10.6,/)
PRINT 8, XMAX, YMAX, DX, DY, RNORM,(CRTSCNX,NY), NX-1,30),NY-1,30)

8 FORMATC/, X, *X FROM 0 TO *, E10.4, /,
C X, *Y FROM 0 TO ', E10.4, /,
C X,*X INCREMENT - ', E10.4, /,
C X, *Y INCREMENT - •, E10.4, /,

C X, 'RATES NORMALIZED TO A VALUE OF *, E10.4,// ,
C X, 'CAUTIO^, X AND Y SCALES NOT NECESSARILY EQUAL*,//,
C X, 'NORMALIZED RATES:',//,
C C1HX, 30F4.2,//))
CALL SECOND (TIME2)
TIME - TIME2-TIME1
PRINT 9, TIME

9 FORMATC//, X, TOTAL CPU TIME IN RTEST - *, F7.3, /, 1H1)
RETURN

4 CONTINUE
PRINT 10, RXY, X, Y

10 FORMATC/, X, 'NEGATIVE RATE FOUND :*//,
C X, 'RATE - *, E10.4, /,
C X, * X - *, E10.4, /,
C X, ' Y - *, E10.4, //,
C X, 'JOB ABORTED*)
STOP

END RTEST

SUBROUTINE CHKR

COMMON//XYC200), LABELC20), XMAX, YMAX, NPTS, CXYL, NBCHK, NBOUT
C CXYR, TOUT, TSTEP, NSTEP, ET, TTOT, IFLAG, SMAX, SMIN, NOUT
C ,LRT
COMPLEX XY, CXYL, CXYR
COMPLEX CI
DIMENSION INDEXC200)
DATA CI/0.,17
CALL SECONDCTCPU)
PRINT 20, TTOT, NPTS, TCPU

20 FORMATC 1HX, 'IN CHKR TTOT, NPTS, TCPU « ', F20.5, 16, F7 3)
IFC(RATECXYC1)).EQ.0.).AND.(RATE(XY(2)).EQ.0.)) GOTO 11

12 CONTINUE
NCHNGE - 0
NSTOP-NPTS-1
DO 1 N-l,NSTOP
C-CABS(XY(N+1)-XY(N))
IFCCGT.SMAX.OR.C.LT.SMIN) GO TO 2

3 CONTINUE
1 CONTINUE

IFCNCHNGE.NE.0) GO TO 4
RETURN

2 CONTINUE
NCHNGE - NCHNGE+1
INDEX(NCHNGE)-N
GO TO 3

4 CONTINUE
NADD-0
MLAST-1
DO 5 N~l ,NCHNGE
M=»INDEXCN) +1+NADD
T~CABSCXY(M)-XY(M-D)
IF (T.GT.SMAX) GO TO 6
IFCT.LT.SMIN) GO TO 7

-5-

8 CONTINUE
5 CONTINUE

RETURN

6 CONTINUE
IFCNPTS.GE.200) CALL KRASHC10HNPTS > 200)
NADD-NADD+1
DO 91-M,NPTS
J-NPTS+M-I
XYCJ+D-XYCJ)

9 CONTINUE
NPTS-NPTS+1
ANG1-1.6

ANG2-1.6

IFCM.GT.2)ANG1—AIMAGCCLOGCCXY(M+l)-XY(M.l))/CXY(M-l)-XYCM-2))))
IFCM.LT. NPTS-DANG2—AIMAGCCLOGCCXYCM+2)-XYCM+l))/CXYCM+l).XYCM-l

C))))
ANG-AMAX1CAMIN1(ANG1, ANG2),0.)/8.
XYCM) - OCYCM) +XYCM-l))/2.+ANG*CI*(XY(M)-XYCM-1))
GO TO 8

7 CONTINUE
IFCNPTS.LT.5) CALL KRASHC10HNPTS < 5)
IFCMLAST+1.EQ.M) GO TO 8
NADD-NADD-1
NPTS-NPTS-1
MLAST-M

XYCM-1)-.5*CXYCM-1)+XYCM))
DO 10 K-M,NPTS
XY(K)-XY(K+1)

