Copyright © 1979, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

4

i -

V 9

<@
t

I‘.

j

2Ma

MR XETY

T

[

Tiw

T

SOFTWARE MICROPROGRAMMING TOOLS FOR THE VAX-11/780

by

Richard D. Tuck

Memorandum No. UCB/ERL M79/65

September 1979

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

Research supported in part by the U.S. Department of Energy Contract

DE-AT03-76SF00034, Project Agreement DE-AS03-79ER10358, and the National
Science Foundation Grant MCS-78-7291.

Partial fulfillment of Master of Science in Engineering.

S

fy

“xa

I&t(.. “

.
se

-

®

CHAPTER 1

INTRODUCTION

Although the concept of microprogramming is nearly as old as elec-
tronic computing [Wilkes 51], it has only gained widespread popularity as an
implementation technique since the introduction, in the early 1960's, of the
IBM-360 family of computers. When a microprogram is used strictly as an
implementation tool, the programmer is usually very familiar with the
microarchitecture, if not its designer. Lately, however, microprogramming
has been used for more than an instruction-set implementation tool: more
end more operating systems routines are being microcoded [Stockenberg
78])[Bondy 77], and several machines are user microprogrammable [Agrawala
76]. Also, as machine architectures become more complex, the supporting
microprograms grow larger; the IBM-380, model 50 (1985) control store had a
capacity of 2818, ninety-bit words [Husson 70]; the VAX-li/ 780 (1978) control
store has a capacity of (at least) 5120, ninety-six-bit words. Larger micro-
programming teams are required just to implement the instruction sets.
Due to these factors, the people writing microprograms are less often the
designers of the microarchitectures with which they are working, and are

correspondingly less familiar with them.

The traditional microprogramming tools have been rather crude -
either a flow-chart language, as used for the IBM-3680s [Husson 70], or a more
traditional assembly language [Davidson 78]. These sufficed for expert
microprogrammers and compact microprograms, but are no longer any

more appropriate than is assembly language for all systems and applications

macro-programming.

The destderatum, then, is a High Level Systems Program Language (HL-
SPL) which could be translated into an eflicient microprogram. As a first
step towards this, we have designed and implemented a low-level language
which hides from the programmer most of the baroque features of a particu-
lar microarchitecture. This language (Yet Another Low-Level Language, or
YALLL) can be used as the machine-independent intermediate code output of
a HL-SPL microcode compiler [Patterson 79]. The key observation concern-
ing microarchitectures is not their differences, but their similarities:
microinstructions invariably transforin data between registers, and refer-

ence memory only in loading and storing their contents.

This paper describes the implementation of the YALLL microprogram-
ming system running under Unix on Digital Equipment Corporation's VAX-
11/780 [Strecker 78], hereafter known as YALLL/VAX. The VAX was chosen
for this work because it is a new computer with 1024 words of user-
programmable control store. Also, there are no other facilities for micropro-
gramming this machine, as of this writing; those announced by the manufac-
turer will run under the VMX operating system, not Unix. Finally, it is antici-
pated that the VAX-11/780 will be extremely hard to microprogram even
using DEC's announced macro-microassembler, because of the great

microinstruction width.

The main constituent of this system is the VAX/YALLL compiler, called
yc: this is a program consisting of 4456 lines of C [Ritchie 78], 495 of YACC
[Johnson 78], and 283 of Lex [Lesk 75]. The YACC and Lex programs
translate into 876 and 1404 lines of C, respectively. This translator contains

an assembler mode embedded in the language. It is the only microassembler

-

)

.
fuly 4

R

7

3

available for the machine at this time. The YALLL/VAX language, the assem-
bly mode, and the use of yc are described in chapter three. The internals of
the compiler are outlined in Appendix II, written mainly for the compiler

maintainer.

The other software microprogramming tools are also described in
chapter three: a linker, symbolic dump programs, floppy disk file transfer
program, and DEC'S console program and console microdebugger. This

description includes a tutorial example,

The approach described here, and supported by these programs,
requires that the microprogram be written on the console floppy disk and
loaded into writable control store (WCS) using a console LSI-11 command.
The alternative to this is to load WCS directly from the VAX using the
privileged WIPR instruction. The disadvantage of the latter approach is that
failing to write a WCS image on the floppy disk does not permit the use of the
console microdebugger to its fullest advantage. In particular, examining and
changing WCS locations is impossible without the image file. These facilities
may make little difference to the YALLL source programmer, but their
absence would make microassembly-level debugging much more tedious

than necessary.

A large part of this report is concerned with the VAX-11/780 architec-
ture and microarchitecture. Chapter two presents a brief overview, and

Appendix | is a fairly thorough description of the macro-architecture, the

microarchitecture, and how they relate.

CHAPTER 2

YAX Architecture Summary

This chapter presents a quick overview of the architecture of the VAX,
and of the microarchitecture supporting it. Famiﬁarity with this material
will aid the understanding of that which follows, especially the examples of
chapter four. The architectural features presented here are not necessarily
the most interesting aspects of the machine, but those which most pro-
foundly affect the microarchitecture, and thus the writing of microcode. For
example, the variable length of the instructions affects how the microcode
interacts with the instruction-fetch unit, and the size of data types sup-
ported determines how memory is accessed. Al the material here is
presented in much greater detail in Appendix4; in particular, the microar-

chitecture and microinstruction fields are presented there in great detail.

1. MACRO ARCHITECTURE

The architecture of the VAX-11 is based on that of the successful PDP-
11 family of computers. The VAX does have a "compatibility mode", for run-
ning PDP-11 programs, but when running native-mode instructions, only
“cultural compatibility” is maintained. That is, VAX data types are similar to
corresponding PDP-11 data types. The VAX instruction format is also similar
to that of the PDP-11; an opcode, followed by operand-specifying bits, using
one of several address modes. VAX instructions may have zero to six
operands, whose specifiers vary in length from one to nine bytes, as detailed
in section 1.1.2.2 of Appendix A. Data types supported are: binary, two's com-

plement integers (of length one, two, or four bytes), floating point numbers

4

ay

v

RS

me

<.

5

(four or eight bytes), packed decimal strings (to thirty-one digits), and char-
acter strings. The architecture is basically register oriented, but some of
the addressing modes facilitate the use of a stack, both for expression
evaluation and local variables. There are sixteen, thirty-two-bit "‘general’
registers, one of which (register r15) is the program counter, pc. Other
registers are used by special instructions or convention including the stack
pointer, sp (r14), frame pointer, fp (r13), and argument pointer, ap (r12).
Furthermore, the decimal and c¢haracter string instructions use some of

registers r0-r5.

The YAX-11/780 has a 2% byte address space, of which the top fourth is
‘reserved” and unusable. The remaining addresses are divided into three
regions: PO, P1, and system. Logical‘addresses are translated to physical
addresses by way of paging. Each region has its own page table, containing

one entry for each 512-byte logical page in that region.

The physical memory, as well as peripheral devices, is connected to the
CPU by way of a hierarchy of busses, the principle one of which is the Syn-
chronous Backplane Interconnection (SBI). The SBI has a 2% longword
address space, encompassing memory, secondary storage devices, and 1/0

devices.

2. MICROARCHITECTURE

The beart of the VAX CPU is the 32-bit ALU and its associated registers.
A simplified data path diagram is given in Figure 1. The general registers
(r0-r14, but not pc) are kept in a register file (RAB). One set of registers’
output passes through latch LA to the A (right) side of the ALU; the other
passes through latch LB to its B (left) side. A file of temporaries (RC) is avail-
able on the ALU's left, passing through latch LC. A set of 64 18-bit constants

is also available on the ALU’s left. Two very important registers, D and @ can
be gated to either side of the ALU -~ they have several special properties,
especially in regards to shifting. The 32-bit D register acts as the memory
data register- all data routed to or from memory must pass through it. The
“internal data” or ID bus takes its data from D and delivers to Q. This bus
connects to several control registers (such as the alternate stack pointers,
page table origin and length registers), as well as the instruction buffer
(fetch-ahead unit). Instruction-stream data is received by this path, as are

branch displacements.

The rotation unit takes the 84 bits from the Q and D registers (Q on the
left), rotates by the amount specified by the contents of SC (or another
source), and deposits 32 bits of the result back in D. A positive count
denotes left rotation while a negative count denotes right rotation. SHF is

also a limited shifter used for scaling index values.

The memory address register VA, and instruction buffer address IBA,
can be loaded from the ALU output; which of them is used as a memory
reference address depends on the destination of the data-VA is used for data
fetches (via register D) and IBA for program stream fetches (to the instruc-
tion bufler). Either of these registers may be loaded into the PC, which may
be incremented using a dedicated adder, thereby avoiding use of the main
ALU. In order to speed the handling of floating point quantities in machines
without the optional floating point accelerator, an auxiliary, 10-bit ALU
(called EALU) is provided. The major component in its data paths is the SC
register, which is also used for shifting operations. Other registers associ-

ated with it are FE and STATE.

P

v
e b

VAX microinstruction format. Control words are 96 bits wide, and
divided into 30 fields (see Figure 2). Because of the great control word width,
considerable parallelism is possible. Thirteen bits of each microinstruction
are used to form the address of the successor instruction. When straight-line
microcode is being executed, this address is used directly. But, when any
conditional branches are taken (governed by the BEN microword field), other
information is also used. BEN selects one of twenty-six groups of three, four,
or five condition bits. For example, group "1A" is the PSL condition code
bits: N, Z, V, & C. These conditions are ORed with the low-order bits of the
microaddress field (JMP) to form the address of the successor microword. If
the SUB field is one, a microsubroutine call is specified, and the address of
the current microword is pushed onto a (sixteen deep) stack before the
branch is taken. If the SUB field is a two, an address is popped off this stack,
and is ORed with the instruction’s JMP field, as well as any conditions

specified, to form the next word address.

Sy3sd e3ed NdD

potJTIdwig - T sanft.

1o MEMORY ADDRESS

——"
'S /r‘
>
i .=
______ . Cva) o] e
: Ve to BMmX
]
| rs7a7E [FE | Csc 7! SHF
| i
A
I
L I \
—_— —— —|-
ALy
A ‘F""‘: 1D Bus from MEMORY
Y B A > [] DRTA
M=y = = —db— —
I 1
By Amx ,) D I
Pcl-)-—] M‘ P P J l
¢ Rotations |
o
T y X 4 L _____ Mwur _..l
" CTc S LA | v
CONSTANTS ~N. Y to MEMORY DATA
8 1D Bus
MASK Re RAR
T 1
) - &° LN

<) - ., LY

| EALU | Jp |
{5 1312 o)

. V. F g

A E ¢
LIEK | MSC | K|KJK| cck |EBMX | SMX |
31 3029 2625 24 23 22 2019 1817 6
A
D - |
|SIMCT/CID [FS| SPO | _PcK
Y7 Te 13492 4 35 34 32
| KMX_ |SI/ACM QK | SGN__ |
63 5857 55 5% 57 50 v
5

DT [X| BREN IACF | ALU |suB|
Y 1877 76 2 1 7069 66 65 ¢y
L_1BC | DK [SHF [BMX |AMX |
95 92 91 88 8¢ 82 828

'-o . ' . /‘ J '
“igurel - VAX microinstruction fermat

CHAPTER 3

The YALLL Language

1. YALLL Language Description

However widely computer macro-architectures vary, their supporting
microarchitectures are remarkably similar. While macro-instructions may
deal with control blocks, stacks, queues, and character strings, the microin-
structions are concerned with registers, ALU functions, and transfers of data
to and from memory. The YALLL microprogramming language deals with
these same sorts of primatives: all arithmetic and logical operations are
between registers, and the only accesses of main memory are via loads and
stores. Statements are also provided for microprogram sequence control
(conditional branch, subroutine call), and to control the binding of variables
to registers. YALLL is thus very much like the assembly language for a
machine such as the Data General Nova. One YALLL language statement is
written on each line, with the exception of the jtab statement, which will be
discussed later. The semicolon serves not as a statement separator, but as a
comment escape; nothing written between the semicolon and the line’'s end
affects the meaning of the program. A label and a colon may precede a
statement, making it the possible destination of a jump. In the absence of
branching statements, YALLL statements are executed in the order in which
they appear in the source program (though they may not be loaded into con-
trol store in this order). Programs may not be self modifying, and there is

no explicit means of accessing data in control store.

10

L}

1.1'

Syntax (diagram)
{ load} (obysical] reg, [reg [+ cezp]]
stor ‘ cezp

{ move] { reg]
reg,
cmpl cerp

add
addil
sub
subl
and
or

xor reg, {
sri

sra
src
sll
sla
slc

Teg] {reg
cezp ’ cezp

jump l Cep
cexp

label
call

cexp
rtn

jtab reg [cezp : cezp] of
cezp cezp
[{] [.{ }]': label J*
sel sel
[else iabel]
etab
{reg [+ cezp]
exit
cerp

] [sence]

label } i { Teg relop ireg ;
i
Teg <cexp> relop cezp

h

Fl

R

F’'s 2

sajeorput ad£y ay] -sajqelrea siq Jo) s3dLy £Jj10ads o} £qunjzoddo ayy Jswr
-urex8cad sy} saalf Surpuiq orjoquufs siyl ‘uresSoudolotur e ur J3}3e] 3Yj asn
pue 'wayj 0} saweu ofjoquis pulq Lew Jo ‘spuerado 1ajsues) areudissp 0}

saureu Ja3si¥ad U-}MQ §,8UIgorW ayg} asn Lewr Jawrwreidouxd TTIVA 94

sadfy ‘sxa151831 °1°2°T

sonuewsag ‘'l

(suonisod ,a1eo q,uop, ws,X) _ [X10]# =:: 788

0 A

VAV AV

=:: dojas

(1quinu Lreurq) _ [10]# |
(1aqumu rewraspexay) X, [4-¥6-0](6-0] |
- (s8qunu 1e320) _ [2-0]% |

(asqunu rewioap) +[3-o] =1 13Qunu
dzas ¥ dzao |
dzas F |
(dzao) |
awou |
LaQuinu =:: dzao
puaa
uidaq
dzas 210

dzas nba awou

[{ paoa

8aot paudisun
B4l

| 634 = awou Bax
poudis

a1

13

how many of a register's bits are to be considered significant and how
conversions, if any, are to be done. The YALLL/VAX compiler does not sup-
port the type checking implied by strict typing, nor all the coercions implied
by mixed type arithmetic. It is felt that, at this low a level, the former would
be more of an encumbrance than an aid, and that the latter requires too
much run-time overhead. In this implementation, the register type deter-
mines how much data is transferred on a memory access, and whether a
quantity will be sign- or zero-extended or unchanged in the course of a move
operation. A limited amount of type checking is done, so that one may add a
short type into a longer operand, but not vice versa. Shift operations are
also checked, to make sure the source of bits (not the shift count) is no
larger than the destination. The only real typing problem occurs in the case
of shifts: a byte circular shift, for example, is not what the term implies, but
really a byte, extended into a longword, then rotated. The VAX rotation
hardware actually only supports sixty-four-bit rotates, so that even a thirty-
two-bit arithmetic shift is not as efficient as one would hope. The section on
VAX peculiarities gives more detailed information on registers, variable

representation, and coercion action.

1.2.2. register transfer operations

Register transfer statements take three forms: memory access,
register-register transfers, and three-register arithmetic. Memory accesses
specify a source or destination register and a main memory address. This
address is a constant, a register content, or the sum or difference of a regis-
ter content and a constant. The amount of data transferred depends on the
declared type of the target register. On the VAX, this defaults to a four-byte

longword. A VAX memory reference is normally to virtual memory, since the

14

addresses passed from the macro-program are usually virtual addresses, and
since the memory-mapping mechanism is quite easy for the microprogram
to invoke. To avoid this address mapping the keyword physical should

appear in the accessing statement.

A register-register transfer can be either a complement or a move. The
source of data may be a register or a constant. Move is the only statement

for which VAX microcode will be generated to do type conversion.

The three address register instructions provide most of the normal
dyadic functions (addition, subtraction, logical and, or, exclusive-or), some
shift operations (arithmetic left or right, logical left or right, circular long-
word left or right), as well as addl and subl. (The latter two compute dest «
srcl + src2 + 1, for implementing multiple-precision arithmetic.) On the VAX,
a negative shift count does a shift of the same type (arithmetic, logical, cir-

cular) in the opposite direction to that specified.

By appending encc, for enable condition code, to one of these transfers,
the machine's condition code bits may be set. On the VAX, only PSL bits N

and Z are affected.

1.2.3. control operations

YALLL provides no code-structuring facilities such as compound state-
ments or looping constructs; all of its control mechanisms are very simple:
goto's, subroutine call, return, table jump, and exit. The unconditional goto
is the jump statement, and takes a label or constant destination. A condi-
tional jump is of the form *‘jump label if condition”, where the condition is

the comparison of a register’'s contents with those of another register, or

"y

e

15

with a constant, or the test of a single bit.! The subroutine call-return
mechanism is simple and parameterless. The call statement causes the
return address to be saved in a sixteen-deep stack, and the rtn causes the

iop address on this stack to be popped and used.

A more interesting construction is the jtab multi-way branch, where a
field of a register is used to select one of several addresses as a jump desti-
nation. On the VAX, the width of the selecting field may be up to four bits.
The mapping of integer field values to labels is given on the lines between the
jtab and etab, the closing bracket. Each line is of the form of a comma
separated list of values, a colon, then a label, which is the jump destination if
the selected field takes on any of the corresponding values. Besides integers,
the value list elements can be selectors, which have the form of binary
numbers, but with X's in **don't care’ positions. Thus “#XX1" is equivalent to
the list **1, 3, 5, 7''. The last line of the value-level map may be '‘else label”,
which specifies that for any values not specified on the preceding lines, con-
trol should transfer to the given label. If the else is not specified, and if the
selecting field takes on an unmapped value, execution falls through to the

next executable statement.

The exit statement causes execution of the user's microcode to end, and
macro-instruction fetching and interpretation to continue. If no argument is
given, sequential instruction processing is assumed. If an address argument
is given, it is used as a macro-program address, from which the next instruc-
tion is taken; the program counter, PC, is also loaded at this time. In VAX

microcode, an exit without an argument causes the PC to be incremented by

'0n the VAX, arithmetic tests take into account the sign bit, so the result
of comparisons of long unsigned quantities may be wrong. For example, un-
signed FFFFFFFF (hex) > 0, but taking the sign into'account gives the oppo-
site result.

16
one, and the current op-code to be discarded.

1.2.4. other pseudo-ops

In addition to the register name equating statements described earlier,
YALLL provides ‘a handfull of pseudo-ops to ease symbolic microprogram-
ming. The equ statement serves to equate a name with a constant expres-
sion. The expression may include numbers and previously defined constant
names; it should not include register names, nor labels {on the VAX, these
are not given address values until after all code generation). The org state-
ment allows one to assign an address to the beginning of the code generated
by the following YALLL statement. This is often necessary for linking to a
machine's native microcode, which generally jumps to a fixed location to

enter the user’s code.

The begin and end pseudos provide a means for controlling the scope of
variable and constant names. These symbols obey the usual block-structure
visibility rules under control of begin and end. Labels, however, are global.
This means that the same register may be used with different names and
types in separate (non-nested) parts of the program. (Recall, though, that a
routine call and return from one area to another using the same registers
does not cause the saving or restoring of them.) An end statement also
denotes the end of the program text, and must be the last statement in it.

End causes no code to be generated, and should not be confused with exit.

1.3. VAX Peculiarities

Throughout this language description, 1 have tried to indicate which
features are machine-dependent and, by implication, which are not. The

most implementation-dependent features of YALLL/VAX are described in this

17

section. These peculiarities fall into four groups: representation of short
types and conversions; register names; control store addresses; and an

assembler escape.

1.3.1. representation

In the VAX, all registers are thirty-two bit longwords. Words and bytes
are sixteen and eight bits, respectively. In code produced by YALLL, all
register quantities are represented as longwords, for the following reasons:
The general, macro-program visible registers have the capability of storing
partial register quantities, leaving the upper bits unchanged. However, none
of the other registers in the CPU share this ability, so that, in order to avoid
propagating garbage when doing operations between register types, one
would have to mask or sign-extend quantities coming from the general regis-
ters. In order to avoid this overhead, YALLL/VAX always writes full-register
results into them. No run-time bounds checking is ever done. So, for byte

register x:

move Xx,255
addl x,x,255

will cause x to contain 511, even though this quantity cannot be stored in a
byte.

Sign "“extension’ is done, strangely enough, when moving a long quantity
into a shorter quantity. Since all variables are represented in longwords, it is
not necessary to change representation when moving from short to long. But
going the other direction, long quantities are truncated, and sign or zero
filled, to assure that the type of the receiving variable is not violated by the
transfer. The type conversion for all combinations of source and destination

types are shown in Figure 3. (These actions are coded into a table in the

18

translator, and may easily be changed by recompiling it.)

1.3.2. register names

The register.names currently available to the YALLL/VAX programmer
are shown in'Figure 4, along with the location of their associated physical
registers. These names are entered into the symbol table upon initialization
of the translator. . They all have default types of unsigned long, and are un-
reserved. ID bus registers are more expensive to access than are other

registers, and some are read-only (see Appendix 4).

The OPERAND register is the specifier byte of the instruction buffer; this
is treated as a pseudo-register. Each time it is read, the byte is cleared, PC
incremented, and the next instruction-stream byte shifted into place. The
programmer should not, therefore, modify the PC to account for the macro-

instruction argument(s).

Destination
Sourc® [a [sl {uw [sw | ub [sb)
| ul VAR VAN I I O I O I
sl VAR IRV I T I O I
uw ARVA IRV RV I I
sW VARYA IRV RV N .
ub VA RVA RV IRV IRVEIRV/
| sb VA RVA RV RVERVERY
where
ul - unsigned longword /- no change
sl - signed longword 0 - truncated and zero-filled
uw - unsigned word + - truncated and sign-filled

sw - signed word
ub - unsigned byte
sb - signed byte
Figure 3 - Coercion Actions

Q"

14

- »

no eV

"
fog

NURTY

(L]

18

Register Regiser cation
_pame Location TAmS. Locati
r0 RAB Dreg D
ri RAB Qreg Q
re RAB VA YA
rd RAB SC SC
r4 RAB PC PC
5 RAB OPERAND D
r8 RAB DAYTIME D
7 RAB RXCS D
r8 RAB RXDB D
9 RAB TXCS D
ri0 RAB TXDB D
ril RAB POBR D
ri2 RAB PiBR D
ri3 RAB SBR D
ri4 RAB Kksp D
rid RAB ESP D
to RC SSP i)
t1 RC usp D
t2 RC ISP D
t3 RC PCBB D
t4 RC SCBB D
t5 RC POLR D
ts RC P1BR D
t7 RC SLR D

Figure 4 - YALLL/VAX Registers

1.3.3. addresses

The areas of control store designated for user microprogramming are
locations 10EQ, and 1400-1800 hex. These are the only addresses the transla-
tor will attempt to bind to a microinstruction, and are the only addresses

which should appear in org statements.

1.3.4. assembler escape

The YALLL language is not designed to allow one to use all the machine's
resources, but only to make the writing of microprograms a reasonable task.
Therefore, one might want to embed segments of microassembly language
code in a YALLL program, either because the code emitted by the translator

is unsatisfactory, or because there is no way of dealing with VAX-specific

20

mechanisms (such as interlock read/write, or the accelerator). To make
this possible, one can write VAX microassembly statements between asm . . .
msa brackets. The primary restriction on such statements is that one may
not use DEC's macro definitions. (One may, however, write one's own macros
and use the C compiler's pre-processor to expand them.) The form of an

assembly-language statement is:

[ladel:]” [const:] field- id/field- value [, field- id/field- value]
where the constant binds this word to a specific control store address, and
field- value is either a compile-time constant, or a label (in the case of the J
field). Assembly-language statements may be broken over several lines, so

long as there is at least one field - value pair, with a trailing comma, on each

line.

