

Copyright © 1979, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

-*§T a,
- J- c<

SOFTWARE MICROPROGRAMMING TOOLS FOR THE VAX-11/780

by

<3 y
* Richard D. Tuck

4

Memorandum No. UCB/ERL M79/65

September 1979

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Research supported in part by the U.S. Department of Energy Contract
DE-AT03-76SF00034, Project Agreement DE-AS03-79ER10358, and the National '
Science Foundation Grant MCS-78-7291. *

Partial fulfillment of Master of Science in Engineering.

"7 1

4 *

CHAPTER 1

INTRODUCTION

Although the concept of microprogramming is nearly as old as elec

tronic computing [Wilkes 51], it has only gained widespread popularity as an

implementation technique since the introduction, in the early 1960's, of the

IBM-360 family of computers. When a microprogram is used strictly as an

implementation tool, the programmer is usually very familiar with the

microarchitecture, if not its designer. Lately, however, microprogramming

has been used for more than an instruction-set implementation tool: more

and more operating systems routines are being microcoded [Stockenberg

78][Bondy 77], and several machines are user microprogrammable [Agrawala

76]. Also, as machine architectures become more complex, the supporting

microprograms grow larger; the IBM-360, model 50 (1965) control store had a

capacity of 2816, ninety-bit words [Husson 70]; the VAX-11/780 (1978) control

store has a capacity of (at least) 5120, ninety-six-bit words. Larger micro

programming teams are required just to implement the instruction sets.

Due to these factors, the people writing microprograms are less often the

designers of the microarchitectures with which they are working, and are

correspondingly less familiar with them.

The traditional microprogramming tools have been rather crude -

either a flow-chart language, as used for the IBM-360s [Husson 70], or a more

traditional assembly language [Davidson 78]. These sufficed for expert

microprogrammers and compact microprograms, but are no longer any

more appropriate than is assembly language for ail systems and applications

macro-programming.

The desideratum, then, is a High Level Systems Program Language (HL-

SPL) which could be translated into an efficient microprogram. As a first

step towards this, we have designed and implemented a low-level language

which hides from the programmer most of the baroque features of a particu

lar microarchitecture. This language (Yet Another Low-Level Language, or

YALLL) can be used as the machine-independent intermediate code output of

a HL-SPL microcode compiler [Patterson 79]. The key observation concern

ing microarchitectures is not their differences, but their similarities:

microinstructions invariably transform data between registers, and refer

ence memory only in loading and storing their contents.

This paper describes the implementation of the YALLL microprogram

ming system running under Unix on Digital Equipment Corporation's VAX-

11/780 [Strecker 78], hereafter known as YALLL/VAX. The VAX was chosen

for this work because it is a new computer with 1024 words of user-

programmable control store. Also, there are no other facilities for micropro

gramming this machine, as of this writing; those announced by the manufac

turer will run under the VMX operating system, not Unix. Finally, it is antici

pated that the VAX-11/780 will be extremely hard to microprogram even

using DEC'S announced macro-microassembler, because of the great

microinstruction width.

The main constituent of this system is the VAX/YALLL compiler, called

yc; this is a program consisting of 4456 lines of C [Ritchie 78], 495 of YACC

[Johnson 76], and 283 of Lex [Lesk 75]. The YACC and Lex programs

translate into 876 and 1404 lines of C, respectively. This translator contains

an assembler mode embedded in the language. It is the only microassembler

available for the machine at this time. The YALLL/VAX language, the assem-

_ bly mode, and the use of yc are described in chapter three. The internals of

the compiler are outlined in Appendix II. written mainly for the compiler
V k maintainer.

<f ^ The other software microprogramming tools are also described in
chapter three: a linker, symbolic dump programs, floppy disk file transfer

program, and DEC'S console program and console microdebugger. This
description includes a tutorial example.

The approach described here, and supported by these programs,
requires that the microprogram be written on the console floppy disk and

loaded into writable control store (WCS) using a console LSI-11 command.

The alternative to this is to load WCS directly from the VAX using the
privileged WTPR instruction. The disadvantage of the latter approach is that

failing to write aWCS image on the floppy disk does not permit the use of the

console microdebugger to its fullest advantage. In particular, examining and

changing WCS locations is impossible without the image file. These facilities

may make little difference to the YALLL source programmer, but their

absence would make microassembly-level debugging much more tedious
than necessary.

Alarge part of this report is concerned with the VAX-11/780 architec

ture and microarchitecture. Chapter two presents a brief overview, and

Appendix I is a fairly thorough description of the macro-architecture, the
i: * microarchitecture, and how they relate.

CHAPTER 2

VAX Architecture Summary

This chapter presents a quick overview of the architecture of the VAX,

and of the microarchitecture supporting it. Familiarity with this material

will aid the understanding of that which follows, especially the examples of

chapter four. The architectural features presented here are not necessarily

the most interesting aspects of the machine, but those which most pro

foundly affect the microarchitecture, and thus the writing of microcode. For

example, the variable length of the instructions affects how the microcode

interacts with the instruction-fetch unit, and the size of data types sup

ported determines how memory is accessed. AU the material here is

presented in much greater detail in Appendix A; in particular, the microar

chitecture and microinstruction fields are presented there in great detail.

1. MACRO ARCHITECTURE

The architecture of the VAX-11 is based on that of the successful PDP-

11 family of computers. The VAX does have a "compatibility mode", for run

ning PDP-11 programs, but when running native-mode instructions, only

"cultural compatibility" is maintained. That is, VAX data types are similar to

corresponding PDP-11 data types. The VAX instruction format is also similar

to that of the PDP-11; an opcode, followed by operand-specifying bits, using

one of several address modes. VAX instructions may have zero to six

operands, whose specifiers vary in length from one to nine bytes, as detailed

in section 1.1.2.2 of Appendix A. Data types supported are: binary, two's com

plement integers (of length one, two, or four bytes), floating point numbers

•6— ^

i

• p-

(four or eight bytes), packed decimal strings (to thirty-one digits), and char

acter strings. The architecture is basically register oriented, but some of

the addressing modes facilitate the use of a stack, both for expression

evaluation and local variables. There are sixteen, thirty-two-bit "general-

registers, one of which (register rl5) is the program counter, pc. Other

tf J7 registers are used by special instructions or convention including the stack

pointer, sp (rl4), frame pointer, fp (rl3), and argument pointer, ap (rl2).

Furthermore, the decimal and character string instructions use some of

registers r0-r5.

The VAX-11/780 has a 232 byte address space, of which the top fourth is

"reserved" and unusable. The remaining addresses are divided into three

regions: PO, Pi, and system. Logical addresses are translated to physical

addresses by way of paging. Each region has its own page table, containing

one entry for each 512-byte logical page in that region.

The physical memory, as well as peripheral devices, is connected to the

CPU by way of a hierarchy of busses, the principle one of which is the Syn
chronous Backplane Interconnection (SBI). The SBI has a 288 longword

address space, encompassing memory, secondary storage devices, and I/O
devices.

2. MICROARCHITECTURE

The heart of ^e VAX CPU is the 32-bit ALU and its associated registers.
Asimplified data path diagram is given in Figure 1. The general registers

/ * (r0-rl4, but not pc) are kept in aregister file (RAB). One set of registers'
outPut Passes through latch LA to the A (right) side of the ALU; the other

* passes through latch LB to its B(left) side. A file of temporaries (RC) is avail

able on the ALU's left, passing through latch LC. Aset of 6* 16-bit constants

6

is also available on the ALU's left. Two very important registers, D and Q can

be gated to either side of the ALU - they have several special properties,

especially in regards to shifting. The 32-bit D register acts as the memory

data register- all data routed to or from memory must pass through it. The

"internal data" or ID bus takes its data from D and delivers to Q. This bus ^

connects to several control registers (such as the alternate stack pointers,

page table origin and length registers), as well as the instruction buffer

(fetch-ahead unit). Instruction-stream data is received by this path, as are

branch displacements.

The rotation unit takes the 64 bits from the Q and D registers (Q on the

left), rotates by the amount specified by the contents of SC (or another

source), and deposits 32 bits of the result back in D. A positive count

denotes left rotation while a negative count denotes right rotation. SHF is

also a limited shifter used for scaling index values.

The memory address register VA, and instruction buffer address IBA,

can be loaded from the ALU output; which of them is used as a memory

reference address depends on the destination of the data-VA is used for data

fetches (via register D) and IBA for program stream fetches (to the instruc

tion buffer). Either of these registers may be loaded into the PC, which may

be incremented using a dedicated adder, thereby avoiding use of the main

ALU. In order to speed the handling of floating point quantities in machines A

without the optional floating point accelerator, an auxiliary, 10-bit ALU
r

(called EALU) is provided. The major component in its data paths is the SC :

register, which is also used for shifting operations. Other registers associ

ated with it are FE and STATE.

VAX microinstruction format. Control words are 96 bits wide, and

divided into 30 fields (see Figure 2). Because of the great control word width,

considerable parallelism is possible. Thirteen bits of each microinstruction

are used to form the address of the successor instruction. When straight-line

microcode is being executed, this address is used directly. But. when any

conditional branches are taken (governed by the BEN microword field), other

information is also used. BEN selects one of twenty-six groups of three, four,

or five condition bits. For example, group "1A" is the PSL condition code

bits: N. Z, V, & C. These conditions are ORed with the low-order bits of the

microaddress field (JMP) to form the address of the successor microword. If

the SUB field is one, a microsubroutine call is specified, and the address of

the current microword is pushed onto a (sixteen deep) stack before the

branch is taken. If the SUB field is a two, an address is popped off this stack,

and is ORed with the instruction's JMP field, as well as any conditions

specified, to form the next word address.

io P\moR>J ADDfltfJ

• ^ •",

4?
4-\

$ ID BH5

CO

EALU

15

EK

</

JMP
13 12

O

V F c
A F

„ „ ,Q MSC I K| KlKl CCK I.EBMXlSMX I
A
D
SfMCT/ClD IF.SI SPO PCK

35T 37 3Z

63
KMX

R
M

58 57
ISI/ACM | QK i SC-N

55 5H SI SO V8

1 DT 1X1 REM
79 78 77 16

MF I ALU 1SUB
66 65" 6Y

I6C
?5 ?£?/

DK

7£ 71 70 69

I SHF I BMX lAMX |
88 87 8TSY 8^81 §0

f- iazireZ - VA X m/era injrncciibn format

CHAPTER 3

The YALLL Language

1. YALLL Language Description

However widely computer macro-architectures vary, their supporting

microarchitectures are remarkably similar. While macro-instructions may

deal with control blocks, stacks, queues, and character strings, the microin

structions are concerned with registers, ALU functions, and transfers of data

to and from memory. The YALLL microprogramming language deals with

these same sorts of primatives: all arithmetic and logical operations are

between registers, and the only accesses of main memory are via loads and

stores. Statements are also provided for microprogram sequence control

(conditional branch, subroutine call), and to control the binding of variables

to registers. YALLL is thus very much like the assembly language for a

machine such as the Data General Nova. One YALLL language statement is

written on each line, with the exception of the jtab statement, which will be

discussed later. The semicolon serves not as a statement separator, but as a

comment escape; nothing written between the semicolon and the line's end

affects the meaning of the program. A label and a colon may precede a

statement, making it the possible destination of a jump. In the absence of

branching statements, YALLL statements are executed in the order in which

they appear in the source program (though they may not be loaded into con

trol store in this order). Programs may not be self modifying, and there is

no explicit means of accessing data in control store.

10

9 »

'1 «

1.1.

Syntax (diagram)

load

stor ,

move

cmpi

add

addl
sub

subl

and

or

xor

srl

sra

src

all

sla

sic

jump

[physical] reg,
reg [± cexp]

cexp

call

rtn

reg,

' reg%

label

cexp

label

cexp

reg

cexp

reg
> i

reg

cexp
*

, cexp ,
[,encc]

[if
\reg relopl™^]

reg <cexp> relop cexp

jtab reg [cexp : cexp] of

[sel J [set I

exit

[else label]

etab

reg [± cexp])

cexp J

11

12

signed
regname=reg[•

unsigned

nameequcexp

orgcexp

begin

end

cexp'.'.—number
1name
1(cexp)
|±cexp
\cexp±cexp

][
byte
word

long

number::=[0-9](decimalnumber)

|%[0-7]+(octalnumber)

|[0-9][0-9A-F]+X(hexadecimalnumber)

|#[01]+(binarynumber)

relop::=
l<
l>
i<=
l>=
l<>

sel::=#[01X]+(X'sin"don'tcare"positions)

1.2.Semantics

1.2.1.registers,types

TheYALLLprogrammermayusethemachine'sbuilt-inregisternames

todesignatetransferoperands,ormaybindsymbolicnamestothem,and

usethelatterinamicroprogram.Thissymbolicbindinggivestheprogram

mertheopportunitytospecifytypesforhisvariables.Thetypeindicates

u

13

how many of a register's bits are to be considered significant and how

conversions, if any, are to be done. The YALLL/VAX compiler does not sup

port the type checking implied by strict typing, nor all the coercions implied

by mixed type arithmetic. It is felt that, at this low a level, the former would

be more of an encumbrance than an aid, and that the latter requires too

much run-time overhead. In this implementation, the register type deter

mines how much data is transferred on a memory access, and whether a

quantity will be sign- or zero-extended or unchanged in the course of a move

operation. A limited amount of type checking is done, so that one may add a

short type into a longer operand, but not vice versa. Shift operations are

also checked, to make sure the source of bits (not the shift count) is no

larger than the destination. The only real typing problem occurs in the case

of shifts; a byte circular shift, for example, is not what the term implies, but

really a byte, extended into a longword, then rotated. The VAX rotation

hardware actually only supports sixty-four-bit rotates, so that even a thirty-

two-bit arithmetic shift is not as efficient as one would hope. The section on

VAX peculiarities gives more detailed information on registers, variable

representation, and coercion action.

1.2.2. register transfer operations

Register transfer statements take three forms: memory access,

register-register transfers, and three-register arithmetic. Memory accesses

specify a source or destination register and a main memory address. This

address is a constant, a register content, or the sum or difference of a regis

ter content and a constant. The amount of data transferred depends on the

declared type of the target register. On the VAX, this defaults to a four-byte

longword. A VAX memory reference is normally to virtual memory, since the

14

addresses passed from the macro-program are usually virtual addresses, and

since the memory-mapping mechanism is quite easy for the microprogram *

to invoke. To avoid this address mapping the keyword physical should

appear in the accessing statement.

A register-register transfer can be either a complement or a move. The ^

source of data may be a register or a constant. Move is the only statement

for which VAX microcode will be generated to do type conversion.

The three address register instructions provide most of the normal

dyadic functions (addition, subtraction, logical and, or, exciusive-or), some

shift operations (arithmetic left or right, logical left or right, circular long-

word left or right), as well as addl and subl. (The latter two compute dest «-

srd ± src2 ± 1, for implementing multiple-precision arithmetic.) On the VAX,

a negative shift count does a shift of the same type (arithmetic, logical, cir

cular) in the opposite direction to that specified.

By appending encc, for enable condition code, to one of these transfers,

the machine's condition code bits may be set. On the VAX. only PSL bits N

and Z are affected.

1.2.3. control operations

YALLL provides no code-structuring facilities such as compound state

ments or looping constructs; ail of its control mechanisms are very simple: 6

goto's, subroutine call, return, table jump, and exit. The unconditional goto

is the jump statement, and takes a label or constant destination. A condi- . '

tional jump is of the form "jump label if condition", where the condition is

the comparison of a register's contents with those of another register, or

%/•

15

with a constant, or the test of a single bit.1 The subroutine call-return

mechanism is simple and parameterless. The call statement causes the

return address to be saved in a sixteen-deep stack, and the rtn causes the

top address on this stack to be popped and used.

* • A more interesting construction is the jtab multi-way branch, where a

field of a register is used to select one of several addresses as a jump desti

nation. On the VAX, the width of the selecting field may be up to four bits.

The mapping of integer field values to labels is given on the lines between the

jtab and etab, the closing bracket. Each line is of the form of a comma

separated list of values, a colon, then a label, which is the jump destination if

the selected field takes on any of the corresponding values. Besides integers,

the value list elements can be selectors, which have the form of binary

numbers, but with X's in "don't care" positions. Thus "#XX1" is equivalent to

the list "1, 3, 5, 7". The last line of the value-level map may be "else label",

which specifies that for any values not specified on the preceding lines, con

trol should transfer to the given label. If the else is not specified, and if the

selecting field takes on an unmapped value, execution falls through to the

next executable statement.

The exit statement causes execution of the user's microcode to end, and

macro-instruction fetching and interpretation to continue. If no argument is

given, sequential instruction processing is assumed. If an address argument

is given, it is used as a macro-program address, from which the next instruc

tion is taken; the program counter, PC, is also loaded at this time. In VAX

microcode, an exit without an argument causes the PC to be incremented by

l0n the VAX, arithmetic tests take into account the sign bit, so the result
of comparisons of long unsigned quantities may be wrong. For example, un
signed FFFFFFFF (hex) > 0, but taking the sign into account gives the oppo
site result.

16

one, and the current op-code to be discarded.

1.2.4. other pseudo-ops

In addition to the register name equating statements described earlier,

YALLL provides a handfull of pseudo-ops to ease symbolic microprogram

ming. The equ statement serves to equate a name with a constant expres

sion. The expression may include numbers and previously defined constant

names; it should not include register names, nor labels (on the VAX, these

are not given address values until after all code generation). The org state

ment allows one to assign an address to the beginning of the code generated

by the following YALLL statement. This is often necessary for linking to a

machine's native microcode, which generally jumps to a fixed location to

enter the user's code.

The begin and end pseudos provide a means for controlling the scope of

variable and constant names. These symbols obey the usual block-structure

visibility rules under control of begin and end. Labels, however, are global.

This means that the same register may be used with different names and

types in separate (non-nested) parts of the program. (Recall, though, that a

routine call and return from one area to another using the same registers

does not cause the saving or restoring of them.) An end statement also

denotes the end of the program text, and must be the last statement in it.

End causes no code to be generated, and should not be confused with exit.

1.3. VAX Peculiarities

Throughout this language description, 1 have tried to indicate which

features are machine-dependent and, by implication, which are not. The

most implementation-dependent features of YALLL/VAX are described in this

* *

17

section. These peculiarities fall into four groups: representation of short

types and conversions; register names; control store addresses; and an

assembler escape.

1.3.1. representation

In the VAX, all registers are thirty-two bit longwords. Words and bytes

are sixteen and eight bits, respectively. In code produced by YALLL, all

register quantities are represented as longwords, for the following reasons:

The general, macro-program visible registers have the capability of storing

partial register quantities, leaving the upper bits unchanged. However, none

of the other registers in the CPU share this ability, so that, in order to avoid

propagating garbage when doing operations between register types, one

would have to mask or sign-extend quantities coming from the general regis

ters. In order to avoid this overhead, YALLL/VAX always writes full-register

results into them. No run-time bounds checking is ever done. So, for byte

register x:

move x,255
addl x,x,255

will cause x to contain 511, even though this quantity cannot be stored in a

byte.

Sign "extension" is done, strangely enough, when moving a long quantity

into a shorter quantity. Since all variables are represented in longwords, it is

not necessary to change representation when moving from short to long. But

going the other direction, long quantities are truncated, and sign or zero

filled, to assure that the type of the receiving variable is not violated by the

transfer. The type conversion for all combinations of source and destination

types are shown in Figure 3. (These actions are coded into a table in the

18

translator, and may easily be changed by recompiling it.)

1.3.2. register names

The register names currently available to the YALLL/VAX programmer

are shown in Figure 4, along with the location of their associated physical

registers. These names are entered into the symbol table upon initialization

of the translator. They all have default types of unsigned long, and are un

reserved. ID bus registers are more expensive to access than are other

registers, and some are read-only (see AppendixA).

The OPERAND register is the specifier byte of the instruction buffer; this

is treated as a pseudo-register. Each time it is read, the byte is cleared, PC

incremented, and the next instruction-stream byte shifted into place. The

programmer should not, therefore, modify the PC to account for the macro-

instruction argument(s).

Source
Destination

ul sl uw sw ub sb

ul J V 0 0 0 0

si J V 0 ± 0 ±

uw V V V V 0 0

sw V V V V 0 ±

ub J V V V V V
sb -d- V V V V V

where

ul - unsigned longword V - no change
si - signed longword
uw - unsigned word
sw - signed word
ub - unsigned byte
sb - signed byte

Figure 3 - Coercion Actions

0 - truncated and zero-filled
± - truncated and sign-filled

Register
Location

Reglser
Location

..Bftme r Jismt .
rO RAB Dreg D

rl RA3 Qreg Q
r2 RAB VA YA

r3 RAB SC SC

r4 RAB PC PC

r5 RAB OPERAND ID

r6 RAB DAYTIME ID

r7 RAB RXCS ID

r8 RAB RXDB ID

r9 RAB TXCS ID

rlO RAB TXDB ID

rll RAB POBR ID

rl2 RAB P1BR ID

rl3 RAB SBR ID

rl4 RAB KSP ID

rl5 RAB ESP ID
to RC SSP ID

tl RC USP ID

t2 RC ISP ID

t3 RC PCBB ID

t4 RC SCBB ID
t5 RC POLR ID

te RC P1BR ID

t7 RC SLR ID

Figure 4 - YALLL/VAX Registers

19

1.3.3. addresses

The areas of control store designated for user microprogramming are

locations 10E0, and 1400-1800 hex. These are the only addresses the transla

tor will attempt to bind to a microinstruction, and are the only addresses

which should appear in org statements.

1.3.4. assembler escape

The YALLL language is not designed to allow one to use all the machine's

resources, but only to make the writing of microprograms a reasonable task.

Therefore, one might want to embed segments of microassembly language

code in a YALLL program, either because the code emitted by the translator

is unsatisfactory, or because there is no way of dealing with VAX-specific

20

mechanisms (such as interlock read/write, or the accelerator). To make

this possible, one can write VAX microassembiy statements between asm . . .

msa brackets. The primary restriction on such statements is that one may

not use DEC's macro definitions. (One may, however, write one's own macros

and use the C compiler's pre-processor to expand them.) The form of an

assembly-language statement is:

[label:] [const:] field- id/field- value [, field- id/'field- value]

where the constant binds this word to a specific control store address, and

field- value is either a compile-time constant, or a label (in the case of the J

field). Assembly-language statements may be broken over several lines, so

long as there is at least one field - value pair, with a trailing comma, on each

line.

Finally, each address restricter, for constructing jump tables and sub

routine linkages, takes the form =[01X]+ and must be matched by a closing

bracket =end. For example, to jump to location "A" if the middle sixteen

bits of register r3 are zero, else location "B", code:

asm

SP0/43X, ALU/OF, AMX/0, DK/8, SHF/0 ; D_R[R3]
BEN/18X ; D.BYTES?