10 CONTINUE
GO TO 8

11 CONTINUE
IFCNPTS.LE.10) GO TO 12
IFCRATECXYC2)).NE.O.) GOTO 12
DO 13 N-2,NPTS
XYCN-D-XYCN)

13 CONTINUE
NPTS - NPTS-1
GO TO 11
END

SUBROUTINE DELOOP
COMMON//XYC200), LABELC20), XMAX, YMAX, NPTS, CXYL, NBCHK, NBOUT,

C CXYR, TOUT, TSTEP, NSTEP, ET, TTOT, IFLAG, SMAX, SMIN, NOUT
C ,LRT
COMPLEX XY, CXYL, CXYR
S-SMAX*2.
N-0

1 CONTINUE
N-N+l

IFCN.GT.CNPTS-5)) RETURN
YN-AIMAGCXYCN))
XN-REALCXYCN))
M-N+3

-6-

2 CONTINUE
M-M+l

IFCM.GE.NPTS) GO TO 1
DFCABSCREAL(XY(M))-XN).GT.S) GO TO 2
IFCABSCAIMAGCXY(M))-YN).GT.S) GO TO 2
ADENOM -AIMAGCCXYCN+l)-XY(N))*CONJGCXY(M+ l)-XY(M)))
IFCADENOM.EQ.0.) GO TO 2
AA-AIMAGCCXYCM)-XYCN))*CONJGCXYCM+l)-XYCM))) / ADENOM
IFCCAA.LE.0.).OR. (AA.GE.1.)) GO TO 2
BDENOM -AIMAGCCXYCM+l)-XY(M))*CONJGCXYCN+D-XYCN)))
IFCBDENOM.EQ.0.) GO TO 2
BB- AIMAGC(XYCN)-XY(M))*CONJGCXYCN+l)-XYCN)))/BDENOM
IFCCBB.LE.0.).OR.(BB.GE.l.)) GO TO 2
XYCN+1)- (l.-AA)*XY(N)+AA*XYCN+l)
JSTART-N+2
JSTOP-NPTS-M+N+1
DO 3 J-JSTART, JSTOP
XyCJ)-XYCJ+M-N-l)

3 CONTINUE
NOLD-NPTS
NPTS-JSTOP
PRINT 4, NOLD,NPTS, TTOT

4 FORMATC/, X, 'DELOOP, NOLD - *, 13, *, NPTS - *, 13, * TIME - *,
C F9.3)
N-N+l

GOTOl
END

SUBROUTINE LINEAR

COMMON//XYC200), LABELC20), XMAX, YMAX, NPTS, CXYL, NBCHK, NBOUT,
C CXYR, TOUT, TSTEP, NSTEP, ET, TTOT, IFLAG, SMAX, SMIN, NOUT
C LRT

COMPLEX XY, CXYL, CXYR
COMPLEX XYST RT, XYSTEP
XYSTEP- CXYCNPTS)-XY(1))/CNPTS-1)
XYST RT-XYCD-XYSTEP
NSTOP-NPTS-1
DO 1 N-2,NSTOP ,
XYCN) -XYST RT+N*XYSTEP

1 CONTINUE
RETURN
END

SUBROUTINE CYCLE
COMMON//XYC200), LABELC20), XMAX, YMAX, NPTS, CXYL, NBCHK, NBOUT

C CXYR, TOUT, TSTEP, NSTEP, ET, TTOT, IFLAG, SMAX, SMIN, NOUT
C ,LRT
COMPLEX XY, CXYL, CXYR
COMPLEX DL,DR,DT
COMPLEX CI, CSTEP
DATA CI/0., 1./
IFLAG-0

TMIN-1.E50
TMAX-O.

NSTEP-ET/TSTEP+.5
DFCNSTEP.LT.1.OR.NSTEP.GT.50) CALL KRASHC10HSEE CYCLE1)
TSTEP-ET/NSTEP
CSTEP-CITSTEP
NSTOP-NPTS-1
DO 1 N-1,NSTEP
DL-XY(2)-XY(1)
XYC1) -XY(l)+TSTEP*CXYL*RATE(XY(1))
T-CABSCDL)
TMIN-AMIN1 CTMIN,T)
TMAX-AMAX1 CTMAX,T)
DL-DL/T

DO 2 M-2,NSTOP
DR-XYCM+D-XYCM)
T-CABSCDR)
TMIN-AMIN1 CTMIN,T)
TMAX-AMAX1 CTMAX,T)
DR-DR/T
DT-DL+DR

XYCM) -XYCM) +CSTEP*RATEOCY(M))*DT/CABSCDT)
DL-DR

2 CONTINUE
XYCNPTS) -XYCNPTS)+TSTEP*CXYR*RATECXYCNPTS))

1 CONTINUE

IFCCTMAX.GT.SMAX).OR. (TMIN.LT.SMIN))IFLAG-1
TTOT^-TTOT+ET
RETURN
END

SUBROUTINE KRASHCWORD)
INTEGER WORD
PRINT l,WORD

1 FORMATCIHI, 132C1H*), ////, T30, *KRASH, YOUR CLUE IS *, AlO, /)
STOP

END

SUBROUTINE PLTOUT
COMMON//XYC200), LABELC20), XMAX, YMAX, NPTS, CXYL, NBCHK, NBOUT,

C CXYR, TOUT, TSTEP, NSTEP, ET, TTOT, IFLAG, SMAX, SMIN, NOUT
C ,LRT
COMPLEX XY, CXYL, CXYR
REAL XTC200), YTC200)
DO 1 N-1,NPTS
XTCN)-REALCXYCN))
YTCN) - AIMAGCXYCN))

1 CONTINUE

WR1TEC21)TT0T, NPTS, (XT(N), N-1,NPTS), (YTCN), N-1,NPTS)
RETURN

ENTRY PLTBGN

WRITEC21)LABEL, XMAX, YMAX

RETURN
END

FUNCTION RATECZ)
COMPLEX Z
RATE-L
RETURN

ENTRY RATEF
RATE-1.
RETURN

END

8-

	Copyright notice 1979
	ERL-79-68