Finally, each address restricter, for constructing jump tables and sub-
routine linkages, takes the form =[01X]+ and must be matched by a closing
bracket =end. For example, to jump to location A" if the middle sixteen

bits of register r3 are zero, else location 'B", code:

asm
SP0/43X, ALU/OF, AMX/0, DK/8, SHF/0 ; D_R[R3]
BEN/18X : D.BYTES?
=1001
J/A : D<23:8> =0
J/B . D<15:8> 70
J/B : D<23:18> 7 0
J/B + D<23:8> # 0
=end
msa

2. VAX-11/780 MICRO-PROGRAMMING SYSTEM

Creating a microprogram for the VAX is a process of several steps,

involving various software tools. The primary tools are an editor, the YALLL

T

21

compiler, and the console-resident microdebugger. In this section I shall
describe the user's interaction with most of these, and detail the choices

offered by them.

The excellent editors (ex and vi) available on CS VAX/UNIX are written
by Bill Joy [Joy 77b], and should need no introduction to anyone familiar with
the system. One of these editors should be used in preparing the YALLL

source file. The next step is to have this file compiled.

2.1. The YALLL Translator

The translator is a large 'C’' program called yc. It will take an input file,
and produce a binary output file. It will not produce a source code listing,
but will dump the intermediate code at various points in the processing.
Although the translator is actually a single program phase, it conceptually
has three passes: the first reads the source, parses it, and generates inter-
mediate code; the second does peephole code improvement; and the third
assigns addresses to each microinstruction, and writes the binary file. The

translator command line is:

ye inputfile [-d[1][2][3]] [-2] [-o filename]
where the order of parameters is not significant, except that they are
scanned from left to right. The inputfile is the source file, produced by an

editing session. It is conventional to use filenames ending in *“'.m" (as in
“*source.m’') for microprogram sources. If no filename is given, standard

input is read until a fatal error or end-of-file (control-d).

The -d options specify that a dump of the intermediate code is to be pro-
duced after the specified pass(es) of the translator. This is a human-

readable representation of the binary being produced, and is written on the

)

22

standard output file. The reading of dumps will be fully explained in a later
section. The flag -2 specifies that the second compiler pass, code improve-
ment, is to be suppressed. This should only be done if you feel that the
microcode produced by the compiler is incorrect because of “improve-
ments'” made in the second pass. Note that microprogram segments
entered in assembler-escape mode will not be touched by the code improver

in any case.

Finally, the -o parameter governs the binary produced by yc. If this is -o
-, no binary file is written. Otherwise, the following word of the command line
is taken as a filename, and output is written in it. If no output disposition is

specified, a binary file is written in file m.out.

2.2. Macro Processing

The assembly escape provided in the YALLL translator permits the
microprogrammer full access to the microarchitecture, including functions
not employed by programs written in the YALLL language. However, assem-
bly language programming using this facility is not as easy as programming
with DEC's macro assembler. This task may be made easier by the use of the

C pre-processor.

The C preprocessor allows one to define one-line macros, with or without
parameters. A parameterless macro (such as a constant) is defined by:
#define name siring
And a macro with parameters as:

#define name(parameter list) string

For example:

v >

"ot

n

23

#define alu_q ALU/OF, AMX/1, RMX/1
#define R1 1

#define rab_alu(x) SHF/0, SP0/50X + x
asm

rab_alu(R1), alu_gq
msa

To use the preprocessor to do macro expansions in a source file z, then

translate the result using yc, the command is:

cc -E z ' ye options
One problem with this system is that it does not permit context-dependent
constant names, as DEC’'s assembler does. Thus, defining ‘‘#define RAMX 1",
so that one may write ""AMX/RAMX" will only cause trouble when 1 is substi-

tuted for the field name in ""'RAMX/0", or the like. One should also avoid

YALLL keywords and pre-deﬁne\d registers names.

Rather than writing macro definitions in each microprogram source file,
one may collect them in a file (or files), which the preprocessor will read as
input upon encountering a line of the form
#include "filename"
in its input. Note that the quotation marks are mandatory. The preproces-
sor does not pass the include directive to its standard output, but does insert
several lines of its own. These are ignored by yc, but may throw off line
numbers reported in error messages. The C preprocessor will read multiple
files, providing an alternate method of including a macro collection. To read
and macro process files z and y, then feed them to yc, the commana line is:

cc -E x y| yc options

24

2.3. Symbol Table and Code Dumps

At several points in the translation process, yc can be persuaded to
dump some of its internal tables in human readable form. These are pri-
marily intended for maintenance of the translator, but may also be useful to

the programmer, as will be outlined.

A symbol table dump may be obtained at any point during the scan of
the source program by the inclusion of a comment beginning ;%. This dump
may appear before any semantic action for that line has taken place. The
dump has three parts: the histogram, local symbols, ar;d global labels. The
histogram gives an indication of hash table usage, and indicates, for each of
the 258 table entries which is not empty, how many symbol names hashed to
that entry. This statistic includes pre-defined symbols, such as register and

field names, which do not appear elsewhere in this dump.

The local symbols are those visible at the point of the dump, according
to the normal begin . . . end nesting rules. Global labels are program labels
which were defined or first used within a block not including the point of the
dump. The dump of each symbol entry gives: the number of characters in
the symbol's name; the name; the line number where it was defined (if
defined) or first used; the pseudo-line number on which it was first defined or
used; its type (error or undefined; register; constant; label; and field name,
which are for pre-defined symbols only, and should not appear in a dump);
and its value, if defined. For labels, the value is a relative address in brack-
ets. For registers, the value is an index into the compiler's register table.
The pseudo-line number is the value kept in a variable set by the PS number
pseudo-op. If a high-level language translator were to emit YALLL, a PS

pseudo would mark the beginning of the code for each HLL statement, so

r

25

that the source of errors in the YALLL program would be traceable to a HLL

statement.

At the end of the dump, one of the messages ‘‘open action pending'’ or
‘close action pending" may appear. The former indicates that the symbol
begin has been scanned but not processed; the latter that end has been
scanned but not processed. These should only appear when one writes, for

example “end ;%'", and may change the meaning of the dump. A symbol
table dump may also occur spontaneously, as a result of certain kinds of

internal translator errors. An error message will accompany such a dump.

A code dump may be obtained at the completion of any of the
translator's three passes as indicated by the -d command line argument.
The dump after the third pass gives the most information, as it shows the
result of pass two code improvement, as well as address assignment. Eow-
ever, the relationship of YALLL source to assembly-like dump is hardest to
see at this point. This relationship is much better shown by the pass one

dump, which might be used as an aid to understanding the final code.

The dump exhibits several of the fields of each of the data structures
representing a word of generated code. Each micro-node, as these are
called, is represented by four attributes: address, field values, branch infor-
mation, and uses-sets information. The address is given as a ‘'relative”
address, in brackets, optionally followed by an absolute address (in
parentheses), or constrained address, preceded by an equals sign (=). In
pass one and two dumps, absolute locations are the result of org statements,
and constrained locations of conditional or table branches, or subroutine
calls. By the end of pass three, all locations should be given absolute

addresses. Relative addresses are decimal, absolute are hexadecimal, and

28

constraints binary. It is impossible for a location to have both constrained

and absolute addresses.

The body of a microinstruction, its field values, is given in approximately
the format accepted by the assembler: fieldname-slash-hex-value. Note, how-
ever, that the value given for the CID field is only that of the four bits not
overlapping fields ADS nor FS. Fields not explicitly set during code genera-
tion, and thus taking their default values, are not shown. As an example, the
pass one dump of the code generated by x: jump x if r0 = t0 is shown in Fig-

ure 5.

CODE DUMP

code size = 5 words

[0): 3}3[0620. QK/8, ALU/e, BMX/4,
J/[1
USES: LatchC RegC
SETS: Qreg LatchC

[1]: CCK/1, SPO/40, ALU/8, RMX/0, AMX/0, BMX/7,

4/[2]
USES: Qreg LatchAB RegAB
SETS: LatchAB CondCode

[2]): BEN/1b,
J/[3), 2-way branch
USES: CondCode
SETS:

[3]:=1011:
/(5]
USES:
SETS:

[4):=1111:
J/[0]
USES:
SETS:

Figure 5 - Code Dump

27

The jump address of each microinstruction is determined by the set-
tings of the SUB, BEN, and J fields. The former two are shown with the other
microword fields. The J field is given last, and indicates either a [relative] or
(absolute) addresses. By the end of pass three, all jumps, like all addresses,
should be absolute; if a relative jump appears in a third pass dump, a label
reference did not get resolved, and a run- time error will occur. For a multi-
way branch (BEN not zero), an indication is given of the number of possible

destination addresses for the jump.

For the purpose of pass two code improvement, the generation routines
store in the micro-nodes not only the appropriate field values, but also the
names of the resources (registers and latches) which are being manipulated
by the microinstruction under construction. This appears on the two lines of
uses-sets information of the dump of the micro-node. A resource is used if
its value is used in a calculation, and set if a new value is clocked into it. The
words FXCLUSIVE_IUSE appear when a microinstruction should not be com-
bined with those around it. This is the case when the assembly escape has
been used, or when the generated code is sufficiently tricky that any attempt
at code improvement might change its meaning. A micro-node represented
by only the relative address and an “X" is one which has been deemed
unnecessary by the code improver. These may be considered to have been

deleted, as they are not assigned addresses, nor written on the outpu: file.

2.4. Other VAX Microcoding Utilities

The binary file produced by yc is not ready to be loaded into WCS, but
must first be linked with other routines to be loaded there. The output of yc
contains no explicit address information; the first twelve bytes belong at con-

trol store location 10EOQ, and the fcilowing twelve-byte words are to be loaded

28

beginning at 1400 hex. The LSI-11-resident WCS loader can only load into
sequential locations, and (because of the floppy disk file format), only in mul-
tiples of 512 bytes. Also, the console resident debugger requires a floppy disk
resident image of WCS (see section 2.6). Thus it is desirable to make a single
file containing the entire WCS image: both native and user-written micro-
code. The native microcode can be found in a floppy disk file, currently
WCS118.PAT. This may be copied to a Unix file using arff, the floppy file util-
ity. The program merger may be used to combine a Unix file copy of the
native microcode {the *system file") with yc output (“‘user file") into a com-
bined file (“target file"”). The merger program will prompt the user for the

appropriate file names.

To verify the performance of yc and merger, two versions of a dump util-
ity are available, to interpret binary microcode files. The program undo will
dump a named file (default m.out) in microassembler-like format. This file is
assumed to be the output of yc. The dump format is the same as that of a
translator code dump, except that: all fields are shown, as the filed use infor-
mation has been lost; resource uses-sets information has, similarly, been
lost; words are given in increasing order of address, which may have little to
do with logical order. Similarly, interdump will verify a merger operation by
dumping, in the same format as undo, requested addresses of the file named
in the command line. Since the merged WCS image contains at least a
thousand words, dumping the whole file would be impractical, thus it is done

interactively.

Under the system described here, all WCS files are loaded by the console
LOAD/WCS command. Thus, these files must be written on the floppy disk, in

the format understood by the LSI-11 operation system. Two VAX programs

‘r

29

make this possible: The floppy disk device driver is part of the Unix kernel,
and deals with transferring sectors (of 128 bytes) to and from the floppy.
However, this program knows nothing of the disk format other than the sec-
tor size, and treats it as one long, sequential file. Thus it should not be used

alone; a command such as ‘‘cat /dev/floppy" is almost certainly wrong.

The program arfl, written by Keith Sklower, deals properly with the disk
format and uses the Unix floppy driver to request the data transfers of the
LSI-11 program (which actually deals with the device). Arfl is meant to

appear to the user like the program tar, and is invoked as
arfl actioncode [filename...]
where actioncode is one of the following:

t - list which of the named files are listed in the floppy directory. If no
filename arguments are given, the name of each file on the floppy is

printed.

tv - like t, but more information is given with each listing, such as creation
date, and size off the file, in blocks. Also, the number of directory
entries remaining is printed, and, if listing the whole directory, the size

of unused areas.

x - extract named file from floppy to Unix file. If the file name is a path
name (with slashes), the last portion is taken to be the floppy file, and

the entire qualified name is the Unix file.

r — replace (or add) floppy file from named Unix file. Qualified file names
are interpreted as for x. If the named Unix file is larger than an existing
floppy file of the same name, it may be necessary to first delete the
floppy file, forcing an add action, rather than a replace. If the directory

is full, or the whole floppy disk is full,an error message will be written.

30

d - delete named files from floppy directory.

For example, to repack the floppy, combining several small unused areas
into a larger unused area, we could extract the entire contents, delete it all,

then replace each file as follows:

% set fi='arff t' C- shell variable $f1
% arfl x $
% arff d $A
% arfl r $1

Floppy disk file names have up to six characters, optionally followed by
an extension (qualifier) of up to three characters; e.g. WCS118.PAT,
WCSMON.HLP. Furthermore, they must be composed only from the Radiz- 50
character set: A-Z, 0-9, $, %, and period (.). The latter character should be
avoided, since it is also the separator between name and extension. Arff does
case translation, so that all letters appear to be in lower case. WCS image
files should have names of the form WCSnnn.PAT, since there seems to be

some restriction on the names of these files, and this formula seems to work.

2.5. Dealing With UNIX

In order to load and debug microprograms on the VAX, it is necessary to
stop timesharing, halt the machine, and either run stand-alone, or use Unix
as a single user. Here we will outline some of the important Unix commands
necessary for failure-free operation. It is assumed that you have arranged
with the system manager to halt timesharing, and that you have a Unix

account, though not necessarily root.

To increase disk through-put, Unix employs file read-ahead and write-
behind. Because of this, if the system goes down unexpectedly, grave file-
system inconsistencies may result. The sync command causes all disk files

to be brought up-to-date, by writing out buffers-full of data destined for

31

writing. This command should be used whenever the system might stop, as
when you are about to halt the fnachine. or test new or shaky microcode
under Unix. See the Uniz Programmer's Manual, sync (1 & 2), and update
(8) for details. _Unix is brought up from a halted machine using the console
command B or ®UNIX in response to the >>> prompt. This causes console
commands to be executed from the floppy disk file UNIX. Finally, a VAX boot
program is read from the hard disk, and will prompt file:, after which type
unix, or whatever the appropriate name is for the system being run. This will
be loaded, report on the available memory, and prompt with #. If a control-d
is typed to this prompt, commands will be taken from the file /etc/rc, which

will bring up timesharing. Therefore, don't type gratuitous control-d’s!

Before bringing up timesharing, you should always check the integrity of
the file system. This is done with the chk command (which in turn executes
dcheck and icheck, see section one of the Uniz Programmer’s Manual): chk
/dev/rrp0a /dev/rrp0g is the least you should do. This takes about fifteen
minutes, and will report on any inconsistencies it finds. If dcheck reports a
file having more entries than links, the system manager should be notified to
fix this situation before you go any furti:er. If you did sync's before taking

the system down, there should be no problems.

If you don't wish to bring up the full system, but want to access files in

your directory, it will be necessary to mount the /usr file structure with
/etc/mount /dev/rpOg /usr

The easiest thing to do at this point is to use the login name command to
give you your own home directory, shell, and identity. An alternate possibil-

ity, which retains the root user identity, is the following:

32

csh get a reasonable shell

% set home=~yourname
% cd

% source .cshrc; source .login

The problem with this is that any files you create in your directory belong

not to you, but to root.

2.6. At the Console

Loading and debugging microprograms from the VAX consol requires
using DEC—supplied, LSI-11-resident console software. These programs are
quite adequate for most of the simple tasks necessary for debugging a

microprogram.

The console command interpreter takes the place of front panel lights
and switches on the VAX. When the console is in "program 1/0 mode’ {com-
municating with a VAX program, as when waiting for a login), it may be
switched to console command mode by typing a control-p. The console
prompt is >>>, character erase is del or rubout, line kill is control-u, pro-
gram kill is control-c. The command SET TERMINAL PROGRAM is the inverse
of the control-p command - it returns the console to program 1/0 mode. A
HALT command stops VAX CPU instruction interpretation, and puts the
microcode in a console-command servicing loop. The microcode’'s coopera-
tion is necessary, for example, to manipulate main store locations from the
console. The CONTINUE command restarts VAX instruction execution where
it left off, and START address first sets PC to address, then starts instruction
execution. Many other commands are available, and are outlined in the con-
sole floppy file CONSOL.HLP. This may be typed at the console by the com-
mand @CONSOL.HLP, or transferred to a Unix file with arfl and listed; see

also Figure 8a.

'SLISOdIT ANV SINIAVXE TVILLMIA
GNV IVOISAHd 40 SS3¥AQV FALLOES4T OL
CECCOV SI HIALSIDFY NOLLVOOTHY "MELSIDIY

NOLLVJOTZY S.TTIOSNOJ OLNI <HIEWAN> lad- <YIERNN>NOLLVIOTIZY L3S,
TVAMON Ol BTud ¥J0'10 Nndd Las- JIVIRNON ¥D0TD 13S.
ISV Ol dIUJ ¥I070 ndd 1IS- JLSVI MI0T) 138,
"MOTS 0L ®IUI MO0 Nndo las- MOTS ¥J0T0 23S,
‘MELSIDIY HOLVW-OMDIN dHL SI 2 HAISIHIM @ ILON
TIEVNI HOLVIA-OUDIA NO dOIS, ¥VIID- JON0S ¥VITID,
TIEVNT . HOLVK-OMIIK NO dolS. 13s- JNOS LS.
(SHO¥EI 2003 SUVIIO)AXVANNOH QHOA aVnd V 0L
QIIE04 SI HOIHM'<SSTUGAV> OL ¥VETI0 avnd v s3od- <SSTUAAY> ¥VITOD.
CNVIHOD .d3I8 43S, ISVI NO SANIdIC d3IS
J0 3dAL ‘INOQ TUV STIOAD dIIS <YIGWAN>- <UIERAN> LX3IN,
FAON (dILS ON)TVWEON FTIEVNE- HE2IS HVTIO.
Z00K NOLLONWISNI TIONIS SITEVNEI- NOLLOAXLSNI dZLS i3S,
IAOR ¥O0TD AIVIS FKWLL TIONIS FIEVNE- JAILVIS d3LS 13S.
JAON ¥O010 TIOXD SNE TIONIS TIGVNE- 8N dElS L3S
1S FHL SWVINA- JAVINAL
SONVANOD SIIVAMV'SOLLSONDVIG-QMIOIA SAVOT JK0D/183L.
/ SOLLSONOVIG-0MDIK SNNY- LSTL,
TIOSNOD (ONV ZCOJ0¥IOIK S0 SNOISHIA SMOHS- NOIS¥ZA MOHS.
iVIS NdD OGNV TTOSNOD SMOHS- MOES,
ndd FHL SIZTIVLLNI- JIZI'TVLLINI,
IJIAIA IINVIIAC WO¥d NdD THL Sloog- +LOOE,
dsl 3FHL SITVH- JLIVH,
‘dSt FHL OL ZNNLINOD V SINSsI- ANNILNOD.
‘dSI FHL Ol ANNIINOD ¥V SENSSI '0d HTHL 0L
<SSIUAAV> SLISOdIA'NSD FHL SIZITVILINI- ,<SSFUAQV> IAVIS,
WHINNOD INIOd NOLLNOAXE % ‘NAIL034S 'ZA0I-d0
SAV1dSIa '(zgl)'aza NOLLONHISNI SENIKVXI- M ENIRVXTE,

(STH'AZMEAY FIS)SP200 A/d. ‘SI ONRIS QNVAR0D INBINN
ISIINOHS EHIL ‘6201 SSTMAQV TVAIMIA INIWVXE OL :FIdAVXE
SYULSIDTI SnEd ¥0d (ai/.
SUHLSIDIY SNdA ¥0Jd BN/,
(Od NY¥HEL 0¥)d NYHL 0 SYILISIOTY 'IVVINID ¥0d 9/,
SYILISIOIY (YOSSIO0Yd)TVNYIINI ¥0d I/,
AMOWIW TVALMIA ¥Od .A/,
(I1NV430 FHI)AEOWIN TVOISAHd ¥0d 4/,
‘SNl 0L IOVdS SSINAAY ¥Ed0Md JIHL
AJIDIAS OL IWVN CONVIROD FHI ¥ILJIV ¥EIATVAD V ISN
<SSHMOAV> OL <VIVO> SLISOdI0- .<VIVO> <SSTUQav> LIS04dd,
<SSIYAAV> 40 SINIINOD SAVIASIA- <SSFHAAV> ENNVXE.
NINLIY JOVRMV) A6 CEILVNINYEL EZYV SAONVWHOD TIV

(XIH H04 X% "TVIOO Y¥OJ O%) IAUUIAO
XIQVe LINVAEd V HIA IXLITMd SL191d 40 DNIHIS Y0
YIQve IINV4EQ INZENAD NI SIIDIC 40 ONIMIS = <NIEWNN>

(ssz¥agv ¥od VIVQ lLISOdIA/INIKVXE ISV1 SISn) 8.
(ssayaav (s)JISVI. SNIQITIFUL SSITUAAY) o~
(SSTHaav (e)JSVI. ONIMOTIOL SSTUAAV) .+,
(SsTUEAV ISVI) .
(Q¥OM SNIVIS HOSSIJ0Ud) 1Sd.
(SHZISIOTN TVEANID) .Od'dS'dd'dv' ity 'gu' 1404,
(SONVIRWOD JISOdE » INIAVXE ¥0d AINO)<SISSINAAV> OrI0EWAS
ONIMOTIOL FHI J0 ENO HO '<MEAWNN> V SI <SSINaAv> IVEINID
JIH'ZIONTNS®, ZdAL 'JTIIH SSTIOV ZLOWIM ¥O0J
JTHH0NYT®, IdAL ‘JTIZH IOVSSIN HOWNE ¥OJ
JIHATHEEV®, FJAL 'STINY NOLLVIATNEEV ¥OJ
Ov TdAL ‘ONLINTNA OIS OL
fL61-10r-92 8 AT TIL JIUH FTIOSNOD 084/1I-XVA

ee

3

0} pasn St 3 J1 *joadsul ueo)1 yYSIYM 8JOIS io.xquoa Jo sBewt JuUapPISaI-HSIP
e 3q aiay} jey} sadinbaa 1ad3nqapoaotd SOM 8YY 'Shy] ‘wodj pead jou jnq ‘Ul
U3)jldM 8q UeD 1 — wnIpawl A]uo-2}1dm e S1 3J0}S jOJju0D 3|qeildm ‘Jossavoad
P 3]0su0d 3y} Jo M3l jo jutod ay) wod] ‘qg 3Indig Ul umoys st STH'NORNSIM 31U
woJj ‘Alewituns puewwiod sy "<§oM sidwoad pue ‘oM £q paireo st J888nqap

ay] ‘peo] ayj} jJo Ssalppe 3}samo| ayj} Sajediput uondo JYVIS 8Y} alaym

awouayf 0007 :LYVLS/SOM/AVOT <<<

puewrtuoo ayy £q paystd
-woooe st Surpeo] -JadBnqgapolott ay} ajoaul pue ajy afewnr SOM © peol
jeyy asoyy aJte SurwwesSoadosotwr o} Sunjejad A]}0s8IIp SPURTIWIOD 3Y[
Aewiuing puewIwo)) ajosuoc) - eg aandiy

(TLYNDREIL TIM NOLLNDE

-XZ TOI ANVAKOD)O~ V SIEdAL HOLVHId0 ¥0 ‘SITVH
08L/11-XVA THL (8 ¥0 ‘'(INNIINOD TIA NOLLNDEXI

T4 ANVIKRO0D)08L/TI-XVA FTHIL NI ODNINNNY WVHEDOMd

FHL KOMd QIATIORN S TYNDIS ANOQ, V (V TIINN

dOLS Ol NOILNOEXE TIHd GNVIROD ISNVD TIA GNVIRKOD

SIKL ‘T4 CONVAKOD JOTMIANI NV WOMJS QIALNDEXT NIHM- JNOQ LIVAL
QVoIsE DIVALIOS FTIOSNOD V SISNvd- «LOOETY,
STdd0Td TvNA ELM SWELSAS ISOHL NO I
JANC AddOTd SSEOOV OL SYVALIOS TIOSNOO SITIEVNI- SIXQ TIEVNE.
. (. JTH'NOWSOM®, IdAL
‘d7IH ¥IDONEIA HOJ) HIDONEIA-0MOIK STIVO- SOA,

O~ V A€ (34d0LS TILNA ‘<ONVARO0O-TIOSNOJ> ZHL
ALNOEXT ATTGELVEQEY OL ITOSNOD FHL SISAVY - <ONVIIT0D-TTIOSNOD-ANV> LVIdETY,
"ONVAROD MNT1. V VIA JSLVEENTD
AISAOIAREd SANVIWKOD (QENNTT 40 JT0d V. dLNIEXd- JRHOAE A,
(WH0J¥3d JIAS)'ONDINIT SEIVNIRNIL O“IOHUINOD
'NOLLQOEXH ¥ALVT Y04 T4 AONVRIKOD JOTMIANI NV NI
C550LS 3¥V ONDINIT JTIHA ¥3SN A€ Q3dAL SUNVAROD
TIV "ONDINIT EIVOIONI Ol I1JRO¥d QISHIATY SLNTMd
ZIOSNOD "ONDINIT (ONVWROOD NIDEE OL FTIOSNOD SISNVY- JINTL
‘0 NOLLVOO1 HIIM NIDEE TIM
avoT ISIM¥EHLO 'aVOT V ¥Od SSTUAAY HNLIYVIS FHIL AJ10IdS

Ol QSN ZE OSTV AVA HILITIVAD .<SSITUAAV>:INVIS/. THI ZLON
3 SOM Ol QIWIdIdS T AvVoT- <LIRVNITLI> SOM/AVOT
. AYOKER NIVK OL ¥Td Qvot- <IWVNITII> aQVOTL
TUI ONVRWOD LOTMIONI NV SSIJ0Yd- LINVNTTI>O,
T4 SIHL SINING- : JTIH,
. (.T7gVSIQ, NI HOLIMS FAOW SSTINN)
° JAOW .0/1 TTIOSNOD. OILNI ALL TIOSNOD lInd- (2-1041INOD).d~.