= 1001
J/A ; D<23:8> = 0
J/B ;D<15:8>*0
J/B ;D<23:16>^0
J/B ; D<23:8> ? 0

=end

msa

2. VAX-11/780 MICRO-PROGRAMMING SYSTEM

Creating a microprogram for the VAX is a process of several steps,

involving various software tools. The primary tools are an editor, the YALLL

* '

21

compiler, and the console-resident microdebugger. In this section 1 shall

describe the user's interaction with most of these, and detail the choices

offered by them.

The excellent editors (ex and vi) available on CS VAX/UNIX are written

by Bill Joy [Joy 77b], and should need no introduction to anyone familiar with

the system. One of these editors should be used in preparing the YALLL

source file. The next step is to have this file compiled.

2.1. The YALLL Translator

The translator is a large 'C program called yc. It will take an input file,

and produce a binary output file. It will not produce a source code listing,

but will dump the intermediate code at various points in the processing.

Although the translator is actually a single program phase, it conceptually

has three passes: the first reads the source, parses it, and generates inter

mediate code; the second does peephole code improvement; and the third

assigns addresses to each microinstruction, and writes the binary file. The

translator command line is:

yc inputfile [-d[l][2][3]] [-2] [-o filename]

where the order of parameters is not significant, except that they are

scanned from left to right. The inputfile is the source file, produced by an

editing session. It is conventional to use filenames ending in ".m" (as in

"source.m") for microprogram sources. If no filename is given, standard

input is read until a fatal error or end-of-file (control-d).

The -d options specify that a dump of the intermediate code is to be pro

duced after the specified pass(es) of the translator. This is a human-

readable representation of the binary being produced, and is written on the

22

standard output file. The reading of dumps will be fully explained in a later

section. The flag -2 specifies that the second compiler pass, code improve

ment, is to be suppressed. This should only be done if you feel that the . ..-

microcode produced by the compiler is incorrect because of "improve-

ments" made in the second pass. Note that microprogram segments "?

entered in assembler-escape mode will not be touched by the code improver

in any case.

Finally, the -o parameter governs the binary produced by yc. If this is -o

-, no binary file is written. Otherwise, the following word of the command line

is taken as a filename, and output is written in it. If no output disposition is

specified, a binary file is written in file m.out.

2.2. Macro Processing

The assembly escape provided in the YALLL translator permits the

microprogrammer full access to the microarchitecture, including functions

not employed by programs written in the YALLL language. However, assem

bly language programming using this facility is not as easy as programming

with DEC's macro assembler. This task may be made easier by the use of the

C pre-processor.

The C preprocessor allows one to define one-line macros, with or without

parameters. A parameterless macro (such as a constant) is defined by: •

^define name string

And a macro with parameters as:

^define name(parameter list) string

For example:

#define alu_q ALU/OF. AMX/1. RMX/1
#define Rl 1
#define rab_alu(x) SHF/O, SP0/50X + x

asm

rab_alu(Rl), alu_q
msa

23

To use the preprocessor to do macro expansions in a source file z, then

translate the result using yc, the command is:

cc -E z ' yc options

One problem with this system is that it does not permit context-dependent

constant names, as DEC's assembler does. Thus, defining "#define RAMX 1",

so that one may write "AMX/RAMX" will only cause trouble when 1 is substi

tuted for the field name in "RAMX/O", or the like. One should also avoid

YALLL keywords and pre-defined registers names.

Rather than writing macro definitions in each microprogram source file,

one may collect them in a file (or files), which the preprocessor will read as

input upon encountering a line of the form

^include "filename"

in its input. Note that the quotation marks are mandatory. The preproces

sor does not pass the include directive to its standard output, but does insert

several lines of its own. These are ignored by yc, but may throw off line

numbers reported in error messages. The Cpreprocessor will read multiple

files, providing an alternate method of including a macro collection. To read

and macro process files x and y, then feed them to yc, the command line is:

cc -E x y | yc options

24

2.3. Symbol Table and Code Dumps

At several points in the translation process, yc can be persuaded to

dump some of its internal tables in human readable form. These are pri-
« •*

marily intended for maintenance of the translator, but may also be useful to

the programmer, as will be outlined. \ l

A symbol table dump may be obtained at any point during the scan of

the source program by the inclusion of a comment beginning ;%. This dump

may appear before any semantic action for that line has taken place. The

dump has three parts: the histogram, local symbols, and global labels. The

histogram gives an indication of hash table usage, and indicates, for each of

the 256 table entries which is not empty, how many symbol names hashed to

that entry. This statistic includes pre-defined symbols, such as register and

field names, which do not appear elsewhere in this dump.

The local symbols are those visible at the point of the dump, according

to the normal begin . . . end nesting rules. Global labels are program labels

which were defined or first used within a block not including the point of the

dump. The dump of each symbol entry gives: the number of characters in

the symbol's name; the name; the line number where it was defined (if

defined) or first used; the pseudo-line number on which it was first defined or

used; its type (error or undefined; register; constant; label; and field name,

which are for pre-defined symbols only, and should not appear in a dump); ?

and its value, if defined. For labels, the value is a relative address in brack

ets. For registers, the value is an index into the compiler's register table.

The pseudo-line number is the value kept in a variable set by the PS number

pseudo-op. If a high-level language translator were to emit YALLL, a PS

pseudo would mark the beginning of the code for each HLL statement, so

25

that the source of errors in the YALLL program would be traceable to a KLL

statement.

At the end of the dump, one of the messages "open action pending" or

"close action pending" may appear. The former indicates that the symbol

begin has been scanned but not processed; the latter that end has been

scanned but not processed. These should only appear when one writes, for

example "end ;%", and may change the meaning of the dump. A symbol

table dump may also occur spontaneously, as a result of certain kinds of

internal translator errors. An error message will accompany such a dump.

A code dump may be obtained at the completion of any of the

translator's three passes as indicated by the -d command line argument.

The dump after the third pass gives the most information, as it shows the

result of pass two code improvement, as well as address assignment. How

ever, the relationship of YALLL source to assembly-like dump is hardest to

see at this point. This relationship is much better shown by the pass one

dump, which might be used as an aid to understanding the final code.

The dump exhibits several of the fields of each of the data structures

representing a word of generated code. Each micro-node, as these are

called, is represented by four attributes: address, field values, branch infor

mation, and uses-sets information. The address is given as a "relative"

address, in brackets, optionally followed by an absolute address (in

parentheses), or constrained address, preceded by an equals sign (=). In

pass one and two dumps, absolute locations are the result of org statements,

and constrained locations of conditional or table branches, or subroutine

calls. By the end of pass three, all locations should be given absolute

addresses. Relative addresses are decimal, absolute are hexadecimal, and

26

constraints binary. It is impossible for a location to have both constrained

and absolute addresses.

The body of a microinstruction, its field values, is given in approximately

the format accepted by the assembler fieldname-slash-hex-value. Note, how

ever, that the value given for the CID field is only that of the four bits not

overlapping fields ADS nor FS. Fields not explicitly set during code genera

tion, and thus taking their default values, are not shown. As an example, the

pass one dump of the code generated by x: jump x if rO = tO is shown in Fig

ure 5.

CODE DUMP

code size = 5 words

[0]: SPO/20, QK/8. ALU/e, BMX/4,
J/[l]
USES: LatchC RegC
SETS: Qreg LatchC

[1]: CCK/1, SPO/40, ALU/8, RMX/0, AMX/0, BMX/7,

J/[2]
USES: Qreg LatchAB RegAB
SETS: LatchAB CondCode

[2]: BEN/lb,
J/[3], 2-way branch
USES: CondCode
SETS:

[3]:=1011;

[4]:=1111:

J/[5]
USES:
SETS:

J/[0]
USES:
SETS:

Figure 5 - Code Dump

i
c

27

The jump address of each microinstruction is determined by the set

tings of the SUB, BEN, and J fields. The former two are shown with the other

microword fields. The J field is given last, and indicates either a [relative] or

(absolute) addresses. By the end of pass three, all jumps, like all addresses,

should be absolute; if a relative jump appears in a third pass dump, a label

reference did not get resolved, and a run- time error will occur. For a"multi-

way branch (BEN not zero), an indication is given of the number of possible

destination addresses for the jump.

For the purpose of pass two code improvement, the generation routines

store in the micro-nodes not only the appropriate field values, but also the

names of the resources (registers and latches) which are being manipulated

by the microinstruction under construction. This appears on the two lines of

uses-sets information of the dump of the micro-node. A resource is used if

its value is used in a calculation, and set if a new value is clocked into it. The

words EXCLUSIVE-USE appear when a microinstruction should not be com

bined with those around it. This is the case when the assembly escape has

been used, or when the generated code is sufficiently tricky that any attempt

at code improvement might change its meaning. A micro-node represented

by only the relative address and an "X" is one which has been deemed

unnecessary by the code improver. These may be considered to have been

deleted, as they are not assigned addresses, nor written on the outpui file.

2.4. Other VAX Microcoding Utilities

The binary file produced by yc is not ready to be loaded into WCS, but

must first be linked with other routines to be loaded there. The output of yc*

contains no explicit address information; the first twelve bytes belong at con

trol store location 10E0, and the following twelve-byte words are to be loaded

28

beginning at 1400 hex. The LSI-11-resident WCS loader can only load into

sequential locations, and (because of the floppy disk file format), only in mul

tiples of 512 bytes. Also, the console resident debugger requires a floppy disk

resident image ofWCS (see section 2.6). Thus it is desirable to make a single ' ,

file containing the entire WCS image: both native and user-written micro- ^ c

code. The native microcode can be found in a floppy disk file, currently

WCS118.PAT. This may be copied to a Unix file using arff, the floppy file util

ity. The program merger may be used to combine a Unix file copy of the

native microcode (the "system file") with yc output ("user file") into a com

bined file ("target file"). The merger program will prompt the user for the

appropriate file names.

To verify the performance of yc and merger, two versions ofa dump util

ity are available, to interpret binary microcode files. The program undo will

dump a named file (default m.out) in microassembler-like format. This file is

assumed to be the output of yc. The dump format is the same as that of a

translator code dump, except that: all fields are shown, as the filed use infor

mation has been lost; resource uses-sets information has, similarly, been

lost; words are given in increasing order of address, which may have little to

do with logical order. Similarly, interdump will verify a merger operation by

dumping, in the same format as undo, requested addresses of the file named

in the command line. Since the merged WCS image contains at least a ^ _

thousand words, dumping the whole file would be impractical, thus it is done

interactively.

Under the system described here, all WCS files are loaded by the console

LOAD/WCS command. Thus, these files must be written on the floppy disk, in ;

the format understood by the LS1-11 operation system. Two VAX programs

29

make this possible: The floppy disk device driver is part of the Unix kernel,

and deals with transferring sectors (of 128 bytes) to and from the floppy.

However, this program knows nothing of the disk format other than the sec

tor size, and treats it as one long, sequential file. Thus it should not be used

alone; a command such as "cat /dev/floppy" is almost certainly wrong.

The program arff, written by Keith Sklower, deals properly with the disk

format and uses the Unix floppy driver to request the data transfers of the

LSI-11 program (which actually deals with the device). Arff is meant to

appear to the user like the program tar, and is invoked as

arff actioncode [filename . . .]

where actioncode is one of the following:

t - list which of the named files are listed in the floppy directory. If no

filename arguments are given, the name of each file on the floppy is

printed.

tv - like t, but more information is given with each listing, such as creation

date, and size off the file, in blocks. Also, the number of directory

entries remaining is printed, and, if listing the whole directory, the size

of unused areas.

x - extract named file from floppy to Unix file. If the file name is a path

name (with slashes), the last portion is taken to be the floppy file, and

the entire qualified name is the Unix file.

r - replace (or add) floppy file from named Unix file. Qualified file names

are interpreted as for x. If the named Unix file is larger than an existing

floppy file of the same name, it may be necessary to first delete the

floppy file, forcing an add action, rather than a replace. If the directory

is full, or the whole floppy disk is full,an error message will be written.

30

d - delete named files from floppy directory.

For example, to repack the floppy, combining several small unused areas

into a larger unused area, we could extract the entire contents, delete it all,

then replace each file as follows:

% set fl='arff f C- shell variable $fi
% arff x $fl
% arff d $fl
% arff r $fl

Floppy disk file names have up to six characters, optionally followed by

an extension (qualifier) of up to three characters; e.g. WCS118.PAT,

WCSMON.HLP. Furthermore, they must be composed only from the Radix- 50

character set: A-Z, 0-9, $, %, and period (.). The latter character should be

avoided, since it is also the separator between name and extension. Arff does

case translation, so that all letters appear to be in lower case. WCS image

files should have names of the form WCSnnn.PAT, since there seems to be

some restriction on the names of these files, and this formula seems to work.

2.5. Dealing With UNIX

In order to load and debug microprograms on the VAX, it is necessary to

stop timesharing, halt the machine, and either run stand-alone, or use Unix

as a single user. Here we will outline some of the important Unix commands

necessary for failure-free operation. It is assumed that you have arranged

with the system manager to halt timesharing, and that you have a Unix

account, though not necessarily root.

To increase disk through-put, Unix employs file read-ahead and write-

behind. Because of this, if the system goes down unexpectedly, grave file-

system inconsistencies may result. The sync command causes all disk files

to be brought up-to-date, by writing out buffers-full of data destined for

31

writing. This command should be used whenever the system might stop, as

when you are about to halt the machine, or test new or shaky microcode

under Unix. See the Unix Programmer's Manual, sync (1 k 2), and update

(8) for details. Unix is brought up from a halted machine using the console

command B or ©UNIX in response to the >» prompt. This causes console

commands to be executed from the floppy disk file UNIX. Finally, a VAX boot

program is read from the hard disk, and will prompt file:, after which type

unix, or whatever the appropriate name is for the system being run. This will

be loaded, report on the available memory, and prompt with #. If a control-d

is typed to this prompt, commands will be taken from the file /etc/rc, which

will bring up timesharing. Therefore, don't type gratuitous control-d's!

Before bringing up timesharing, you should always check the integrity of

the file system. This is done with the chk command (which in turn executes

dcheck and icheck, see section one of the Unix Programmer's Manual): chk

/dev/rrpOa /dev/rrpOg is the least you should do. This takes about fifteen

minutes, and will report on any inconsistencies it finds. If dcheck reports a

file having more entries than links, the system manager should be notified to

fix this situation before you go any further. If you did sync's before taking

the system down, there should be no problems.

If you don't wish to bring up the full system, but want to access files in

your directory, it will be necessary to mount the /usr file structure with

§ /etc/mount /dev/rpOg /usr

The easiest thing to do at this point is to use the login name command to

give you your own home directory, shell, and identity. An alternate possibil

ity, which retains the root user identity, is the following:

32

csh get a reasonable shell
% set home=~yottrname
% cd

% source .cshrc; source .login

The problem with this is that any files you create in your directory belong

not to you, but to root.

2.6. At the Console

Loading and debugging microprograms from the VAX consol requires

using DEC-supplied, LSI-11-resident console software. These programs are

quite adequate for most of the simple tasks necessary for debugging a

microprogram.

The console command interpreter takes the place of front panel lights

and switches on the VAX. When the console is in "program I/O mode" (com

municating with a VAX program, as when waiting for a login), it may be

switched to console command mode by typing a control-p. The console

prompt is >>>, character erase is del or rubout, line kill is control-u, pro

gram kill is control-c. The command SET TERMINAL PROGRAM is the inverse

of the control-p command - it returns the console to program I/O mode. A

HALT command stops VAX CPU instruction interpretation, and puts the

microcode in a console-command servicing loop. The microcode's coopera

tion is necessary, for example, to manipulate main store locations from the

console. The CONTINUE command restarts VAX instruction execution where

it left off. and START address first sets PC to address, then starts instruction

execution. Many other commands are available, and are outlined in the con

sole floppy file CONSOL.HLP. This may be typed at the console by the com

mand ©CQNSQL.HLP, or transferred to a Unix file with arff and listed; see

also Figure 6a.

33

VAX-11/780CONSOLEHELPFILEREV.826-JUL-1978
TOSTOPPRINTING,TYPE~C
FORABBREVIATIONRULES.TYPE'©ABBREV.HLP'
FORERRORMESSAGEHELP.TYPE'©ERROR.HLP'
FORREMOTEACCESSHELP.TYPE'©REMOTE.HLP'
GENERAL:<ADDRESS>ISA<NUMBER>,ORONEOFTHEFOLLOWING

SYMBOUC<ADDRESSES>(ONLYFOREXAMINE&DEPOSITCOMMANDS)
'R0.R1.R2Rll.AP.FP.SP.PC(GENERALREGISTERS)
'PSL'(PROCESSORSTATUSWORD)
'•'(LASTADDRESS)
•+'(ADDRESSFOLLOWING'LAST'(»)ADDRESS)
'-'(ADDRESSPRECEEDING'LAST'WADDRESS)
'©'(USESLASTEXAMINE/DEPOSITDATAFORADDRESS)

<NUMBER>=STRINGOFDIGITSINCURRENTDEFAULTRADK.
ORSTRINGOFDIGITSPREFDCEDWITHADEFAULTRADDC
OVERRIDE.(%0FOROCTAL.%XFORHEX)

ALLCOMMANDSARETERMINATEDBYCARRIAGERETURN
'EXAMINE<ADDRESS>'-DISPLAYSCONTENTSOF<ADDRESS>
'DEPOSIT<ADDRESS><DATA>'-DEPOSITS<DATA>TO<ADDRESS>

USEAQUALIFIERAFTERTHECOMMANDNAMETOSPECIFY
THEPROPERADDRESSSPACETOUSE:

'/?'FORPHYSICALMEMORY(THEDEFAULT)
•/VFORVIRTUALMEMORY
'/I'FORINTERNAL(PROCESSOR)REGISTERS
'/G'FORGENERALREGISTERS0THRUF(R0THRUPC)
'/VB'FORVBUSREGISTERS
•/ID'FORIDBUSREGISTERS

EXAMPLE:TOEXAMINEVIRTUALADDRESS10245.THESHORTEST
UNIQUECOMMANDSTRINGIS:'E/V10245'(SEEABBREV.HLP)

'EXAMINEIR'-EXAMINESINSTRUCTIONREG.(IR).DISPLAYS
OP-CODE.SPECIFIER.&EXECUTIONPOINTCOUNTER

'START<ADDRESS>'-INITIALIZESTHECPU.DEPOSITS<ADDRESS>
TOTHEPC.ISSUESACONTINUETOTHEISP.

'CONTINUE'-ISSUESACONTINUETOTHEISP.
'HALT-HALTSTHEISP

'BOOT'-BOOTSTHECPUFROMDEFAULTDEVICE
'INITIALIZE'-INITIALIZESTHECPU
'SHOW-SHOWSCONSOLEANDCPUSTATE

'SHOWVERSION'-SHOWSVERSIONSOFMICROCODEANDCONSOLE
'TEST'-RUNSMICRO-DIAGNOSTICS

'TEST/COM'-LOADSMICRO-DIAGNOSTICS.AWAITSCOMMANDS
•UNJAM'-UNJAMSTHESBI
'SETSTEPBUS'-ENABLESINGLEBUSCYCLECLOCKMODE

'SETSTEPSTATE'-ENABLESINGLETTMESTATECLOCKMODE
•SETSTEPINSTRUCTION'-ENABLESSINGLEINSTRUCTIONMODE

'CLEARSTEP'-ENABLENORMAL(NOSTEP)MODE
'NEXT<NUM3ER>'-<NUMBER>STEPCYCLESAREDONE.TYPEOF

STEPDEPENDSONLAST'SETSTEP'COMMAND
'QCLEAR<ADDRESS>'-DOESAQUADCLEARTO<ADDRESS>.WHICHISFORCED

TOAQUADWORDBOUNDARY(CLEARSECCERRORS)
'SETSOMM'-SET'STOPONMICRO-MATCH'ENABLE
'CLEARSOMM'-CLEAR'STOPONMICRO-MATCH'ENABLE

NOTE:IDREGISTER21ISTHEMICRO-MATCHREGISTER.

'SETCLOCKSLOW'-SETCPUCLOCKFREQTOSLOW.
'SETCLOCKFAST-SETCPUCLOCKFREQTOFAST
•SETCLOCKNORMAL'-SETCPUCLOCKFREQTONORMAL
'SETRELOCATION:<NUMBER>'-PUT<NUMBER>INTOCONSOLE'SRELOCATION

REGISTER.RELOCATIONREGISTERISADDED
TOEFFECTIVEADDRESSOFPHYSICALAND
VIRTUALEXAMINESANDDEPOSITS.

34

•SETDEFAULT<OPTION><OPTION>'-SETCONSOLEDEFAULTS
NOTE:<OPTIONS>ARE:OCTAL,HEX,PHYSICAL,VmTUAL,INTERNAL

GENERAL,VBUS.IDBUS.BYTE.WORD.LONG.QUAD
"SETTERMINALFILL:<NUMBER>'-SETFILLCOUNTFOR#OFBLANKSWRITTEN

TOTHETERMINALAFTER<CR>OR<LF>
'SETTERMINALPROGRAM'-PUTCONSOLETTYINTO'PROGRAMI/O'MODE
'-P'(CONTROL-P)-PUTCONSOLETTYINTO'CONSOLEI/O'MODE

(UNLESSMODESWITCHIN'DISABLE')
'HELP'-PRINTSTHISFILE
'©<FILENAME>'-PROCESSANINDIRECTCOMMANDFILE
'LOAD<FILENAME>'-LOADFILETOMAINMEMORY.
'LOAD/WCS<FILENAME>,-LOADFILESPECIFIEDTOWCS

NOTE:THE'/START:<ADDRESS>'QUALIFIERMAYALSOBEUSEDTO
SPECIFYTHESTARTINGADDRESSFORALOAD.OTHERWISELOAD
WILLBEGINWITHLOCATION0.

'LINK'-CAUSESCONSOLETOBEGINCOMMANDLINKING.CONSOLE
PRINTSREVERSEDPROMPTTOINDICATELINKING.ALL
COMMANDSTYPEDBYUSERWHILELINKINGARESTORED

INANINDIRECTCOMMANDFILEFORLATEREXECUTION.
CONTROL-CTERMINATESLINKING.(SEEPERFORM)

'PERFORM'-EXECUTEAFILEOFLINKEDCOMMANDSPREVIOUSLY
GENERATEDVIAA'LINK'COMMAND.

'REPEAT<ANY-CONSOLE-COMMAND>'-CAUSESTHECONSOLETOREPEATEDLYEXECUTE
THE<CONSOLE-COMMAND>.UNTILSTOPPEDBYA-C

'WCS'-CALLSMICRO-DEBUGGER.(FORDEBUGGERHELP.
TYPE'©WCSMON.HLP')

'ENABLEDX1:'-ENABLESCONSOLESOFTWARETOACCESSFLOPPYDRIVE
1ONTHOSESYSTEMSW7TADUALFLOPPIES.

'REBOOT'-CAUSESACONSOLESOFTWARERELOAD
•WAITDONE'-WHENEXECUTEDFROMANINDIRECTCOMMANDFILE.THIS

COMMANDWILLCAUSECOMMANDFILEEXECUTIONTOSTOP
UNTILA)A'DONE'SIGNALISRECEIVEDFROMTHE
PROGRAMRUNNINGINTHEVAX-11/780(COMMANDFILE
EXECUTIONWILLCONTINUE).ORB)THEVAX-11/780
HALTS.OROPERATORTYPESA~C(COMMANDFILEEX
ECUTIONWILLTERMINATE).

Figure6a-ConsoleCommandSummary

Thecommandsdirectlyrelatingtomicroprogrammingarethosethat

loadaWCSimagefileandinvokethemicrodebugger.Loadingisaccom

plishedbythecommand

>»LOAD/WCS/START:1000filename

wheretheSTARToptionindicatesthelowestaddressoftheload.The

debuggeriscalledbyWCS,andpromptsWCS>.Itscommandsummary,from

fileWCSMON.HLPisshowninFigure6b.Fromthepointofviewoftheconsole

processor,writablecontrolstoreisawrite-onlymedium-itcanbewritten

in,butnotreadfrom.Thus,theWCSmicrodebuggerrequiresthattherebea

disk-residentimageofcontrolstorewhichitcaninspect,ifitisusedto

35

MICRO-DEBUGGERHELPFILEREV-0MAY1977
TOSTOPPRINTING.TYPE-C

DEBUGGERCOMMANDS(ALLTERMINATEDBYCARRIAGERETURN)

'E/P<ADDRESS>'-EXAMINEPHYSICALMEMORY
'E/ID<ADDRESS>'-EXAMINEIDBUSREGISTER

'E<ADDRESS>'-EXAMINEWCSLOCATION,DISPLAYALLFIELDS
'E<ADDRESS><FrELDNAME-l>.<FIELDNAME-2>....<FIELDNAME-N>

EXAMINEWCSLOCATION,DISPLAYONLYFIELDS
THEFIELDSSPECIFIED.

NOTE:<FIELDNAMES>=ACF.ACM.ADS.ALU.BEN.BMX.CCK.CID.DK.DT.EAL
EBM.FEK.FS.IBC.IEK.UJM.KMX.MCT.MSC.PCK.QK
RMX.SCK.SGN.SHF.SI.SMX.SPO.USU.VAK

'ERA<ADDRESS>'-EXAMINEANRAREGISTER
'ERC<ADDRESS>'-EXAMINEANRCREGISTER

'E<SYMBOLIC-NAME>'-EXAMINEONEOFTHESYMBOLICALLYNAMED
REGISTERS

NOTE:<SYMBOLIC-NAMES>=DR.FER.IBA.LA.LB,LC.Q,RL.SC.SR.UPC

'D/P<ADDRESS><DATA>'-DEPOSIT<DATA>TOPHYSICALMEMORY
'D/ID<ADDRESS><DATA>'-DEPOSIT<DATA>TOIDBUSREGSTTER

'D<ADDRESS><FIELDNAME-1><DATA-l>.<FIELDNAME-2><DATA-2>
-DEPOSITTOWCSLOCATION.PUTTING<DATA-1>

INTO<FIELDNAME-1>.ETC.UNSPECIFIEDFIELDS
AREUNCHANGED.

NOTE:THE'/Z'QUALIFIERMAYBEUSEDTOCAUSEALLUNSPECIFIED
FIELDSTOBECLEARED.

'DRA<ADDRESS><DATA>'-DEPOSIT<DATA>TOANRAREGISTER
'DRC<ADDRESS><DATA>'-DEPOSIT<DATA>TOANRCREGISTER

•D<SYMBOLIC-NAME><DATA>'-DEPOSIT<DATA>TOONEOFTHESYMBOLICALLY
NAMEDREGISTERS(SEELISTABOVE).

NOTE:DEPOSITSTOTHERLOGSTACK(RL)ARENOTSUPPORTED.

'CONnNUE'-RESUMEMICRO-INSTRUCTIONEXECUTIONAS
SPECIFIEDBYCONTENTSOFMICRO-PC(UPC)

'START<ADDRESS>'-STARTMICRO-SEQUENCERAT<ADDRESS>.

'HALT'-HALTTHEMICRO-SEQUENCER

'SETSOMM'-SETTHE'STOPONMICRO-MATCH'ENABLE
'CLEARSOMM'-CLEARTHE"STOPONMICRO-MATCH'ENABLE

'SETSTEP'-ENABLESINGLEMICRO-INSTRUCTIONSTEPMODE.
STARTORCONTINUEWILLALLOWONEMICRO
INSTRUCTIONTOEXECUTE.THENHALTTHE
MICRO-SEQUENCER.

•CLEARSTEP'-DISABLESINGLEMICRO-INSTRUCTIONSTEPMODE.

'RETURN'-RETURNTOTHECONSOLEPROGRAM

'OPEN<FILENAME>'-OPENSPECIFIEDFILEONFLOPPYDRIVE0
'OPENDXl^FILENAME^-OPENSPECIFIEDFILEONFLOPPYDRIYE1

NOTE:'OPEN'ISUSEDTOSPECIFYAFILECONTAININGTHEMICRO-CODE
CURRENTLYLOADEDINTHEWCSPORTIONOFTHECONTROLSTORE.

36

(ADDRESSES 1000(16) & UP IN THE CONTROL STORE)
THIS FILE WILL BE USED FOR ALL EXAMINES OF THE WCS.
SINCE THE WCS IS NOT DIRECTLY READABLE.

Figure 6b - WCS Debugger Command Summary

examine and patch microcode. (This is another reason for building a micro

code image on the floppy, rather than going the shorter route of loading con

trol store directly from the VAX.) The WCS command OPEN filename permits

the debugger to use the named file, which it assumes has already been

loaded, as shown previously. Modifying control store using the D command

changes both the control store contents and the disk file. The format for

examining and changing microstore locations is similar to the dump and

assembly formats, except that field name is separated from value by a space

for setting values and an equals sign for examining them (rather than a

slash); CID overlaps FS and is only four bits, and MCT overlaps FS but not

ADS.

A HALT to WCS will stop microinstruction execution, and is necessary

before depositing in control store or registers.

A very useful feature for debugging is the ability to set a break point in

the microprogram. The break point may be set either in console command

mode or when running the microdebugger, by placing the break address in

the micro-break ID register (21), then enabling the facility by the command

SET SOMM. When the given location has been executed, the microprogram

will halt, and a message will be printed. When you are done using this facil

ity, it must be disabled by the command CLEAR SOMM. See the tutorial

example for a use of the break point.

37

2.7. A Tutorial Example

This section gives a step-by-step example of the microprogram entry

process, including use of the translator, loader, and console microdebugger.

The example program will be a simple emulator, shown in Figure 7a. (This is

very similar to the CS-152a and CS-292R SM-1 example for the HP 21-MXE

computer.)

The simple computer emulated has an accumulator (AC), MAR, MBR, and

PC. and 1024 words of (16-bit) memory. RAB register rO will be used for AC,

rl for MAR, r2 for MBR, r3 for PC, and r4 will point to the area of memory to

be used as the emulated memory. After these registers are loaded with the

appropriate initial values, the microprogram is called by the XFC instruction;

in assembler this is coded as ".byte Oxfc". When the program is done, it will

return its values in the same registers and in memory. The emulation will use

word addressing, and will interpret eight instructions. This source program

should be typed into a file, call it sml.m, using a Unix text editor.

2.7.1. translating the program Once the source is correctly entered, it

should be translated using yc. To get an idea of the code produced, try

yc sml.m -dl3 | lpr

The pass one dump should be pretty easy to partition into the groups of

instructions produced by each source statement. The pass three dump is

much more convoluted. This, though, is the appropriate listing for debugging

at the console.

Once the program has been translated, it must be combined with the

native microcode to produce a new WCS image file, to be written on the

floppy disk. If a copy of the native code is not available as a Unix file, one

Ifetch:

Cmplt

Emulator for the SMI

This program emulates a computer having eight instructions
plus halt. It uses VAX general registers rO - r3 as the
emulated AC, MAR, MBR, and PC. and register r4 to point
to the Ik word emulated memory in VAXmemory. The
XFC instruction takes no parameters except in registers;
initial values for AC, PC, and the memory space pointer.

org 10E0
reg AC = rO signed word
reg MAR = rl unsigned word
reg MBR = r2 signed word
reg PC = r3 unsigned word
reg base = r4 unsigned long
reg temp = Qreg

all temp.PC.l : byte-to-word address factor
add VA, temp, base
load MBR.VA ;MBR <- mem[base+PC]

rdefer incrementing PC till end of execution cycle

and MAR, MBR, 3FF ; extract address from instruction
; now do case jump on op-code
jtab M3R<15:12> of

0:Cmpl
l:Shr

2:Bneg
3:Jmp
4:Store

5:Load
8:And

7:Add
else Halt

etab

Halt: add PC.PC.l
exit

cmpl AC.AC ; complement instruction
jump Inc-pc

Shr: ; shift right one bit instruction
srl AC.AC.1
jump Inc-pc

Bneg: ; branch if (AC)<0
jump Inc_pc if AC >=0

.Imp: ; unconditional branch
move PC.MAR
jump Ifetch

38

Store: ; store instruction
all temp.MAR.l; word-to-byte address factor
add YA, temp, base
stor AC.VA
jump Inc-pc

Load: ;Load instruction
call Fetch-mem
move AC. MBR
jump Inc_pc

And: ;Logical AND instruction
call Fetch.rn.em
and AC.AC. MBR
jump Inc-pc

Add:

Inc_pc:

; Addition instruction
call Fetch-mem
add AC.AC, MBR

add PC.PC.l
jump Ifetch ; its only safe to increment PC after all fetches
; for this instruction are over, so a memory fault (page absent)
; won't cause us to restart in the wrong place.

Fetch-mem: ;data fetch routine
all temp, MAR.1
add VA.temp.base
load MBR.VA
rtn

end

Figure 7a - SM-1 emulator example, YALLL source

39

should be obtained by running

% arff x wcsllB.pat

Next, run the merger program:

% merger
System file name: wcsllB.pat
User file name: m.out
Target File name: wcslOl.pat

Check some locations of the resultant file with interdump wcslOl.pat.

40

Compare them with the pass three dump. Those fields shown in the dump

should also have the same values in the disassembly. Now, write the WCS file

on the floppy disk with

%arff r wcslOl.pat

If more than one microprogram image is to reside on the floppy at a time,

they obviously must have different names. So you may need to change the

name in these examples, if more than one microprogram is being prepared.

2.7.2. running stand-alone

Now, we will bring the system down, and test the microcode stand-alone.

Even in this mode of operation there are several things which have to be

taken care of. The most pressing of these is the system control block (SCB).

In the procedure that follows, this is set up to halt the processor on any

error. The halt address will be the SCB vector address, which is determined

by the source of error (see Figure 5 of Appendix 1).

On the console, login to Unix. Make sure that everyone else has logged

out (using the who command). Insure the integrity of the file system by issu

ing the sync command two or three times. Halt the VAX by typing control-p,

to which the console will respond with the >>> prompt. Answer this with H

return. The VAX should now be halted. Load your WCS file with the command

LOAD/WCS/START:1000 WCS101.PAT. This should take a few seconds and

respond that 6000 bytes were loaded.

In order to set up the VAX for stand-alone program operation, type the

INIT console command. Among other things, this turns off memory mapping,

so you do not have to worry about page tables. Now, type the following com

mands:

>» SET DEF LONG
>» D/ID 3B 0
>» D/P 0 3
>»D + 3
>» D + 3

>»D + 3

>»D + 3 •
»> D + 2

»> D + 3

>» D + 3
»> D/ID 2C 2000
>» D/G SP 2000

do longword deposits
set SCBB to zero, where we'll set up SCB
set up SCB to stop on any error

enable XFC microcode entry

set ISP and SP to 2000(hex)

41

Set up a small VAX program, and a small SM-1 program:

>» D100 FC VAX program - XFC; halt
>» SET DEF WORD do wurU deposits
>>> D 200 5003 SM- 1 program - load 3
>>> D + 0 complement
>» D + A000 halt
»> D + OOFF location 3: data
>» SET DEF LONG
>»D/GR3 0 SM-1 PC
>» D/G R4 200 SM- 1 memory base
>» D/G RO BBBB SM- 1 AC - trash

Now run the interpreter program:

>» START 100

This should quickly halt, with PC = 102. Examine some registers:

>» E/G RO AC, should show FFFFFFOO
»> E/G R4 base address, should still be 200
>» E/G R3 PC, should show 3

Now that this worked (or even if it didn't), set a break point at the case

instruction decoding the op-code, and watch it perform the complement

operation.

>>> D/G R3 1 SM- 1 PC to complement
>» D/ID 21 1421 micro- break at complement
>» SET SOMM enable breakpoint
>» START 100

42

The machine should halt with micro-PC = 1421. Enter the WCS debugger:

>» WCS

WCS> 0PENWCS101.PAT

Look at the Dregister, which should contain the complement opcode, zero.

Also, rO, the pseudo-AC, which should still contain FFFFFFOO.

WCS> E DR
WCS> E RA 0

Single step through the complement operation. Set single step mode, exe

cute a microinstruction.

WCS> SET STEP single micro- step
WCS> START 1400 next microinstruction - beginning of complement
WCS> E LA
WCS> E Q
WCS> E RA 0

Notice that the register contents, latched into LA, were complemented on

the way to register Q. Execute another microinstruction, then look at rO

again.

WCS> CONTINUE
WCS> E RA 0

Now, look at the microinstruction which did the complement. Modify it so

that, rather than a complement, it will exclusive-or register rO with the con

stant 1, toggling the low-order bit.

WCS> E 1400
WCS> D 1400 ALU 8, BMX 6, KMX 1

Recall that this will change the disk file, as well as the control-store location.

To single-step through this sequence of instructions again, use the command

START 1400, then CONTINUE, examining the registers as before. Finally,

change the program back to doing complements, then leave the debugger,

clearing the machine.

43

WCS> D 1400 ALU A
WCS> CLEAR STEP

WCS> CLEAR SOMM
WCS> RETURN
>» INIT

Invent a program to test all the opcodes.

2.7.3. running with Unix

If your microcode seems to work well, you are ready to try it out under

Unix. When running microcode with the operating system, it is possible to

write supporting routines in C and assembly language. This is generally

easier (and less error-prone) than typing in hex machine codes by hand.

In console mode type:

>» ©UNIX

file:unix

The system should come up, give you a message about available memory, and

a # prompt. Type the sync command a couple of times, and halt the VAX as

before. Recall that your WCS file, with your microcode, is still in control

store. Enable the XFC instruction by changing longword 14 of the SCB (which

Unix keeps at physical location zero). Then, bring Unix back up, and log in.

sync
#sync
§ control- p
>»H

>» D/P 14 2
>>> CONT followed by TWO returns
/etc/mount /dev/rpOg /usr
login yourname

After logging in, you should be able to run C programs with embedded XFC

instructions. There are two ways to create such programs. If the micropro

gram can find its own parameters in the C program, or is parameterless, the

XFC may be entered in the C source as

44

asm(" .byte Oxfc M);

If, however, the microprogram requires parameters in registers, it is usually

easier to produce VAX assembly language from the C program, using cc -S,

and edit it. For example, compiling the routine of Figure 8a will produce the

assembly program of Figure 8b, which can be edited as in Figure 8c, to pass

parameters to and from the sml emulator program. Try running a more

complex example.

After you have run some trials, you should halt the VAX, load the normal

microcode, and bring up Unix multi-user. Restarting Unix loads the usual

SCB on top of the one you changed so that the XFC instruction will no longer

execute your microcode:

% sync
%sync
% control- p
>» H

»> L0AD/WCS/START:1000 WCS118.PAT
>» @UNDC

file: unix

§ chk /dev/rrpOa /dev/rrpOg
§ control- d

smlroutine(accu , locc, codespace)
int *accu, *locc, *codespace;
i
register int ac = *accu,

pc = *locc,
•base = codespace;

♦locc = pc;
return(ac);

\

Figure 8a - Microcode support C program

LLO:

.data

.text

•align 1
.globl _smlrout

-Smlrout:

.word .Rl
jbr L13

L14:

L13:

movl *4(ap),rll
movl *8(ap),rl0
movl 12(ap),r9
movl rl0,*8(ap)
movl rll.rO
ret

ret

.set .Rl.OxeOO

jbr L14
.data

Figure 8b - Assembly language produced from Figure 8a

LLO:

.data

.text

.align 1
•globl __smlrout

_smlrout:

.word .Rl

jbr L13
L14:

L13:

movl *4(ap),r0
movl *8(ap),r3
movl 12(ap),r4
.byte Oxfc
movl r3,*8(ap)
ret

ret

•set .Rl.OxeOO

jbr L14
.data

Figure Be - Figure Bb edited to pass parameters to emulator

45

CHAPTER 4

EXAMPLES

In order to illustrate the use of YALLL, some examples are presented

here. Each is shown in several forms: YALLL source and object (as shown by

a pass three dump) are given for each. In three cases, the latter is turned

into DEC macro-code, for comparison with a hand-coded version of the pro

gram. Comparisons of various sorts are made with microcode for other

machines. In two cases, comparisons are made with the code generated by

the YALLL translator for the HP 300, a stack machine with a much simpler,

vertical microinstruction. Comparisons are also made with microcode for

the HP—21MXE, also a short microword, vertical machine.

1. String Translation

The first example is an instruction to transliterate a string according to

a table. This is similar to the IBM-370's TR instruction. The character string

is addressed by register 'str', and ends with a null (0) byte. A table is

addresses by register 'tbl'. Each byte of the string is examined, and, if not

zero, is replaced in memory by the byte in the table which it addresses; that

is, memory((tbl) + char). When a zero byte is encountered in the source

string, the microprogram exits. To time this routine, the string "The quick

brown fox jumps over the lazy dogs." was translated into upper case. The

YALLL source is shown in Figure 9a, and the generated code in Figure 9b.

This is expressed in macro-code in Figure 10a, and may be compared with

Figure 10b, a hand-coded version. The VAX assembly code this replaces is

shown in Figure 11a, and is (almost) equivalent to the C language fragment

46

org 10E0
reg str = rO
reg tbl = rl

reg char = tO unsigned byte
reg mar = VA

loop: load char, str ;
jump out if char = 0 ;
add mar, char, tbl ;
load char.mar ;
stor char.str ;
add str, str, 1 ;
jump loop ;

out: exit

end

47

get addressed character
test for zero, if zero, go quit
add to table base address

fetch character from table
replace character in string
bump string address
go do it again

Figure 9a - String translation YALLL source

address micrcinstrucion

(10eO): VAK/1. SPO/40. ALU/f. AMX/O. J/(1400)

[1400): FS/O. CID/8. ADS/O. DT/2. J/(1401)

(1401): SPO/30. KMX/12. ALU/d. RMX/0, AMX/1. BMX/6. J/(1402)

[1402): CCK/1. SPO/20, ALU/e. BMX/4. J/(1403)

[1403): BEN/lb. J/(140b). 2-way branch

[140b): SPO/41, ALU/f. AMX/O. DK/8. J/(1404)

[140f): PCK/4. IBC/c. J/(62)

[1404): SPO/20. ALU/5. RMX/0. AMX/1. BMX/4. J/(1405)

(1405): VAK/1. ALU/5. RMX/0. AMX/1. BMX/4. J/(1408)

(1408): FS/O. CID/8. ADS/O. DT/2. J/(1407)

[1407): SPO/31. KMX/12. ALU/d. RMX/0. AMX/1. BMX/6. J/(1406)

(1408): VAK/1. SPO/40. ALU/f. AMX/O. J/(1409)

[1409): SPO/21. ALU/e, BMX/4. DK/8. J/(140a)

(140a): SPO/40. FS/O. CID/8. ADS/O, SI/2. KMX/L
ALU/5. DT/2. AMX/O. BMX/6. SHF/O. J/(140c)

[140e): SPO/50. SI/2. KMX/1. ALU/5. DT/O. AMX/O.
BMX/6. SHF/O. J/(10eO)

Figure 9b - VAX microcode generated from Figure 9a

48

LOOP:
10EO:

= 1011

=END

CONTINUE:

LOOP:

10E0:

= 101

=END

VA_R[RO]
D[BYTE]_£ACHE
RC[TO]_D.AND.K[.FF]
ALU_RC[TO], CLOCK.UBCC
ALU.CC?

D_R[R1], J/CONTINUE
PC_PC+1, CLR.1B.0PC, J/IRD

ALU_D+RC[TO]
VA_D+RC[TO]
D[BYTE]_CACHE
RC[T1]_D.AND.K[.FF]
VA_R[RO]
D_RC[T1]
CACHE[BYTE]_D, ALU_R[RO]+K[.l]
R[RO]_LA+K[.l], DT/LONG, JAOOP

Figure 10a - Macro-Code of Figure 9b

VAJ*[R0]
D[BYTE]_CACHE
LAB_R[R1], D.NE.O?

PC_PC+1, CLR.IB.0, J/IRD
VA.ALU, ALU_D.OXT[BYTE]+LB

D[BYTE]_CACHE
VA_R[R0]
CACHE[BYTE]J)
R[R0]_LA+K[.l], DT/LONG, J/LOOP

Figure 10b - Hand-Coded program for Figure 9a

49

register unsigned char *tbl, *str, c;
while(c = *str) *str++ = tbl[c];

The VAX also has a string translation instruction which, although it won't

translate a string in place, is otherwise very similar, as is shown in Figure

lib.

The size and speed comparisons for this example are shown in Figure 13.

All timings were made by executing the program segment 100,000 times.

loop:

out:

movzbl (str).rO
beq out
movb (tbl)[r0],(str)+
brb loop

Figure 11a - VAX assembler program to translate string

movtuc $sJength,(src),$0,(tbl),$d_length,(dest)

Figure lib - VAX instruction to translate string

Translate
YALLL

HP VAX

Hand-
generated
Microcode

HP VAX

Assembler

HP VAX

Speed
(usee)

146 128 134 73 1350 93,
174

Size

(bytes)
32 180 28 108 20 11,

11

50

Figure 12 - Comparison of string translate routines

Then, the user-microcode overhead was subtracted from the time for each

microcode example. This is the time it takes to enter user microcode upon

the recognition of the appropriate macro-opcode, on the the VAX-11/780

this is about 3.5 microseconds.

2. Pascal Assist Instructions

The second example (Figures 5 - 8) is a case-jump instruction for use by

the Pascal interpreter, PX [Joy 77a]. This instruction grabs the next Pascal

opcode byte from the location addressed by register 'lc' (which is incre

mented after use), and uses it to index into a table of offsets, whose zero-th

First figure for single instruction, second for four-instruction loop

51

element is addressed by register 'tbl'. The contents of this register are

added to the two-byte offset fetched to form the target program address.