Z0OW ,0/1 KVY¥O0Ud., OLNI ALL TIOSNOD INd- MVND0¥d ‘TVNIWHAL L3S,
<JT> ¥0 <¥D> YLV TVNIRYEL dJHL OL
NILLIMA SYNVIE J0 # ¥0d4 INNOD THd 13- SUIENNN>THOS TVNIRNEL L3S
avnd'ONOT CUOMA'ILAE SNEA 'S NEA TVHANID
TVNMELNI TV LLAIA "TV OISA Hd 'XZH "TV130 ‘d¥V <SNOLLJ0> :‘ELON
SLINVIIQ TIOSNOD 13S- «<NOLLJO>‘""'<NOLLd0> I1NVJ4Ea I3IS.

1]

‘ZH0JS TOMINOD JHL 40 NOLLNOd SOM FHL NI QIAVOT XALLNINNND

Z000-0¥2IN IHL ONINIVINQD T4 V AJ0IdS 0L C3IsSN S .NIJO, ‘4LON
I HEAINC AddOTd NO TOd QIIIAIS NIJO- SLERVNILL>IXA N30,
0 JARQ AddOTd NO ITd CALIEZdS NIdO- <IAVNZTI> N3O,
KRVED0dd TIOSNOD FHL OL NMNIZY- NUMLEY,
"5Q0R d4LlS NOLLONMLSNI-O¥OIN ITIONIS TIEVSIQ- «JELS "UVITIO.

"YEININBIS-0UIIN
ZHIL LTVH NIHL ‘ZLNOEXT 0L NOLLONYULSNT
-O8JIM ENO MOTIV TIIA ANNIINOD ¥O J¥VIS

‘HCOR dELS NOLLONMISNI-OMOIRN TIONIS FTIEVNI- CILS =S,
STEVNE HOLVW-O¥MDIN NO dOLS. EHL ¥VIId- JIROS ¥VETI0,
JTEVNE HOLVH-OHOIK NO dOIS. IKL LIS- JNOS LIS,
YIONINDIS-0MOIN EHL IIVH- JIVH,

<SSTUAGV> IV YIININBIS-08NMK LEVIS- «<SSTUAAV> LYVLS,

(0dn)0d-080I 40 SINZLNOD A€ CQILIDIAS
SV NOLLNOIXA NOLLONYISNI-ONDIN IKNSTY- JANNLLNOD,

‘qILIOLANS ION TUV (TRI)NOVIS HOTH FHL OL SLISOLIA :ILON
(ZA0EV LSTT FIS)SUALSIOZY QIWVN
ATIVOIIOEKAS FHL 40 INO OL <VIVa> lISOd3d- .<VIVG> <IRVYN-OIIOEWAS> .

YIISIOAY J¥ NV Ql <vViva> 1iS0dda- <ViVQ> <S8SRYCCV> 2¥ a,
YALSIOTY V¥ NV 0L <Viva> 11s0ddc- «<VIVG> <Ss3quacv> v¥ a

‘CEUVITO #H OL SIdd
QEIA0FSNA TIV ISNVD OL GESA 36 AV dILTIVAD .2/, EHL ‘ZLON
‘GIDNVHONN JuV
STIdld QIAIDEISNN "OLE ‘<T-ZRVNCIEL> OLND
<I-VIVQ> ONILLNd °'NOILVOOT SOM Ol 1IS0dad-
"""" '<S-VLVA> <S-EAVNQIII>'<I-VIVA> <I-ZRVNCIZII> <SSINaav> a.

YILSOHY SNE @ 01l <VIva> lIsoddd- <VIVQ> <SSFYaav> a/a.
AdORIR TVIISAHd OL <VIVO> lISOd3IQ- .<VIVG> <SSI¥aav> d/G.

2dN'¥S'OS YD DT AT VIVEI'EEd'MA = <STHVN-OTTOERAS> ELON

SYAISIOFY
GINVN ATIVOrIOEMAS EHL J0 INO ININVXE- LINVN-OTTOEHAS> T,
YALSIOFY O¥ NV EININVXE- «<8SH¥QQv> J¥ &,
YIALSIOIY V. NV INIAVXE- <8STMAav> vE 4,

MVA'NSN'0dS XS IS JHS ' NDS ' %IS XY
MD'MOd OSH' LOW XV "KL XA ' 0aT'Sd'NEd RET
TVE'LA' YA @I MOD XWE'NIE N'TV'SAV KOV LIV = <SINVNCQTIIL> ‘FLON
‘H1dIDddS SCTdld FHL
SaTId AINO AVI4SIA ‘NOILVOQT SJOA ININVXE
SN-ZRVNATILI> " <2-TRVNTIII> < T-IWYNCIIIL> <S|I¥aav> 3.

SCIEld TIV AVIASIG ‘NOLLVOOT SOM INIWVXE- <SSTYAQV> 3,
HAISIDEY SNE @ INIRVXI- ~ <SST¥cav> /3.
AMORZIR TVOISAHd INIWVXI- <SSIYAQAv> d&/3,

(NMNLTY ZOVINHEVD AE CQILVNIAYEAL TIV)SONVAWOO ¥IDONEIA

O~ ddAL ‘ONILININd 40IS Ol
LLBT AV 0-ATY IOd JTIH ¥EDHONHIA-0¥OIN

41

36

(ADDRESSES 1000{18) & UP IN THE CONTROL STORE)
THIS FILE WILL BE USED FOR ALL EXAMINES OF THE WCS,
SINCE THE WCS IS NOT DIRECTLY READABLE.

Figure Bb - WCS Debugger Command Summary

examine and patch microcode. (This is another reason for building a micro-
code image on t;he floppy. rather than going the shorter route of loading con-
trol store directly from the VAX.) The WCS command OPEN filename permits
the debugger to use the named file, which it assumes has already been
loaded, as shown previously. Modifying control store using the D command
changes both the control store contents and the disk file. The format for
examining and changing microstore locations is similar to the dump and
assembly formats, except that field name is separated from value by a space
for setting values and an equals sign for examining them (rather than a
slash); CID overlaps FS and is only four bits, and MCT overlaps FS but not
ADS.

A HALT to WCS will stop microinstruction execution, and is necessary

before depositing in control store or registers.

A very useful feature for debugging is the ability to set a break point in
the microprogram. The break point may be set either in console command
mode or when running the microdebugger, by placing the break address in
the micro-break ID register (21), then enabling the facility by the command
SET SOMM. When the given location has been executed, the microprogram
will halt, and a message will be printed. When you are done using this facil-
ity, it must be disabled by the command CLEAR SOMM. See the tutorial

example for a use of the break point.

v

37

2.7. A Tutorial Example

This section gives a step-by-step example of the microprogrém entry
process, including use of the translator, loader, and console microdebugger.
The example program will be a simple emulator, shown in Figure 7a. (This is
very similar to the CS-152a and CS-292R SM-1 example for the HP 21-MXE

computer.)

The simple computer emulated has an accumulator (AC), MAR, MBR, and
PC, and 1024 words of (16-bit) memory. RAB register r0 will be used for AC,
rl for MAR, r2 for MBR, r3 for PC, and r4 will point to the area of memory to
be used as the emulated memory. After these registers are loaded with the
appropriate initial values, the microprogram is called by the XFC instruction;
in assembler this is coded as ".byte Oxfc'. When the program is done, it will
return its values in the same registers and in memory. The emulation will use
word addressing, and will interpret eight instructions. This source program

should be typed into a file, call it sm1.m, using a Unix text editor.

2.7.1. translating the program Once the source is correctly entered, it

should be translated using ye. To get anidea of the code produced, try
yc sml.m -d13] lpr

The pass one dump should be pretty easy to partition into the groups of
instructions produced by each source statement. The pass three dump is
much more convoluted. This, though, is the appropriate listing for debugging

at the console.

Once the program has been translated, it must be combined with the
native microcode to produce a new WCS image file, to be written on the

floppy disk. If a copy of the native code is not available as a Unix file, one

Ifetch:

Halt:

Cmpl:

Shr:

3neg:

Jmp:

38

Emulator for the SM1

This program emulates a computer having eight instructions
plus halt. It uses VAX general registers r0 - r3 as the
emulated AC, MAR, MBR, and PC, and register r4 to point

to the 1k word emulated memory in VAX memory. The

XFC instruction takes no parameters except in registers;
initial values for AC, PC, and the memory space pointer.

org 10E0

reg AC = r0 signed word

reg MAR =r1 unsigned word
reg MBR = r2 signed word
reg PC =1r3 unsigned word
reg base =r4 unsigned long
reg temp = Qreg

all temp,PC.1 ; byte-to-word address factor
add VA, temp, base
load MBR,VA ;MBR <- mem[base+PC]

:defer incrementing PC till end of execution cycle

and MAR, MBR, 3FF ; extract address from instruction
: now do case jump on op-code
jtab MBR<15:12> of

0:Cmpl

1:Shr

2:Bneg

3:Jmp

4:Store

5:Load

6:And

7:Add

elgse Halt
etab

add PC,PC.1
exit

cempl ACAC ; complement instruction
jump Incpe

: shift right one bit instruction
srl ACAC,1

jump Incpe

: branch if (AC)<0
jump Inc_peif AC >=0

; unconditional branch
move PCMAR
jump Hetch

“ o

' L

Store:

add
stor
jump

Load:
call
move
jump

And:
call
and
jump

Add:
call
add
Incpe:
add
jump

; store instruction
temp,MAR, 1; word-to-byte address factor
VA temp,bage
AC\VA
Incpc

:Load instruction
Fetch-mem
AC, MBR
Inepc

:Logical AND instruction
Fetch.mem
AC,AC, MBR
Inc_pc

: Addition instruction
Fetch_mem
ACAC, MBR

PC,PC.1
Ifetch ; its only safe to increment PC after all fetches

: for this instruction are over, so 2 memory fault (page absent)
; won't cause us to restart in the wrong place.

Fetch.mem:
gll
add
load
rtn

end

data fetch routine
temp MAR,1
VAtemp.base
MBR,VA

Figure 7a - SM-1 emulator example, YALLL source

39

should be obtained by running

% arfl x wes118.pat

Next, run the merger program:

% merger

System file name: wes118.pat
User file name: m.out
Target File name: wes101.pat

Check some locations of the resultant file with interdump wes?071.pat.

40

Compare them with the pass three dump. Those fields shown in the dump
should also have the same values in the disassembly. Now, write the WCS file

on the floppy disk with
7% arfl r wes101.pat

If more than one microprogram image is to reside on the floppy at a time,
they obviously must have different names. So you may need to change the

name in these examples, if more than one microprogram is being prepared.

2.7.2. running stand-alone

Now, we will bring the system down, and test the microcode stand-alone.
Even in this mode of operation there are several things which have to be
taken care of. The most pressing of these is the system control block (SCB).
In the procedure that follows, this is set up to halt the processor on any
error. The halt address will be the SCB vector address, which is determined

by the source of error (see Figure 5 of Appendix I).

On the console, login to Unix. Make sure that everyone else has logged
out (using the who command). Insure the integrity of the file system by issu-
ing the sync command two or three times. Halt the VAX by typing control-p,
to which the console will respond with the >>> prompt. Answer this with H
return. The VAX should now be halted. Load your WCS file with the command
LOAD/WCS/START:1000 WCS101.PAT. This should take a few seconds and

respond that 8000 bytes were loaded.

In order to set up the VAX for stand-alone program operation, type the
INIT console command. Among other things, this turns off memory mapping,
so you do not have to worry about page tables. Now, type the following com-

mands:

e

41

>>> SET DEF LONG do longword deposits

>>>D/ID3B O set SCBB to zero, where we'll set up SCH
>>>D/P 0 3 set up SCB to stop on any error

>>>D
>>>D
>>>D
>>> 1D
>>>D
>>>D
>>>D
>>>D/ID 2
>>>D/G S

W

enable XFC microcode entry

it r++++

2000 set ISP and SP to 2000(hez)

3
3
3
(4
3
3
C
P 2000

Set up a small VAX program, and a small SM-1 program:

>>>D 100 FC VAX program - XFC: halt
>>> SET DEF WORD do wurd deposits

>>> D 200 5003 SM- 1 program - load 3
>>>D + 0 complement

>>>D + AO00 halt

>>>D + O0FF location 3: data

>>> SET DEF LONG

>>>D/GR30 SM- 1 PC

>>>D/G R4 200 SM- 1 memory base
>>>D/GROBBBB SM-1AC- trash

Now run the interpreter program:
>>> START 100

This should quickly halt, with PC = 102. Examine some registers:

>>>E/G RO AC, should show FFFFFF0O0
>>> E/G R4 base address, should still be 200
>>>E/G R3 PC should show 8

Now that this worked (or even if it didn't), set a break point at the case

instruction decoding the op-code, and watch it perform the complement

operation.
>>>D/G R3 1 SM- 1 PC to complement
>>>D/ID 21 1421 micro- break at complement
>>> SET SOMM enable breakpoint

>>> START 100

42

The machine should halt with micro-PC = 1421. Enter the WCS debugger:

>>> WCS
WCS> OPEN WCS101.PAT

Look at the D register, which should contain the complement opcode, zero.

Also, r0, the p'seudo-AC. which should still contain FFFFFF00.

WCS> E DR
WCS>ERAO

Single step through the complement operation. Set single step mode, exe-

cute a microinstruction.

WCS> SET STEP single micro- step

WCS> START 1400 next microinstruction - beginning of complement
‘WCS> E LA

WCS> EQ

WCS>ERAO

Notice that the register contents, latched into LA, were complemented on
the way to register Q. Execute another microinstruction, then look at r0

again.

WCS> CONTINUE
WCS>ERAO

Now, look at the microinstruction which did the complement. Modify it so
that, rather than a complement, it will exclusive-or register rO with the con-

stant 1, toggling the low-order bit.

WCS> E 1400
WCS> D 1400 ALU 8, BMX 8, KMX 1

Recall that this will change the disk file, as well as the control-store location.
To single-step through this sequence of instructions again, use the command
START 1400, then CONTINUE, examining the registers as before. Finally,
change the program back to doing complements, then leave the debugger,

clearing the machine,

s

43

WCS> D 1400 ALU A
WCS> CLEAR STEP
WCS> CLEAR SOMM
WCS> RETURN

>>> INIT

Invent a program to test all the opcodes.

2.7.3. running with Unix

If your microcode seems to work well, you are ready to try it out under
Unix. When running microcode with the operating system, it is possible to
write supporting routines in C and assembly language. This is generally

easier (and less error-prone) than typing in hex machine codes by hand.
In console mode type:

>>> @UNIX
file:unix

The system should come up, give you a message about available memory, and
a # prompt. Type the sync command a couple of times, and halt the VAX as
before. Recall that your WCS file, with your microcode, is still in control
store. Enable the XFC instruction by changing longword 14 of the SCB (which

Unix keeps at physical location zero). Then, bring Unix back up, and log in.

sync

sync

control- p

>>>H

>>>D/P 142

>>> CONT followed by TWO returns
/ete/mount /dev/rpOg /usr

login yourname

After logging in, you should be able to run C programs with embedded XFC
instructions. There are two ways to create such programs. If the micropro-
gram can find its own parameters in the C program, or is parameterless, the

XFC may be entered in the C source as

44

asm(" .byte Oxfc");

If, however, the microprogram requires parameters in registers, it is usually
easier to produce VAX assembly language from the C program, using cc -S,
and edit it. For example, compiling the routine of Figure 8a will produce the
assembly progra;m of Figure 8b, which can be edited as in Figure 8c, to pass
parameters to and from the sml emulator program. Try running a more

complex example.

After you have run some trials, you should halt the VAX, load the normal
microcode, and bring up Unix multi-user. Restarting Unix loads the usual
SCB on top of the one you changed so that the XFC instruction will no longer

execute your microcode:

7% sync

% sync

% control- p

>>>H

>>> LOAD/WCS/START:1000 WCS118.PAT
>>> @UNIX

file:unix

chk /dev/rrpOa /dev/rrpOg

control- d

smiroutine(accu, locc, codespace)
int *accu, *loce, *codespace;

register int ac = *accu,
pc = *locc,
*base = codespace:;
*locc = pc;
return(ac);

Figure Ba - Microcode support C program

P

LLO:
.data
text
.align 1
.globl _sm1irout
~Smirout:
.word .R1
jbr L13
Li4:
movl *4(ap),rit
movl *8(ap),r10
movl 12(ap),r9
movl r10,*8(ap)
movl ri11,r0
ret
ret
.set .R1,0xe00
L13:
jbr Li4
.data

Figure 8b - Assembly language produced from Figure 8a

LLO:
.data
dext
.align 1
.globl _smirout
-Smilrout:
.word .R1
jbr L13
Li4:
movl *4(ap),r0
movl *8(ap),r3
movl 12(ap),r4
.byte Oxfc
movl r3,*8(ap)
ret
ret
.set .R1,0xe00
L13:
jpbr L14
.data

Figure 8c - Figure 8b edited to pass parameters to emulator

CHAPTER 4

EXAMPLES

In order to illustrate the use of YALLL, some examples are presented
here. Each is shown in several forms: YALLL source and object (as shown by
a pass three dump) are given for each. In three cases, the latter is turned
into DEC macro-code, for comparison with a hand-coded version of the pro-
gram. Comparisons of various sorts are made with microcode for other
machines. In two cases, comparisons are made with the code generated by
the YALLL translator for the HP 300, a stack machine with a much simpler,
vertical microinstruction. Comparisons are also made with microcode for

the HP-21MXE, also a short microword, vertical machine.

1. String Translation

The first example is an instruction to transliterate a string according to
a table. This is similar to the IBM-370's TR instruction. The character string
is addressed by register ‘str’', and ends with a null (0) byte. A table is
addresses by register ‘tbl'. Each byte of the string is examined, and, if not
zero, is replaced in memory by the byte in the table which it addresses; that
is, memory((tbl) + char). When a zero byte is encountered in the source
string, the microprogram exits. To time this routine, the string "The quick
brown fox jumps over the lazy dogs.” was translated into upper case. The
YALLL source is shown in Figure 9a, and the generated code in Figure 9Sb.
This is expressed in macro-code in Figure 10a, and may be compared with
Figure 10b, a hand-coded version. The VAX assembly code this replaces is

shown in Figure 11a, and is (almost) equivalent to the C language fragment

48

loop:

out:
end

47

org 10E0

reg str =r0

reg tbl=r1

reg char = t0 unsigned byte

reg mar = VA

load char, str ; get addressed character
jump out if char = 0 ; test for zero, if zero, go quit
add mar,char,tbl ; add to table base address
load char,mar ; fetch character from table
stor char,str ; replace character in string
add str,str, 1 : bump string address

jump loop ; 8o do it again

exit

Figure 9a - String translation YALLL source

address
(10e0):

(1400):
(1401):
(1402):
(1403):
(140b):
(1401):
(1404):
(1405):
(1406):
(1407):
(1408):
(1409):

{1402):

(140¢):

48
micreinstrucion
VAK/1, SPO/40, ALU/f, AMX/0. 1/(1400)
FS/0, CID/8, ADS/0, DT/2, 1/(1401)
SPO/30, KMX/12, ALU/d, RMX/0, AMX/1, BMX/6, J/(1402)
CCK/1. SPO/20, ALU/e, BMX/4, J/(1403)
BEN/1b, J/(140b), 2-way branch
SPO/41, ALU/f, AMX/0, DK/8, I/(1404)
PCK/4, IBC/c. i/(62)
SP0/20, ALU/5, RMX/0, AMX/1, BMX/4, J1/(1405)
VAK/1, ALU/5, RMX/0, AMX/1, BMX/4, J/(1408)
FS/0, CID/8, ADS/0. DT/2, I/(1407)
SPO/31, KMX/12, ALU/d, RMX/0, AMX/1, BMX/S, J/(1408)
VAK/1, SPO/40, ALU/f, AMX/0, J/(1409)
SPO/21, ALU/e, BMX/4, DK/B, J/(i40a)

SPO/40, FS/0, CID/8, ADS/0, SI/2, KMX/1,
ALU/S5, DT/2, AMX/0, BMX/8, SHF/0, J/(140c)

SP0/50, SI/2, XMX/1, ALU/S, DT/0, AMX/0,
BMX/8, SHF/0, J/(10e0)

Figure 9b - VAX microcode generated from Figure Sa

LOOP:
10E0Q:

=1011

=END

CONTINUE:

LOOP:
10E0:

=101

=END

49

VA_R[RO0]
D[BYTE]_CACHE
RC[TO]_D.AND.K[.FF]
ALU_RC[T0], CLOCK.UBCC
ALU.CC?

D_R[R1], J/CONTINUE
PC_PC+1, CLR.IB.OPC, J/IRD

ALU_D+RC[T0]

VA_D+RC[T0]

D[BYTE]_CACHE

RC[T1] D.AND.K[.FF]

VA_R[RO]

D_RC[T1]

CACHE[BYTE]_D, ALU_R[RO]+K[.1]
R[RO]_LA+K[.1], DT/LONG, J/LOCP

Figure 10a - Macro-Code of Figure Sb

VA_R[RO]
D[BYTE]_CACHE
LAB_R[R1], D.NE.0?