This works very much like the VAX's CASE instruction, but the dispatch table

need not follow the instruction, no range checking is done, and the case

selector is implicitly the unsigned byte from the PX instruction stream. This

instruction is executed at the end of the interpretation of each Pascal

instruction, and thus begins the interpretation of the next.

A further PX-assist microprogram is shown in Figures 17 - 20. This com

bines the above dispatch function with computation of data addresses (L-

values) using a lex-level and displacement from the PX instruction stream

and a display in memory. Upon interpreter initialization, the display base

address is passed to the microcode, which places it in SSP. Under Unix, this

register (supervisor stack pointer) is an unused, per-process register.

Thereafter, the microcode can be invoked to compute an address using this

org 10E0

reg lc = rlO ; PX location counter
reg tbl = rB ; address of address table
reg opcode = tl unsigned byte ;PX opcode
reg Centry = Qreg signed word ;offset, from table
reg jaddress = t2
reg lookup = Dreg
reg MAR = VA

dispatch:

end

load opcode, lc
sll lookup,opcode, 1
add MAR, lookup, tbl

load t_entry, MAR
add jaddress, t_entry, tbl
add lc, lc, 1
exit jaddress

fetch PX opcode
shift op to address words
add table base - MAR now
points to table entry
fetch displacement from table
add to table base

update PX location pointer
split

Figure 13a - PX-assist case-jump YALLL source

address microinstruction

[10eO): VAK/1. SPO/4a, ALU/f. AMX/O. J/(1400)

[1400): FS/O. CID/8. ADS/O. DT/2. J/(1401)

[1401): SPO/31. KMX/12. ALU/d. RMX/0. AMX/1. BMX/8. J/(1402)

[1402): SPO/21. SI/2. ALU/e. BMX/4. SHF/1. DK/8. J/(1403)

[1403): SPO/48. ALU/5. RMX/0. AMX/1. BMX/3. J/(1404)

[1404): VAK/1. ALU/5. RMX/0. AMX/1. 3MX/3. J/(1405)

[1405): FS/O. CID/8. ADS/O, DT/1. J/(1406)

[1406): QK/8. ALU/f. RMX/0. DT/1. AMX/2. J/(1407)

[1407): SPO/48. ALU/5. RMX/1. AMX/1. 3MX/3. J/(1408)

[1408): SPO/32. ALU/5. RMX/1. AMX/1. BMX/3. J/(1409)

[1409): SP0/4a. SI/2. KMX/1. ALU/5. AMX/O. BMX/8. J/(140a)

[140a): SP0/5a, SI/2. KMX/1. ALU/5, DT/O. AMX/O.
BMX/6. SHF/O. J/(140b)

[140b): VAK/1. IEK/1. PCK/1. SP0/22. FS/O. CID/1.
ADS/O. ALU/e. BMX/4. BC/2. J/(ab)

Figure 13b - VAX microcode generated from Figure 13a

10E0: VA_R[R10]
D[BYTE]_£ACHE
RC[T1]JD.AND.K[.FF]
DJVLU.LEFT, ALU_RC[T1]
ALU_D+R[R8]
VAJHLB
d[word]_£ache
qjuaj, alu_d.sxt[word]
ALU_Q+R[R8]
RC[T2]_Q+LB
ALU_R[R10]+K[.l]
R[R10]_LA+K[.l]
PC&VA_RC[T2]. FLUSH.IB, J/1B.FILL

Figure 14a - Macro-code for Figure 13b

52

DISPATCH:

10E0: VA_R[R10]
D[BYTE]_CACHE
ALU_D.OXT[BYTE], QJVLU.LEFT,
LAB_R[R8]
VA_LA+Q
D[WORD]_CACHE. ALUJR[R10]+K[.l]
R[R10]_LA+K[.l], DT/LONG
LAB_R[R8]
ALUJ3.SXT[WORD]+LB,
PC&VAJUAJ, FLUSK.IB, J/IB.FILL

Figure 14b - Hand-coded Pascal-assist case-jump

case (lc)+,$0,$255
(case table here)

jmp (loop) ;register 'loop' points to case instruction

Figure 15 - VAX assembly code replaced by microcode of Figure 13

Case

Speed
(msec)

Size

(bytes)

YALLL

HP VAX

3.7 3.9

32 156

Hand-
generated
Microcode

HP VAX

2.3 2.9

20 98

Assembler

HP VAX

4.4

Figure 16 - Comparison of Pascal Case functions

53

saved pointer and data from the PX instruction stream, leaving the result in

register rl. Because only one opcode is available for calling three micro-

coded functions, the microprogram must fetch and decode a one byte sub-op

code, following the XFC in the VAX instruction stream.

Pascal-assist extended instructions:

one to do fetch-P-opcode-and-dispatch
inside the PXinterpreter.

and a pair to help compute L-values, for the
LV and RV routines.

The dispatch instrucUon grabs thenext pascal opcode
from the location addressed byrlO (which register is
incrementedafter use), and the dispatchtable is addressed
byrB. which is also added to the offsets thereby fetched
to form the target jump address.
This instruction takes the form:

•byte Oxfc
.byte 3

Note the constant argument of 3, a sub-opcode
This works verymuch like a CASEW instrucUon
but the dispatch table neednot follow the instrucUon
no range checking is done, and the case selector is
implicitly the unsigned byte from thePX instrucUon stream

Atinterpreter initialization, one needs to save the
display base for the fasterforming of LVs. This
is accomplished by the code sequence:

moval -display.rO
•byte Oxfc
.byte 0

Which saves the contents ofrO inregister SSP.
the supervisor stack pointer, which UNIX doesn't
use. but which gets saved ona per-process basis
by the context-switching instructions.

An lvcan thereafter be generated in register rl
by:

byte Oxfc
.byte 2

Which picks up a one-byte lex-level and a two-byte
(signed) displacement fromthe PX instruction stream
addressed byrlO (which is then incremented), and.
using the display-base stored in SSP. forms the
L-value (absolute address), which is returned in
register rl.

reg lc = rlO ; PX locaUon counter

org 10E0

jtab OPERAND<l:0>of
0: fetch-base ; get display base from rO
1: lv : form L-value
else dispatch ; grab opcode and dispatchon it

etab

54

begin ; L-value rouUnes

reg display = SSP : where we keep it
reg U = tO unsigned byte ; lex-level from PX stream
reg displacement = t2 signed word ; displacement from PXstream
reg tempJc = tl
reg 11 .base = t4 ; stack frame base for addressed Uevel
reg tbl-entry = t3 ; a temporary

fetch-base:

move display. rO
exit

lv:

load 11,1c ; get lex level
add tempJc.lc.l ;bump address
load displacement, tempJc ; get displacement
sll tbl -entry,11.2 ; make lex level address longs in display
add tbl-entry, tbl_entry. display
load 11-base, tbl-entry : fetch display entry
add rl, 11-base, displacement; add in displacement
add lc, temp Jc, 2
exit

end

begin; dispatch instruction
reg tbl = r8; address of address table
reg opcode = tl unsigned byte; PX opcode
reg t_£ntry = tO signed word: offset, from table
reg jaddress = t2
reg lookup = t3

dispatch:
load opcode, lc; fetch PX opcode
sll lookup, opcode, 1 ; shift op to address words
add lookup, lookup, tbl; add table base - now
; points to table entry
load t-entry, lookup ; fetch displacement from table
add jaddress, t-entry, tbl ; add to table base
add lc, lc, 1; update PX locaUon pointer
exit jaddreBs ; split

end

end

Figure 17a - PX-assist Case and L-value computation

55

address microinstruction

(lOeO): J/(1404)

(1400): SUB/1. J/(e84)

(1401): SUB/1. J/(680)

(1402): QK/e. BEN/b. IBC/7. J/(1400)

(1403): SUB/2. IBC/d. J/(l)

(1404): PCK/4. QK/e. SUB/1. BEN/b. IBC/7. J/(1400)

(1405): DK/c. J/(1406)

(1406): BEN/19. J/(140c).

(140c): SPO/40, ALU/f. AMX/O. DK/8. J/(1407)

(140d): VAK/1. SP0/4a. ALU/f, AMX/O, J/(1408)

(140e): VAK/1. SP0/4a. ALU/f, AMX/O. J/(141f)

(140f): VAK/1, SP0/4a, ALU/f. AMX/O. J/(141f)

(1407): PCK/4. FS/1. CID/f. KMX/2a. IBC/c, J/(62)

(1408): FS/O. CID/8. ADS/O. DT/2. J/(1409)

(1409): SPO/30, KMX/12, ALU/d, RMX/0, AMX/1. BMX/6. J/(140a)

(140a): SP0/4a. SI/2. KMX/1. ALU/5. AMX/O. BMX/6. J/(140b)

(140b): SPO/31. SI/2. KMX/1. ALU/5. AMX/O. 3MX/6. J/(1410)

(1410): VAK/1. SPO/21. ALU/e. BMX/4. J/(1411)

(1411): FS/O, CID/8, ADS/O. DT/1. J/(1412)

(1412): SPO/32. ALU/f. RMX/0, DT/1. AMX/2. J/(1413)

(1413): SPO/20. QK/8, SI/2, ALU/e. DT/O. BMX/4. J/(1414)

(1414): SPO/33. FS/1. CID/5. QK/e. KMX/2a. ALU/f. RMX/1. AMX/1.
J/(1415)

(1415): SPO/23, ALU/5. RMX/1. AMX/1. BMX/4. J/(1416)

(1416): SPO/33. ALU/5. RMX/1. AMX/1. BMX/4. J/(1417)

(1417): VAK/1. SPO/23, ALU/e, BMX/4. J/(1418)

56

[1418): FS/O. CID/8. ADS/O. DT/O. J/(1419)

;i419): SPO/34. ALU/f. RMX/O. AMX/1. J/(141a)

[141a): SPO/22. ALU/e. BMX/4. DK/8. J/(141b)

[141b): SPO/24. ALU/5, RMX/O. AMX/1. BMX/4. J/(141c)

;i41c): SPO/51. ALU/5. RMX/O. DT/O. AMX/1. BMX/4. J/(141d)

;i41d): SPO/21. QK/8. ALU/e. BMX/4. J/(141e)

[141e): PCK/4. SPO/5a.. SI/2. KMX/2. ALU/5, RMX/1.
DT/O. AMX/1. BMX/6. SHF/O. I3C/c. J/(62)

[Ulf): FS/O. CID/8. ADS/O. DT/2. J/(1420)

[1420): SPO/31. KMX/12. ALU/d. RMX/O. AMX/1. BMX/6. J/(1421)

[1421): SPO/21. QK/8. SI/2. ALU/e. BMX/4. SHF/1. J/(1422)

;i422): SPO/33. ALU/f. RMX/1. AMX/1, J/(1423)

[1423): SPO/48. ALU/f. AMX/O. DK/8. J/(1424)

;i424): SPO/23. ALU/5. RMX/O. AMX/1. BMX/4, J/(1425)

[1425): SPO/33. ALU/5. RMX/O. AMX/1. BMX/4. J/(1426)

[1426): VAK/1. SPO/23. ALU/e. BMX/4. J/(1427)

[1427): FS/O. CID/8. ADS/O. DT/1. J/(1428)

[1428): SPO/30. ALU/f. RMX/O. DT/1. AMX/2. J/(1429)

[1429): SPO/48. ALU/f. AMX/O. DK/8. J/(142a)

[142a): SPO/20. ALU/5. RMX/O. AMX/1. 3MX/4. J/(142b)

;i42b): SPO/32. ALU/5. RMX/O. AMX/1. BMX/4. J/(142c)

;i42c): SP0/4a. SI/2. KMX/1, ALU/5, AMX/O, BMX/6. J/(142d)

;i42d): SP0/5a. SI/2. KMX/1. ALU/5. DT/O. AMX/O,
BMX/6. SHF/O. J/(142e)

;i42e): VAK/1. IEK/1, PCK/1. SPO/22. FS/O. CID/1.
ADS/O. ALU/e. BMX/4. IBC/2. J/(ab)

Figure 17b - VAX microcode generated for Figure 17a

57

10E0

1400

1401

1402

1403

= 1100

=END
FBASE:

LV:

DISP:

Q_IB.BDEST, PCLPC+l.IB.TEST?
CALL, J/IB.TBM
CALL, J/IB.ERR
QJB.BDEST, 1B.TEST?, J/1400
CLR.IB.SPEC, D_Q
D3-0?, VA_R[R10]

DJ*[RO], J/FBASE
D[BYTE]_CACHE, J/LV
D[BYTE]_CACHE, J/DISP
D[BYTE]_CACKE, J/DISP

ID[SSP]J), PC_PC+1, CLR.IB.OPC, J/IRD
ALU_D.OXT[BYTE], DJ^LU.LEFT, QJD[SSP]
ALU_D, RC[TO]_ALU.LEFT
VA_LA+K[.l]
d[word]_cache, lc_rc[to]
va^alu. alu.q+lc, q_d
d[long]_cache
q_q.sxt[word]
r[r1]_q+d, dt/long
ALU_R[R10]+K[.3]
R[R10]_LA+K[.3], DT/LONG, PC_PC+1,
CLR.IB.OPC, J/IRD
ALUJ).OXT[BYTE], QJUAJ.LEFT,
LAB_R[R8]
VA_LA+Q
DfWORDj^ACKE, ALU_R[R10]+K[.l]
R[RlOl_LA+K[.l], DT/LONG
LAB_R[R8]
ALU_D.SXT[WORD]+LB,
PC&VAJ&U, FLUSH.1B, J/IB.FILL

Figure 18 - Hand-coded PX-assist

cvtbi (lc)+,rO
cvtvrl (lc)+,rl
addl2 _dispiay[rO],rl

Figure 19 - VAX assembly code to compute L-value

PX-assist

size

(bytes)

speed disp
L-val

YALLL

800

4.8

4.8

hand

300

2.4

2.5

assembler

7 (disp)
14 (L-val)

4.4

3.4

Figure 20 - Pascal-assist routine comparisons

58

A version of the Pascal interpreter actually employing the microcode

59

routines was timed on two benchmark Pascal programs: finding a solution to

the eight-queens problem, and an assignment statement nested in two for-

loops. Comparative times, and an indication of the number of times each

routine was called are shown in Figure 21.

3. Emulator

The final example is the emulator program of the tutorial in chapter

three. This takes forty-two lines of YALLL source and produces fifty-seven

VAX microinstructions (Figure 22). The same emulator requires seventy-four

hand-written microinstructions on the HPMXE. The number of microinstruc

tions executed to interpret each SM—1 instruction seems to be comparable

for the two machines; the extra length of the HP microprogram appears to

be due to the necessity of passing parameters in memory on this machine. It

should be mentioned that the HP microcode, though vertical and much

easier to read than VAX microassembler, is still considerably harder to read

and write than is YALLL.

Some crude measurements of emulated instruction times were taken,

and are shown in Figure 23. These timings were made by reading the system

clock, executing the emulator and reading the clock again. The emulated

program executed the instruction under test 36768 times in a loop. Because

the system clock only has a ten microsecond resolution, these figures are

not very accurate. Instruction counting gives a time estimate of 2.6

program

eight queens
for-loop

PX with

no microcode microcode assist

7.9

15.4

11.5

22.8

number of

case jumps L-values

717457

1516018

247678

506002

Figure 21 - Time in seconds for Pascal programs
with and without microcode assist

address microinstruction

(lOeO): SPO/43. QK/B. SI/2. ALU/f. AMX/O. SHF/1. J/(1416)

(1416): SPO/44. ALU/5. RMX/1. AMX/1. BMX/3. J/(1418)

(1418): VAK/1. ALU/5. RMX/1. AMX/1. BMX/3. J/(1419)

(1419): FS/O. CID/8. ADS/O. DT/1. J/(141a)

(141a): QK/8. ALU/f. RMX/O. DT/1. AMX/2. J/(141b)

(141b): SPO/52. ALU/f. RMX/1. DT/O, AMX/1. J/(141c)

(141c): SPO/42. QK/8. KMX/20. ALU/d, AMX/O, BMX/6, J/(141d)

(141d): SPO/30. ALU/f. RMX/1. AMX/1. J/(141e)

(141 e): EALU/3. SMX/O. E3MX/1. SCK/1. SPO/42. KMX/37.
ALU/f. AMX/O. SHF/3. DK/8. J/(1420)

(1420): DK/d, J/(1421)

(1421): BEN/19. J/(1400). 16-way branch

(1400): SPO/40, QK/8, ALU/a. AMX/O, J/(1424)

(1401): SPO/40. QK/8. SI/2. ALU/f. AMX/O, SHF/2, J/(1425)

(1402): CCK/1. SPO/40. ALU/f. AMX/O. J/(1426)

(1403): SPO/20. QK/8. ALU/e. BMX/4. J/(1427)

(1404): SPO/20. QK/8. SI/2. ALU/e. BMX/4. SHF/1. J/(1428)

(1405): J/(1410)

(1406): J/(1412)

(1407): J/(1414)

(1408): SPO/43. SI/2, KMX/1. ALU/5. AMX/O. BMX/6. J/(1422)

(1409): SPO/43. SI/2. KMX/1. ALU/5. AMX/O. BMX/6. J/(1422)

(140a): SPO/43. SI/2. KMX/1. ALU/5. AMX/O. BMX/8. J/(1422)

(140b): SPO/43. SI/2. KMX/1. ALU/5. AMX/O. BMX/6. J/(1422)

(140c): SPO/43. SI/2. KMX/1. ALU/5. AMX/O. BMX/6, J/(1422)

(140d)- SPO/43. SI/2. KMX/1. ALU/5. AMX/O. BMX/6. J/(1422)

60

(140e): SPO/43. SI/2. KMX/1. ALU/5. AMX/O. BMX/6. J/(1422)

(140f): SPO/43. SI/2. KMX/1. ALU/5. AMX/O. BMX/6. J/(1422)

(1422): PCK/4. SPO/53. SI/2. KMX/1. ALU/5. DT/O.
AMX/O. BMX/8. SHF/O. IBC/c. J/(62)

(1423): SPO/40. QK/B. ALU/a. AMX/O. J/(1424)

(1424): SPO/50. ALU/f. RMX/1. DT/O. AMX/1. J/(1417)

(1425): SPO/50. ALU/f. RMX/1. DT/O. AMX/1. J/(1417)

(1426): BEN/lb. J/(1417). 2-way branch

(1417): SPO/43. SI/2. KMX/1, ALU/5. AMX/O. BMX/6. J/(1434)

(141f): SPO/20. QK/8. ALU/e. BMX/4. J/(1427)

(1427): SPO/53. ALU/f. RMX/1. DT/O, AMX/1. J/(10eO)

(1428): SPO/30. ALU/f. RMX/1. AMX/1. J/(1429)

(1429): SPO/44. ALU/f. AMX/O. DK/8. J/(142a)

(142a): SPO/20. ALU/5. RMX/O. AMX/1. BMX/4. J/(142b)

(142b): VAK/1, ALU/5. RMX/O. AMX/1. BMX/4. J/(142c)

(142c): FS/O. CID/8. ADS/O. DT/1. J/(142d)

(142d): QK/8, ALU/f. RMX/O. DT/1. AMX/2. J/(142e)

(142e): SPO/50. ALU/f. RMX/1. DT/O. AMX/1. J/(1417)

(1410): SPO/20. QK/8. SI/2. SUB/1. ALU/e. BMX/4. J/(1435)

(1411): SPO/42. QK/8. ALU/f. AMX/O. J/(142f)

(142f): SPO/50. ALU/f. RMX/1. DT/O. AMX/1. J/(1417)

(1412): SPO/20. QK/8. SI/2. SUB/1. ALU/e. BMX/4. J/(1435)

(1413): SPO/42. QK/B. ALU/f. AMX/O. J/(1430)

(1430): SPO/40. QK/8. ALU/d. RMX/O. AMX/O. BMX/7. J/(1431)

(1431): SPO/50. ALU/f. RMX/1. DT/O. AMX/1. J/(1417)

(1414): SPO/20. QK/8. SI/2. SUB/1. ALU/e. BMX/4. J/(1435)

(1415): SPO/42. QK/8. ALU/f. AMX/O. J/(1432)

61

(1432): SPO/40. ALU/5, RMX/O. AMX/O. BMX/7, J/(1433)

(1433): SPO/50, ALU/5. RMX/O, DT/O. AMX/O. BMX/7. J/(1417)

(1434): SPO/53. SI/2. KMX/1. ALU/5. DT/O. AMX/O.
BMX/8. SHF/O. J/(10eO)

(1435): SPO/30. ALU/f. RMX/1. AMX/1. J/(1436)

(1438): SPO/44. ALU/f. AMX/O. DK/8. J/(1437)

(1437): SPO/20, ALU/5. RMX/O, AMX/1. BMX/4. J/(1438)

(1438): VAK/1. ALU/5. RMX/O. AMX/1. BMX/4. J/(1439)

(1439): FS/O. CID/8. ADS/O. DT/1. J/(143a)

(143a): QK/8, ALU/f. RMX/O. DT/1. AMX/2. J/(143b)

(143b): SPO/52. SUB/2, ALU/f. RMX/1. DT/O. AMX/1. J/(l)

Figure 22 - VAX microcode for emulator of Chapter three

Instruction time (usees)
complement 3.1
shift 3.1
load 4.6
store 3.7
add 4.6
and 4.6
jump 2.7

branch on neg
successful 3.1

unsuccessful 2.7

Figure 23 - VAX SM-1 instruction times

microseconds for the emulated jump instruction.

62

CHAPTER 5

CONCLUSIONS AND COMMENTS

This project has involved many areas of computing: architecture, imple

mentation, operating systems and compiler writing, microprogramming, and

of course, documentation. Several of these things seem peripheral to the

objective of microprogramming the VAX, but are necessary to realize it. This

chapter contains some conclusions drawn from this work, including com

ments on the VAX microarchitecture, the YALLL language and translator, the

translator writing process, and a list of things which need still to be done to

create a usable microprogramming environment on the VAX.

1. VAX —Architecture and Implementation

The architecture of the VAX is very well thought out; the variable-length

instructions and addressing modes are an evolutionary step upward from the

PDP-11 that preceded it, and the variety of instructions provided is unpre

cedented. But there are two problems with this machine which might have

been avoided. The first is complexity: some of the macro-instructions

require microprograms which are enormously complicated. This makes the

instruction set microprogram noticeably bigger, less understandable, and

much more susceptible to error. As an example, there is a bug in the index

instruction which causes the machine to hang: the routines supporting the

string and decimal instructions are huge, and are also known to contain

errors, though not so serious as the one in index. One way of dealing with

such a large microprogram would be to use a high-level language to make the

program more understandable. (Presumably, many engineering and

63

84

marketing considerations went into the choice of instructions, so that reduc

ing its size is not an alternative in the present design.)

The second problem area is the way in which user microcoding is

integrated into the architecture: the XFC instruction causes a trap (excep

tion), and after inspection of a word in the SCB, microprogram execution

may branch to user microcode. This accounts for the large (3.5 u-sec)

penalty incurred by entering user microcode. The XFC instruction is concep

tually not the only way to enter user microcode; any exception or interrupt

can enter it (see Appendix A, Figure 5). The problem here is that no matter

what causes the user's microcode routine to be executed, that routine can

be entered at only one point - location 10EO. If there is more than one way

to get there, the user's code will have to determine how it was entered. For

future VAXes, I would like to propose one implementation change and one

architectural change. First, that there be separate entry points to the user's

microcode for exceptions and for interrupts. The trap-handling microroutine

currently keeps a flag in the STATE register indicating interrupt or exception

when the branch to 10E0 is taken; this could easily be made a jump to 10DE

or 10DF, for instance, conditional on that bit. This would cost no execution

time, and only the extra one word of space. I further propose that the XFC

instruction be handled separately from the exception mechanism, and given

its own user microcode entry point, entered immediately upon recognition of

the op-code. In the (default) case where no user microcode is loaded, this

could then branch into the exception handling, and be treated as an illegal

instruction. This would cause its recognition as an illegal op-code to be

about 0.2 u-sec slower than other illegal instructions, but entry to user's

microprograms would be 3 microseconds faster than at present.

65

This machine is among the most complex of user-microprogrammable

computers, rivaling the QM-1, because of its great microinstruction width,

the special-case optimizations for various operations, and the complexity of

devices such as the accelerator, instruction buffer, translation buffer, and

cache. Actually, the latter two are extremely easy to use under most cir

cumstances, but one must always be aware of their presence. The instruc

tion buffer is more complicated to use, and although fetching byte operands

seems fairly straightforward, it has not yet been discovered if this device can

be employed by a user microprogram to execute more complex functions,

such as operand specifier decoding.

The central data paths are quite complex, and are very well suited to

executing VAX and PDP-11 instructions. This is one reason it is so hard to

write microcode which can out-perform a short sequence of native instruc

tions.

2. YALLL —Language and Implementation

The YALLL language has been implemented on two machines: the VAX

and the KP 300. One of its advantages is supposed to be the transportability

of YALLL microprograms. While it is true that YALLL programs written for

one machine can be compiled and run on the other, the sense of the program

might not so easily be transferred. Such things as a machine's parameter

passing conventions or addressing scheme can determine the environment in

which the microprogram runs, and what sorts of operations it needs to per

form to deal with the macroarchitecture. The choice of two such different

machines accentuated this problem, and it is felt that transporting a

microprogram between more similar computers (such as different models of

a VAX family) would yield much more satisfying results.

66

Counterbalancing this small shortcoming, YALLL has one great strength

- it makes microprogramming the VAX doable. YALLL is very much easier to

read and write than VAX microassembler, even with macros. Hand micropro

gramming may still be necessary for routines which must be small and fast,

or deal with special resources, but even these should be debugged using

YALLL. The microprogramming tools to be offered by DEC do not look that

appealing: a macro-assembler and a VAX-to-control store loader. The

macro-assembler will make programs less tedious to write, but one will still

have to understand the intricacies of the VAX data paths in great detail. And

the loader does not write a control store image on floppy disk, but writes

directly to control store. Thus the microprogrammer will not be able to use

the LSl-ll's microdebugger to interactively alter his microprogram. This

scheme does have the advantage that it is not necessary to halt the VAX to

load a microprogram, but prudence dictates that it be stopped anyway, at

least when a microprogram is in the debugging stage.

There are several problems with YALLL/VAX which I feel are more imple

mentation problems than language design problems. The first is that it does

not produce very efficient code. Hand coding a routine generaly results in a

program which is half as long and twice as fast. The second problem is the

binding of variables to registers. These bindings are taken quite literally by

the translator, so that a move from a variable bound to register rl will always

cause this register to be accessed, even if it was just loaded from the easier-

to-access Q register, which thus contains a copy of it. It is this problem

which has caused me to observe that the VAX is really a two-register machine

(the D and Q registers) with some fast local store (RAB and RC). A related

problem is the type mechanism, which is the occasional cause of extra

transfers, to sign- or zero-fill quantities. The current typing and conversion

67

system is not especially well thought out, and ought to be changed.

These are all problems which could easily have been dealt with had we

not been forced to spend so much time demystifying the microarchitecture.

Had we been handed a document like Appendix A six months ago, we would

have been able to take much more care in the construction of the code gen

eration routines. Given the circumstances, we are happy with the results.

3. Reflections on the Program Development Process

One of the most thought-provoking aspects of this project was the pro

ject itself, seen as an exercise. From this experience, I learned quite a few

things about the development of medium-sized software, and now know

several things not to repeat, but mainly a lot of programming techniques

that worked quite well.

The first lesson is that documenting a machine and writing a translator

for it are really two separate projects, and do not complement each other

too well. This documentation task was not one of the project's original objec

tives, but these objectives were formed before the VAX was available, and

before we could assess the lack of documentation supplied by the manufac

turer. As of this writing (July '79), the promised data path description has

yet to be seen. An allied problem is that documenting a heavily-used

machine is difficult and inconvenient. Because of the demands on the VAX's

time, I estimate that I have spent much fewer than forty hours of stand-alone

time investigating the microprogramming.

The writing of the translator, on the other hand, went very well, largely

due to the software tools available - the Unix editors, C language. Lex and

YACC. As Brooks points out [Brooks 75]

68

Productivity seems constant in terms of elementary statements, a conclu
sion that is reasonable in terms of the thought a statement requires and the
errors it may include.

He concludes that "The most important two tools for system programming

today . . . are (1) high-level language and (2) interactive programming."

Tools such as YACC and Lex increase productivity even more, since they

automate the writing of two not-very-interesting parts of a translator, the

scanner and parser. This makes it quite reasonable to change to language

well after the translator is begun.

A programming practice which was found to be extremely useful was to

include internal checks in many areas of the program. The symbol table and

lowest level code generation routine, for instance, check the validity of their

arguments and the consistency of the data structures before proceeding to

search through or modify those structures. The data structure representing

the generated code is particularly difficult to maintain, and often failed con

sistency checks, especially during the debugging of the second pass. I am

especially happy with these checking facilities, and with those to provide

dumps of the symbol and code table, as described in chapter three.

Nearly as important as these internal checks are external checks - the

dump programs which insure that the binary file produced by yc and merger

are of the correct form. Because of all this self-checking, the microcode

tested on the VAX has been surprisingly trouble-free. This is not to claim

that it is bug-free, but that each of these bugs seems always to be a single

field set to a wrong value, rather than mangled program logic.

4. Things Still to be Done

There are still several things to be done to make microprogramming the

VAX-11/780 an easier task. Some are listed here; the first two are real

69

necessities, the others are ranked in more-or-less descending priority. The

most pressing need is for more complete documentation', there are several

areas of the VAX microarchitecture which I was not able to investigate

sufficiently. For example, it is understood that when doing arithmetic

(carry-borrow) operations with certain sources, one should allow an extra

cycle before using the result. One DEC employee suggests that this is the

case for "slow" constants, from the constant ROM. Someone else says that

this is necessary when routing a general register contents through a latch

and through the ALU in the same instruction. The YALLL translator emits

conservative code to handle both cases, but this may be unnecessary. It is

not known if there are timing requirements for any other operations.

Perhaps DEC's data path description will clarify this whole area. A further

mystery is the use of the instruction buffer (IB) either to fetch multiple byte

operands from the instruction stream, or to decode operand specifiers.

A micro-engine simulator would greatly have eased the debugging of the

YALLL translator, and is still necessary to ease the debugging of user

microprograms. Although the console microcode debugger is an excellent

facility, it requires that the machine be used stand-alone. Furthermore, a

simulator could write trace information into a file for later analysis and

display, rather than forcing the user to single step the machine, then request

by name each register to be displayed.

If the YALLL/VAX translator is to be seriously used, it should be rewrit

ten to produce better code. Given the greater information now available on

the VAX, it should be reasonably easy to change yc to produce code within

25% of hand-written in both time and space. Simply keeping track of the

contents of the D and Q registers should make most of the difference. Since

70

the thirty-two-bit ALU seems to be the primary bottleneck in YALLL pro

grams, the user of this resource should also be improved. For example, the

operation "add Dreg,rO,16" is certainly a two-step operation. The code

currently generated for this statement forms the sum in the ALU during two

microinstructions, but only gates it into the D register during the second. A

better sequence would be to route the constant to BMX and to latch the con

tents of register rO into latch LA in one instruction, then form and gate the

sum in the next instruction. This still takes two instructions, but only uses

the ALU in the second one; the first might now more easily be combined with

its predecessor, even if that instruction used the ALU (but not a constant or

LA).

One objective of the YALLL programming language is to hide a machine's

peculiarities; for example, the way in which shifting is done. However, for

machine-specific programming tasks, such as instruction set implementa

tion, it would be desirable to use a high-level microprogramming language

which would allow the programmer to exploit a machine's peculiarities, simi

lar to PL/360 [Wirth 68]. For example, YALLL has six shifting operators:

aside from special cases, the VAX has one - a double shift with single-word

result. An operation such as "Dreg <- (A.B)shift(C)" could load A into regis

ter Q, B into D, C into SC, do the shift, and leave the result in the D register.

The YALLL programmer has no way to specify use of the EALU, or to hint at

possible parallelism to the compiler; both these facilities could lead to better

microprograms. Finally, to interact fully with the macroarchitecture, a

microprogrammer must be able to specify the length of a result to be loaded

into a general-purpose register. For the reasons previously outlined. YALLL

programs always load longword results into the registers; unfortunately, this

is not fully compatible with the VAX architecture.

71

Originally, YALLL was meant to be a low-level intermediate language, to

be used as the output of a higher-level language, such as Modula [Wirth 77].

Now that YALLL is implemented, Modula can be modified to make it a reason

able microprogramming language (eg: addition of memory as a pre-defined

object) and an M-code to YALLL translator can be written. Such a program

would have the additional advantage that it could easily be written to emit

code for any computer having a YALLL compiler.

Finally, a DEC-compatible macro-microassembler should be imple

mented under Unix, so that one could use the macro-facility used by the VAX

implementors. Perhaps the assembler-escape mechanism in YALLL/VAX

(which is currently very simple) could be rewritten to recognize their sym

bols and macros. This facility is not really necessary, but when micropro

gramming this machine, one needs all the help one can get.

72

for sequence oily

[Agrawala 76]

[Bondy 77]

[Brooks 75]

[Davidson 78]

[Husson 70]

[Johnson 76]

[Joy 77a]

[Joy 77b]

[Lesk 75

[Patterson 79]

BIBLIOGRAPHY

Agrawala, A.K., and Rauscher, T.G. Foundations of

Microprogramming Academic Press, New York, N.Y., 1976

Bondy, J.L., and Freeman, D.N. "Putting Supervisory

Routines into Hardware" Proceedings of the IFIP 1975

Brooks, F.P. The Mythical Man- Month Addison Wesley,

Reading, Mass., 1975

Davidson. S. and Shriver, B.D. "An Overview of Firmware

Engineering" Computer, May, 1978

Husson, S.S. Microprogramming: Principles and Prac

tice Prentice Hall, Englewood Cliffs, N.J. 1970

Johnson, S.C. "YACC - Yet Another Compiler-Compiler"

Bell Labs, Murray Hill, N.J. 1977

Joy, W.N., Graham, S.L. and Haley, C.B. "UNIX Pascal

User's Manual" Computer Science Division, Univ. of Calif.

Berkeley 1977

"Ex Reference Manual" Computer Science Division, Univ.

of Calif. Berkeley 1977

Lesk. M.E. "Lex - A Lexical Analyzer Generator" Bell

Labs, Murray Hill, N.J. 1975

Patterson, D.A., Lew. K. and Tuck, R.D. "Towards an

Efficient, Machine-Independent Language for Micropro

gramming" to appear in Proceedings of the 12th Annual

73

74

Microprogramming Workshop Hershey, Pa. 1979

[Stockenberg 76] Stockenberg, J. and van Dam, A. "Vertical Migration for

Performance Enhancement in Layered

Hardware/Firmware/Software Systems" Computer May

1978

[Strecker 78] Strecker, W.D. "VAX-11/780: A Virtual Address Exten

sion to the PDP-11 Family" in Computer Engineering: a

DEC View of Hardware Systems Design (C.G. Bell, J.C.

Mudge, and J.E. McNamaras, eds.) Digital Press. Bedford,

Mass. 1978

[Wilkes 51] Wilkes, M.V. "The Best Way to Design an Automatic

Machine" Proceedings Manchester Univ. Computer Inau-

gral Congress London, England 1951

[Wirth68] Wirth, N. "PL/360" JACM 15:1 January 1968

[Wrirth 77] Wirth, N. "Modula: a Language for Modular Multiprogram

ming" Software - Practice and Experience 7:1 January

1977

APPENDIX A

VAX ARCHITECTURE

1. OVERVIEW

In order to successfully microprogram any computer, one must under

stand the underlying design, especially when that design is as full of peculiar

ities and optimizations as is the micro-architecture to the VAX-11/780. In

this paper, I shall discuss that machine's architecture, and how it relates to

the writer of"user" micro-code - that not supporting the machine's inherent

instruction set.

Before one can make sense out of the low-level design, one must be fam

iliar with the high-level architecture it is designed to support. For that rea

son, I will first examine some of the features of the VAX's macro-instruction

set which are reflected in the design of the micro-machine. In particular, I

shall discuss the instruction format, addressing modes, data types, and sup

port for memory management and the operating system. The reader familiar

with these features might thus skim the first section.

1.1. MACRO-LEVEL ARCHITECTURE

1.14. PMS Structure

The PMS structure of the VAX-11 differs substantially from that of any of

the PDP-11 series of computers; all use a bus (or busses) shared by Pc, Mp,

Ms, and T's, but there the similarity ends. The VAX uses a hierarchy of

busses, of which the primary one is the synchronous backplane

75

76

interconnection (SBI). This bus has a thirty-two bit wide data and address

path and a 200 nano-second cycle. The subsidiary Unibus is the same as that

used by PDP-11 computers, so Unibus peripherals may be connected to it.

The Unibus has eighteen bit addresses and a sixteen bit data path; the

Massbus has a thirty-two bit data path. Both K(Unibus) and K(Massbus) are

capable of mapping twenty-eight bit SBI addresses into bus addresses, using

simple memory map mechanisms contained in the controllers. 1/0 devices

are constrained to the top half of the SBI's giga-byte address space, and all

Mp addresses are in the lower 512 mega-bytes. The PMS structure is illus

trated by Figure 1.

1.1.2. the CPU

1.1.2.1. registers, instruction format

The VAX has sixteen, thirty-two-bit "general" registers, and many

special-purpose control registers. The general register layout is similar to

that of the PDP-11, in that one of the registers (#15) is really the program

counter, PC, and another (#14) is the stack pointer, SP. Some of the other

registers are appropriated by the string handling and subroutine call

instructions.

The instruction format is variable - a one-byte opcode followed by up to

six operands or addresses (each of which is known as an operand specifier).

Memory is byte addressable. The addressing scheme is a logical extension to

that used by the PDP-11; operand addresses always consist of at least one

byte, of which four bits determine the addressing mode, and four bits desig

nate one of the general registers, which is to be used in address formation.

The primary addressing extensions concern displacement addressing, a new

77

?c
Cw-u) Scow

Tw>Niwx

<*6/
me4uo*N KuMlSUS

— KWOlCl

T

Figure 1 -VAX-11/780 PMS diagram

Krvs*5S6U5

J.

Ms

immediate mode, and a new indexing scheme. The addressing modes are

summarized in Figure 2.

1.1.2.2. addressing modes

In register mode, the required datum resides in the general register

designated in the specifier byte, or that register and the next, for operands

1 DEC assembler notation. Unix assembler differs.

NAME NOTATION1

literal S~#literal
indexed i[Rx]
register Rn

register deferred (Rn)
autodecrement -(Rn)
autoincrement (Rn)+
autoincrement deferred @(Rn)+
byte displacement B~d(Rn)
byte displacement deferred @B~d(Rn)
word displacement W-d(Rn)
word displacement deferred OT~d(Rn)
longword displacement W(Rn)
longword displacement deferred @W(Rn)
immediate I~#const
absolute @#const
byte relative B~d
byte relative deferred @B~d

word relative W~d

word relative deferred m~a
longword relative L~d
longword relative deferred @L~d

Figure 2 •• Address modes

78

FORMAT

iQPllitl
lres_t of addrjl4 n
l&tnl
fi.n

Lt^dJ
LB»n|
Lflxnl
1 ri IAr n
I d iB.n

Ic.ni

JLjlI
E-nJ

L lF,n
const I81F

£iF_.const.

.d IA.F
BlFJ

£l£
DiFl

jd IEiFI
FjT]

of more than thirty-two bits. When less than four bytes is required or writ

ten, the low-order part of the designated register is used. Thus, a byte move

into a register is similar to IBM-360's Insert Character operation, though sign

and zero-extending instructions are also provided.

Aregister deferred mode address is one in which the designated register

contains the address of (pointer to) the desired operand. Auto- increment

mode is similar, but in this case, after the register's contents have been used

to find the required operand, they are augmented by the length of that

operand, in bytes. Thus the "C" language idiom "*p++" can be directly

implemented, for register variable p, with this addressing mode. Using

auto- increment deferred mode, the register contents address not the

79

datum, but another pointer, addressing the datum. The register is incre

mented by four (the size of the addresses address) after use.

Auto- decrement mode is similar to auto-increment, but here, the regis

ter is decremented by the length of the operand before it is used as an

address. This symmetry provides the stack operations push and pop. There

is no auto-decrement deferred.

Immediate mode, coded as auto-increment specifying the PC as register,

provides for the required datum, be it byte, word, longword, or quadword, to

follow the specifier byte directly in the instruction stream. Needless to say,

such an operand cannot be used as an operator's destination. The new

literal mode is a further method for specifying short instruction-stream

data. Normally, an instruction such as MOVL #const,dest will take the form:2

dest specifier J const | 8F [DO

^lopcJe

However, if the constant is small (zero through sixty-three, inclusive, or cer

tain select floating-point quantities), the four bytes of constant can be saved,

and the datum placed in the mode specifying byte.

Absolute mode (autoincrement deferred specifying PC) provides for the

four-byte absolute address of the operand to follow the address specifier

directly in the instruction stream.

Most machines which can use base + displacement addressing allow a

fixed number of bits for the displacement (e.g. sixteen bits on the PDP-11,

twelve bits for the IBM-360). This is very often excessive, as when addressing

2By VAX convention, memory-byte addresses Increase from right to left.

80

small data structures via a base pointer in a register. Alternatively, a dis

placement smaller than the logical address space may be insufficient;

addressing large arrays on the IBM-360 may require multiple base registers.

The VAX architects attacked this problem by allowing three displacement

field sizes: byte, word and longword, for three displacement addressing

modes. Another set of modes, the displacement deferred modes, use the

base + displacement address to point to a pointer, of four bytes. By specify

ing the PC as "base" register, the relative and relative deferred modes are

obtained, the inference being that the datum (or a pointer to it) resides at

an address formed from the address of the specifier byte, and the byte,

word, or longword displacement which follows.

The most interesting mode is the new index addressing mode. Actually,

this must be combined with another mode, such as base + displacement; or

absolute. Unlike the IBM-360, in which the address is the sum of the base

register, displacement field, and the index register, VAX indexed addresses

are formed as a starting address (which may be base register plus displace

ment field) added to the product of the index with the length of the datum

being addressed, be it one, two, four, or eight bytes. So a loop index can be

used directly for indexing into a vector.

1.1.2.3. data types

A striking feature of the VAX instruction set is the plethora of data types

supported; the two's complement integer types are byte, word (two bytes),

longword (four bytes), and quadword (eight bytes). Floating point numbers

are represented by a single precision type (sign; eight bit exponent, excess

128; twenty-three bit fraction), and by a double precision type (sign; eight bit

81

exponent; fifty-five bit fraction). Packed decimal numbers of up to thirty-one

digits in length are also supported. A full range of arithmetic instructions is

included for all of these types, excepting quadword:

move 1 _ fbyte
compare! "1 word
add 1 I Jlongword
subtract! f 2-operandl j Afloating
multiply j \ 3-operand) J Idouble floating
divide J (.packed decimal'3

In addition, instructions exist to convert any of the floating and binary types

to any other (excepting quadword). Decimal types can only be converted to

and from longword integers, and various character formats. Quadword

integers are not fully supported; in fact, they might not be considered a

separate data type on this machine, but a case of multiple-precision

integers. Multiple-precision arithmetic is aided by longword add and sub

tract instructions which use the carry generated by a previous operation.

The decimal instructions appear to be DEC's gesture towards the busi

ness market, as do the suspiciously IBM-like decimal-character conversion

instructions. Two instructions convert from packed decimal to "trailing

numeric" character strings and back, and two convert between packed

decimal and "leading separate numeric" strings.'' Finally, there is the EDIT

instruction. This is very much like the IBM-380's instruction for converting

packed decimal numbers to punctuated character strings, but has several

more pattern characters. Furthermore, it is a triple address instruction -

No 2-operand decimal multiplication or division. Binary types are further supported by
operations not shown here.

' Packed decimal strings contain two BCD digits per byte, and the low-order four bits of the
low-order (highest addressed) byte contain the sign. Trailing numeric numbers use the ASCII
representations of each digit excepting the low-order digit, In which the sign Is also encoded. In
leading separate numeric format, a separate byte containing a representation of the dim
preceds the ASCII digit bytes.

82

the edit pattern is not overwritten by the edited string. Conspicuous in their

absence are any instructions to convert between character strings and

binary integers or floating point numbers.

Although character strings and bit fields within a word might not be

classed as "data types", the VAX does provide for some manipulation of

them. Character strings may be moved, compared with one another,

translated, scanned or spanned (using a single character pattern or table),

and searched for substrings. Bit fields can be inserted or extracted from

memory, or compared with one another.

1.1.2.4. memory management

The VAX logical address space is divided into system space and user

space; user space is in turn divided into two regions (which DEC refrains from

calling segments). These three regions (system, PO, PI, which grows back

wards to accommodate the user's stack) are further divided into 512-byte

pages. Because the system and the user co-exist in the same addressing

space, moving data between them is simplified. For each active page in the

logical space, there is a longword page table entry (PTE). If a single page

table were used to map both user and system regions, it would have to be

over 4k bytes long, just to attain the lowest system address. To yield the

page table more compact, three tables are actually used. For each of the

regions PO, PI, and system, there is a page table origin register, and an asso

ciated table length register. The system table is addressed in absolute

memory, and the user tables are in system virtual memory. To speed

memory references by the CPU, a cache and a translation buffer (TB) are

used.

ft

System5j/s/

elresem

? qrouiS

HOoO ooootfit

I

arom ,

gooo oooolh

Jforu)ciLrci

Cooo oooo[la

Qt)Ug/ca/

83

r

| Memory Coahotler2.

f
2ooo 0000,

'6

}KwiAu ^boiler Regtfex*
[} {*iwitK CoA/Mlw Regtilers

Whittled

Figure 3 - Address Space

84

PTE
Si 3<? 2f2£ 1H 23 7L c

ilnwMfn) ptj^t
}

IvlPROTlMlf
'

V valid 0 not in MP

1 Mp resident
M modified

OWN software use

PFN page frame number upper 21 bits of physical address. If V=l

PROT - protection
.