PC_PC+1, CLR.IB.0, J/IRD
VA_ALU, ALU_D.OXT[BYTE]+LB

D[BYTE]_CACHE

VA_R[RO]

CACHE[BYTE]_D

R[RO]_LA+K[.1], DT/LONG, J/LOOP

Figure 10b - Hand-Coded program for Figure Sa

register unsigned char *tbl, *str, c;
while(c = *str) *str++ = tbl[c];

The VAX also has a string translation instruction which, although it won't

translate a string in place, is otherwise very similar, as is shown in Figure

11b.

The size and speed comparisons for this example are shown in Figure 13.

All timings were made by executing the program segment 100,000 times.

loop:

out:

Then, the user-microcode overhead was subtracted from the time for each
microcode example. This is the time it takes to enter user microcode upon

the recognition of the appropriate macro-opcode, on the the VAX-11/780

movtuc

movzbl (str),r0

beq out
movb (tbl)[r0],(str)+

brb loop

Figure 11a - VAX assembler program to translate string

$s_length,(src),$0,(tbl),$d_length,(dest)
Figure 11b - VAX instruction to transiate string
Hand-
Translate generated
YALLL Microcode | Assembler
HP VAX | HP VAX | HP VAX
Speed 146 128 | 134 73 | 1350 93,
(usec) 174
Size 32 180 28 108 20 11,
(bytes) 11

Figure 12 - Comparison of string translate routines

this is about 3.5 microseconds.

2. Pascal Assist Instructions

The second example (Figures 5 — 8) is a case-jumnp instruction for use by
the Pascal interpreter, PX [Joy 77a]. This instruction grabs the next Pascal
opcode byte from the location addressed by register ‘le’ (which is incre-

mented after use), and uses it to index into a table of offsets, whose zero-th

! First figure for single instruction, second for four-instruction leop

51

element is addressed by register ‘tbl'. The contents of this register are
added to the two-byte offset fetched to form the target program address.
This works very much like the VAX's CASE instruction, but the dispatch table
need not follqw the instruction, no range checking is done, and the case
selector is implicitly the unsigned byte from the PX instruction stream. 'I;his
instruction is executed at the end of the interpretation of each Pascal

instruction, and thus begins the interpretation of the next.

A further PX-assist microprogram is shown in Figures 17 - 20. This com-
bines the above dispatch function with computation of data addresses (L-
values) using a lex-level and displacement from the PX instruction stream
and a display in memory. Upon interpreter initialization, the display base
address is passed to the microcode, which places it in SSP. Under Unix, this
register (supervisor stack pointer) is an unused, per-process register.

Thereafter, the microcode can be invoked to compute an address using this

org 10E0
reg le=ri0 : PX location counter
reg tbl =r8 ; address of address table

reg opcode = t1 unsigned byte ;PX opcode

reg t_entry = Qreg signed word ;offset, from table
reg jaddress = t2

reg lookup = Dreg

reg MAR = VA

dispatch:
load opcode, le ; fetch PX opcode
sl lockup,opcode,1 ; shift op to address words
add MAR, lookup, tbl ; add table base - MAR now
: points to table entry
load t_entry, MAR ; fetch displacement from table
add jaddress, t_entry, tbl ; add to table base
add le, le, 1 - ; update PX location pointer
exit jaddress ; split
end

Figure 13a - PX-assist case-jump YALLL source

address
(10e0):

(1400):
(1401):
(1402):
(1403):
(1404):
(1405):
(1406):
(1407):
(1408):
(1409):

(140a):

(140b):

10E0:

52

microinstruciion
VAK/1, SPO/4a, ALU/f, AMX/0, J/(1400)

FS/0, CI)/8, ADS/0, DT/2. I/(1401)

SPO/31, KMX/12, ALU/d, RMX/0, AMX/1, BMX/6, I/(1402)
SPO/21, SI/2, ALU/e, BMX/4, SHF/1. DK/8, I/(1403)
SPO/48, ALU/5, RMX/0, AMX/1, BMX/3, J1/(1404)

VAK/1, ALU/5, RMX/0, AMX/1, BMX/3, J/(1405)

FS/0, CID/8, ADS/0, DT/1. J/(1408)

QX/8, ALU/f. RMX/0, DT/1, AMX/2, J/(1407)

SPO/48, ALU/5, RMX/1, AMX/1, BMX/3, J/(1408)

SPO/32, ALU/5, RMX/1, AMX/1, BMX/3. i/(1409)

SPO/4a, SI/2, XMX/1, ALU/5, AMX/0, BMX/8, J/(140a)

SPO/5a, SI/2, KMX/1, ALU/5, DT/0, AMX/O0,
BMX/8, SHF/0, J/(140b)

VAK/1, IEK/1, PCK/1, SPO/22, FS/0, CID/1,
ADS/0, ALU/e, BMX/4, IBC/2, I/(ab)

Figure 13b - VAX microcode generated from Figure 13a

VA_R[R10]
D[BYTE]_CACHE
RC[T1]_D.AND.X[.FF]
D_ALU.LEFT, ALU_RC[T1]
ALU_D+R[R8]

VA_D+LB
D[WORD]_CACEE

QALU, ALU_D.SXT[WORD]
ALU_Q+R[R8]
RC[T2]_Q+LB
ALU_R[R10]+K[.1]
R[R10].LA+K[.1]
PC&VA_RC[T2], FLUSH.IB, J/1B.FILL

Figure 14a - Macro-code for Figure 13b

DISPATCH:
10EQ:

case

jmp

Figure 15 - VAX assembly code replaced by microcode of Figure 13

saved pointer and data from the PX instruction stream, leaving the result in
register rl. Because only one opcode is available for calling three micro-

coded functions, the microprogram must fetch and decode a one byte sub-op

VA_R[R10]
D[BYTE]_CACHE
ALU_D.OXT[BYTE], Q ALU.LEFT,
LAB_R[R8]
VA_LA+Q

. D[WORD]_CACHE, ALU_R[R10]+K[.1]
R[R10]_1LA+K[.1], DT/LONG
LAB_R[R8]
ALU_D.SXT[WORD]+LB,

PC&VA_ALU, FLUSH.IB, J/1B.FILL

Figure 14b - Hand-coded Pascal-assist case-jump

(le)+,$0,8255
(case table here)

(loop) ;register ‘loop’ points to case instruction

Hand-
Case generated
YALLL Microcode | Assembler
HP VAX HP VAX | HP VAX
Speed 3.7 3.9 2.3 2.9 ? 4.4
(msec)
Size 32 156 20 96 ? 7
(bytes)

Figure 186 - Comparison of Pascal Case functions

code, following the XFC in the VAX instruction stream.

54

Pascal-assist extended instructions:

one to do fetch-P-opcode-and-dispatch
inside the PX interpreter,

and a pair to help compute L-values, for the
LY and RY routines.

. -———---—-—--—----—---——-——-—-————-——-—--————--—--—--—-
Dttt e 4§+ £ e a3 4 S 3 S T T

The dispatch instruction grabs the next pascal opcode

from the location addressed by r10 (which register is
ineremented after use), and the dispatch table is addressed
by r8, which is also added to the offsets thereby fetched,

to form the target jump address.

This instruction takes the form:
.byte Oxfe
.byte 3

Note the constant argument of 3, a sub-opcode

This works very much like a CASEW instruction,

but the dispatch table need not follow the instruction,

no range checking is done, and the case selector ig
implicitly the unsigned byte from the PX instruction stream.

. —..——--_—-—..—.----———-._———-.--..-—-_—-—--_—..._——_—----—--- o o

At Interpreter initialization, one needs to save the
display base for the faster forming of LV's. This
is accomplished by the code sequence:

moval _display,r0

.byte Oxfe

.byte 0
Which saves the contents of r0 in register SSP,
the supervisor stack pointer, which UNIX doesn't
use, but which gets saved on a per-process basis
by the context-switching instructions.

An lv can thereefter be generated in register r1
by:

.byte 0Oxfe

.byte 2
Which picks up a one-byte lex-level and a two-byte
(signed) displacement from the PX instruction stream
addressed by r10 (which is then incremented), and,
using the display-base stored in SSP, forms the
Lrvalue (absolute address), which is returned in
register ri.

. --———-—-——-—-—-_——_--—_-——-——-_—_-——_—.-—_—-_—..._—-_—-..-----..

le =110 ; PX location counter
org 10E0

jtab OPERAND<1:0> of
0: fetch_base : get display base from r0
1:lv : form L-velue
else dispatch i grab opcode and dispatch on it

end

begin ; L-value routines |

reg
reg
reg
reg
reg
reg

fetch.base:
move
exit

v:

load
add
load
sll
add
load
add
add
exit

end

display = SSP ; where we keep it

1l =t0 unsigned byte ;lex-level from PX stream
displacement = t2 signed word ; displacement from PXstream
temp.dc =t1

llbase = t4 ; stack frame base for addressed llevel
tblentry =t3 | atemporary

display. r0
ILle : get lex level
temp.c,le,l ;bump address

displacement, tempJdc ; get displacement
tblentry 11,2 ; make lex level address longs in display
tbl_entry, tbl.entry display

ll_base, tbl_entry : fetch display entry

r1, ll.base, displacement ; add in displacement

lc, tempde, 2

begin; dispatch instruction

reg
reg
reg
reg
reg

dispatch:
load
sl
add

load

add

add

exit
end

tbl = r8; address of address table

opcode = t1 unsigned byte; PX opcode
t-entry = t0 signed word; oflset, from table
jaddress = t2

lookup =t3

opcode, Ic; fetch PX opcode

lookup, opcede, 1 ; shift op to address words
lookup, lookup, tbl ; add table base - now
points to table entry

t_entry, lookup ; fetch displacement from table
jaddress, t_entry, tbl ; add to table base

le, le, 1; update PX location pointer

jaddress ; split

Figure 17a - PX-assist Case and L-value computation

55

address
(10e0):

(1400):
(1401):
(1402):
(1403):
(1404):

(1405):

(1408):
(140c):
(1404):
(140e):
(1401):
(1407):
(1408):
(1409):
(140a):
(140b):
(1410):
(1411):
(1412):
(1413):

(1414):

(1415):
(1418):

(1417):

microinstruction
J/(1404)

SUB/1, I/(e84)

SUB/1, i/(880)

QK/e, BEN/b, IBC/7. J/(1400)

SUB/2, IBC/, I/(1)

PCK/4, QK/e, SUB/1, BEN/b, IBC/7, J/(1400)

DK/c, I/(1406)

BEN/19, I/(140c),

SP0/40, ALU/f, AMX/0, DK/B, J/(1407)

VAK/1, SPO/4a, ALU/f, AMX/0, J/(1408)

VAK/1, SPO/4a, ALU/f, AMX/0, J/(141f)

VAK/1, SPO/4a, ALU/f, AMX/0, J/(141f)

PCK/4, FS/1, CID/f, KMX/2a, IBC/c, J/(E2)

FS/0, CID/8, ADS/0, DT/2, J/(1409)

SP0/30, KMX/12, ALU/d, RMX/0, AMX/1, BMX/6, J/(140a)
SPO/4a, SI/2, KMX/1, ALU/5, AMX/0, BMX/6, J/(140b)
SPO/31, Si/2. KMX/1, ALU/5, AMX/0, BMX/B, J/(1410)
VAK/1, SPO/21, ALU/e, BMX/4, JI/(1411)

FS/0, CID/8, ADS/0, DT/1, J/(1412)

SPO/32, ALU/f, RMX/0, DT/1. AMX/2, J/(1413)
SP0/20, QX/8, SI/2, ALU/e, DT/0, BMX/4, I/(1414)

SP0/33, FS/1, CID/5, QK/e, KMX/2a, ALU/f. RMX/1, AMX/1,
J/(1415)

SPO/23, ALU/S, RMX/1, AMX/1, BMX/4, 1/(1416)
SP0/33, ALU/5., RMX/1, AMX/1, BMX/4, JI/(1417)

VAK/1, SPO/23, ALU/e, BMX/4, J/(1418)

58

.- (1418): FS/0, CID/B, ADS/0, DT/0, J/(1419)

’ (1419): SPO/34, ALU/f, RMX/0, AMX/1, J/(141a)

N (141a): SP0/22, ALU/e, BMX/4, DK/B, J/(141b)
(141b): SPO/24, ALU/5, RMX/0, AMX/1, BMX/4, 3/(141c)

! (141c): SPO/51, ALU/S, RMX/0, DT/0, AMX/1, BMX/4, J/(141d)
(141d): SPO/21, QK/B, ALU/e, BMX/4, I/(14le)
(141e): PCK/4. SPO/5a,_SI/2, KMX/2, ALU/5, RMX/1,
DT/0, AMX/1, BMX/8, SHF/0, IBC/c, 1/(62)

(1411): FS/0, CID/8, ADS/0, DT/2, J/(1420) .
(1420): SPO/31, KMX/12, ALU/d, RMX/0, AMX/1, BMX/6, J/(1421)
(1421): SPO/21, QK/8, SI/2, ALU/e, EMX/4, SHF/1, J/(1422)
(1422): SPO/33, ALU/f, RMX/1, AMX/1, J/(1423)
(1423): SPO/48, ALU/f, AMX/0, DK/B, J/(1424)
(1424): SPO/23, ALU/5, RMX/0, AMX/1, BMX/4, J/(1425)
(1425): SPO/33, ALU/S5, RMX/0, AMX/1, BMX/4, J/(14286)
(1428): VAK/1, SPO/23, ALU/e, BMX/4, 1/(1427)
(1427): FS/0, CID/8, ADS/0, DT/1, J/(1428)
(1428): SP0/30, ALU/f, RMX/0, DT/1, AMX/2, I/(1429)
(1429): SPO/48, ALU/f, AMX/0, DK/8, J/(142a)
(142a): SP0O/20, ALU/S, RMX/0, AMX/1, BMX/4, J/(142b)

- (142b): SP0/32, ALU/S5, RMX/0, AMX/1, BMX/4. J/(142c)

" (142¢): SPO/4a, SI/2, KMX/1, ALU/5, AMX/0, BMX/8, J/(142d)

s (1424): SPO/Sa, Si/2, KMX/1, ALU/5, DT/0, AMX/0,

SRR BMX/6, SHF/0, I/(142)
(142¢): VAK/1, IEK/1, PCK/1, SP0/22, FS/0, CID/1,

ADS/0, ALU/e, BMX/4, IBC/2, J/(ab)
Figure 17b - VAX microcode generated for Figure 17a

57

58

10EO0: Q_JB.BDEST, PC_PC+1,IB.TEST?
1400: CALL, J/1B.TBM
1401: CALL, J/1B.ERR
1402: Q_IB.BDEST, 1B.TEST?, /1400
1403: CLR.IB.SPEC, D_Q
D3-07, VA_R[R10]
=1100 .
D_R[RO], J/FBASE
D[BYTE]_CACHE, J/LV
D[BYTE]_CACHE, J/DISP
END D[BYTE]_CACHE, J/DISP
FBASE: ID[SSP].D, PC_PC+1, CLR.IB.OPC, J/IRD
LV: ALU_D.OXT[BYTE], D_ALU.LEFT, Q_ID[SSP]
ALU_D, RC[TO]_ALU.LEFT
VA_LA+K[.1]

D[WORD)_CACHE, LC_RC[T0]
VA_ALU, ALU_Q+1.C, QD
D[LONG]_CACHE
Q_Q.SXT{WORD]
R[R1].Q+D, DT/LONG
ALU_R[R10]+X[.3]
R[R10]_LA+K[.3], DT/LONG, PC_PC+1,
CLR.IB.OPC, J/IRD

DISF: ALU_D.OXT[BYTE], Q ALU.LEFT,
LAB_R[R8]
VA_LA+Q
D[WORD]_CACHE, ALU_R[R10]+K[.1]
R[R10]_L.A+K[.1], DT/LONG
LAB_R[R8]
ALU_D.SXT[WORD]+LB,
PC&VA_ALU, FLUSH.IB, J/IB.FILL

Figure 18 - Hand-coded PX-assist

evtbl (le)+,r0
evtwl (le)+,r1
addl2 _display[r0O],r1

Figure 19 - VAX assembly code to compute L-value

PX-assist | YALLL | hand | assembler
size 7 (disp)
(bytes) 600 300 14 (L-val)
speed disp 4.8 2.4 4.4
L-val 4.8 2.5 3.4

Figure 20 - Pascal-assist routine comparisons

A version of the Pascal interpreter actually employing the microcode

\\._

Y

59

routines was timed on two benchmark Pascal programs: finding a solution to
the eight-queens problem, and an assignment statement nested in two for-
loops. Comparative times, and an indication of the number of times each

routine was called are shown in Figure 21.

3. Emulator

The final example is the emulator program of the tutorial in chapter
three. This takes forty-two lines of YALLL source and produces fifty-seven
VAX microinstructions (Figure 22). The same emulator requires seventy-four
hand-written microinstructions on the HPMXE. The number of microinstruc-
tions executed to interpret each SM-1 instruction seems to be comparable
for the two machines; the extra length of the HP microprogram appears to
be due to the necessity of passing parameters in memory on this machine. It
should be mentioned that the HP microcode, though vertical and much
easier to read than VAX microassembler, is still considerably harder to read

and write than is YALLL.

Some crude measurements of emulated instruction times were taken,
and are shown in Figure 23. These timings were made by reading the system
clock, executing the emulator and reading the clock again. The emulated
program executed the instruction under test 36788 times in a loop. Because
the system clock only has a ten microsecond resolution, these figures are

not very accurate. Instruction counting gives a time estimate of 2.8

program ' PX with . _number of ,
no microcode microcode assist | case jumps __ L-values

eight queens 7.9 11.5 717457 247678 |

for-loop 15.4 22.8 1516018 508002

Figure 21 - Time in seconds for Pascal programs
with and without microcode assist

address
(10e0):

(1418):
(1418):
(1419):
(141a):
(141b):
(141c):
(1414):

(141e):

(1420):
(1421):
(1400):
(1401):
(1402):
(1403):
(1404):
(1405):
(1408):
(1407):
(1408):
(1409):
(140a):
(140b):
(140¢):

(140d)-

60

micreoinstruction
SP0/43, QK/B, SI/2, ALU/f. AMX/0, SHF/1, J/(1418)

SPO/44, ALU/5, RMX/1, AMX/1, BMX/3, 1/(1418)

VAK/1, ALU/5, RMX/1, AMX/1, BMX/3, J/(1419)

FS/0, CID/8, ADS/0, DT/1, J/(141a)

QK/8, ALU/f, RMX/0, DT/1, AMX/2, J/(141b)

SPO/52, ALU/f, RMX/1, DT/0, AMX/1, I/(14lc)

SPO/42, QK/8, KMX/20, ALU/d, AMX/0, BMX/6, J/(141d)
SPO/30, ALU/f, RMX/1, AMX/1, J/(14le)

EALU/3, SMX/0, EBMX/1, SCK/1, SP0/42, KMX/37.
ALU/f, AMX/0, SHF/3, DK/B, J/(1420)

DK/d, J/(1421)

BEN/19, J/(1400), 18-way branch

SP0/40, QK/8, ALU/a, AMX/0, I/(1424)

SPO/40, QK/8, SI/2, ALU/f, AMX/0, SHF/2, 1/(1425)
CCK/1, SP0/40, ALU/f, AMX/0, I/(1426)

SP0/20, QK/8, ALU/e, BMX/4, 1/(1427)

SP0O/20, QK/8, SI/2. ALU/e, BMX/4, SHF/1, J/(1428)
J/(1410)

1/(1412)

3/(1414)

SPO/43, SI/2, XMX/1, ALU/5, AMX/0, BMX/6, 1/(1422)
SPO/43, SI/2, KMX/1, ALU/5, AMX/0, BMX/8, J/(1422)
SPO/43, Si/2. KMX/1, ALU/5, AMX/0, BMX/8, J/(1422)
SPO/43, SI/2, KMX/1, ALU/5, AMX/0, BMX/6, I/(1422)
SPO/43, SI/2, KMX/1, ALU/5, AMX/0, BMX/B, J/(1422)

SP0/43, SI/2, KMX/1, ALU/5, AMX/0, BMX/B, J/(1422)

's

(140e):

(1401):

(1422):

(1423):
(1424):
(1425):
(1426):
(1417):
(1411):
(1427):
(1428):
(1429):
(1422):
(142b):
(142¢):
(142d):
(142e):
(1410):

(1411):

(1421):

(1412):
(1413):
(1430):
(1431):
(1414):

(1415):

SP0/43,

SPO/43,

PCK/4,
AMX/0,

SP0/40,
SPO/50,
SPO/50,
BEN/1b,
SP0/43,
SP0/20,
SP0/53,
SP0/30,
SP0/44,

SP0/20,

SI/2, KMX/1, ALU/S,
SI/2. KMX/1, ALU/S,

SP0O/53, SI/2, KMX/1,
BMX/8, SHF/0, IBC/e,

QK/B8, ALU/a, AMX/0,

ALU/f, RMX/1, DT/0,
ALU/f, RMX/1, DT/0,
J/(1417), 2-way branch

Si/2, KMX/1, ALU/S,

QK/8, ALU/e, BMX/4,

ALU/t, RMX/1, DT/0,

AMX/0, BMX/8, I/(1422)
AMX/0, BMX/6, J/(1422)

ALU/5, DT/O,
1/(82)

J/(1424)
AMX/1, 1/(1417)

AMX/1, 1/(1417)

AMX/0, BMX/8B, J/(1434)
7/(1427)

AMX/1, J/(10e0)

ALU/t, RMX/I. AMX/1, J3/(1429)

ALU/f, AMX/0, DK/8,

J/(142a)

ALU/5, RMX/0, AMX/1, BMX/4, J/(142b)

VAK/1, ALU/5, RMX/0, AMX/1, BMX/4, J/(142c)

FS/0, CID/8, ADS/0, DT/1, J/(142d)

QKX/8, ALU/f, RMX/0, DT/1, AMX/2, J/(14Re)

SPO/50,
SP0/20,
SP0/42,
SP0/50,
SP0/20,
SPO/42,
SP0/40,
SP0/50,
SP0/20,

SP0/42,

ALU/t, RMX/1, DT/0,

AMX/1, I1/(1417)

QX/8, SI/e2, SUB/1, ALU/e, BMX/4, I/(1435)

QK/8, ALU/f, AMX/0,

ALU/t, RMX/1, DT/0.

$/(1421)

AMX/1, 3/(1417)

QX/8, Si/2, SUB/1, ALU/e, BMX/4, J/(1435)

QK/B, ALU/f. AMX/0,

QK/8, ALU/d, RMX/0, AMX/0, BMX/7, 1/(1431)

ALU/t, RMX/1, DT/0,

J/(1430)

AMX/1, 1/(1417)

QK/8., Si/2, SUB/1, ALU/e. BMX/4, J/(1435)

QK/8, ALU/f. AMX/0,

3/(1432)

81

82

(1492): SPO/40, ALU/S, RMX/0, AMX/0, BMX/7, J/(1439)

(1433): SPO/50, ALU/5, RMX/0, DT/0. AMX/0, BMX/?, J/(1417)

(1434): SPO/53. SI/2. KMX/1, ALU/5. DT/0, AMX/0, -
BMX/8, SHF/0, J/(10e0)

(1435): SPO/30, ALU/T, RMX/1. AMX/1. 1/(1436)

(1438): SPO/44, ALU/f, AMX/0, DK/8, 1/(1437)

(1437): SPO/20, ALU/5, RMX/0, AMX/1, BMX/4, J/(1438)

(1438): VAK/1, ALU/S. RMX/0, AMX/1, BMX/4, 3/(1439)

(1439): FS/0, CID/8, ADS/0, DT/1, J/(143a)

(143a): QK/8, ALU/f. RMX/0, DT/1, AMX/2, 1/(143b)

(143b): SPO/52, SUB/2, ALU/f., RMX/1, DT/0, AMX/1, J/(1)

Figure 22 - VAX microcode for emulator of Chapter three

Instruection

time (usecs)

complement
shift
load
store
add
and
ump

o ol
N RN

branch on neg
successful
unsuccessful

0 e
<

Figure 23 - VAX SM-~1 instruction times

microseconds for the emulated jump instruction.