K E S U
0 —

-
- - no access

1 X X X X reserved
2 rw • . „

3 r - . .

4 rw rw rw rw all access
5 rw rw - .

6 rw r - .

7 r r . .

8 rw rw rw .

9 rw rw r _

10 rw r r m

11 r r r -

12 rw rw rw r
13 rw rw r r

14 rw r r r
15 r r r r

K - Kernel access - no access

E - Executive access rread
S - Supervisor access rw read/write

U - User access x unpredictable

Figure 4a - Page Table Entry

56^-

P06R

PWStML

SLR

tshc

SYST91K

POLR

85

SYSTEM PaC-,9 TfiGU

PO Pm& T*uz

?m\ !

(fl-?m)
P7I- 6v oM</*u VFFfta

Figure 4b - Page Tables

1.1.2.5. interrupts, other operating systems considerations

The VAX. as befitting a computer designed in this age of hierarchical

software systems, has four execution modes of increasing privilege: user,

supervisor, executive, and kernel (of which UNDC uses only user and kernel).

Each mode has its own stack pointer; USP, SSP, ESP, KSP. Additionally,

there is an "interrupt stack pointer" (ISP) for use in kernel mode. The pro

cessor exchanges stack pointers whenever the mode changes. Thus, for

example, a supervisor state program does not have to be concerned about

86

using a stack which the user program may have caused to overflow; one

should never trust code of lower privilege than oneself. The stack pointers,

excepting ISP, are considered to be per-process registers, and are swapped

during process switching.

When a program interrupt or exception is taken, the processor handles

much of the state saving and switching. First, a longword is taken from the

system control block, whose physical base address is kept in register SCBB.

The word taken from this block depends on the cause of the interruption (see

Figure 5). This word is interpreted thus: bits <1:0> determine the action to

be taken; bits <31:2>, catenated with "00" on the right, may be used as an

interrupt address. If the action code is "10", control is given to a user-

written (i.e. not DEC-supplied) micro-routine at location lOEO(hex) in control

store. Otherwise, KSP (on code "DO") or ISP (on "01") is selected as the new

stack pointer, interrupt information is pushed on the stack (including the

PSL, PC, and, in some cases, an exception code), and kernel mode instruc

tion execution resumes at the interrupt address. If the action code is "11",

the information is pushed on the kernel stack, and the processor halts.

All the per-processor registers (including the general and memory map

registers) can be saved or restored in one instruction execution, so context

switching is potentially very fast. The registers are saved or restored from a

"process control block" (as shown in Figure 6) whose physical address is

contained in register PCBB.

SYSTEM CONTROL BLOCK
Offset Interruption or Exception

0 unused
4 machine check
8 kernel stack not valid
C power fail
10 reserved or privileged instruction
14 XFC

IB reserved or illegal operand
1C reserved or illegal address mode
20 access violation
24 translation not valid (page fault)
28 trace trap
2C breakpoint trap
30 compatibility mode trap
34 arithmetic trap
38 unused
3C unused
40 change mode to kernel
44 change mode to executive
48 change mode to supervisor
4C change mode to user

50 - 80 unused
84 software level 1
88 software level 2

8C - BC software levels 3 - F
CO interval timer

C4 - F4 unused
F8 console terminal receive
FC console terminal transmit
100 device level 14, device 0

IFF device level 17, device 15

SCB ENTRY x o
I—Virtual ariHrpgc Inp I

op: 0 - use KSP, unless already on ISP
1 - use ISP, on exception IPL raised to IF
2 - micro-branch to 10E0 in WCS
3 - error

Figure 5 - System Control Block

87

PROCESS CONTROL BLOCK
Offset Register

0 KSP
4 ESP
8 SSP
C USP

10 rO

14 rl

18 r2

1C r3

20 r4

24 r5

28 r6

2C r7

30 r8

34 r9

38 rlO

3C rll
40 rl2 (ap)
44 rl3 (fp)
48 rl5 (pc)
4C PSL

50 POBR
54 ASTLVL <26:24>. POLR <
58 P1BR

5C PME<31>,P1LR<21:0>

PSL

31 3C Xf 2b IS 2<*23 XX & fa ,7, 6 , 5" *J .2,/C,
ln\rlTPinlFPT)nslnvnlPVTnnnPT. I n InvlFunvlTlNlzlvlcl

CM - compatibility mode
TP - trace pending
FPD - first part done
IS - interrupt stack
CMD - current mode (O-kernal; l-exec: 2-super; 3-user)
PMD - previous mode
IPL - interrupt priority level
DV - decimal overflow trap enable
FU - floating underflow trap enable
IV - integer overflow trap enable
T - trace trap enable
N - negative condition code
Z - zero condition code
V - overflow condition code
C - carry condition code

Figure 6 - PROCESS CONTROL BLOCK

88

89

1.2. THE CPU

The VAX CPU cannot be viewed as a single machine, but rather as a col

lection of tightly-coupled units: the instruction buffer, or 1-box; the memory

management hardware, including the cache and translation mechanisms; the

optional floating-point accelerator; and the central, micro-programmed part

of the CPU. which I call the Central Data Paths.

1.2.1. the Instruction Buffer

The instruction buffer has the task of fetching the instruction stream

from memory, and decoding the instruction op-code and data specifiers

(addressing modes). Eight bytes of instruction stream can be accommo

dated at one time, and if this space is half occupied, or less, the unit will
v

attempt to pre-fetch the next longword of program. A separate address

register (IBA) is used for this purpose, and is updated by the I-box. The pre

fetching action can be inhibited by the central microprogram as, for exam

ple, when a branch or context switch is about to take place. The buffer can

also be cleared, IBA reloaded, and fetching reinitiated in such a case. The

possibility of a program's modifying an already-fetched instruction byte dic

tates the operating system's enforcement of pure procedures.

When interpreting a macro-instruction, the microprogram must fetch

and store instruction operands, using the VAX's elaborate addressing

scheme. Although total hardware support for this function is not provided,

the I-box does give considerable assistance. At least once during the decod

ing of each macro-instruction, and usually once per operand, the microcode

executes a "decision point" (or SPEC) branch, a table jump in which the

lowest eight address bits are supplied by the instruction decode logic. The

A

Li

BYTE
rotator

£«*6W0Rd 0*7* fboh MMeRY
V

VVVVVVV

apii) w)

StHFTSR W£CJf/M(SM

4

Each instruction buffer byte has e validity bit
indication whether it contains good data. As
opcodes and specifiers are evaluated, bytes
are shifted towards byte 0. Memory data is
rotated according to the two low order bits of
register IBA, and loaded according to the
validity bits.

FISUEE 7 - the Instruction Buffer

INSTRUCT/on/

I SUFFfa

;i bus
7)

V v'

/A/STRUCT/CA/
DHOPZ
LOGiiC

%

fv MtttZostquzuct,

91

microcode thus executed can then fetch or store the operand, interpret an

operand address, cause a reserved address mode fault (e.g., -(PC) mode), or

execute the instruction, as in the* case of instructions with no explicit

operands (like "rei"), or certain operations with some or all operands in

registers, (like Maddl2 rl,r2"). Branch-on-condition-code instructions are

also handled in this manner, as the condition codes and the branch condi

tions can be compared by the hardware at the first decision point. Athree-

bit counter called the execution point counter keeps track of the number of

decision point branches taken thus far in the interpretation of the current

instruction, and so contains the index of the operand being decoded at any
time.

Amajor constituant of the instruction decode logic is a ROM which is

addressed two-dimensionaily; by opcode, and by operand number, as sup

plied by the execution point counter. For each operand of every operator,

this ROM contains a twelve-bit control word, containing information about the

expected operand. This information includes operand size (byte, word, long-

word, quadword), type (integer; floating; memory address for string and

decimal instructions; memory address or register, for bit field instructions),

access necessary (branch displacement, read, write, modify), and four bits of

(micro-) address information.

1.2.2. Memory Management Hardware

In a paged environment, every successful memory reference can poten

tially cause two accesses - one to read the page table, and one to do the

prescribed operation. (Since the user page tables are in virtual memory,

too, VAX user overhead could be worse.) To speed memory mapping, transla

tion table entries are cached in a translation buffer (TB). The translation

92

associative with two sets, and holds 128 entries of twenty-one bits plus three

bits of parity. The sets are directly addressed by virtual address bits 31 and

<13:9>, and deliver physical address bits <29:9> (this allows mapping of I/O

device registers, too). Since bit 31 of a virtual address is used to look up a

set of entries, the systems is not competing with the user for TB space. Thus

if control is taken from the user by the system program (as for the servicing

of an interrupt) and then returned, the user's TB entries will still be intact,

and he will not have the overhead of building them back up. (Note, though,

that the memory cache does not work this way - allowing the user all the

cache entries, and for him to loose many of them during interrupt servicing.)

Whenever a CPU data reference causes a TB miss, the microprogram is inter

rupted, and a micro-routine entered to fetch the missing page table entry

into the buffer. This can require multiple fetches, since the user map is in

virtual space, too. If the PTE is invalid, of course, the page is missing, and a

macro-program interrupt must be taken. The translation mechanism is con

trolled by a bit in control register MAPEN (ID bus register TBERO). When it is

disabled (bit is zero) the low-order bits of longword addresses are used as SBI

(physical) addresses.

Another method used to speed memory references is to keep recently

used, and what one hopes are soon-to-be used, program and data bytes in a

high-speed cache. This is also set associative with two sets, contains long-

word entries, and fetches two longwords at a time from memory. It contains

8k bytes, the two-way sets being directly addressed by bits <11:2> of the

physical address. The microprogram assumes the cache always contains the

desired data. When there is a cache miss on a data reference, the micropro

gram is stalled (forced to execute no-ops) until the reference can be

93

the CPU, main memory is changed correspondingly. This is kept from delay

ing the processor by a write buffer. If a cached entry in main memory is

modified by I/O activity, the corresponding cache entry is invalidated; refer

ences to it by the CPU will cause an actual memory access.

An addressing constraint found on IBM-360 computers was that data

must fall on "natural" boundaries (halfwords on even addresses, words on

multiples of four, etc.). This causes problems when, for example, subrou,

tines are passed arguments which may be part of packed (and thus

unaligned) data structures. This restriction was removed in the System/370
models, though one is warned that using unaligned data slows execution. A

similar progression is made between the PDP-11 and VAX-11. Any data can

occur on any address (almost), but, when a word or longword (or either half

of a quadword) crosses a longword boundary, a micro-routine is invoked to do
extra references.

1.2.3. Central Data Paths

The heart of the CPU is the thirty-two bit ALU and its associated regis
ters. Asimplified data path diagram is given in Figure 8, and a more com

plete diagram in Figure 9. The general registers (rO - rl4, but not PC) are
kept in a duplicate pair or register files (RAB). This duplication provides for
the contents of two different registers to be used at once. One set of regis
ters' output passes through latch LA to the A(right) side of the ALU; the

other passes through latch LB to its B(left) side. Afile of temporaries (tO -
t7, and others) is also available on the ALU's left, after passing through latch
LC. Aset of sixty-four, sixteen-bit constants is also available on the ALU's
left. Two very important registers, Dand Qcan be gated to either side of the

94

ALU - they have several special properties, especially in regards to shifting

(to be discussed). The Dregister acts as the memory data register - all data

routed to or from memory must pass through it. The "internal data" or ID

bus takes its.data from D and delivers to Q. This bus connects to several con

trol registers (such as the alternate stack pointers, SCBB, page table origin

and length registers), as well as the 1-box - immediate and literal data is

received by this path, as are branch displacements. Such data from the I-

box come sign extended.

For testing the value of single bits, or constructing multi-bit masks for

field insertion and extraction, a mask generator is available on the left ALU

input. This circuit will yield l's in all positions save one, where it will give a

zero. That position is the one selected by the contents of the SC register (bit

zero on the right). For example, to generate ones in word field <m:n>, and

zeros elsewhere, takes five steps:

- load SC with m+1

- using the ALU operation A+B+l, and an A input of zero, store
(mask+1) in a temporary, tO:

m

mask: 1 . .. 11011. ..1
+ 1

tO: 1 ... 11 100 ... 0
- load SC with n

- as outlined above, store (mask+1) in the Q register:
n

Q: 1. .. 11110. .0
- perform the operation "Q ANDN0T tO". The result is:

m n

00 ... 01 1 1 ... 10 ... 0

There are at least three ways in which shifting can be done in the cen

tral data paths. Two of these are for very specialized applications, the third

is a general rotate unit. Between the ALU output and the D, Q, and file regis

ters is the SHF box. Data passing through this can be shifted one or two

>j

9$

Figure 8 - Simplified
CPU Data Path

o
'*

*
i

*
n

&
0

0
a

i
H

5
0

)
3

(0

^
d

v
o 1

*
a

*
e
^
»

c
ti

,

A
N

O
'O

O
M

o
e

B
I
T

O
N

97

places right, and one, two, or three places left, using various quantities as

the shifted-in bits. The right-by-two shift is used in multiplication, where the

product is formed, two bits at a time, in the Q and D registers. The left shift

amount can be made to depend on the size of the operand currently under

. evaluation: zero for byte, one for word, two for longword, or three for quad-

word. In this way, the index operand of an indexed address specifier may be

correctly scaled. In this case, zeros are always shifted in. The contents of

the Dor Qregisters may also be shifted, left or right, one or two bits. Again,

a double right shift is used in multiplication.

Finally, there is the full rotation unit. This takes the sixty-four bits from

the Qand Dregisters (Q on the left), rotates by the amount specified by the

contents of SC (or another source), and deposits thirty-two bits of the result

back in D. A positive count denotes left rotation a negative count - right

rotation.

The memory address register is called VA, for "virtual address". It and

IBA can be loaded from the ALU output; which of them is used as a memory

reference address depends on the destination of the data - VA is used for

data fetches (via register D) and IBA for program stream fetches (to the I-

box). Either of these registers may be loaded into the PC (which appears to

the macro-programmer as register rl5). The latter may also be incremented

by one, two, four or n (a quantity determined by the instruction decode

logic), using a dedicated adder - and avoiding use of the main ALU. Note that

the VA and IBA registers cannot be gated directly through the ALU, but must

pass through PC. Thus, whenever a microprogram interrupt is caused by a

TB miss, and we desire to know the requested address causing the interrupt,

we must save the PC (in an RC register), read VA through PC, then restore PC

98

through VA or IBA. Note also that PC cannot be loaded directly from ALU

fan-out, but must pass through VA or IA. This presents less of a hardship,

since loading PC usually indicates a program jump, and IBA must in that case

be reloaded anyway.

In order to speed the handling of floating point quantities in machines

without the optional floating point accelerator, an auxiliary, ten-bit ALU is

provided. The major component in its data paths is the SC register, which is

also for shifting and mask operations (as we have seen). Other registers

associated with it are FE and STATE; constants can also be used. The STATE

register (of eight bits) is often used to keep state information during the

interpretation of complex instruction. For example, the subscript range

check flag is kept here during the index instruction, since the tests are done

early on, but no action should be taken until after the final resuLt is stored.

The decimal instructions also keep flags in this register. On the output of the

exponent ALU (EALU) is a 256x8-bit ROM for looking up the negative absolute

value of quantities. This is handy when it is necessary to de-normalize the

smaller of two floating-point numbers by the difference of the exponents, for

addition.

1.2.4. the Accelerator

The floating point accelerator is an optional piece of hardware designed

to speed VAX floating point calculations. The accelerator is not merely a bus

device, but one whose tentacles reach to may parts of the CPU. It recognizes

pertinent opcodes in IB byte zero, and can affect the destination address of

decision point (specifier decode) branches. It receives data by way of the ID

bus, and returns results via a bus leading into the Q and D registers. It keeps

its own copies of the general registers, and can set the condition code bits.

The sequence of events for a dyadic operation would go like this:

- first operand fetched into D register.
- D register gated to ID bus - accelerator signaled to receive data.
Second operand fetched into D register.
- D register gated to ID bus - accelerator signaled to receive data.
- Microcode loops until accelerator signals result ready.
- Result gated into D or Q register - microcode acknowledges receipt
of data.

- Accelerator condition code used to set PSL condition code bits, and
operation result stored. Fault taken if V-bit (overflow) set.

99

1.2.5. Control Store and the Microsequencer

This massive mound of machinery, the CPU, is not controlled by random

logic, but by a very large (about 57100 byte) micro-program. Control words

are 96 bits wide, and divided into thirty fields (see Figure 10). The first 4096

words of control store are of ROM (and are known as PCS), the next 1024 are

writeable (WCS) and used by the instruction set(s), by micro-ECO's, and by

diagnostic routines. A further 1024 words of WCS are optional, and may be

programmed by the user. Because of the great control word width, consider

able parallelism is possible, but not often achieved, as most computations

tend to be ALU and register bound. Thirteen bits of each microinstruction

are used to form the address of the successor instruction. When straight-line

microcode is being executed, this address is used directly. But, when any

conditional branches are taken (governed by the BEN micro-word field),

other information is also used. When BEN is non-zero, it selects one of

twenty-six groups of three, four, or five condition bits. For example, group

*'1AM is the PSL condition code bits: N, Z, V, & C. These conditions, as they

are queried at the beginning of a cycle, are ORed with the low-order bits of

the address (the micro-word's J or JMP field) to form the address of the suc

cessor microword. As a further example, branch function "C" is:

EALU

i5 13 12.

IEK MSC
31 20 2$

A

t D
fSlMCT/OD |F51 • .SPn

63
KMX

R
M

JMP
J

V F c .

K| KlK 1 CCK lEBMXl .SMY 1-
Z6Z5 2/ 23 2Z zo[? I8T7 16

I PCK I
35" 37 3Z

Sl/ACn 1 QK 1 S6N
>~»~» —. -^- . * ———__.

58 57 5$ 5H SI SO ¥8

I DT IXI REN J
7? 78 17 16

ACF ALU \SUR\
66 6S Si

IBC
<?5 ?*.?/

DK

71 7/ 70 69

I SHF 1 BNX lAMX 1
88 87 Si- SY 8181 so

• iaure/0-VAX micro instruction rcrmzt

101

SC.ne.O D<01> D<00>

That is, the condition (SCf0), and the two low-order bits of the Dregister. If
all these conditions are tested, yielding an eight-way branch, the designated
successor address of the testing instruction must end in binary "000". If, on

the other hand, one only wants to do afour-way branch not involving the test
of the SC register, the successor address should end in "100", effectivly
masking out the SC condition. The other addresses involved would end with
"101", "110", and "111".

If the SUB field is one, a micro-subroutine call is specified, and the
address of the current microword is pushed onto a (sixteen deep) stack
before the branch is taken. If the SUB field is atwo. an address is popped off
this stack, and is ORed with the instruction's JMP field, as well as any condi
tions specified, to form the next word address. Note that if aword specifies a
return, a zero address field, and no conditions, the returned-to address *
exactly the one from which the call was made, and so the subroutine is
recalled! ASUB field of value three denotes adecision point branch, and the
lower eight bits of address are taken from the instruction decode logic.

The micro-code sequencer can be affected by several other machine
conditions, such as a translation buffer miss.

102

2. MICROPROGRAMMING THE VAX

In the previous section, we saw some of the macro-architecture features

of the VAX, and some of the micro-architecture supporting them. Here, we

will investigate the micro-architecture on a much more detailed basis, with

an emphasis on user microprogramming. Fields and functions not used or

usable to the writer of user micro-code will be treated sketchily. Program

ming examples will mostly use the notation of DEC's assembler - that is,

"FlELDNAME/value", where "value" is either a hexadecimal number or a

symbolic constant. Field-value assignments separated by commas co-exist in

the same micro-word. This assembler also employs a suggestive macro-

notation, which I will not use.

2.1. ARITHMETIC SECTION

The Central Data Paths' Arithmetic Section (DEC's name) consists of the

thirty-two-bit ALU, its input multiplexors, register files and latches, the con

stant and mask generation mechanisms, and some miscellany.

2.1.1. ALU functions and condition codes

The VAX's heart, the thirty-two-bit ALU, is built of 74S1B1 (ALU) and

74S182 (look-ahead carry generator) chips. Its function is controlled by the

four-bit "ALU" field of the microword. This field is not used directly as the

chip's function selector, but is mapped into a subset, controlling other func

tions as well. The function codes are shown in Figure 11.

The RLOG stack is used to record changes made to the general registers

in the course of operand evaluation. For example, the macro-instruction

ADDL3 -(sp), -(sp), x requires that the stack pointer (rl4) be twice decre

mented by four in order to fetch the operands of the addition, whose result is

VALUE SYMBOL FUNCTION

0 A-B subtract
i A-fc.RLOG subtract, record on RLOG
2 A-B-l subtract, less one
3 MST.DEP instruction dependent
4 A+B+l add, plus one
5 A+B add
6 A+B.RLOG add, record on RLOG
7 ORNOT a v b

B XOR a® b
9 ANDNOT aAb
A NOTA a

B- A+B+PSL.C add with carry
C OR logical sum
D AND logical product
E B pass data from B-mux
F A pass data from A-mux (default)

Figure 11 - ALU functions

103

then stored at location "x". If "x" is in an absent page, the instruction is

interrupted, then re-executed after the absent page is fetched into primary

memory. In order that the correct operands be re-fetched, any register

modifications must be undone. Towards this end, the 16x9-bit RLOG stack

can be used to record the lower four bits of the KMX field, the target register,

and whether and add or subtract was done. An associated register, PCSV,

saves the PC's low-order eight bits at each macro-instruction's beginning, so

the PC may be restored in the case of an interrupt, and the operation

correctly restarted.

When an "instruction dependent" operation is specified, a ROM in the

instruction decode logic provides the ALU function select bits.

There are two sets of condition codes which may be set depending on

the ALU's output. The PSL condition codes are accessible to the macro-

program, whereas the micro-branch condition code (UBCC) is used for local

104

decision-making in the interpretation of an instruction. These codes are

governed by the value of micro-word field CCK, as shown in Figure 12. The

options available for condition-code setting seem peculiar for the garden-

variety arithmetic operation, so I assume most of these are covered by

"instruction dependent". The PSL V bit signifies an arithmetic overflow, and

C a carry. N is set when a result is negative, and Z when it is zero. The bits

tested to determine these conditions depend on the data type being

operated on. (For example, the sign of a byte operand is bit seven.) The DT

control-word field determines the operand length - at least for integers.