CHAPTER 5

CONCLUSIONS AND COMMENTS

This project has involved many areas of computing: architecture, imple-
mentation, operating systems and compiler writing, microprogramming, and
of course, documentation. Several of these things seem peripheral to the
objective of microprogramming the VAX, but are necessary to realize it. This
chapter contains some conclusions drawn from this work, including com-
ments on the VAX microarchitecture, the YALLL language and translator, the
translator writing process, and a list of things which need still to bé done to

create a usable microprogramming environment on the VAX.

1. VAX - Architecture and Implementation

The architecture of the VAX is very well thought out; the variable-length
instructions and addressing modes are an evolutionary step upward from the
PDP-11 that preceded it, and the variety of instructions provided is unpre-
cedented. But there are two problems with this machine which might have
been avoided. The first is complexity: some of the macro-instructions
require microprograms which are enormously complicated. This makes the
instruction set microprogram noticeably bigger, less understandable, and
much more susceptible to error. As an example, there is a bug in the indez
instruction which causes the machine to hang; the routines supporting the
string and decimal instructions are huge, and are also known to contain
errors, though not so serious as the one in indez. One way of dealing with
such a large microprogram would be to use a high-level language to make the

program more understandable. (Presumably, many engineering and

63

84

marketing considerations went into the choice of instructions, so that reduc-

ing its size is not an alternative in the present design.)

The second problem area is the way in which user microcoding is
integrated into the architecture: the XFC instruction causes a trap (excep-
tion), and after inspection of a word in the SCB, microprogram execution
may branch to user microcode. This accounts for the large (3.5 u-sec)
penalty incurred by entering user microcode. The XFC instruction is concep-
tually not the only way to enter user microcode; any exception or interrupt
can enter it (see Appendix 4, Figure 5). The problem here is that no matter
what causes the user's microcode routine to be executed, that routine can
be entered at only one point - location 10E0. If there is more than one way
to get there, the user's code will have to determine how it was entered. For
future VAXes, I would like to propose one implementation change and one
architectural change. First, that there be separate entry points to the user's
microcode for exceptions and for interrupts. The trap-handling microroutine
currently keeps a flag in the STATE register indicating interrupt or exception
when the branch to 10EO is taken; this could easily be made a jump to 10DE
or 10DF, for instance, conditional on that bit. This would cost no execution
time, and only the extra one word of space. 1 further propose that the XFC
instruction be handled separately from the exception mechanism, and given
its own user microcode entry point, entered immediately upon recognition of
the op-code. In the (default) case where no user microcode is loaded, this
could then branch into the exception handling, and be treated as an illegal
instruction. This would cause its recognition as an illegal op-code to be
about 0.2 u-sec slower than other illegal instructions, buf entry to user's

microprograms would be 3 microseconds faster than at present.

. ¥

]

85

This machine is among the most complex of user-microprogrammable
computers, rivaling the QM-1, because of its great microinstruction width,
the special-case optimizations for various operations, and the complexity of
devices such as the accelerator, instruction buffer, translation bufler, and
cache. Actually‘. the latter two are extremely easy to use under most cir-
cumstances, but one must always be aware of their presence. The instruc-
tion buffer is more complicated to use, and although fetching byte operands
seems fairly straightforward, it has not yet been discovered if this device can
be employed by a user microprogram to execute more complex functions,

such as operand specifier decoding.

The central data paths are qﬁite complex, and are very well suited to
executing VAX and PDP-11 instructions. This is one reason it is so hard to
write microcode which can out-perform a short sequence of native instruec-

tions.

2. YALLL - Language and Implementation

The YALLL language has been implemented on two machines: the VAX
and the EP 300. One of its advantages is supposed to be the transportability
of YALLL microprograms. While it is true that YALLL programs written for
one machine can be compiled and run on the other, the sense of the program
might not so easily be transferred. Such things as a machine's parameter
passing conventions or addressing scheme can determine the environmeﬁt in
which the microprogram runs, and what sorts of operations it needs to per-
form to deal with the macroarchitecture. The choice of two such different
machines accentuated this problem, and it is felt that transporting a
microprogram between more similar computers (such as different models of

a VAX family) would yield much more satisfying results.

66

Counterbalancing this small shortcoming, YALLL has one great strength
- it makes microprogramming the VAX doable. YALLL is very much easier to
read and write than VAX microassembler, even with macros. Hand micropro-
gramrming may still be necessary for routines which must be small and fast,
or deal with special resources, but even these should be debugged using
YALLL. The microprogramming tools to be offered by DEC do not look that
appealing: a macro-assembler and a VAX-to-control store loader. The
macro-assembler will make programs less tedious to write, but one will still
have to understand the intricacies of the VAX data paths in great detail. And
the loader does not write a control store image on floppy disk, but writes
directly to control store. Thus the microprogrammer will not be able to use
the LSI-11's microdebugger to interactively alter his microprogram. This
scheme does have the advantage that it is not necessary to halt the VAX to
load a microprogram, but prudence dictates that it be stopped anyway, at

least when a microprogram is in the debugging stage.

There are several problems with YALLL/VAX which I feel are more imple-
mentation problems than language design problems. The first is that it does
not produce very eflicient code. Hand coding a routine generaly resuits in a
program which is half as long and twice as fast. The second problem is the
binding of variables to registers. These bindings are taken quite literally by
the translator, so that a move from a variable bound to register r1 will always
cause this register to be accessed, even if it was just loaded from the easier-
to-access Q register, which thus contains a copy of it. It is this problem
which has caused me to observe that the VAX is really a two-register machine
(the D and Q registers) with some fast local store (RAB and RC). A related
problemn is the type mechanism, which is the occasional cause of extra

transfers, to sign- or zero-fill quantities. The current typing and conversion

67

system is not especially well thought out, and ought to be changed.

These are all problems which could easily have been dealt with had we
not been forced to spend so much time demystifying the microarchitecture.
Had we been handed a document like Appendix A six months ago, we would
have been able to take much more care in the construction of the code gen-

eration routines. Given the circumstances, we are happy with the resulits.

3. Reflections on the Program Development Process

One of the most thought-provoking aspects of this project was the pro-
ject itself, seen as an exercise. From this experience, I learned quite a few
things about the development of medium-sized software, and now know
several things not to repeat, but mainly a lot of programming techniques

that worked quite well.

The first lesson is that documenting a machine and writing a translator
for it are really two separate projects, and do not complement each other
too well. This documentation task was not one of the project’s original objec-
tives, but these objectives were formed before the VAX was available, and
before we could assess the lack of documentation supplied by the manufac-
turer. As of this writing (July '79), the promised data path description has
yet to be seen. An allied problem is that documenting a heavily-used
machine is difficult and inconvenient. Because of the demands on the VAX's
time, I estimate that I have spent much fewer than forty hours of stand-alone

time investigating the microprogramming.

The writing of the translator, on the other hand, went very well, largely
due to the software tools available — the Unix editors, C language, Lex and

YACC. As Brooks points out [Brooks 75]

68

Productivity seems constant in terms of elementary statements, a conclu-
sion that is reasonable in terms of the thought a statement requires and the
errors it may include.

He concludes that ''The most important two tools for system programming

today ... are (1) high-level language and (2) interactive programming."

Tools such as YACC and Lex increase productivity even more, since they
automate the writing of two not-very-interesting parts of a translator, the
scanner and parser. This makes it quite reasonable to change to language

well after the translator is begun.

A programming practice which was found to be extremely useful was to
include internal checks in many areas of the program. The symbol table and
lowest level code generation routine, for instance, check the validity of their
arguments and the consistency of the data structures before proceeding to
search through or modify those structures. The data structure representing
the generated code is particularly difficult to maintain, and often failed con-
sistency checks, especially during the debugging of the second pass. | am
especially happy with these checking facilities, and with those to provide

dumps of the symbol and code table, as described in chapter three.

Nearly as important as these internal checks are external checks - the
dump programs which insure that the binary file produced by yc and merger
are of the correct form. Because of all this self-checking, the microcode
tested on the VAX has been surprisingly trouble-free. This is not to claim
that it is bug-free, but that each of these bugs seems always to be a single

field set to a wrong value, rather than mangled program logic.

4. Things Still to be Done

There are still several things to be done to make microprogramming the

VAX-11/780 an easier task. Some are listed here; the first two are real

69

necessities, the others are ranked in more-or-less descending priority. The
most pressing need is for more complete documentation; there are several
areas of the VAX microarchitecture which 1 was not able to investigate
suﬁicientiy. For .example, it is understood that when doing arithmetic
(carry-borrow) operations with certain sources, one should allow an extra
cycle before using the result. One DEC employee suggests that this is the
case for "‘slow’ constants, from the constant ROM. Someone else says that
this is necessary when routing a general register contents through a latch
and through the ALU in the same instruction. The YALLL translator emits
conservative code to handle both cases, but this may be unnecessary. It is
not known if there are timing requirements for any other operations.
Perhaps DEC's data path description will clarify this whole area. A further
mystery is the use of the instruction buffer (IB) either to fetch multiple byte

operands from the instruction stream, or to decode operand specifiers.

A micro-engine simulator would greatly have eased the debugging of the
YALLL translator, and is still necessary to ease the debugging of user
microprograms. Although the console microcode debugger is an excellent
facility, it requires that the machine be used stand-alone. Furthermore, a
simulator could write trace information into a file for later analysis and
display, rather than forcing the user to single step the machine, then request

by name each register to be displayed.

If the YALLL/VAX translator is to be seriously used, it should be rewrit-
ten to produce better code. Given the greater information now available on
the VAX, it should be reasonably easy to change yc to produce code within
25% of hand-written in both time and space. Simply keeping track of the

contents of the D and Q registers should make most of the difference. Since

70

the thirty-two-bit ALU seems to be the primary bottleneck in YALLL pro-
grams, the user of this resource should also be improved. For example, the
operation ‘‘add Dreg,r0,18" is certainly a two-step operation. The code
currently gengrated for this statement forms the sum in the ALU during two
microinstructions, but only gates it into the D register during the second. A
better sequence would be to route the constant to BMX and to latch the con-
tents of register r0 into latch LA in one instruction, then form and gate the
sum in the next instruction. This still takes two instructions, but only uses
the ALU in the second one; the first might now more easily be combined with

its predecessor, even if that instruction used the ALU (but not a constant or

LA).

One objective of the YALLL programming language is to hide a machine’s
peculiarities; for example, the way in which shifting is done. Fowever, for
machine-specific programming tasks, such as instruction set implementa-
tion, it would be desirable to use a high-level microprogramming language
which would allow the programmer to exploit a machine’s peculiarities, simi-
lar to PL/380 [Wirth 88]. For example, YALLL has six shifting operators;
aside from special cases, the VAX has one -~ a double shift with single-word
result. An operation such as ‘Dreg <- {(A,B)shift(C)" could load A into regis-
ter Q, B into D, C into SC, do the shift, and leave the result in the D register.
The YALLL programmer has no way to specify use of the EALU, or to hint at
possible parallelism to the compiler; both these facilities could lead to better
microprograms. Finally, to interact fully with the macroarchitecture, a
microprogrammer must be able to specify the length of a resuit to be loaded
into a general-purpose register. For the reasons previously outlined, YALLL
programs always load longword results into the registers; unfortunately, this

is not fully compatible with the VAX architecture.

71

Originally, YALLL was meant to be a low-level intermediate language, to
be used as the output of a higher-level language, such as Modula [Wirth 77].
Now that YALLL is implemented, Modula can be modified to make it a reason-
able microprogramming language (eg: addition of memory as a pre-defined
object) and an M-code to YALLL translator can be written. Such a program
would have the additional advantage that it could easily be written to emit

code for any computer having a YALLL compiler.

Finally, a DEC-compatible macro-microassembler should be imple-
mented under Unix, so that one could use the macro-facility used by the VAX
implementors. Perhaps the assembler-escape mechanism in YALLL/VAX
(which is currently very simple) could be rewritten to recognize their sym-
bols and macros. This facility is not really necessary, but when micropro-

gramming this machine, one needs all the help one can get.

72

for sequence oily

9 on
LI
L]

[Agrawala . 78]

[Bondy 77]

[Brooks 75]

[Davidson 78]

[Husson 70]

[Johnson 76]

[Joy 77a]

[Joy 77b]

[Lesk 75

[Patterson 79]

BIBLIOGRAPHY

Agrawala, A.K.,, and Rauscher, T.G. Foundations of

Microprogramming Academic Press, New York, N.Y., 1976

Bondy, J.L., and Freeman, D.N. *Putting Supervisory
Routines into Hardware” Proceedings of the /FIP 1975

Brooks, F.P. The Mythical Man- Month Addison Wesley,
Reading, Mass., 1975

Davidson, S. and Shriver, B.D. ‘‘An Overview of Firmware

Engineering” Computer, May, 1978

Husson, S.S. Microprogramming: Principles and Prac-

tice Prentice Hall, Englewood Cliffs, N.J. 1970

Johnson, S.C. "“YACC - Yet Another Compiler-Compiler"
Bell Labs, Murray Hill, N.J. 1977

Joy, W.N., Graham, S.L. and Haley, C.B. "UNIX Pascal
User's Manual' Computer Science Division, Univ. of Calif.

Berkeley 1977

“Ex Reference Manual" Computer Science Division, Univ.

of Calif. Berkeley 1977

Lesk, M.E. *'Lex - A Lexical Analyzer Generator' Bell
Labs, Murray Hill, N.J. 1975

Patterson, D.A., Lew, K. and Tuck, R.D. "Towards an
Efficient, Machine-Independent Language for Micropro-

gramming'’ to appear in Proceedings of the 12th Annual

73

[Stockenberg 76]

[Strecker 78]

[Wilkes 51]

[Wirth 68]

[Wirth 77]

74

Microprogramming Workshop Hershey, Pa. 1979

Stockenberg, J. and van Dam, A. *‘Vertical Migration for
Performance Enhancement in Layered
Hardware/Firmware/Software Systems'' Computer May

1978

Strecker, W.D. "VAX-11/780: A Virtual Address Exten-
sion to the PDP-11 Family' in Computer Engineering: a
DEC View of Hardware Systems Design (C.G. Bell, J.C.
Mudge, and J.E. McNamaras, eds.) Digital Press, Bedford,

Mass. 1978

Wilkes, M.V. ‘‘The Best Way to Design an Automatic
Machine' Proceedings Manchester Univ. Computer Inau-

gral Congress London, England 1951
Wirth, N. “PL/380" JACM 15:1 January 1968

Wiith, N. “*Modula: a Language for Modular Multiprogram-
ming'’ Software — Practice and Ezperience 7:1 January

1977

APPENDIX A

VAX ARCHITECTURE

1. OVERVIEW

In order to successfully microprogram any computer, one must under-
stand the underlying design, especially when that design is as full of peculiar-
ities and optimizations as is the micro-architecture to the VAX-11/780. In
this paper, 1 shall discuss that machine's architecture, and how it relates to
the writer of *‘user’’ micro-code - that not supporting the machine's inherent

instruction set.

Before one can make sense out of the low-level design, one must be fam-
iliar with the high-level architecture it is designed to support. For that rea-
son, 1 will first examine some of the features of the VAX's macro-instruction
set which are reflected in the design of the micro-machine. In particular, |
shall discuss the instruction format, addressing modes, data types, and sup-
port for memory management and the operating system. The reader familiar

with these features might thus skim the first section.

1.1. MACRO-LEVEL ARCHITECTURE

1.1.1. PMS Structure

The PMS structure of the VAX-11 differs substantially from that of any of
the PDP-11 series of computers; all use a bus (or busses) shared by Pe, Mp,
Ms, and T's, but there the similarity ends. The VAX uses a hierarchy of

busses, of which the primary one is the synchronous backplane

75

76

interconnection (SBI). This bus has a thirty-two bit wide data and address
path and a 200 nano-second cycle. The subsidiary Unibus is the sai'ne as that
used by PDP-11 computers, so Unibus peripherals may be connected to it.
The Unibus has eighteen bit addresses and a sixteen bit data path; the
Massbus has a thirty-two bit data path. Both K(Unibus) and K(Massbus) are
capable of mapping twenty-eight bit SBI addresses into bus addresses, using
simple memory map mechanisms contained in the controllers. 1/0 devices
are constrained to the top half of the SBI's giga-byte address space, and all
Mp addresses are in the lower 512 mega-bytes. The PMS structure is illus-

trated by Figure 1.
1.1.2. the CPU

1.1.2.1. registers, instruction format

The VAX has sixteen, thirty-two-bit '‘general'’ registers, and many
special-purpose control registers. The general register layout is similar to
that of the PDP-11, in that one of the registers (#15) is really the program
counter, PC, and another (#14) is the stack pointer, SP. Some of the other
registers are appropriated by the string handling and subroutine call

instructions.

The instruction format is variable - a one-byte opcode followed by up to
six operands or addresses (each of which is known as an operand specifier).
Memory is byte addressable. The addressing scheme is a logical extension to
that used by the PDP-11; operand addresses always consist of at least one
byte, of which four bits determine the addressing mode, and four bits desig-
nate one of the general registers, which is to be used in address formation.

The primary addressing extensions concern displacement addressing, a new

77

Pcpwsm.i
est-n) § coNsoLs
(‘Q-bus)
R —S
' S8 [
Mp(wvsou-)_ ' K»Iwm ory Kunigus K;]axew
o=, |
Msdws,, 15)— Smcmo"j Sumneus 5,4“5314
(Floppy disk)
K — pr 23 ~K pguice
T Ms
Twnsoz.i —M v

Figure 1 - VAX-11/780 PMS diagram

immediate mode, and a.new indexing scheme. The addressing modes are

summarized in Figure 2.

1.1.2.2. addressing modes

In register mode, the required datum resides in the general register

designated in the specifier byte, or that register and the next, for operands

! DEC assembler notation. Unix assembler differs.

78

NAME NOTATION! FORMAT
literal S~#literal [0 0llit]
indexed ' i[Rx] {rest of addr)l4 nl|
register Rn
register deferred (Rn) 8.n
autodecrement -(Rn) 7:n
autoincrement (Rn)+ tn
autoincrement deferred @(Rn)+ 19, n|
byte displacement B~d(Rn) d {A nl
byte displacement deferred ®B~d(Rn) L d IBnl
word displacement W~d(Rn) |4 ICn
word displacement deferred @W-~d(Rn) L_d IDwn
longword displacement L~d(Rn) | d E.
longword displacement deferred @L~d(Rn) L F.n
immediate I~#const const [8,F |
absolute @#const [const [9\F]|
byte relative B~d d 1AF
byte relative deferred @B~d d_|B,F :
word relative W~d d L F
word relative deferred @W~d d D, F
longword relative L~d d B F
longword relative deferred ®L~d d |F\F

Figure 2 - Address modes

of more than thirty-two bits. When less than four bytes is required or writ--
ten, the low-order part of the designated register is used. Thus, a byte move
into a register is similar to IBM-360's Insert Character operation, though sign

and zero-extending instructions are also provided.

A register deferred mode address is one in which the designated register
contains the address of (pointer to) the desired operand. Auto- increment
mode is similar, but in this case, after the register's contents have been used
to find the required operand, they are augmented by the length of that
operand, in bytes. Thus the "C" language idiom ‘'‘*p++' can be directly
implemented, for register variable p, with this addressing mode. Using

auto- increment deferred mode, the register contents address not the

79

datum, but another pointer, addressing the datum. The register is incre-

mented by four (the size of the addresses address) after use.

Auto- decrement mode is similar to auto-increment, but here, the regis-
ter is decremented by the length of the operand before it is used as an
address. This symmetry provides the stack operations push and pop. There

is no auto-decrement deferred.

Immediate mode, coded as auto-increment specifying the PC as register,
provides for the required datum, be it byte, word, longword, or quadword, to
follow the specifier byte directly in the instruction stream. Needless to say,
such an operand cannot be used as an operator's destination. TI-Je new

literal mode is a further method for specifying short instruction-stream

data. Normally, an instruction such as MOVL #const,dest will take the form:?

dest specifier L const ‘ 8F ‘ Do l
) censt Vopec(/e

. .SFC<',.

However, if the constant is small (zero through sixty-three, inclusive, or cer-
tain select floating-point quantities), the four bytes of constant can be saved,

and the datum placed in the mode specifying byte.

Absolute mode (autoincrement deferred specifying PC) provides for the
four-byte absolute address of the operand to follow the address specifier

directly in the instruction stream.

Most machines which can use base + displacement addressing allow a
fixed number of bits for the displacement (e.g. sixteen bits on the PDP-11,

twelve bits for the]BM-380). This is very often excessive, as when addressing

2 By VAX convention, memory-byte addresses increase from right to left.

80

small data structures via a base pointer in a register. Alternatively, a dis-
placement smaller than the logical address space may be insufficient;
addressing large arrays on the IBM-360 may require multiple base registers.
The VAX architects attacked this problem by allowing thfee displacement
field sizes: byte, word and longword, for three displacemnent addressing
modes. Another set of modes, the displacement deferred modes, use the
base + displacement address to point to a pointer, of four bytes. By specify-
ing the PC as ‘'base’’ register, the relative and relative deferred modes are
obtained, the inference being that the datum (or a pointer to it) resides at
an address formed from the address of the specifier byte, and the byte,

word, or longword displacement which follows.

The most interesting mode is the new indez addressing mode. Actually,
this must be combined with another mode, such as base + displacement; or
absolute. Unlike the IBM-360, in which the address is the sum of the base
register, displacement field, and the index register, VAX indexed addresses
are formed as a starting address (which may be base register plus displace-
ment field) added to the product of the index with the length of the datum
being addressed, be it one, two, four, or eight bytes. So a loop index can be

used directly for indexing into a vector.

1.1.2.3. data types

A striking feature of the VAX instruction set is the plethora of data types
supported; the two's complement integer types are byte, word (two bytes),
longword (four bytes), and quadword (eight bytes). Floating point numbers
are represented by a single precision type (sign; eight bit exponent, excess

128; twenty-three bit fraction), and by a double precision type (sign; eight bit

81

exponent; fifty-five bit fraction). Packed decimal numbers of up to thirty-one
digits in length are also supported. A full range of arithmetic instructions is

included for all of these types, excepting quadword:

move } yte
compare - word
add longword

subtract { _ { 2-operand floating
multiply 3-operand double floating _
divide . packed decimal~

In addition, instructions exist to convert any of the floating and binary types
to any other (excepting quadword). Decimal types can only be converteti to
and from longword integers, and various character formats. Quadword
integers are not fully supported; in fact, they might not be considered a
separate data type on this machine, but a case of multiple-precision
integers. Multiple-precision arithmetic is aided by longword add and sub-

tract instructions which use the carry generated by a previous operation.

The decimal instructions appear to ’be DEC's gesture towards the busi-
ness market, as do the suspiciously IBM-like decimal-character conversion
instructions. Two instructions convért from packed decimal to "trailing-
numeric" character strings and back, and two convert between packed
decimal anci “leading separate numeric" strings.” Finally, there is the EDIT
instruction. This is very much like the IBM-360's instruction for converting

packed decimal numbers to punctuated character strings, but has several

more pattern characters. Furthermore, it is a triple address instruction -

" No 2-operand decimal multiplication or division. Binary types are further supported by
operations not shown here.

" Packed decimal strings contain two BCD digits per byte, and the low-order four bits of the
low-order (highest addressed) byte contain the sign. Trailing numeric numbers use the ASCT
representations of each digit excepting the low-order digit, in which the sign is also encoded. In
leading separate numeric format, a separate byte containing a representation of the sign
preceds the ASCI digit bytes.

82

the edit pattern is not overwritten by the edited string. Conspicuous in their
absence are any instructions to convert between character strings and

binary integers or floating point numbers.

Although character strings and bit fields within a word might not be
classed as '‘data types', the VAX does provide for some manipulation of
them. Character strings may be moved, compared with one another,
translated, scanned or spanned (using a single character pattern or table),
and searched for substrings. Bit fields can be inserted or extracted from

memory, or compared with one another.

1.1.2.4. memory management

The VAX logical address space is divided into system space and user
space; user space is in turn divided into two regions (which DEC refrains from
calling segments). These three regions (system, PO, P1, which grows back-
wards to accommodate the user’s stack) are further divided into 512-byte
pages. Because the system and the user co-exist in the same addressing
space, moving data between them is simplified. For each active page in the
logical space, there is a longword page table entry (PTE). If a single page
table were used to map both user and system regions, it would have to be
over 4k bytes long, just to attain the lowest system address. To yield the
page table more compact, three tables are actually used. For each of the
regions PO, P1, and system, there is a page table origin register, and an asso-
ciated table length register. The system table is addressed in absolute
memory, and the user tables are in system virtual memory. To speed
memory references by the CPU, a cache and a translation buffer (TB) are

used.

83

l 9 rowsrd
P fwa [Memor Can ﬁ'a//e.r 1
o _ } (Lord M-bytes)
} Me,qu Controller 2
.qooo oooou’ M[—M ORj
AbpRress <
Sence
Pi rows
e
(8000 0000, k’zooo 0000,
rawS !

, forwa-rcl } K unngyg Controller Reg,‘;{w’*
System Z %
f) A‘Zﬁ::; | } Kunssgus Contoller Reﬂ.'k{&'s

X Seace ¢
Cooo 0000, } Unius AbpRess SPACE
ed
resery / \[3FFF FFEF
/ *One of 16, 3{-{,\71‘& RsGiems -
| preF PEFF TOne. of U, 25-K byte Rarons
a) Log/'ca/ b) P éy.sim/

Figure 3 - Address Space

PTE
330 272 M3 2 0
lowNin! PPN | .

v valid : 0 not in MP
1 Mp resident
| M modified
OWN software use
PFN page frame number upper 21 bits of physical address, if V=1

PROT - protection

K E S §)
0 - - - - no access
1 b4 b4 X b4 reserved
2 rw - - -
3 r - - .
4 rw rw ™w W all access
5 rw rw - -
8 rw r - -
7 r r - -
8 r'w rw rw -
9 r™w ™w r -
10 rw r r -
11 r r r -
12 rw ™wW rw r
13 ™w ™w r r
14 rw r r r
15 r r r r
K - Kernel access - no access
E - Executive access rread
S - Supervisor access rw read/write
U - User access x unpredicteble

Figure 4a - Page Table Entry

85

Systemt PAGE Thaue

PHYsicAL
§§Q_ A‘OD‘QG55 oF A/ PTE ;ora.d‘"es 8(”0@@,6
SLR
(S.i zZe
Lo:u%woﬂ@
- J SYSTEM VieTusL P_{ PA&EZ’,’-‘BLE
PIBR ;—jrg/' {
10D REST o ll }
PUR | i |
CuwasepPrss) : |
}
PORR SYSTEM N PO Pace Tasee u :
~ VIRTUAL, - —
1 |PTE fov address O (2"-PuLR)
PTE fov addvess 3FFF Frco
POLR - o
(s1z¢ IN
Lon6 LR DS)
NV

Figure 4b - Page Tables

1.1.2.5. interrupts, other operating systems considerations

The VAX, as befitting a computer designed in this age of hierarchical
software systems, has four execution modes of increasing privilege: user,
supervisor, executive, and kernel (of which UNIX uses only user and kernel).
Each mode has its own stack pointer; USP, SSP, ESP, KSP. Additionally,
there is an "interrupt stack pointer’ (ISP) for use in kernel mode. The pro-
cessor exchanges stack pointers whenever the mode changes. Thus, for

example, a supervisor state program does not have to be concerned about

86

using a stack which the user program may have caused to overflow; one
should never trust code of lower privilege than oneself. The stack pointers,
excepting ISP, are considered to be per-process registers, and are swapped

during process switching.

When a program interrupt or exception is taken, the processor handles
much of the state saving and switching. First, a longword is taken from the
system control block, whose physical base address is kept in register SCBB.
The word taken from this block depends on the cause of the interruption (see
Figure 5). This word is interpreted thus: bits <1:0> determine the action to
be taken; bits <31:2>, catenated with "00" on the right, may be used as an
interrupt address. If the action code is "10", control is given to a user-
written (i.e. not DEC-supplied) micro-routine at location 10EO(hex) in control
store. Otherwise, KSP (on code "00") or ISP (on "01") is selected as the new
stack pointer, interrupt information is pushed on the stack (including the
PSL, PC, and, in some cases, an exception code), and kernel mode instruc-
tion execution resumes at the interrupt address. If the action code is 11",

the information is pushed on the kernel stack, and the processor halts.

All the per-processor registers (including the general and memory map
registers) can be saved or restored in one instruction execution, so context
switching is potentially very fast. The registers are saved or restored from a
“process control block” (as shown in Figure 6) whose physical address is

contained in register PCBB.

87

1FF

SYSTEM CONTROL BLOCK
Interruption or Exception

unused

machine check

kernel stack not valid

power fail

reserved or privileged instruction
XFC

reserved or illegal operand
reserved or illegal address mode
access violation

translation not valid (page fault)
trace trap

breakpoint trap .
compatibility mode trap
arithmetic trap

unused

unused

change mode to kernel

change mode to executive
change mode to supervisor
change mode to user

unused

software level 1

software level 2

software levels 3 - F

interval timer

unused

console terminal receive
console terminal transmit
device level 14, device 0

device level 17, device 15

SCB ENTRY y S)

virtual addr
op: O - use KSP, unless already on ISP
1 - use ISP, on exception IPL raised to 1F
2 - micro-branch to 10E0 in WCS
3 - error

Figure 5 - System Control Block

Offset

PROCESS CONTROL BLOCK
Register

KSP
ESP
SSP
USP
r0
ri
re
r3
r4
rd
ré
o4
r8
r9
ri0
ril

ri2 (ap)
ri3 (fp)
ri5 (pc)

PSL

POBR

ASTLVL <28:24>, POLR <21:0>
P1BR

PME <31>, P1LR <21:0>

3 I\ao| 27 26|252~(23ﬁ' 0 7 6 593|2,10~

PSL

CM - compatibility mode

TP - trace pending

FPD - first part done

IS - interrupt stack

CMD - current mode (0-kernal; 1-exec: 2-super; 3-user)
PMD - previous mode

IPL - interrupt priority level

DV - decimal overflow trap enable
FU - floating underflow trap enable
IV - integer overflow trap enable

T - trace trap eneble

N - negative condition code

Z - zero condition code

V - overflow condition ccde

C - carry condition code

Figure 6 - PROCESS CONTROL BLOCK

88

.re

89

1.2. THE CPU

The VAX CPU cannot be viewed as a single machine, but rather as a col-
lection of tightly-coupled units: the instruction buffer, or I-box; the memory
management hardware, including the cache and translation mechanisms; the
optional floating-point accelerator; and the central, micro-programmed part

of the CPU, which I call the Central Data Paths.

1.2.1. the Instruction Buffer

The instruction buffer has the task of fetching the instructi§n stream
from memory, and decoding the instruction op-code and data specifiers
(ad'dressing modes). Eight bytes of instruction stream can be accommo-
dated at one time, and if this space is half occupied, or less, the unit\will
attempt to pre-fetch the next longword of program. A separate address
register (IBA) is used for this purpose, and is updated by the I-box. The pre-
fetching action can be inhibited by the central microprogram as, for exam-
ple, when a branch or context switch is about to take place. The buffer can
also be cleared, IBA reloaded, and'fetching reinitiated in such a case. The
possibility of a program's meodifying an already-fetched instruction byte dic-

tates the operating system’s enforcement of pure procedures.

When interpreting a macro-instruction, the microprogram must fetch
and store instruction operands, using the VAX's elaborate addressing
scheme. Although total hardware support for this function is not provided,
the I-box does give considerable assistance. At least once during the decod-
ing of each macro-instruction, and usually once per operand, the microcode
executes a "decision point” (or SPEC) branch, a table jump in which the

lowest eight address bits are supplied by Lhe instruction deccde logic. The

90

LONG WoRD DRTA Frpm MEMIRY

BYTE | I
ROTATOR

o

> d AAN

V2 V/R VAAVA

bie? | 6| S| ¥] 3] 2 i o] INSTRUCTION
., Leeeed [0P | ByrFgR

SHIFTER MECKAN ISM

4
{
» Y Y
INSTRUCTIONV
DeCoDg
Each instruction buffer byte has a validity bit Logic

indication whether it contains good data, As
opcedes and specifiers are evalusted, bytes
are shifted towsrds byte O, Memory data is
rotated according to the two low order bits of -
recister IB4, and logded according to the R

validity bits, - ..
v MICROSEQUERICE .
% INSTRUCTION
Depelpunr -
MICRO- ConTROLS

FIGUEE 7 - the fnstruction Buffer

91

microcode thus executed can then fetch or store the operand, interpret an
operand address, cause a reserved address mode fault (e.g., -(PC) mode), or
execute the instruction, as in the' case of instructions with no explicit
operands (lik~e "rei"), or certain operations with some or all operands in
registers, (like "addl2 ri,r2"). Branch-on-condition-code instructions are
also handled in this manner, as the condition codes and the branch condi-
tions can be compared by the hardware at the first decision point. A three-
bit counter called the execution point counter keeps track of the number of
decision point branches taken thus far in the interpretation of the current

instruction, and so contains the index of the operand being decoded at any

time.

A major constituant of the instruction decode logic is a ROM which is
addressed two-dimensionally; by opcode, and by operand number, as sup-
plied by the execution point counter. For each operand of every operator,
this ROM contains avtwelve-bit control word, containing information about the
expected operand. This information includes operand size (byte, word, long-
word, quadword), type (integer; floating; memory address for string and
decimal instructions; memory address or register, for bit ﬁeld instructions),

access necessary (branch displacement, read, write, modify), and four bits of

(micro-) address information.

1.2.2. Memory Management Hardware

In a paged environrnent,- every successful memory reference can poten-
tially cause two accesses - one to read the page table, and one to do the
prescribed operation. (Since the user page tables are in virtual membry.
too, VAX user overhead could be worse.) To speed memory mapping, transla-

tion table entries are cached in a translation buffer (TB). The translation

92

associative with two sets, and holds 128 entries of twenty-one bits plus three
bits of parity. The sets are directly a.ddressed by virtual address bits 31 and
<13:9>, and deliver physical address bits <29:9> (this allows mapping of 1/0
device registers, too). Since bit 31 of a virtual address is used to look up a
set of entries, the systems is not competing with the user for TB space. Thus
if control is taken from the user by the system program (as for the servicing
of an interrupt) and then returned, the user’s TB entries will still be intact,
and he will not have the overhead of building them back up. (Note, though,
that the memory cache does not wor/K this way - allowing the user all the
cache entries, and for him to loose many of them during interrupt servicing.)
Whenever a CPU data reference causes a TB miss, the microprogram is inter-
rupted, and a micro-routine entered to fetch the missing page table entry
into the buffer. This can require multiple fetches, since the user map is in
virtual space, too. If the PTE is invalid, of course, the page is missing, and a
macro-program interrupt must be taken. The tra;xslation mechanism is con-
trolled by a bit in control register MAPEN (ID bus register TBER0). When it is
disabled (bit is zero) the low-order bits of lbhgword addresses are used as SEBI

(physical) addresses.

Another method used to speed memory references is to keep recently
used, and what one hopes are soon-to-be used, program and data bytes in a
high-speed cache. This is also set associative with two sets, contains long-
word entries, and fetches two longwords at a time from memory. It contains
8k bytes, the two-way sets being directly addressed by bits <11:2> of the
physical address. The microprogram assumes the cache always contains the
desired data. When there is a cache miss on a data reference, the micropro-

gram is stalled (forced to execute no-ops) until the reference can be

«v

93

the CPU, main memory is changed correspondingly. This is kept from delay-
ing the processor by a write buffer. If a cached entry in main memory is
modified by 1/0 activity, the corresponding cache entry is invalidated; refer-

ences to it by the CPU will cause an actual memory access.

An addressing constraint found on IBM-360 computers was that data
must fall on "natural” boundaries (balfwords on even addresses, words on
multiples of four, etc.). This causes problems when, for example, subrou-
tines are passed arguments which may be part of packed (and thus
unaligned) data structures. This restriction was removed in the System/370
models, though one is warned that using unaligned data slows execution. A
similar progression is made between the PDP-11 and VAX-ll. Any data can
occur on any address (almost), but, when a word or longword (or either half
of a quadword) crosses a longword boundary, a micro-routine is invoked to do

extra references.

1.2.3. Central Data Paths

The heart of the CPU is the thirty-two bit ALU and its associated regis-
ters. A simplified data path diagram is given in Figure 8, and a more com-
plete diagram in Figure 9. The general registers (r0 - r14, but not PC) are
kept in a duplicate pair or register files (RAB). This duplication provides for
the contents of two different registers to be used at once. One set of regis-
ters’ output passes through latch LA to the A (right) side of the ALU: the
other passes through lalch LB to its B (left) side. A file of temporaries (t0 -
t7, and others) is also available on the ALU's left, afler passing through latch
LC. A set of sixty-four, sixteen-bit constants is also available on the ALU's

left. Two very important registers, D and Q can be gated to either side of the

94

ALU - they have several special properties, especially in regards to shifting
(to be discussed). The D register acts as the memory data register - all data
routed to or from memory must pass through it. The "internal data” or ID
bus takes its.data from D and delivers to Q. This bus connects to several con-
trol registers (such as the alternate stack pointers, SCBB. page table origin
and length registers), as well as the l-box - immediate and literal data is
received by this path, as are branch displacements. Such data from the I-

box come sign extended.

For testing the value of single bits, or constructing multi-bit masks for
field insertion and extraction, a mask generator is available on the left ALU
input. This circuit will yield 1's in all positions save one, where it will give a
zero. That position is the one selected by the contents of the SC register (bit
zero on the right). For example, to generate ones in word field <m:n>, and

zeros elsewhere, takes five steps:

- load SC with m+1
- using the ALU operation A+B+1, and an A input of zero, store
(mask+1) in a temporary, t0:

m

mask: 1...11011...1
+ 1

to: 1...11100...0

- load SC with n
- as outlined above, store (mask+1) in the Q register:

n
Q: 1...11110..0
- perform the operation "Q ANDNOT t0". The result is:
m n

00...0111...10...0

There are at least three ways in which shifting can be done in the cen-
tral data paths. Two of these are for very specialized applications, the third
is a general rolate unit. Between the ALU output and the D, Q, and file regis-

ters is the SHF box. Data passing through this can be shifted one or two

95

Y Y
vy o] NS/
g 11 8 ; . SIVHISNOD
N\
#1yq Ryowaw o7 ‘2 qﬁ DS \
. T) o
[~ Twvn)T T T l_ [
NoLLpLOY 4
_ I I N ﬁ\&ll
, 1 7 H IS
[ad 1] _ AWy wg
r |
| —_ = - — 77—
yi ﬁ m_.. /N
Wlyq + A N/
RYow3p waf sng T ™ost Yy
A [1
. . | |
74 _ _
€ | =51 23] 32a5] |
! |
Xwg o3 ’ | _
_ ¢ k.muxm lllll —

R

553940y [Yow3W o7

N N
e
Y
é—_‘

Figure 8 - Simplified

CPU Data Faih

tecmmamey

)
'
D
¥IIn3rhyy |
Qv Nw '

PR L R e

el €
41331

v '

:
Ceccceaeed

tvavd YnuIanl)

cemeasman

-0 @ades

P menn

197 wudiny
L2 N
ovel -

P

'
.
]
.
'
.

Fecccanay
.
.

3080

e eww

d
e @ $YILS192v ¢

419 3nss
‘tey:

00¢ Oty
L0l vw

C'ttde%avY v

oavms 3°901M Q L

= XWidw

4

]

oIS vL
eLay

A A SN

v

rwid3g

]

S¥ uCws G1., 04
tvivg 2w Tepinizg

VI O 30y
AN 109 4

mmeeems qgronmened

teug Oa) d¢

(§@sS 2 RANYVA

120108) vA =

<L

19

19%1C) Xmya

Vo
/[_

$1swg

b
oA ’
3 -
[i .
. J- * ’
' H -
] . '
]
H !.4*"&8(& n
A bt
(343
g —
124273
N
- »n?
"
239 \ _
%] e
()
L} L1173 _
a2
. 3 _
[131}
Tluive LaIng
410 €9 —
Tve (1)
(STR] (LA
— _ MYASHO) —

53v0°u¥d N30
Tway -,

35 ve s
e w8 Pikdis s
L | 3w] . 26y AS4
°1 »n
3 w . w
[N
% -

Ly

vo—l

9’

w

RN
. .

>

_ "3

ok,

- Pt m——

B E .,

k

“iovid3L
1$3a0dv 4n

€z
oee

)

$186¢)

*

_

.

Al IR
|

HOX1D3% 55340 .

— *0i1s0L _

*-

'] .
or

%

[

s

L0

£
el
©
[+ 9]
®
2
1]
=)

v o
_lll WA sus
Qg e
e I *
(IRTN XTI . Y
- e e ..
. o o
v .
. [LTYTITS
]
~Ow|
wne o,
™ *
Ty w3
o
NOT X ANINOd X2 .

97

places right, and one, two, or three places left, using various quantities as
the shifted-in bits. The right-by-two shift is used in multiplication, where the
product is formed, two bits at a time, in the Q and D registers. The left shift
amount can be. made to depend on the size of the operand currently under
.evaluation: zero for byte, one for word, two for longword, or three for quad-
word. In this way, the index operand of an indexed address specifier may be
correctly scaled. In this case, zeros are always shifted in. The contents of
the D or Q registers may also be shifted, left or right, one or two bits. Again,

a double right shift is used in multiplication.

Finally, there is the full rotation unit. This takes the sixty-four bits from
the Q and D registers (Q on the left), rotates by the amount specified by the
contents of SC (or another sourﬁe), and deposits thirty-two bits of the result
back in D. A positive count denotes left rotation a negative count - right

rotation.

The memory address register is called VA, for "virtual address”. It and
IBA can be loaded from the ALU output; which of them is used as a memory
reference address depends on the destination of the data - VA is used for
data fetches (via register D) and IBA for program étream fetches (to the I-
box). Either of these registers may be loaded into the PC (which appears to
the macro-programmer as register ri5). The latter may also be incremented
by one, two, four or n (a quantity determined by the instruction decode
logic), using a dedicated adder - and avoiding use of the main ALU. Note that
the VA and IBA regisiers cannot be gated directly through the ALU, but must
pass through PC. Thus, whenever a microprogram interrupt is caused by a
TB miss, and we desire to know the requested address causing the interrupt,

we must save the PC (in an RC register), read VA through PC, then restore PC

28

through VA or 1BA. Note also that PC cannot be loaded directly from ALU
fan-out, but must pass through VA or IA. This presents less of a hardship,
since loading PC usually indicates a program jump, and IBA must in that case

be reloaded anyway.

In order to speed the handling of flvating point quantities in machines
without the optional floating point accelerator, an auxiliary, ten-bit ALU is
provided. The major component in its data paths is the SC register, which is
also for shifting and mask operations (as we have seen). Other registers
associated with it are FE and STATE; constants can also be used. The STATE
register (of eight bits) is often used to keep state information during the
interpretation of complex instruction. For example, the subscript range
check flag is kept here during the index instruction, since the tests are done
early on, but no action should be taken until after the final result is stored.
The decimal instructions also keep flags in this register. On the output of the
exponent ALU (EALU) is a 256x8-bit ROM for looking up the negative absolute
value of quantities. This is handy when it is necessary to de-normalize the
smaller of two floating-point numbers by the difference of the exponents, for

addition.

1.2.4, the Accelerator

The floating point accelerator is an optional piece of hardware designed
to speed VAX floating point calculations. The accelerator is not merely a bus
device, but one whose tentacles reach to may parts of the CPU. It recognizes
pertinent opcodes in 1B byte zero, and can affect the destination address of
decision point (specifier decode) branches. It receives data by way of the ID
bus, and returns results via a bus leading into the Q and D registers. It keeps

its own copies of the general registers, and can set the condition code bits.

e

99

The sequence of events for a dyadic operation would go like this:

- first operand fetched into D register.

- D register gated to ID bus - accelerator signaled to receive data.
Second operand fetched into D register.

- D register gated to ID bus - accelerator signaled to receive data.

- Microcode loops until accelerator signals result ready.

- Result gated into D or Q register - microcode acknowledges receipt
of data.

- Accelerator condition code used to set PSL condition code bits, and
operation result stored. Fault taken if V-bit (overflow) set.

1.2.5. Control Store and the Microsequencer

This massive mound of machinery, the CPU, is not controllea by random
logic, but by a very large (about 57100 byte) micro-program. Control words
are 96 bits wide, and divided into thirty fields (see Figure 10). The first 4096
words of control store are of ROM (and are known as PCS), the next 1024 are
writeable (WCS) and used by the instruction set(s), by micro-ECO's, and by
diagnostic routines. A further 1024 words of WCS are optional, and may be
programmed by the user. Because of the great control word width, consider-
able parallelism is possible, but not often achieved, as most computations
tend to be ALU and register bound. Thirteen bits of each microinstruction
are used to form the address of the successor instruction. When straight-line
microcode is being executed, this address is used directly. But, when any
conditional branches are taken (governed by the BEN micro-word field),
other information is also used. When BEN is non-zero, it selects one of
twenty-six groups of three, four, or five condition bits. For example, group
"1A" is the PSL condition code bits: N, Z, V, & C. These conditions, as they
are queried at the beginning of a cycle, are ORed with the low-order bits of
the address (the micro-word's J or JMP field) to form the address of the suc-

cessor microword. As a further example, branch function "C" is:

100

[EALY] JMP -

{5 1313 o
. vV F S & 7

LA E ¢ |

| IEK MSC | K| K| K| cck |[EBMX]| sMX |-

3/ 2029 2625 24 23 22 2019 1817 I6

A

D ‘ |

[SIMCT/CID FS| - spo | pck

47 96 93 42 4 35 39 32

| KMX _[SI/ACM | QK | SGN |

63 58 57 55 54 57 50 g

.

LDT [X| BEN [ACF | ALU |suB|

9 1877 76 2 7 70 69 66 65 &

| BC | DK | SHE | BMX__|AMX |

95 92 9/ 88 87 8 2% 828 &0

[} t . / [
F»gure/(’)- VAX microinsiruclion fermat

101

SC.ne.0 | D<01> | D<00>

That is, the condition (SC#0), and the two low-order bits of the D register. If
all these conditions are tested, yielding an eight-way branch, the designated
Successor address of the testing instruction must end in binary "000". If, on
the other hand, one only wants to do a four-way branch not involving the test
of the SC register, the successor éddress should end in "100", effectivly
masking out the SC condition. The other addresses involved would end with

"101", 110", and "111".

If the SUB field is one, a micro-subroutine call is specified, and the
address of the current microword is pushed onto a (sixteen deep) stack
before the branch is taken. If the SUB field is a two, an address is popped off
this stack, and is ORed with the instruction's JMP field, as well as any condi-
tions specified, to form the next word address. Note that if a word specifies a
return, a zero address field, and no conditions, the returned-to address is
exactly the one from which the call was made, and so the subroutine is
recalled! A SUB field of value three denotes a decision point branch, and the

lower eight bits of address are taken from the instruction decode iogic.

The micro-code Sequencer can be affected by several other machine

conditions, such as a translation buffer miss.