Values are shown in Figure 13. Note that the PSL condition code bits may

also be set from those of the floating-point accelerator after a floating-point

VALUE SYMBOL FUNCTION

0 NOP do nothing (default)
1 LOAD.UBCC load UBCC from ALU and EALU conditions
2 SET.V force PSL V bit

3 TST.Z clear PSL Z if ALU ? 0
4 ROR set PSL N & Z from ALU, C from AMX<0>
5 N+Z_ALU set PSL N k Z from ALU
6 CJMXO set PSL C from AMX<0>
7 INST.DEP instruction dependent

Figure 12 - CCK

VALUE SYMBOL FUNCTION

LONG 32-bit longword
WORD 16-bit word

BYTE B-bit byte
INST.DEP instruction dependent

(any of above, or quadword)

Figure 13-DT

105

operation, by setting field MSC/6.

2.1.2. ALU inputs

The input to the ALU is chosen by two multiplexors: AMX and BMX. AMX,

which supplies the ALU's Ainput, can select from two different sources; BMX

gives eight choices for the B source.

2.1.2.1. AMX

The source selected by AMX is determined by control-word field AMX, as

shown in Figure 14. LA is one of the latches connected to the register file

RAB (see section 2.1.3). RAMX is another multiplexor, which can choose

either the D register, or the Q register. It is controlled by microword field

RMX, see Figure 15. This field also controls RBMX - a multiplexor with the

same sources, which supplies BMX. Note that, since field RMX controls both

• these devices, one can never do an operation of the D or Q register with

VALUE SYMBOL FUNCTION

LA latch LA (default)
fcAMX mux RAMX (register D or Q)
RAMX.SXT RAMX, sign extended
RAMX.OXT RAMX. zero extended

Figure 14 - AMX

VALUE
SYMBOL FUNCTION

RAMX RBMX AMX BMX

Figure 15 - RMX (RAMX and RBMX)

106

itself; but that operations between the two will work. Sign or zero extension

may be performed on the data supplied by RAMX, dictated by the data type

field, DT. Thus, when a byte type is specified, and AMX selects RAMX, sign

extended, the sign bit in position seven is propagated through bits <31:8>. A

sign-extended longword is the same as the unmodified data from RAMX, but a

zero-extended longword is identically zero. Thus coding "ALU/4, RAMX/3,

DT/O" will result in the generation in the ALU of a quantity one greater than

that supplied to the B-input by the BMX.

2.1.2.2. BMX

The B multiplexor is controlled by field BMX, as in Figure 16. The mask

source is, as was previously discussed, a circuit providing l's in all bit posi

tions save the one selected by SC<4:0>. LB is a latch whose source is the

register file RAB. LC is a latch whose source is the RC file (temporaries). PC

is the program counter, which, although it appears as rl5 to the macro-level

programmer, is physically a separate register. A BMX field value of one

selects the LB latch, unless the register selected (by the source specified in

the SPO field, I presume) is rl5, in which case the PC is used.

VALUE SYMBOL FUNCTION

0

1

2

3

4

5

6

7

MASK
PC.0R.LB

PACKED.FL
LB
LC
PC

KMX
RBMX

mask generator (default)
LB, unless designating rl5, then PC
pack floating number
latch LB
latch LC
register PC
constant (or SC) from KMX
mux RBMX (recister D or 0)

Figure 18 - BMX

107

The B-mux can be used to assemble a floating-point format number from

diverse sources, by specifying field BMX/2. The packed floating-point format

is:

/r 7 a
I D<23;fl> 131)1 TiATiU<7:0> I D<3Q;24> I

The exponent is supplied by the seven low-order bits of the output of the

exponent ALU, and the fraction by the D register. The sign is provided by bit

register SD (see paragraph 2.1.5). Due to timing delays in routing the data,

both the EALU and ALU must be performing logical operations (no carries) to

insure that the data is available at the ALU's output when required. A word

containing the PCSV register and the top of the RLOG stack can be selected

with "BMX/0, MSC/7"("READ RLOG"). The format of this is:

I 0 I w\.na I phsv I

Constants may be introduced into the ALU by way of the constant multi

plexor, governed by field KMX. Certain values come from the FK multiplexor,

and may be used with impunity. Others are derived from a ROM called SK.

These may be used in arithmetic ALU operations (involving a possible carry

or borrow) only if an extra micro-instruction is allowed for set-up (?). KMX

values are shown in Figure 17.

Register SC is (obviously) not a constant, but is routed through FK and

KMX anyway. "Specifier 1 constant" appears to be the length of the operand

currently under evaluation, as supplied by the 1-box. This is useful since

auto-increment address mode is supposed always to increment by this value.

The constant four is also available for auto-increment deferred addressing.

KMX/6 gets a zero in normal VAX mode, but has a different meaning in com

patibility mode (namely, the size of the second operand - specifier 2 con-

VALUE SYMBOL
tunslAflT YAI.UE

he* decimal

0 .0 8 8
1 .1 1 1
2 .2 2 2
3 .3 3 3
4 .4 4 4

6 SP1.CON spec 1 const
6 ZERO 0 (9P2.C0Nia

P0P.11 mod.)
7 SC iregSC
6 .14 14 20
9 .AO AO 160
A .34 34 52
B .28 28 40
C .40 40 64
D .50 50 80
E .3000 3000 12288
F .EF EF 239
10 .80 60 128

11 .8000 8000
12 .FF FF 255
13 .FFOO FFOO
14 .IE IE 30
15 .3F 3F 63

16 .7F 7F 127
17 .7 7 7

18 .F F 15

Figure 17a - KMX (beginning)

108

Register SC is (obviously) not a constant, but is routed through FK and

KMX anyway. "Specifier 1 constant" appears to be the length of the operand

currently under evaluation, as supplied by the I-box. This is useful since

auto-increment address mode is supposed always to increment by this value.

The constant four is also available for auto-increment deferred addressing.

KMX/6 gets a zero in normal VAX mode, but has a different meaning in com

patibility mode (namely, the size of the second operand - specifier 2 con

stant).

109

VALUE SYMBOL CONSTANT VALUE

.. .he* . decimal

19 .10 10 16
1A .FFE8 FFE8
IB .FFFO FFFO
1C .FFF8 FFF8
ID .20 20 32
IE .30 30 48
IF .18 18 24
20 .3FF 3FF 1023
21 .C C 12
22 •D D 13
23 .IF IF 31
24 .1F00 1F00 7936
25 .BO BO 178
28 .E003 E003
27 .7C 7C 124
28 .FFED FFED «

29 .60 60 96
2B .DFCF DFCF
2C .FFEF FFEF
2D .FFF1 FFF1
2E .19 19 25
2F .FFF9 FFF9
30 .FFFF FFFF
31 .68 88 136
32 .3030 3030
33 .FO FO 240
34 .CO . CO 192
35 .6 6 6
36 .9 9 9
37 .FFF6 FFF8
36 .FFF5 FFF5
39 .1A 1A 26
3A .24 24 36
3B •IB. IB 27
3C .FFFC FFFC
3D •A A 10
3E .7E 7E 126

Figure 17b -KMX (continued)

2.1.3. the General and Temporary Register sets

Next to the ALU. register access is probably this machine's narrowest
bottleneck. Despite the three latches. LA. LB. and LC. only one register may
be read or written at a time (with special-case exceptions). This is because
one seven-bit micro-word field. SPO, is used to control all register activity.
This is divided into several subfields. as shown here, and tabulated in Figure

YALVg
0
8

2

JEAU2E.

J^Uffi-

VALUE

VALUE

18.

.SYMBOr,
NOP
L0AD.LC.SC

Field SPO

SYMBOL
L0AD.LAB
LOAD.LC

Field SPO.AC

FUNCTTON

do nothing (default)
load LC from address in SC
write RC renter addrg^rf hv ar

funkttun.,,
load LA, LB from R(ACN)
load LA from R(RN), hold LB
write RA WHfAPm

SP1.SP1
SP2.SP2
PRN
PRN+1
SC

TWCTJOB.
select RAB from SP1
select RAB from SP2 (for r-r-op optimization)
select RAB from PRN

select register addressed by SC
selected RAB from SPU1

Field SP0.ACN

SYMBOL.
LOAD.LC
WRTTE.RC
LOAD.LAB
IfRITE.RAB

LOAD.LABl.inRITE.RC
LPAD.T^TOIfl.BABJ

Field SPO.R

AS SPO.RAB

-8Tmbo1 r^Fifrtcr-
RO
Rl
R2
R3

R4
R5
R6

R7

AP

FP
SP
R15

rO

rl
r2

r3
r4
r5
r8
r7

r8
r9
rlO

rll

rl2

rl3

rl4
r!5

FUNCTION,
load LC from RC(RN)
write RC(RN)
load LA, LB from RAB(RN)
write RA. RB(RN)
load LA, LB from rl. write RC(RN)
yrtk el load K, torn WJSUl, -.

symbol
AS SP0.RC

TO
Tl
T2
T3
T4
T5
T8
T7

LC.SV
YA.SV
PTE.VA
PTE.PA
PC.SV

sc.sv
YA.REF
MBIT.VA

PTS.MASK

register
to

tl
t2

t3

t4
t5
te
t7
te

t9
tio
tn
tl2

tl4
U5
t!5

115-

Field SPO .RAB it SPO.RC

Figure 18 - Subdivisions of SPO

110

* A

SPO (7 bits)

41 40 39 38 37 38 35

SPO.AC (4 bits) SPO.ACN (3 bits)

SPO.R (3 bits) SPO.RAB (4 bits)
IK

SPO.RC (4 bits)

Ill

LA, LB, and LC are latches, so data may be clocked out of a register and used

in a logical ALU operation in the same micro-word. Because of timing con

straints, however, an extra cycle should be allowed for operations involving

carry propagation. The latches' contents will remain unchanged, and may be

used in later operations, as long as no further register contents have been

read through them. You should not count on their being unchanged at any

time when the microprogram may be interrupted (as when doing memory

accesses). SPO field values are more rationally explicated in figure 19,

where: SP1 signifies the register designated by th operand specifier

currently under evaluation; SP2 is the register number of the next specifier

(useful, perhaps, in optimizing register-register instructions); and PRN (pre

vious register number) is the register of the last specifier evaluated. In

PDP-11 mode, SRC and DEST are the two operand registers of the instruction

word.

The RC registers always act as full, longword registers. However, when

loading an RAB register, a partial word may be loaded, depending on the data

type, determined by field DT. The SPO values useful to the microprogram-

mer are of the form 2x (read an RC). 3x (write RC), 4x (read RAB). and 5x

(write RAB). The address modes allowing one to use the SC register as an

index are also useful, and facilitate multiple register loading and storing, as

for a context switch or subroutine entry (where the registers to be saved are

hex
41

VALUE

CSword
_40 39 38, 37 SB 35

FUNCTION

0-5

6

7

0
0

Q

0 0 0
0 0 0
o P 9

XXX

1 1 0
1 1 !

NOP

load LC, from RC[SC]
write RCrscl

8-F
10-17

J8-1F

0

0
0 0 1
0 1 0
0 J 1

ACN

RN

ACN

load LAB from R(ACN)
load RA(RN), r0-r7
write RABfACN)

20-2F
30-3F

0
0

1 0
1 J

-RN-
-RN-

load LC from RC(RN)
write RCfRN)

40-4F
50-5F

1

1
0 0

P 1
-RN-
-RN-

load LAB from R(RN)
Writ? RABfftM

80-6F
Iy-7F

1

^1-
1 0

1 1
-RN-

-RN-
load LAB from rl. write RC(RN)
write rl. load LC from RCfRN)

Figure 19 - Field SPO

112

designated by l's in a bit map). The other register specifying schemes are of

limited application.

2.1.4. SHF

A limited shifter, SHF, takes the ALU output, and feeds the register files,

the D register, the Q register, and the accelerator. It is mainly used in multi

plication, division, and subscript scaling, as has been mentioned. It is con

trolled by microword field SHF, as shown in Figure 20. "Data dependent"

shift amounts are determined by the DT field, and the decode logic. For SHF

VALUE SYMBOL FUNCTION

0

1
2

3

4

5

ALU

LEFT
RIGHT
ALU.DT

RIGHT2
LEFT3

no shift (default)
shift left one
shift right one
shift left by data type
(byte 0, word 1, long 2, quad 3)
shift right 2
shift left 3

Figure 20 - SHF

k ."

113

field values of three or five, the quantity shifted in is always zero. For the

other cases, it depends on the value of field SI. These dependencies are

shown in Figure 21.

2.1.5. Sign Control

When performing floating-point calculations in the Central Data Paths,

the signs of the operands are kept in two flip-flops: SS and SD. They can be

loaded from bit fifteen of ALU output (the sign bit of an assembled floating

point number), and a small number of operations may be performed on

them. They are controlled by field SGN, as in Figure 22. Note the operation

"SS <- SS xor ALU<15> xor IR<1>." Floating add instructions have a zero in

VALUE SYMBOL
SHF

FUNCTION
0 D

0

1

2

3

5

6

7

DIVD
ASHR
ASHL
ZERO

DIV

MUL+

MUL-

PSL<N>
ALU<31>

0

0

Q<31>
0

0

ALU C<31>
Q<31>
D<31>

0

ALU C<31>
0

0

Q<31>
Q<0>

0

0

Q<31>
ALU<1:0>
ALU<1:0>

Figure 21 - SI

opcode bit 1. and floating subtracts aone. Thus similar instructions may use
common microcode (as in the case of "instruction dependent" operations).

VALUE SYMBOL

NOP
LOAD.SS
SS.FROM.SD SS <- SD
NOT.SD SD <- SD
SD.FROM.SS SD <- SS
SS.XOR.ALU
ADD.SUB
CLR.SD+SS

FUNCTION

do nothing (default)
SS

SD <- ALU<15>, SS <- SS® ALU<15>
SD ♦- ALU<15>, SS*- SS®ALU<15>®IR<1>
clear SD and SS

Figure 22 - SGN

SC is the source of the sign when floating-point numbers are re-assembled in

the ALU's B-mux.

114

2.2. DATA SECTION

The Data section is that part of the Central Data Paths which includes

the D and Q register, the shifter, the interfaces to the ID bus, accelerator,

and memory data.

2.2.1. Data Format Multiplexor

Data from the ALU can be gated into the D and Q registers. Its path

from the ALU is through shifter SHF, and through a curious device, the data

formatter multiplexor (DFMX), on its way to the D and Q registers' input mul

tiplexors. One may specify (by way of fields QK and DK) that data be

transmitted from the ALU in either integer or unpacked floating-point for

mat. In integer mode, the thirty-two-bit word is received just as it leaves

SHF. Or, data assumed to be the floating point format previously exhibited

may be unpacked by DFMX into the following format:

?i XI P. 6 0
\0i\5HF<b-Q> I SHF<3\:ie> I O 1

Note that this is not exactly the converse to the packing operation of the B-

mux, and that the leading 1 implicit in normalized floating-point numbers

has been made explicit, in bit 30.

2.2.2. DAL

The general, sixty-four-bit shifter (Data Aligner. DAL) was discussed in an

earlier section. Actually, the shifting scheme used is more ingenious than

was presented. There are three levels of shifting circuitry. Level one is

governed by SC bits nine and four, and can shift left by 0, 16, 32 (same as a

right shift of 32), or 48 (same as a right shift of 16). Level two is governed by

115

SC bits <3:2>, and shifts left by 0, 4, 8, or 12 bits. The third level, governed

by SC<1:0>, shifts left 0, 1, 2, or 3. So, if SC contained "lxxxxlllll", the

rotation would be (right 16)+(left 12)+(left 3) = right-by-one.

2.2.3. Accelerator Data

Output data from the floating point accelerator is available to the Q and

D registers on the same bus fed by DFMX, and may be gated into them when

the accelerator signals it is ready. This device keeps its own copies of the

general registers, and loads a register with the data from this bus whenever

the corresponding register in the set RAB is loaded. This implies that when

ever a register is loaded by the microprogram, DFMX had better be selected

for integer-format data, or the accelerator's register will be incorrectly

loaded!

2.2.4. ID Bus

The registers on the internal data (ID) bus may be inspected and loaded

by way of the Q and Dregisters. These functions are controlled by the CID,

FS, and KMX (alias ID.ADDR) microword fields. Coding "FS/1, CID/5" causes

the ID register selected hy the KMX field (net the constant value selected) to

be read - it can thus be gated into the Qregister; "FS/1, CID/4" causes the

ID bus register selected by the contents of register SC to be read. "FS/1,

CID/7" writes the contents of the Dregister in the ID register selected by

field KMX; "FS/1, CID/6" causes the bus register modified to be chosen by

the contents of register SC. The ID bus registers' addresses are shown in Fig

ure 24. Many of these registers are of interest only for diagnostic purposes -

these registers are available to the LSI-11, too, so can be read and diagnosed

by a console program. Other registers are visible to the macro-programmer.

^

register address
source

field KMX

register SC

read

Q+-ID

FS/1. CID/5

FS/1, CID/4

write

ID«-D

FS/1, CID/7

FS/1, CID/6

Figure 23 - ID bus Control

VALUE SYMBOL REGISTER
0 EBUF
1 DAY.TIME

3 SYS.ID
4 RXCS
5 RXDB
6 TXCS
7 TXDB
6 DQ
9 NXT.PER
A CLK.CS
B INTERVAL
C CES
D VECTOR
E SIR

F PSL
11 TBUF
12 TBERO
13 TBER1
14 ACC.O
15 ACC.l
16 ACC.2
17 ACC.CS
18 SILO

19 SBI.ERR
1A TIME.ADDR
IB FAULT
1C COMP
ID MAINT
IE PARITV
20 USTACK
21 UBREAK
22 WCS.ADDR
23 WCS.DATA

data from IB
current time of day
(read till constant)
System id register
Console receive status register
Console receive data byte
Console transmit status register
Console transmit data byte
D/Q registers (maintenance use)
Interval Clock next period
Interval Clock control
Current interval count
CPU error/status t
Exception control
Software Interrupt Register
Processor Status Longword
Translation buffer data
TB error/stat 0
TB error/stat 1
Accelerator register 0
Accelerator register 1
Accelerator register 2
Accelerator control/stat
Next item of SBI history
SBI error register
SBI timeout address
fault/status
SBI silo comparator
SBI maintenance
Cache parity
Microstack
Micro-break address
TTCS write address

WCS write data
(writing data increments address^

Figure 24 - ID Bus registers

116

and are adequately described in the VAX-11/780 handbook series.

The data from the instruction buffer is usually a byte, word, or longword

of immediate data. When IBC/7 is coded in the same micro-word that causes

117

this source to be read, the data received is a sign-extended byte (or word) to

be used as a branch displacement.

ID registers 30 - 39 are also named TO - T9. These are temporary regis
ters used primarily during amachine error logout (to store the logout data,

in case writing to memory is infeasible). They are otherwise free to the

micro-programmer.

2.2.5. the Q Register

The Qregister serves as a source of data for shifter and ALU operations,
as described previously. It may be loaded from several sources, including

DFMX. the ID bus, and the accelerator. This is controlled by microword field
QK, as shown in Figure 25. Those features not previously mentioned are its
shifting ability, and a decimal correction factor.

The contents of the q register may be shifted left or right by one or two
bits. The bits shifted in depend on the setting of field SI, as shown in Figure
21.

The VAX instruction set supports packed (BCD) decimal arithmetic

instructions. However, the VAX ALU only operates on pinary quantities.

VALUE

0

1
2

5

6

8

9

A
B

C

E
F

SYMBOL FUNCTION
NOP
LEFT2
RIGHT2
LEFT

RIGHT
SHF

SHF.FL
DECCON
ACCEL
D

ID
CLR

hold Yalue (default)
shift left 2
shift right 2
shift left 1
shift right 1
"oad from SHF, integer format
oad from SHF, unpacked floating format
oa4 decimal correction factor
oad accelerator data
oad from register D(via DAL)
oad ID bus data

clear register Q

Figure 25 - QK

118

Thus, it is sometimes necessary to add 6's into a four-bit decimal digit (nib

ble) to force a carry. The usual algorithm for adding together word-fulls of

decimal digits, A and B, is:

(1) T <- A+ (a word containing "0110" in each decimaldigit)
(2) B«-B + T

(3) T <- (a word containing "0110" in each decimal digit for which a
carry-out was not generated in the previous step, else zero)

(4) B<-B-T

Steps two and three of this procedure are usually done in parallel, as the

nibble-carry information does not persist.

A mechanism to aid this computation is the "decimal constant" which

may be loaded into the Q register. (1 don't know how this works, but my

intuition is that it works the same as a similar mechanism of the QM-1 com

puter: it will generate the all-6's word of step one when zero is passed

through the ALU, and the O's-and-6's word of step three when the partial sum

of step two is generated in the ALU.)

2.2.6. the D Register

The D register is a source of data for shifter and ALU operations,

memory and ID bus transactions. It may be loaded from several sources,

including DFMX, memory data, DAL, and the accelerator. This is controlled

by microword field DK, as shown in Figure 26.

The contents of the D register may be shifted left or right by one or two

bits. The bits shifted in depend on the setting of field SI, for which see Figure

21. This register can be conditionally shifted left by one place; if a carry-out

of the ALU's most significant bit (31) is generated, the shift is done (shifted-

Ln bit depending on SI), otherwise, the register is loaded with data from SHF.

VALUE SYMBOL FUNCTION

0

1

NOP
LEFT2

hold value (default)
shift left 2

2 RIGHT2 shift right 2
4 DIV load from SHF if ALU carry, else shift left 1
5 LEFT shift left I
6
8

RIGHT
SHF

shift right l
load from SHF, integer format

9

A

SHF.FL
ACCEL

load from SHF, unpacked floating format
load accelerator data

B

C

D

BYTE.SWAP

Q
DAL.SC

rearrange bytes in register
load from register Q (via DAL)
load from shifter, using SC as count

E DAL.SV "load DAL shf val"??
F CLR clear register D

Figure 26 - DK

119

Packed decimal strings are held in memory with the highest-order byte

at the lowest address. So the BCD representation of the number 1234567 in a

longword would be

7+563412

since, in a longword, the low-order byte has the lowest address. Computa

tionally, it would be convenient if the most significant digit were on the left,

and the least significant on the right. The byte swap mechanism can

transform the above representation, once loaded into the D register, into

1234567+

the desired form, also in register D.

The D register serves as the memory data register for both reads and

writes. Memory reads are always done in longwords - but a program can

address data on byte boundaries. Between the memory data (MD) bus and

the D register, the memory data aligned (MDAL) rotates the incoming

x denoting the BCD representation of x.

120

longword from the cache according to the two low-order bits of the requested

address (from VA). In the case where data crosses a longword boundary (as

determined by the address, and the size specified by the DT field) a second

read must be done. The incoming data from this second read is prevented

from clobbering the usable data already in the D register by a validity bit

mechanism (similar to that of the instruction buffer). A complementary

mechanism governs the insertion of partial words into memory, during store

operations. Note that partial-register data from memory should be sign or

zero extended appropriately before use.

2.3. ADDRESS SECTION

The address section is that part of the Central Data Paths concerned

with the generation of addresses for accessing main store. This includes

registers VA, IBA, and PC. Generally, when fetching program stream to the

instruction buffer, IBA is the address source, and when accessing data, VA is

the address source. (This statement is an oversimplification, and will be

dealt with presently.)

2.3.1. Register VA

Register VA is used as the source of virtual addresses for a data fetch or

store operation. In this case, the address is translated before use by the

translation buffer mechanism. Its contents can also be interpreted as a phy

sical address, as, for example, when accessing the system control block or

system page table (which are addressed in physical memory). Or, it can be

used as an index into the translation buffer, without any data transmission

taking place, as in the case of a PROBE instruction. This is also its use when

invalidating or manipulating TB entries (a PTE's modify bit is updated by a

121

microcoded routine when the corresponding page is first modified - TB

entries are accessed via the ID bus). And, when a program jump is taken, the

destination should be loaded in VA as well as IBA. VA is loaded from ALU fan-

out when field VAK is set to one.

2.3.2. IBA

The IBA (or more properly. VIBA, for virtual instruction-buffer address)

holds the virtual address where the IB is fetching instruction stream bytes.

It is loaded from ALU output by setting micro-instruction field IBC to two,

and is automatically updated by the instruction buffer as successive long-

VALUE

VALUE

0

1
2

3

4

5

7

C

D

E
F

SYMBOL FUNCTION

hold value (default)
load VA from ALU output

SYMBOL

NOP
LOAD

NOP
STOP
FLUSH
START

CLR.0.1
CLR.2.3
BDEST
CLR.0

CLR.1
CLR.0-3
CLR.1-5.C0ND

a) field VAK

FUNCTION

no control (default)

flush IB, load IBA from ALU output

clear bytes 0 &1 (PDP-11 instruction)
clear bytes 2 &3 (PDP-11 data)
transfer branch displacement on ID bus
clear byte 0 (VAX opcode)
clear byte 1 (VAX specifier)
clear bytes 0-3
clear bytes 1-5 conditionally.
If there is no specifier evaluation,
clear nothing. If a self-contained
specifier, clear it. If immediate,
absolute, or displacement, clear
the I-stream literal. ____

b) field IBC

Figure 27 - fields VAK and IBC

122

words are fetched. The low-order two bits determine how data is byte-

rotated as it enters the IB, and are adjusted as the IB justifies its data

requests to longword boundaries. This register is used as the actual address

for a memory fetch only when there is an interruption to sequential program

flow (as in the cases of a program jump, successful branch, interrupt or

exception, or the crossing of a page boundary). On these occasions, a physi

cal IBA register (IPA) is set up by the TB mechanism, and used thereafter.

This ingenious design avoids the translation process for most program

fetches. IBA is loaded from ALU fan-out when the IB is flushed by coding

1BC/2.

2.3.3. PC

At the beginning of the interpretation of each macro-instruction, the

program counter (PC) register contains the address of the opcode byte.

When interpreting an operand, the PC addresses the operand specifier, and

can be used in computing relative addresses. The upper twenty-eight bits of

PC comprise a counter, and the lower bits can be loaded from the output of a

four-bit ALU - the carry-out of which is used to increment the twenty-eight-

bit counter. In this way, small constants (1, 2, 4, or n, a number determined

by the I-box) may be added to PC, see Figure 28. Since this register is often

updated, incrementing it via the thirty-two-bit ALU would cause instruction

interpretation to be considerably more ALU-bound than by the present

scheme. Since PC is often used by seldom loaded, it should have a direct

path to an ALU input, but does not need to be easily loaded from ALU output.

In fact, loading PC usually signifies a change from sequential program control

flow, so IBA and VA must be loaded with the same address, and PC may be

loaded from one of these. PC operations are controlled by micro-instruction

X6A

u*

Figure 28 - PC configuration

field PCK, as shown in Figure 29.

VALUE SYMBOL FUNCTION

0 NOP do nothing (default)
1 PC_YA PC «- VA
2 PCJBA PC 4- IBA
3 VA+4 VA <- VA + 4
4 PC+1 PC «- PC + 1
5 PC+2 PC <- PC + 2
6 PC+4 PC <- PC + 4
7 PC+N PC - PC + n

Figure 29 - PCK

123

To

seer/erf

124

2.4. EXPONENT SECTION

The Exponent Section is apart of the Central Data Paths designated for
the handling of floating point exponents, in the absence of a floating-point
accelerator. This includes three registers and a ten-bit ALU, so that a

number's exponent and fraction can be handled concurrently. Floating point
numbers can be assembled and disassembled using the ALU B-mux and the
DFMX, as we have already seen.

2.4.1. the Exponent ALU

The EALU takes its Ainput from either of registers SC or STATE, and-its
Binput from avariety of sources; including register FE and the output from
the constant multiplexor, KMX. Its output can be used to load any of the
registers FE. SC. and STATE. The EALU A-mux (EAMX) is controlled by field
MSC - when MSC/5 is coded, the STATE register is selected as a data source,
otherwise register SC is used. The EALU B-mux (EBMX) is controlled by field
EBMX. as shown in Figure 30. Note that, since the contents of the SC register
can be routed through the constant multiplexor, they can be used as a

source for the EALU's Binput. The EALU function is controlled by microword

field EALU, see Figure 31. The negative-absolute-value function invokes a
256x8-bit ROM on the output of the EALU. Adifference generated in the EALU

VALUE SYMBOL FUNHTTHM

0 FE choose register FE
1 KMX choose constant multiplexor
2 AMX.EXP exponent part of AMX data
3 SHF.VAL "shift value"??

Figure 30 - EBMX

VALUE SYMBOL FUNHTTHM
0 A
1 OR
2 ANDNOT
3 B
4 A+B
5 A-B
6 A+l
7 NABS.A-B

pass A input
AvB
AAB

pass B input
addition
subtraction
A input, plus one
lA-Bl

Figure 31 - EALU

125

is used as an index into the ROM, which supplies a negative shift count, as
when one wants to denormalize the fraction part of a floating point number
by the difference of two exponents. Which of two fractions is to be shifted
depends on the true sign of the difference, so one hopes that the EALU sign
can be tested before it is changed by the NABS mechanism.

2.4.2. Shift Count Register

The ten-bit SC register is loaded from one of several sources when field
SCK is set to one, otherwise the contents remain unchanged. When SC is
loaded, it may be from one of several sources; this function is controlled by
field SMX, Figure 32. SC is a source for the Ainput to the EALU, and the B
inputs of both the thirty-two bit ALU and the EALU, via KMX. Additionally, it
governs the generation of bit masks, the shifting of data in the DAL unit, and
can be used as an index to the scratch pad registers (RAB and RC) and the ID
bus registers.

S.4.3. the FE register

FE is a ten-bit register used in floating-point exponent computations in
the EALU. It is loaded from EALU output when field FEK is set to one. else the

VALUE SYMBOL FUNCTION
0 NOP
1 LOAD load SC from SMX

hold value (default)
io

SCK

VAL SYMBOL FUNCTION
0 EALU EALU output (default)
1 FE register FE
2 ALU ALU<9:0>
3 ALU. EXP ALU<14:7>

SMX

Figure 32 - SCK and SMX

contents are retained. It is a source of data for the EALU's B-input, and

be loaded directly into SC.

126

can

2.4.4. STATE

The eight-bit STATE register is used, as the name implies, to encode

micro-program state information. Each of its four-bit halves may be used to

VALUE SYMBOL FUNCTION

NOP hold value (default)
LOAD load FE from EALU output

FEK

VALUE SYMBOT, FUNCTION
NOP no msc control

(SC selected as EALU A input)
LOAD.STATE select STATE as EALU Ainput

load STATE from EALU output

MCS/5

Figure 33 - FE and STATE controls

127

control a multi-way microcode branch of up to sixteen different destinations.

This register may be loaded with the output of the EALU when the MSC field is

set to five. Note that this is the same field which governs the EALU's A-input -

whenever STATE is selected as an EALU source, it is loaded from EALU out

put. This would seem to limit STATE'S usefulness as an arithmetic register,

but is certainly adequate for setting and clearing flags, which are, after all,

the register's intended contents.

2.5. HOW TO USE MEMORY

There are several flavors of memory access. These are described in

chapter eight of the VAX Hardware Handbook. For our purposes, there are

four types of memory access - data read, data write, sequential program

fetch, and non-sequential program fetch (at a new address). Memory is con

trolled primarily by control word field MCT, as shown in Figure 34.

2.5.1. Address Sources

The source of memory access addresses depends on whether the data is

destined for the IB. If so, IBA is considered the address source, otherwise, VA

is used. Only longword addresses are sent to memory - the lower two bits of

a byte address determine the byte within the longword, and thus determine

byte rotation at the destination, upon reading, and the generation of a mask,

upon writing. The source of address bits is shown in Figure 35. Note that the

low-order bits are always taken from VA. The implications of this are not

' * what might be imagined, as we shall see.

128

VALUE SYMBOL FUNCTION
0 TEST.RCHK probe for readability
2 MEM.NOP do nothing b
4 TEST.WCHK probe for writability V

A WRITE.V.NOCHK write, no traps
C WR1TE.V.WCHK normal write ;

E LOCKWRITE.V.XCHK interlock write
10 READ.V.RCHK normal read
13 READ.V.NOCHK read, no traps
14 READ.V.WCHK read, for modify
18 READ.V.IBCHK read, check controlled by Ibuf
18 READ.V.NEWPC restart instruction fetching
1A LOCKREAD.V.NOCHK interlock read, inhibit check
1C LOCKREAD.V.WCHK interlock read
20 SBI.HOLD stop SBI activity
22 SBI.HOLD+UNJAM reset SBI
24 INVALIDATE clear cache entry
26 VALIDATE make cache entry valid

(for microdiagnostics)
28 EXTWRITE.P extended write to clear parity errors
2A WRITE.P physical write
2E LOCKWRITE.p physical interlock write
32 READ.P physical read
36 READ.INT.SUM "interrupt summary read"??
3A LOCKREAD.P physical interlock read
3E ALLOW.IB.READ let IB fetchahead (default)

Figure 34 - MCT

VAX VA

VIBA

PDP-11 VA

VIBA

VA<31:9>

V1BA<31:9>

0 VA<15:9> VA<8:2>

0 VA<15:9> VA<8:2>

Figure 35 - Address Bits Source

2.5.2. Sequential Program Fetching

When you aren't doing anything else with memory, you may as well let IB

fetch ahead, so that program stream bytes will be available when required;

the default setting for field MCT is to allow this. Pre-fetching can be avoided

in a variety of ways, the simplest of which is to code memory no-ops in each

VA<8:2>

VA<8:2>

129

micro-instruction. This action can also be turned off by stopping IBA. using

field IBC. (Why you would want to do this I do not know.)

Recall that the address source for sequential program fetching is really

IPA, a physical address, rather than IBA, a virtual address. IPA is updated by

IB at the same time as IBA, but whenever the low order bits of IPA (which

needs only to contain longword addresses) become zero, a page boundary

has been crossed, and the high-order twenty-three bits of IBA must be re

translated, to yield the new page frame number. So, IBA<8:0> is never

required for a sequential program fetch.

2.5.3. Non-Sequential Program Fetching

Whenever a program control jump occurs - either through a branch

instruction or an interrupt or exception, several things have to be done:

erroneously fetched-ahead bytes in the IB must be flushed; IBA and PC must

be set anew, as must IPC; IB fetching must be restarted. Because the entire

destination address must be translated in order to load IPC, and because VA

is always the source of low-order address bits, VA must also be loaded with

the destination address. Since you probably weren't going to do anything

further with the old contents of VA anyway, and since VA and IBA can be

loaded in parallel from ALU output, this won't cost you any time (and saves a

few bits of mux). A program jump is usually the last thing done in the

interpretation of an instruction. A formula for doing this is:

(generate destination address in ALU),
VAK/LOAD, PCK/PC_yA,
IBC/FLUSH. 1EK/ISTR

• • * PCK/PC+1, VAK/NOP,

note how VA is load-through
throw away old IB contents,
see if interrupt pending

increment PC past new opcode
restart IB fetches

go do next instruction (62 hex)

, s MCT/READ.V.NEWPC,
J/62

130

2.5.4. Data Reads

To read data to be used in computations, simply load VA with the virtual

address of the datum (or physical address, for physical reads), and in a

succeeding micro-instruction, code the read operation, including no-ops in

fields VAK and DK, and an appropriate data type in DT. The data should be

available in the D register in the next micro-instruction. However, the

mechanism involved is much more complicated that this indicates. If the TB

does not contain an entry for the virtual address requested, a micro-program

interrupt gives control to a routine to fetch the appropriate PTE(s), then

returns to the reading microroutine (with perhaps, some registers modified-

so be careful). If the page is invalid (either missing from main memory, or a

bad address, or no permission), then you loose control completely, and a

macro-program interrupt occurs. If the requested address can be

translated, but the data is not in the cache, the micro-program will be forced

to execute no-op instructions until the data is available. (Note how this may

change the effect of any timing-dependent operations strung between the

reading micro-instruction and its successor.) Finally, if the memory address

and data length coded in DT determine that the required datum does not

reside in a single longword, a micro-program interrupt gives control to a rou

tine to do the second read, to fetch the rest of this operand. Control is then

returned to the reading routine.

2.5.5. Data Writes

Writing data is pretty much the same as reading it; put address in VA,

put data in D, write. And just as many nasty things can happen to you -

including a micro-interrupt to set the PTE's modify (dirty) bit, if this is the

first modification of a page since that bit was cleared. Not to mention setting

. 131

the modify bit of the system PTE addressing your PTE.

132

2.8. MICROPROGRAM SEQUENCING

Just as in the case of macro-programs, a micro-program is a series of

instructions to be executed, one after another, in some order specified by

the programmer. The notions of conditional and unconditional sequencing,

of subroutines, and even of interrupts, are shared by the macro- and micro-

programmer. However, the mechanisms present in the VAX micro

architecture to implement these concepts are considerably different from

those used in most macro-architectures, and for that reason need to be dis

cussed. VAX micro-program addresses can come from a variety of sources,

depending on conditions in the processor. These conditions are, from

highest to lowest priority:

initialize

maintenance return
cache stall

micro-trap
micro-ECO

normal sequencing

Normal sequencing is the absence of any other condition, and itself encom

passes several addressing methods. Micro- ECO is the cute trick DEC uses

for patching the native ROM, and is only of peripheral interest to us. A

micro- trap is a micro-program interrupt, and a cache stall is what you do

while waiting on a memory read. The remaining two conditions, initialize

and maintenance return, do not have directly to be dealt with by the micro-

programmer, but are methods by which the console computer can force the

VAX micro-PC to take on certain values.

2.6.1. Normal Mode

Each microinstruction word specifies its normal successor using three

fields: BEN (four bits), SUB (two bits), and JMP (thirteen bits). The latter

V A

v V

133

field carries address bits which can be used directly or in combination with

bits from other sources. BEN determines the set of conditions to be tested

when doing conditional branches, and SUB governs subroutine calls and

returns, as well as decision point jumps.

2.6.1.1. conditional branching

The destination address of a conditional branch is formed in this

manner: a set of condition bits, chosen according to field BEN, is ORed with

the contents of the JMP field; the result is used as the successor address.

The default value for BEN is zero, which specifies an all-zero set of "condi

tions". The default value for JMP is the address of the next sequecial micro

instruction (which is unlikely to be at the next sequential address). Thus, the

default sequencing is plain, straingh-line execution. The sets of condition

bits specified by BEN are shown in Figure 36. For example, to add one to the

contents of register rl, and shift the Q register left one on result zero, but to

jump to NEXT in any case, we can code:

ALU/A-B, AMX/LA, SPO/41,
BMX/KMX. KMX/.l

ALU/A-B, AMX/LA, BMX/KMX,
KMX/.l, SPO/51, CCK/UBCC

BEN/Z

=0

J/NEXT

QK/LEFT. J/NEXT

:END

read rl, set up subtraction
subtrahend is constant 1

do subtraction

store result, set condition code

branch on Z condition (Z=l if rl=0)

z = 0, rl^ 0

z = 1, rl = 0

In this example, the brackets =0 ... =END indicate that the first word within

them has an even address, and the second word the following, odd, address.

134

2.8.1.2. subroutines

The micro-subroutine mechanism permits subroutines and interrupts

nested to a depth of sixteen. The key element is a 16xl6-bit stack used to

manipulate microprogram addresses. When a word in which SUB/1 is coded

is executed, the address of that microword is pushed on the stack. This

means that, whenever a subroutine is called, it is the address of the calling

VAI SYMBOL FUNCT
UPC<4> UPC<3>

BITS
UPC<2> UPC<1> UPC<0>

0 NOP no branch 0 0 p
1 z UBCC condition code 0 0 ALU<Z>

2 ROR LA<01> PSL<C> LA<00>

3 C31 carry-out of ALU<31> 0 ALUC31 0

8 ACC accelerator conditions UB2 UB1 UBO

8 DATA-TYPE 0 - normal, 1 - quad or double.
2 - field, 3 - address

9 IR2-1 IB byte zero bits 0 IR<2> IR<1>

A REI AST on REI mode<ASTLVI 0 0

B IB.TEST 0 - TB miss, 1 - error.

2-stall. 3-data OK

0 IB running error/data valid

C MUL SC*0 D<01> D<00>

D SIGNS Q<31> D*0 D<31>

E INTERRUPTtest interrupt conditions AC low Int. inter. Inter, req.
F DECIMAL 0 30SD<7:0>

&S39

D<3:0> = 8

or = 0D

10 UTRAP micro-trap vector uV<3>

. 0

yiV<2> ^uV<l> ^iY<0>
11 LAST.REF ? 0 0

12 EALU.CC EALU conditions of UBCC EALU<N> EALU<Z> SC* 0 SS

14 SC 0 - zero, 1 - negative,
2- 1-31, 3-> 31

0 SC<9:B>*0 SOO SC<9:5>*0

15 ALU1-0 conditions(previous cycle) Rlog Empty ALU<1:0> s 0 ALU<1> ALU<0>

18 STATE7-4 STATE register STATE<7> STATE<6> STATE<5> STATE<4>

17 STATE3-0 more of STATE STATE<3> STATE<2> STATE<1> STATE<0>

18 D.BYTES D register D<31:24>*0 D<23:16>*0 D<15:8>*0 D<7:0>*0

19 D3-0 D register D<3> D<2> D<1> D<0>

1A PCL.CC PSL conditions PSL<N> PSL<Z> PSL<V> PSL<C>

IB ALU.CC UBCC ALU conditions ALU<N> ALU<Z> m<o> ALUC31

USPSL.MODE

lDiTB.TEST

Figure 36 - BEN

*+-

135

word which is on the stack, and which must later be manipulated to form the

-i return address. Notice how, by combining the subroutine and conditional

^ jump mechanisms, a routine may have several entry points, conditionally

chosen.

A subroutine return is denoted by SUB/2 (see Figure 37). This causes

the top address on the stack to be popped and used in successor address for

mation; it is ORed with the logical sum of the word's JMP field and any condi

tion bits selected, formed as described previously. So a routine may return

to any of several places relative to the calling address - depending on the JMP

constant specified in the returning word, and depending on any conditions

selected. I don't believe that any overall call-return convention is used in the

native microcode, as different routines tend to be called from inside diverse

constrained address blocks. A simple convention, when no other address

constraints are involved, is to call from an even address, and to return to the

following odd address, by specifying a JMP field on 1 in the returning word.

2.6.1.3. decision point branch

When decoding operand specifiers, it is necessary to take into account

information from the instruction decode logic, including operand size and

addressing mode. When SUB/3 is specified, the low-order eight bits of the

next micro-instruction address are taken not from any of the previously

«» ja

-v V

VALUE SYMBOL FUNCTION

N 0 NOP
i •» 1 CALL
.'" *

2 RET

3 SPEC

(default)
push micro-PC on stack
OR stacktop with next address
replace low 8 bits of next
address with bits from IB

Figure 37 - SUB

136

mentioned address sources, but from the I-box. This is the SPEC jump, or

decision point branch, and is used whenever the microprogram has to use a

specifier to fetch or store an operand. Since the behavior of this operation j*

depends not only on the instruction stream, but on the contents of a ROM in

the instruction decode logic, it is not clear how this could be used by a

micro-program invoked by the XFC macro-instruction.

2.6.2. Micro-traps

Under certain conditions, the microprogram can be interrupted, and

control vectored to one of a set of fixed control store locations. Such a con

trol shift should not be confused with a macro-program interrupt - some rou

tine invoked by the micro-trap may subsequently cause a macro-processor

exception (triggered by conditions internal to the processor), but never a

macro-program interrupt (caused by external events). When micro-trap

mode is selected, a no-op cycle is performed, during which the trap address

is formed. Address bit twelve is determined by the console processor (nor

mally zero, but permits traps to be vectored to WCS, as when running micro-

diagnostics); bit eight is set; and <3:0> comes from the exception logic, the

same as branch condition 10. The trap conditions and their associated vec

tor addresses are shown in Figure 38; their relative priorities are given in

Figure 39. When a micro-trap is initiated, the address of the next (normal

mode) micro-instruction to be executed is pushed on the address stack, so

that the trap routine can use the subroutine return mechanism to relinquish

control. (An exception to this is the control store parity error exception,

which stacks the address of the offending word, rather than its successor. In

this case, control store may be damaged, and processing should not con

tinue, but the address of the parity error should be reported, via the con-

SB

.~9

sole.)

Vector Address Microtrap
100 System Init
101 Unaligned Data
102 Page .
103 M-bit (set modify bit)
104 Protection Violation
105 TB Miss
106 Reserved Floating Operand
107 TB Parity
108 Cache Parity
109

10A

10B

IOC Read Data Substitution (error on read)
10D Time Out

10E Odd Address (11-mode)
10F Control Store oaritv

Figure 38 - Microtrap vector addresses
low-order twelve bits

highest System Init
CS Parity error
Odd address
Time out

Read Data Substitute
Cache Parity
TB error

Reserved Floating
Protection Violation
Modify Bit
Page Trap

lowest Unaligned Data

Figure 29 - Microtrap priority

137

2.6.3. Micro-ECO

Any machine the size of the VAX-11/780 is bound to have some initial

hardware and firmware bugs. Wisely, the VAX implementors included a

method of repairing the latter in a relatively cheap manner, without replac

ing any PROM. Microprogram changes consist of repaired code, residing in

138

WCS, and an FPLA, which maps PROM addresses (of erroneous code) into WCS

addresses (of the repaired code). When the FPLA recognizes a bug-y address,

the micro-ECO (for Engineering Change Order) logic forces a micro-no-op

cycle, while the new address is formed. The micro-program continues from

this address, in WCS, until it jumps back into ROM. Forty-eight such changes

may be accommodated. Note that this is not a trap, of the type discussed in

the last section, but only a forced change of locus, triggered by the micro

program address.

M

i

K

	Copyright notice 1979
	ERL-79-65