102

2. MICROPROGRAMMING THE VAX

In the previous section, we saw some of the macro-architecture features
of the VAX, and some of the micro-architecture supporting them. Here, we
will investigate the micro-architecture on a much more detailed.basis, with
an emphasis on user microprogramming. Fields and functions not used or
usable to the writer of user micro-code will be treated sketchily. Program-
ming examples'will mostly use the notation .of DEC's assembler - that is,
“FIELDNAME /value'’, where '‘value” is either a hexadecimal number or a
symbolic constant. Field-value assignments separated by commas co-exist in
the same micro-word. This assembler also employs a suggestive macro-

notation, which 1 will not use.

2.1. ARITHMETIC SECTION

The Central Data Paths' Arithmetic Section (DEC’s name) consists of the
thirty-two-bit ALU, its input multiplexors, register files and latches, the con-

stant and mask generation mechanisms, and some miscellany.

2.1.1. ALU functions and condition codes

The VAX's heart, the thirty-two-bit ALU, is built of 745181 (ALU) and
745182 (look-ahead carry generator) chips. Its function is controlled by the
four-bit "ALU" field of the microword. This field is not used directly as the
chip’s function selector, but is mapped into a subset, controlling other func-

tions as well. The function codes are shown in Figure 11.

The RLOG stack is used to record changes made to the general registers
in the course of operand evaluation. For example, the macro-instruction
ADDL3 -(sp), -(sp). x requires that the stack pointer (ri4) be twice decre-

mented by four in order to fetch the operands of the addition, whose result is

(¢

103

VALUE _ SYMBOL FUNCTION

0 A-B subtract -

1 A-B.RLOG subtract, record on RLOG

2 A-B-1 subtract, less one

3 INST.DEP instruction dependent

4 A+B+1 add, plus one

5 A+B add

6 A+B.RLOG add, record on RLOG

7 ORNOT avb

B XOR a®b

9 ANDNOT aAb

A NOTA a

B- A+B+PSL.C add with carry

o OR logical sum

D AND logical product

E B pass data from B-mux X
F A pass data from A-mux (default)

Figure 11 - ALU functions

then stored at location *“x". If “x" is in an absent page, the instruction is
interrupted, then re-executed after the absent page is fetched into primary
memory. In order that the correct operands be re-fetched, any register
modifications must be undone. Towards this end, the 16x9-bit RLOG stack
can be used to record the lower four bits of the KMX field, the target register,
and whether and add or subtract was done. An associated register, PCSV,
saves the PC's low-order eight bits at each macro-instruction’s beginning, so
the PC may be restored in the case of an interrupt, and the operation

correctly restarted.

When an “instruction dependent” operation is specified, a ROM in the

instruction decode logic provides the ALU function select bits.

There are two sets of condition codes which may be set depending on
the ALU's output. The PSL condition codes are accessible to the rnacr;o-

program, whereas the micro-branch condition code (UBCC) is used for local

104

decision-making in the interpretation of an instruction. These codes are
governed by the value of micro-word field CCK, as shown in Figure 12. The
options available for condition-code setting seem peculiar for the garden-
variety arithmetic operation, so I assume most of these are covered by
“instruction dependent”. The PSL V bit signifies an arithmetic overflow, and
C a carry. N is set when a result is negative, and Z when it is zero. The bits
tested to determine these conditions depend on the data type being
operated on. (For example, the sign of a byte operand is bit seven.) The DT
control-word field determines the operand length - at least for integers.
Values are shown in Figure 13. Note that the PSL condition code bits may

also be set from those of the floating-point accelerator after a floating-point

VALUE _SYMBOL FUNCTION

0 NOP do nothing (default)

1 LOAD.UBCC load UBCC from ALU and EALU conditions
2 SET.V force PSL V bit

3 TST.Z clear PSL Z if ALU¥ 0

4 ROR set PSL N & Z from ALU, C from AMX<0>
5 N+Z_ALU set PSL N & Z from ALU

6 C_AMXO0 set PSL C from AMX<0>

7 INST.DEP instruction dependent

Figure 12 - CCK

VALUE _SYMBOL __ FUNCTION

0 LONG 32-bit longword

1 WORD 16-bit word

2 BYTE B-bit byte

3 INST.DEP instruction dependent

(any of above, or quadword
Figure 13 - DT

105

operation, by setting field MSC/8.

2.1.2. ALU inputs

The input to the ALU is chosen by two multiplexors: AMX and BMX. AMX,
which supplies the ALU's A input, can select trom two different sources; BMX

gives eight choices for the B source.

2.1.2.1. AMX

The source selected by AMX is determined by control-word field AMX, as
shown in Figure 14. LA is one of the latches connected to the register file
RAB (see section 2.1.3). RAMX is another multiplexor, which can choose
either the D register, or the Q register. It is controlled by microword field
RMX, see Figure 15. This field élso controls RBMX - a multiplexor with the
same sources, which supplies BMX. Note that, since field RMX controls both

- these devices, one can never do an operation of the D or Q register with

VALUE SYMBOL FUNCTION

0 LA latch LA (default)

1 RAMX mux RAMX (register D or Q)
2 RAMX.SXT RAMX, sign extended

3 RAMX.0XT RAMX, zero extended

Figure 14 - AMX

SYMBOL ___ FUNCTION
VALUE paux RBMX _AMX _ BMX
0 D Q D Q
1 Q D Q D

Figure 15 - RMX (RAMX and RBMX)

108

itself; but that operations between the two will work. Sign or zero extension
may be performed on the data supplied by RAMX, dictated by the data type
field, DT. Thus, when a byte type is specified, and AMX selects RAMX, sign
extended, the sign bit in position seven is propagated through bits <31:8>. A
sign-extended longword is the same as the unmodified data from RAMX, but a
zero-extended longword is identically zero. Thus coding “ALU/4, RAMX/S3,
DT/0' will result in the generation in the ALU of a quantity one greater than
that supplied to the B-input by the BMX.

2.1.2.2. BMX

The B multiplexor is controlled by field BMX, as in Figure 16. The mask
source is, as was previously discussed, a circuit providing 1's in all bit posi-
tions save the one selected by SC<4:0>. LB is a latch whose source is the
register file RAB. LC is a latch whose source is the RC file (tempo.raries). PC
is the program counter, which, although it appears as r15 to the macro-level
programmer, is physically a separate register. A BMX field Qalue of one
selects the LB latch, unless the register selected (by the source specified in

the SPO field, I presume) is r15, in which case the PC is used.

VALUE _SYMBOL FUNCTION

0 MASK mask generator (default)

1 PC.OR.LB 1B, unless designating r15, then PC
2 PACKED.FL pack floating number

3 1B latch LB

4 LC latch LC

5 PC register PC

6 KMX constant (or SC) from KMX

7 RBMX mux RBMX (register D or Q)

Figure 18 - BMX

107

The B-mux can be used to assemble a floating-point format number from
diverse sources, by specifying field BMX/2. The packed floating-point format
is:

15 7)

The exponent is supplied by the seven low-order bits of the output of the
exponent ALU, and the fraction by the D register. The sign is provided by bit
register SD (see paragraph 2.1.5). Due to timing delays in routing the data,
both the EALU and ALU must be performing logical operations (no carries) to
insure that the data is available at the ALU's output when required. A word
containing the PCSV register and the top of the RLOG stack can be selec~ted
with "BMX/0, MSC/?"(.“READ RLOG"”). The format of this is:

L 0 | RLOG | PCSV |

Constants may be introduced into the ALU by way of the constant multi-
plexor, governed by field KMX. Certain values come from the FK multiplexor,
and may be used with impunity. Others are derived from a ROM called SK.
These may be used in arithmetic ALU operations (involving a possible carry
or borrow) only if an extra micro-instruction is allowed for set-up (?). KMX

values are shown in Figure 17.

Register SC is (obviously) not a constant, but is routed through FK and
KMX anyway. ‘‘Specifier 1 constant” appears to be the length of the operand
currently under evaluation, as supplied by the I-box. 'I’his is useful since
auto-increment address mode is supposed always to increment by this value.
The constant four is also available for auto-increment deferred addressing.
KMX/8 gets a zero in normal VAX mode, but has a different meaning in com-

patibility mode (namely, the size of the second operand - specifier 2 con-

108

Qex decimal
0 B 0 8
1 g 1 1
2 2 2 2
3 .3 3 3
4 4 4 4
6 SP1.CON spec | const
8 ZERO 0 (sP2.CONim

PDP-11 mode)

v SC reg SC
8 14 14 4
9 AQ A0 . 160
A .84 34 52
B .28 28 40
C 40 40 64
D .50 50 80
E .3000 S000 12288
F EF EF 239
10 .80 80 128
11 8000 8000
12 FF FF 255
13 FF0O FFo0
14 J1E 1E 30
16 R SF 83
18 TF ™ 127
17 q 7 7
18 F F 15

Figure 17a - KMX (beginning)

Register SC is (obviously) not a constant, but is routed through FK and
KMX anyway. ‘‘Specifier 1 constant’ appears to be the length of the operand
currently under evaluation, as supplied by the I-box. This is useful since
auto-increment address mode is supposed always to increment by this value.
The constant four is also available for auto-increment deferred addressing.
KMX/8 gets a zero in normal VAX mode, but has a different meaning in com-
patibility mode (namely, the size of the second operand - specifier 2 con-

stant).

109

19 .10 10 16
1A .FFE8 FFE8
1B FFFO FFFO
1C FFF8 FFF8
1D .20 20 32
1E .30 30 48
IF .18 18 24
20 JFF JFF 1023
21 .C c 12
B2 D D 13
23 AF iF a1
24 .1F00 1F00 7936
25 .BO BO 178
28 .E003 E003
27 C 7C 124
28 .FFED FFED
29 .80 60 96
2B .DFCF DFCF
2C FFEF FFEF
2D FFF1 FFF1
2E .19 19 25
eF .FFF9 FFF9
30 FFFF FFFF
31 .e8 :1:] 138
32 .3030 3030
a3 .FO Fo 240
34 .C0 co 192
a5 .8 8 6
38 .9 9 8
37 .FFF8 FFre
38 FFT5 FFFS
39 1A 1A 26
3A .24 24 38
3B -1B. 18 27
3c FFFC FFFC
3D A A 10
3E .TE 7E 126

Figure 17b - KMX (continued)

2.1.3. the General and Temporary Register sets

Next to the ALU, register access is probably this machine’s narrowest

bottleneck. Despite the three latches,

LA, LB, and LC, only one register may

be read or written at a time (with special-case exceptions). This is because

one seven-bit micro-word field, SPO, is used to control all register activity.

This is divided into several subfields, as shown here,

and tabulated in Figure

110

fee YALUE SYMBOIL, ~EUNCTION
0 NOP do nothing (default)
8 LOAD.LC.SC load IC from address in SC
7 ¥RITERC.SC writ o
: Field SPO
YALUE SYMROL_ FUNCTION
1 LOAD.LAB load LA, LB from R(ACN)
2 LOAD.LC load LA from R(RN), hold LB
3 WRITE.RAR. write RA, RB(ACN)
Fleld SPO.AC
—YALUE SORAL FIUNCTION
0 SP1.SP1 select RAB from SP1
1 SP2.5P2 select RAB from SP2 (for r-r-op optimization)
3 PRN select RAB from PRN
4 PRN+1
6 SC select register addressed by SC .
b8 SP1+1 selected BAB from SP1+1
Field SPO.ACN
. VALUE _SYMBOL FUNCTION
] 2 LOAD.IC load LC from RC(RN)
3 WRITE.RC write RC(RN)
4 LOAD.LAB load LA, LB from RAB(RN)
] WRITE.RAB write RA, RB(RN)
(-] LOAD.LAB1.WRITE.RC load LA, LB from ri, write RC(RN)
7 1OAD 1C WRITE.RAR1
Field SPO.R
VALUE AS SPO.RAB AS SPO.RC
Symbaol Iezister symbol register |
0 RO r0 TO to
1 R1 r1 T1 t1
2 R2 re2 T2 t2
3 R3 3 T3 13
4 R4 r4 T4 t4
5 RS 15°] T5 t5
8 R8 8 T6 te
7 R7 7 ™ t7
8 r8 LC.8Y t8
9 o YA.SV 13:]
A ri0 PTE.VA t10
B ris PTE.PA ti
(o AP ri2 PC.SV t12
D FP ri3 sc.sv ti4
E Sp Ti4 YAREF t15
F RIS r16 MBIT.VA t16
PTEMASK 115

Fleld SPO.RAB & SPO.RC
Figure 18 - Subdivisions of SPO

18.

111

SPO (7 bits)
T
41 40 39 38 37 38 35
____,._—v—-__/ &_V___,J

SPO.AC (4 bits) SPO.ACN (3 bits)
w.*“ ~ " —
SPO.R (3 bits) SPO.RAB (4 bits)

e

SPO.RC (4 bits)

LA, LB, and LC are latches, so data may be clocked out of a register and used
in a logical ALU operation in the same micro-word. Because of timing con-
straints, however, an extira cycle should be allowed for operations involving
carry propagation. The latches’ contents will remain unchanged, and may be _
used in later operations, as long as no further register contents have been
read through them. You should not count on their being unchanged at any
time when the rnicroprograin may be interrupted (as when doing memory
accesses). SPO fleld vélues are more rationally explicated in Figure 18,
where: SP! signifies the register designated by th operand specifier
currently under evaluation; SP2 is the register number of the next specifier
(useful, perhaps, in optimizing register-register instructions); and PRN (pre-
vious register number) is the register of the last specifier evaluated. In
PDP-11 mode, SRC and DEST are the two operand registers of the instruction

word.

The RC registers always act as full, longword registers. However, when
loading an RAB register, a partial word may be loaded, depending on the data
type, determined by field DT. The SPO values useful to the microprogram-
mer are of the form 2x (read an RC), 3x (write RC), 4x (read RAB), and 5x
(write RAB). The address modes allowing one to use the SC register as an
index are also useful, and facilitate multiple register loading and storing, as

for a context switch or subroutine entry (where the registers to be saved are

VALUE
hex ~ CS word FUNCTION
41 40 -39 38 37 88 35
0-5 0 0 0 0 x x =x |NOP
8 0 0 0 0 1 1 0 |loadLC, from RC[SC]
7 0 0 0 0 i 1 1 | write RCISC]
&F 0O o0 o0 1 ACN load LAB from R{ACN)
10-17 | 0O 0 i 0 RN load RA(RN), rO-r7
185 1o 0 1 1 ACN write RAB(ACN)
BO-2F |0 1 0 -RN- load LC from RC(RN)
190-3F {0 1 1 -RN- write RC(RN)
404F | £ 0 0O -RN - load LAB from R(RN)
SF 11 0 1 -RN- ¥rite RAB(EN)
80-8F | 1 1 0 -RN- load LAB from r1, write RC(RN)
70-7F L 4 1 ~RBN- srite ri, load 1.C from RC(RN) |

Figure 19 - Field SPO

112

designated by 1's in a bit map). The other register specifying schemes are of

limited application.

2.1.4. SHF

A limited shifter, SHF, takes the ALU output, and feeds the register files,

the D register, the Q register, and the accelerator. It is mainly used in multi-

plication, division, and subscript scaling, as has been mentioned. It is con-

trolled by microword field SHF, as shown in Figure 20. *‘Data dependent'

shift amounts are determined by the DT field, and the decode logic. For SHF

VALUE

O o WN = O

SYMBOL FUNCTION
ALU no shift (default)
LEFT shift left one
RIGHT shift right one
ALU.DT shift left by data type
(byte 0, word 1, long 2, quad 3)
RIGHT2 shift right 2
LEFT3 shift left 3

Figure 20 - S

HF

113

field values of three or five, the quantity shifted in is always zero. For the
other cases, it depends on the value of field SI. These dependencies are

shown in Figure 21.

2.1.5. Sign Control

When performing floating-point calculations in the Central Data Paths,

the signs of the operands are kept in two flip-flops: SS and SD. They can be

. loaded from bit fifteen of ALU output (the sign bit of an assembled floating-
point number), and a small number of operations may be performed on
them. They are controlled by field SGN, as in Figure 22. Note the operation

*SS <- S8 xor ALU<15> xor IR<1>." Floating add instructions have a zero in

FUNCTION
VALUE SYMBOL g 5 D
0 DIVD PSL<N> ALU C<31> Q<31>
1 ASHR ALU<31> Q<31> Q<0>
2 ASHL 0 D<31> 0
3 ZERO 0 0 0
5 DIV Q<31> ALUC<31> Q<31>
8 MUL+ 0 0 ALU<1:0>
7 MUL- 0 0 ALU<1:0> |

Figure 21 - S]
opcode bit 1, and floating subtracts a one. Thus similar instructions may use

common microcode (as in the case of “instruction dependent” operations).

{ VALUE _ SYMBOL FUNCTION
0 NOP do nothing (default)
i LOAD.SS SS
2 SS.FROM.SD SS « SD
3 NOT.SD SD « SD
4 SD.FROM.SS SD « SS
5 SS.XOR.ALU SD « ALU<15>, SS « SS® ALU<15>
8 ADD.SUB SD « ALU<15>, SS « SS® ALU<15> @ IR<1>
7 CLR.SD+SS clear SD 4nd SS

Figure 22 - SGN
SC is the source of the sign when floating-point numbers are re-assembled in

the ALU's B-mux.

114

2.2. DATA SECTION

The Data section is that part of the Central Data Paths which includes
the D and Q register, the shifter, the interfaces to the ID bus, accelerator,

and memory data.

2.2.1. Data Format Multiplexor

Data from the ALU can be gated into the D and Q registers. Its path
from the ALU is through shifter SHF, and through a curious device, the data
formatter multiplexor (DFMX), on its way to the D and Q registers’ input mul-
tiplexors. One may specify (by way of fields QK and DK) that data‘ be
transmitted from the ALU in either integer or unpacked floating-point for-
mat. In integer mode, the thirty-two-bit word is received just as it leaves
SHF. Or, data assumed to be the floating point format previously exhibited

may be unpacked by DFMX into the following format:

3 29 22, 6
(o1l SHEC6 0> | SHFL3i6> 1o

Note that this is not exactly the converse to the packing operation of the B-
mux, and that the leading 1 implicit in normalized floating-point numbers

has been made explicit, in bit 30.

2.2.2. DAL

The general, sixty-four-bit shifter (Data Aligner, DAL) was discussed in an
earlier section. Actually, the shifting scheme used is more ingenious than
was presented. There are three levels of shifting circuitry. Level one is
governed by SC bits nine and four, and can shift left by 0, 16, 32 (same as a

right shift of 32), or 48 (same as a right shift of 16). Level two is governed by

115

SC bits <3:2>, and shifts left by 0, 4, 8, or 12 bits. The third level, governed
by SC<1:0>, shifts left 0, 1, 2, or 3. So, if SC contained *“1xxxx11111", the
rotation would be (right 18)+(left 12)+(left 3) = right-by-one.

2.2.3. Accelerator Data

Output data from the floating point accelerator is available to the Q and
D registérs on the same bus fed by DFMX, and may be gated into them when
the accelerator signals it is ready. This device keeps its own copies of the
general registers, and loads a register with the data from this bus whenever
the corresponding register in the set RAB is loaded. This implies that when-
ever a register is loaded by the microprogram, DFMX had better be selected
for integer-format data, or the accelerator’s register will be incorrectly

loaded!

2.2.4. ID Bus

The registers on the internal data (ID) bus may be inspected and loaded
by way of the Q and D registers. These functions are controlled by the CID,
FS, and KMX (alias ID.ADDR) microword fields. Coding “FS/1, CID/5" rcauses
the 1D register selected by the KMX field (not the constant value selected) to
be read - it can thus be gated into the Q register; “FS/1, CID/4" causes the
ID bus register selected by the contents of register SC to be read. *'FS/1,
CID/7" writes the contents of the D register in the ID register selected b'y
field KMX; “FS/1, CID/é" causes the bus register modified to be chosen by
the contents of register SC. The ID bus registers’ addresses are shown in Fig-
ure 24. Many of these registers are of interest only for diagnostic purposes -
these registers are available to the LSI-11, too, so can be read and diagnosed

by a console program. Other registers are visible to the macro-programmer,

-

register address read write
source Q«1ID ID«D
field KMX | FS/1, CID/5 | FS/1, CID/7

register SC

FS/1, CID/4 | FS/1, CID/6

Figure 23 - ID bus Control

VALUE _ SYMBOL REGISTER
0 IBUF data from IB
1 DAY.TIME current time of day
(read till constant)
3 SYS.ID system id register
4 RXCS Console receive status register
5 RXDB Console receive date byte
6 TXCS Console transmit status register
7 TXDB Console transmit data byte
8 DQ D/Q registers (maintepance use)
9 NXT.PER Interval Clock next period
A CLK.CS Interval Clock control
B INTERVAL Current interval count
c CES CPU error/status N
D VECTOR Ezception control
E SIR Software Interrupt Register
F PSL . Processor Status Longword
11 TBUF Translation buffer dats
12 TBERO TB error/stat 0
13 TBER1 TB error/stat 1
14 ACC.0 Accelerator register 0
15 ACC.1 Accelerator register 1
18 ACC.2 Accelerator register 2
17 ACC.CS Accelerator control/stat
18 SILO Next item of SBI history
19 SBLERR SBI error register
1A TIME.ADDR BBI timeout address
1B FAULT fault/status
1C COMP SBI silo comparator
1D MAINT SBI maintenance
iE PARITY Cache parity
20 USTACK Microstack
21 UBREAK Micro-breek address
22 WCS.ADDR WCS write address
23 WCS.DATA WCS write data
A {writing data increments address) |

Figure 24 - ID Bus registers

and are adequately described in the VAX-11/780 handbook series.

118

The data from the instruction buffer is usually a byte, word, or longword

of immediate data. When IBC/7 is coded in the same micro-word that causes

117

this source to be read, the data received is a sign-extended byte (or word) to

be used as a branch displacement.

ID registers 30 - 39 are also named TO - T9. These are temporary regis-
ters used primarily during a machine error logout (to store the logout data,
in case writing to memory is infeasible). They are otherwise free to the

micro-programmer.

2.2.5. the Q Register

The Q register serves as a source of data for shifter and ALU operations,
as described previously. It may be loaded from several sources, including"
DFMX, the ID bus, and the accelerator. This is controlled by microword field
QK, as shown in Figure 25. Those features not previously mentioned are its

shifting ability, and a decimal correction factor.

The contents of the Q register may be shifted left or right by one or two
bits. The bits shifted in depend on the setting of field SI, as shown in Figure
21.

The VAX instruction set supports packed (BCD) decimal arithmetic

instructions. However, the VAX ALU only operates on binary quantities.

VALUE __SYMBOL _ FUNCTION

0 NOP hold value (default)

1 LEFT2 shift jeft 2

2 RIGHT2 shift right 2

5 LEFT shift left 1

8 RIGHT shift right 1

8 SHF load from SHF, integer format)
9 SHF.FL oad from SHF, unpacked floating format
A DEC.CON |paq decimal correction factor

B ACCEL oad accelerator data

C D load from register D (via DAL)

E ID load ID bus data

F CLR clear register Q

Figure 25 - QK

118

Thus, it is sometimes necessary to add 8's into a four-bit decimal digit (nib-

ble) to force a carry. The usual algorithm for adding together word-fulls of

decimal digits, A and B, is:

(1) T« A+ (a word containing “0110" in each decimal digit)
(3) B«B+T

(8) T « (a word containing "0110" in each decimal digit for which a
carry-out was not generated in the previous step, else zero)

(4) B«B-T

Steps two and three of this procedure are usually done in parallel, as the

nibble-carry information does not persist.

A mechanism to aid this computation is the '*decimal constant" wt;ich
majf be loaded into the Q register. (I don't know how this works, but my
intuition is that it works the same as a similar mechanism of the QM-1 com-
puter:'it will generate the all-8's word of step one when zero is passed
through the ALU, and the 0's-and-8's word of step three when the partial sum
of step two is generated in the ALU.)

2.2.6. the D Register

The D register is a source of data for shifter and ALU operations,
memory and |D bus transactions. It may be loaded from several sources,
including DFMX, memory data, DAL, and the accelerator. This is controlled

by microword field DK, as shown in Figure 26.

The contents of the D register may be shifted left or right by one or two
bits. The bits shifted in depend on the setting of field SI, for which see Figure
21. This register can be conditionally shifted left by one place; if a carry-out
of the ALU's most significant bit (31) is generated, the shift is done {shifted-

in bit depending on SI), otherwise, the register is loaded with data from SHF.

119

VALUE SYMBOL _ FUNCTION

0 NOP hold value (default)

1 LEFT2 shift left 2

2 RIGHT2 shift right 2 A
4 DIV load from SHF if ALU carry, else shift left 1
5 LEFT shift left 1

6 RIGHT shift right 1

8 SHF load from SHF, integer format

9 SHF.FL load from SHF, unpacked floating format
A ACCEL load accelerator data

B BYTE.SWAP rearrange bytes in register

C load from register Q (via DAL)

D DAL.SC load from shifter, using SC as count

E DAL.SV "load DAL shf val"??

F CLR clear register D

Figure 26 - DK

Packed decimal strings are held in memory with the highest-order byte
at the lowest address. So the BCD representation of the number 1234567 in a

longword would be

7+563412°

since, in a longword, the low-order byte has the lowest address. Computa-
tionally, it would be convenient if the most significant digit were on the left,
and the least significant on the right. The byte swap mechanism can

transform the above representation, once loaded into the D register, into

1234587+
the desired form, also in register D.

The D register serves as the memory data register for both reads and
writes. Memory reads are always done in longwords - but a program can
address data on byte boundaries. Between the memory d—ata (MD) bus and

the D register, the memory data aligned (MDAL) rotates the incoming

" ¥ denoting the BCD representation of x.

120

-,

longword from the cache according to the two low-order bits of the requested
address (from VA). In the case where data crosses a longword boundary (as
determined by the address, and the size specified by the DT field) a second
read must be done. The incoming data from this second read is prevented
from clobbering the usable data already in the D register by a validity bit
mechanism (similar to that of the instruction buffer). A complementary
mechanism governs the insertion of partial words into memory, during store
operations. Note that partial-register data from memory should be sign or

zero extended appropriately before use.

2.3. ADDRESS SECTION

The address section is that part of the Central Data Paths concerned
with the generation of addresses for accessing main store. This includes
registers VA, 1IBA, and PC. Generally, when fetching program stream to the
" instruction buffer, IBA is the address source, and when accessing data, VA is
the address source. (This statement is an oversimplification, and will be

dealt with presently.)

2.3.1. Register VA

Register VA is used as the source of virtual addresses for a data fetch or
store operation. In this case, the address is translated before use by the
translation buffer mechanism. Its contents can also be interpreted as a phy-
sical address, as, for example, when accessing the system control block or
system page table (which are addressed in physical memory). Or, it can be
used as an index into the translation bufler, without any data transmission
taking place, as in the case of a PROBE instruction. This is also its use when

invalidating or manipulating TB entries (a PTE's modify bit is updated by a

121

microcoded routine when the corresponding page is first modified - TB
entries are accessed via the ID bus). And, when a program jump is taken, the
destination should be loaded in VA as well as IBA. VA is loaded from ALU fan-

out when field VAK is set to one.

2.3.2. IBA

The IBA (or more properly, VIBA, for virtual instruction-buffer address)
holds the virtual address where the IB is fetching instruction stream bytes.
It is loaded from ALU output by setting micro-instruction field 1BC to two,

and is automatically updated by the instruction buffer as successive long-

VALUE SYMBOL FUNCTION
0 NOP hold value (default)
| LOAD load VA from ALU output
a) field VAK
VALUE SYMBOL FUNCTION
0 NOP no control (default)
1 STOP
2 FLUSH flush IB, load IBA from ALU output
3 START
4 CLR.O0.1 clear bytes 0 & 1 (PDP-11 instruction)
5 CLR,2.3 clear bytes 2 & 3 (PDP-11 data)
7 BDEST transfer branch displacement on 1D bus
c CLR.O clear byte 0 (VAX opcode)
D CLR.1 clear byte 1 (VAX specifier)
E CLR.0-3 clear bytes 0-3
F CLR.1-5.COND clear bytes 1 - 5 conditionally.
If there is no specifier evaluation,
clear nothing. If a self-contained
specifier, clear it. If immediate,
absolute, or displacement, clear
the I-stream literal.

b) field IBC
Figure 27 - fields VAK and IBC

122

words are fetched. The low-order two bits determine how data is byte-
rotated as it enters the 1B, and are adjusted as the IB justifies its data
requests to longword boundaries. This register is used as the actual address
for a memory fetch only when there is an interruption to sequential program
flow (as in the cases of a program jump, successful branch, interrupt or
exception, or the crossing of a page boundary). On these occasions, a physi-
cal IBA register (IPA) is set up by the TB mechanism, and used thereafter.
This ingenious design avoids the translation process for most program
fetches. IBA is loaded from ALU fan-out when the IB is flushed by coding
1BC/2. | ~

2.3.3. PC

At the beéinning of the interpretation of each macro-instruction, the
program counter (PC) register contains the address of the opcode byte.
When interpreting an operand, the PC addresses the operand specifier, and
can be used in computing relative addresses. The upper twenty-eight bits of
PC comprise a counter, and the lower bits can be loaded from the output of a
four-bit ALU - the carry-out of which is used to increment the twenty-eight-
bit counter. In this way, small constants (1, 2, 4, or n, a number determined
by the I-box) may be added to PC, see Figure 28. Since this register is often
updated, incrementing it via the thirty-two-bit ALU would cause instruction
interpretation to be considerably more ALU-bound than by the present
scheme. Since PC is often used by seldom loaded, it should have a direct
path to an ALU input, but does not need to be easily loaded from ALU output.
In fact, loading PC usually signifies a change from sequential program control
flow, so IBA and VA must be loaded with the same address, and PC may be

loaded from one of these. PC operations are controlled by micro-instruction

123

’ 31

To
ARITHAISTIC
SECTIo

v

Figure 28 - PC configuration

field PCK, as shown in Figure 29.

VALUE SYMBOL _FUNCTION
0 NOP do nothing (default)
s 1 PC.VA PC « VA
. 2 PC_IBA PC « IBA
° 3 VA+4 VAe«VA+ 4
(4 PC+1 PC« PC+1
T . 5 PC+2 PC«PC+2
. 6 PC+4 PC« PC+4
7 PC+N PC«PC+n

v Figure 29 - PCK

124

2.4. EXPONENT SECTION

The Exponent Section is a part of the Central Data Paths designated for
the handling of floating point exponents, in the absence of a floating-point
accelerator. This includes three registers and a ten-bit ALU, so that a
nurﬁber's e)gponent and fraction can be handled concurrently. Floating point
numbers can be assembled and disassembled using the ALU B-mux and the

DFMX, as we have already seen.

2.4.1. the Exponent ALU

The EALU takes its A input from either of registers SC or STATE, and-its
B input from a variety of sources; including register FE and the output from
the constant multiplexor, KMX. Its output can be used to load any of the
registers FE, SC, and STATE. The EALU A-mux (EAMX) is controlled by field
MSC - when MSC/5 is coded, the STATE register is selected as a data source,
otherwise register SC is used. The EALU B-mux (EBMX) is controlled by field
EBMX, as shown in Figure 30. Note that, since the contents of the SC register
can be routed through the constant multiplexor, they can be used as a
source for the EALU's B input. The EALU function is controlled by microword
field EALU, see Figure 31. The negative-absolute-value function invokes a

256x8-bit ROM on the output of the EALU. A difference generated in the EALU

VALUE _SYMBOL __ FUNCTION

FE choose register FE

KMX choose constant multiplexor
AMX.EXP exponent part of AMX data
SHF.VAL _ "shift value"??

Figure 30 - EBMX

W N -0

125

VALUE _SYMBOL _ FUNCTION

0 A pass A input

1 OR AvB

2 ANDNOT AAB

3 B ‘ pass B input

4 A+B addition

5 A-B subtraction

6 A+1 A 1nput plus one
7 NABS.A-B |A-

Figure 31 - EALU

is used as an index into the ROM, which supplies a negative shift count, as
when one wants to denormalize the fraction part of a floating point nurnber
by the difference of two exponents. Which of two fractions is to be shifted
depends on the true sign of the difference, so one hopes that the EALU sign

can be tested before it is changed by the NABS mechanism.

" 2.4.2. Shift Count Register

The ten-bit SC register is loaded from one of several sources when feld
SCK is set to one, otherwise the contents remain unchanged. When SC is
loaded, it may be from one of several sources; this function is controlled by
field SMX, Figure 32. SC is a source for the A input to the EALU, and the B
inputs of both the thirty-two bit ALU and the EALU, via KMX. Additionally, it
governs the generation of bit masks, the shifting of data in the DAL unit, and
can be used as an index to the scratch pad registers (RAB and RC) and the ID

bus registers.

2.4.3. the FE register

FE is a ten-bit register used in floating-point exponent, computations in

the EALU. 1t is loaded from EALU output when field FEK is set to one, else the

128

VALUE _SYMBOL__FUNCTION -
0 NOP old value (default) .
1 LOAD oad SC from SMX PO
SCK)
VAL ___SYMBOL _ FUNCTION Y.
0 EALU EALU output (default)
1 FE register FE
2 ALU ALU<9:0>
3 ALU.EXP _ALU<14:7>
SMX
Figure 32 - SCK and SMX
contents are retained. It is a source of data for the EALU's B-input, and can
be loaded directly into SC.
2.4.4. STATE
The eight-bit STATE register is used, as the name implies, to encode
micro-program state information. Each of its four-bit halves may be used to
VALUE SYMBOL _FUNCTION
0 NOP hold value (default)
1 LOAD load FE from EALU output
FEK
VALUE _SYMBOL FUNCTION -
0 NOP no msc control F
(SC selected as EALU A input <
5 LOAD.STATE select STATE as EALU A input .
load STATE from EALU output | :, '
MCS/5

Figure 33 - FE and STATE controls .

127

control a multi-way microcode branch of up to sixteen different destinations.
T1:1is register may be loaded with the output of the EALU when the MSC field is
set to five. Note that this is the same field which governs the EALU's A-input -
whenever STATE is selected as an EALU source, it is loaded from EALU out-
put. This would seem to limit STATE's usefulness as an arithmetic register,
but is certainly adequate for setting and clearing flags, which are, after all,

the register's intended contents.

2.5. HOW TO USE MEMORY

There are several flavors of memory access. These are described in
chapter eight of the VAX Hardware Handbook. For our purposes, there are
four types of memory access - data read, data write, sequential program
fetch, and non-sequential program fetch (at a new address). Memory is con-

trolled primarily by control word field MCT, as shown in Figure 34.

2.5.1. Address Sources

The source of memory access addresses depends on whether the data is
destined for the IB. If so, IBA is considered the address source, otherwise, VA
is used. Only longword addresses are sent to memory - the lower two bits of
a byte address determine the byte within the longword, and thus determine
byte rotation at the destination, upon reading, and the generation of a mask,
upon writing. The source of address bits is shown in Figure 35. Note that the
low-order bits are always taken from VA. The implications of this are not

what might be imagined, as we shall see.

128

VALUE SYMBOL FUNCTION
0 "TEST.RCHK probe for readability
2 MEM.NOP do nothing
4 TEST.WCHK probe for writability
A WRITE.V.NOCHK write, no traps
C WRITE.V.WCHK normal write
E LOCKWRITE.V.XCHK interlock write
10 READ.V.RCHK normal read
13 READ.V.NOCHK read, no traps
14 READ.V.WCHK read, for modify
18 READ.V.IBCHK read, check controlled by Ibuf
18 READ.V.NEWPC restart instruction fetching
1A LOCKREAD.V.NOCHK interlock read, inhibit check
1C LOCKREAD.V.WCHK interlock read
20 SBIL.HOLD stop SBI activity
22 SBL.HOLD+UNJAM reset SBI
24 INVALIDATE clear cache entry
28 VALIDATE make cache entry valid
{for microdiagnostics)
28 EXTWRITE.P extended write to clear parity errors
2A WRITE.P physical write
2E LOCKWRITE.p physical interlock write
32 READ.P physical read
38 - READ.INT.SUM "interrupt summary read"??
3A LOCKREAD.P physical interlock read
3E ALLOW.IB.READ let 1B fetchahead (default)
Figure 34 - MCT
VaX VA VA<31:9> VA<8:2>
VIBA VIBA<31:9> VA<8:2>
PDP-11 VA 0 VA<15:9> | VA<8:2>
VIBA 0 VA<15:9> | VA<8:2>

Figure 35 - Address Bits Source

2.5.2. Sequential Program Fetching

When you aren’t doing anything else with memory, you may as well let IB

fetch ahead, so that program stream bytes will be available when required;

the default setting for field MCT is to allow this. Pre-fetching can be avoided

in a variety of ways, the simplest of which is to code memory no-ops in each

129

micro-instruction. This action can also be turned off by stopping IBA, using
field IBC. (Why you would want to do this I do not know.)

Recall that the address source for sequential program fetching is really
IPA, a physical address, rather than IBA, a virtual address. IPA is updated by
IB at the same time as IBA, but whenever the low order bits of IPA {which

needs only to contain longword addresses) become zero, a page boundary

‘has been crossed, and the high-order twenty-three bits of IBA must be re-

translated, to yield the new page frame number. So, IBA<B:0> is never

required for a sequential program fetch.

2.5.3. Non-Sequential Program Fetching

Whenever a program control jump occurs - either through a branch
instruction or an interrupt or exception, several things have to be done:
erroneously fetched-ahead bytes in the IB must be flushed; IBA and PC must
be set anew, as must IPC; IB fetching must be restarted. Because the entire
destination address must be translated in order to load IPC, and because VA
is always the source of low-order address bits, VA must also be loaded with
the destination address. Since you probably weren't going to do anything
further with the old contents of VA anyway, and since VA and IBA can be
loaded in parallel from ALU output, this won't cost you any time (and saves a
few bits of mux). A program jump is usually the last thing done in the

interpretation of an instruction. A formula for doing this is:

(generate destination address in ALU),

VAK/LOAD, PCK/PC_VA, ; note how VA is load-through

IBC/FLUSH, IEK/ISTR ; throw away old IB contents,
; see if interrupt pending

PCK/PC+1, VAK/NOP, : increment PC past new opcode
MCT/READ.V.NEWPC, : restart IB fetches
J/62 ; go do next instruction (62 hex)

130

2.5;4. Data Reads

To read data to be used in computations, simply load VA with the virtual’

address of the datum (or physical address, for physical reads), and in a
succeeding micro-instruction, code the read operation, including no-ops in
fields VAK and DK, and an appropriate data type in DT. The data should be
available in the D register in the next micro-instruction. However, the
mechanism involved is much more complicated that this indicates. If the TB
does not contain an entry for the virtual address requested, a micro-program
interrupt gives control to a routine to fetch the appropriate PTE(s), then
returns to the reading microroutine (with perhaps, some registers modified -
so be careful). If the page is invalid (either missing from main memory, or a
bad address, or no permission), then you loose control completely, and a
macro-program interrupt occurs. If the requested address can be
translated, but the data is not in the cache, the micro-program will be forced
to execute no-op instructions until the data is available. (Note how this may
change the eflect of any timing-dependent operations strung between the
reading micro-instruction and its successor.) Finally, if the memory address
and data length coded in DT determine that the required datum does not
reside in a single longword, a micro-program interrupt gives control to a rou-
tine to do the second read, to fetch the rest of this operand. Control is then

returned to the reading routine.

2.5.5. Data Writes

Writing data is pretty much the same as reading it; put address in VA,
put data in D, write. And just as many nasty things can happen to you -
including a micro-interrupt to set the PTE's modify (dirty) bit, if this is the

first modification of a page since that bit was cleared. Not to mention setting

q»_ "Q '

90

ved
tapm

‘4o

A 4

the modify bit of the system PTE addressing your PTE.

. 131

132

2.8. MICROPROGRAM SEQUENCING

Just as in the case of macro-programs, a micro-program is a series of
instructions to be executed, one after another, in some order specified by
the programmer. The notions of conditional and unconditional sequencing,
of subroutines, and even of interrupts, are shared by the macro- and micro-
programmer. However, the mechanisms present in the VAX micro-
architecture to implement these concepts are considerably different from
those used in most macro-architectures, and for that reason need to be dis-
cussed. VAX micro-program addresses can come from a variety of sources,
depending on conditions in the processor. These conditions are, from

highest to lowest priority:

initialize
maintenance return
cache stall
micro-trap
micro-ECO

normal sequencing

Normal sequencing is the absence of any other condition, and itself encom-
passes several addressing methods. Micro- ECO is the cute trick DEC uses
for patching the native ROM, and is only of peripheral interest to us. A
micro- ¢trap is a micro-program interrupt, and a cache stall is what you do
while waiting on a memory read. The remaining two conditions, initialize
and maintenance return, do not have directly to be dealt with by the micro-
programmer, but are methods by which the console computer can force the

VAX micro-PC to take on certain values.

2.6.1. Normal Mode

Each microinstruction word specifies its normal successor using three

fields: BEN (four bits), SUB (two bits), and JMP (thirteen bits). The latter

V4

)

¥

¢4

'3
-

133

field carries address bits which can be used directly or in combination with
bits from other sources. BEN determines the set of conditions to be tested
when doing conditional branches, and SUB governs subroutine calls and

returns, as well as decision point jumps.

2.6.1.1. conditional branching

The destination address of a conditional branch is formed in this
manner: a set of condition bits, chosen according to field BEN, is ORed with
the contents of the JMP field; the result is used as the successor address.
The default value for BEN is zero, which specifies an all-zero set of *condi-
tions’'. The default value for JMP is the address of the next sequecial micro-
instruction (which is unlikely to be at the next sequential address). Thus, the
default sequencing is plain, straingh-line execution. The sets of condition
bits specified by BEN are shown in Figure 38. For example, to add one to the
contents of register rl, and shift the Q register left one on result zero, but to

jump to NEXT in any case, we can code:

ALU/A-B, AMX/LA, SP0O/41, ; read r1, set up subtraction
BMX/KMX, KMX/.1 ; subtrahend is constant 1

ALU/A-B, AMX/LA, BMX/KMX, : do subtraction
KMX/.1, SPO/51, CCK/UBCC ; store result, set condition code

BEN/Z : br;nch on Z condition (Z=1 if r1=0)
=0 ;

J/NEXT ;2=0,r17 0

QK/LEFT, J/NEXT : z=1rl1=0
=END '

In this example, the brackets =0 ... =END indicate that the first word within

them has an even address, and the second word the following, odd, address.

2.8.1.2. subroutines

134

The micro-subroutine mechanism permits subroutines and interrupts

nested to a depth of sixteen. The key element is a 18x18-bit stack used to

manipulate microprogram addresses. When a word in which SUB/1 is coded

is executed, the address of that microword is pushed on the stack. This

means that, whenever a subroutine is called, it is the address of the calling

BITS
VALSYMBOL FUNCT UPC<4> | uPc<s> | upc<2> | UPC<i> | UPC<0>
0 INOP no branch 0 0 0
1@ UBCC condition code 0 0 ALU<Z>
2 ROR LA<O1> PSL<C> LA<00>
3 C31 carry-out of ALU<31> (] ALU C31 0
8 ACC accelerator conditions UB2 UBt UBO
8 DATA.TYPE 0 - normal, 1 - quad or double,
2 - field, 3 - address
9 {R2-1 IB byte zero bits] IR<2> R<I>
A RE] AST on RE! mode <ASTLVI 0 0
B B.TEST 0-TBmiss, 1 - error, 0 IB runninglerror/data valid|
2 - stall, 3 - data OK
C MUL SC=0 | D<O1> D<00>
D SIGNS Q<31> D#0 D<31>
E INTERRUPTtest interrupt conditions AClow |Int.inter.| Inter.req.
F DECIMAL 0 B0sD<7:05| D<3:0> =8
539 | or=0D
10JUTRAP micro-trap vector):V<3> pv<e> JV<1> JV<0>
11LAST.REF ‘9 2 ? 2
12[EALU.CC EALU conditions of UBCC | EALU<N> | EALU<Z> SC#0 ss
14{SC 0 - zero, 1 - negative, 0 SC<9:8>#0 [SC>0 SC<9:5>#0
2-1-31,3->31
15ALU1-0 conditions{previous cycle}Rlog EmptylALU<1:0> = 0| ALU<1> ALU<0>
18/STATE7-4 STATE register STATE<7> | STATE |[STATE<5>| STATE<4>
17|STATE3-0 more of STATE STATE<3> | STATE<2> (STATE<1>| STATE<O>
18D.BYTES Dregister D<31:24>#(D<23:18>#0 D<15:8>%0 D<7:0>%0
19|D3-0 D register D<3> D<2> D<1> D<0>
1AIPCL.CC PSL conditions PSL<N> PSL<Z> PSL<V> PSL<C>
1BIALU.CC UBCC ALU conditions ALU<SN> ALU<Z> IR<0> ALU C31
1CiPSL.MODE
1D,TB.TEST

Figure 36 - BEN

2
<=
Ay~
~

~
- o

-

-
3

“n

& n
a s
L
v _y

135

word which is on the stack, and which must later be manipulated to form the
return address. Notice how, by combining the subroutine and conditional
jump mechanisms, a routine may have several entry points, conditionally

chosen.

A subroutine return is denoted by SUB/2 (see Figure 37). This causes
the top address on the stack to be popped and used in successor address for-
mation; it is ORed with the logical sum of the word's JMP field and any condi-
tion bits selected, formed as described previously. So a routine may return
to any of several places relative to the calling address - depending on the JMP
constant specified in the returning word, and depending on any conditions
selected. 1don't believe that any qverall call-return convention is used in the
native microcode, as different routines tend to be called from inside diverse

constrained address blocks. A simple convention, when no other address

constraints are involved, is to call from an even address, and to return to the

following odd address, by specifying a JMP field on 1 in the returning word.

2.8.1.3. decision point branch

When decoding operand specifiers, it is necessary to take into account
information from the instruction decode logic, including operand size and
addressing mode. When SUB/3 is specified, the low-order eight bits of the

next micro-instruction address are taken not from any of the previously

[VALUE __SYMBOL FUNCTION
0 NOP (default)
1 CALL push micro-PC on stack
2 RET OR stacktop with next address
3 SPEC replace low B bits of next
address with bits from 1B

Figure 37 - SUB

136

mentioned address sources, but from the I-box. This is the SPEC jump, or
decision point branch, and is used whenever the microprogram has to use a
specifier to fetch or store an operand. Since the behavior of this operation
depends not bnly on the instruction stream, but on the contents of a ROM in
the instruction decode logic, it is not clear how this could be used by a

micro-program invoked by the XFC macro-instruction.

2.6.2. Micro-traps

Under certain conditions, the microprogram can be interrupted, and
control vectored to one of a set of fixed control store locations. Such a con-
trol shift should not be confused with a macro-program interrupt - some rou-
tine invoked by the micro-trap may subsequently cause a macro-processor
ezception (triggered by conditions internal to the processor), but never a
- macro-program interrupt (caused by external events). When micro-trap
mode is selected, a no-op cycle is performed, during which the trap address
is formed. Address bit twelve is determined by the console processor (nor-
mally zero, but permits traps to be vectored to WCS, as when running micro-
diagnostics); bit eight is set; and <3:0> comes from the exception logic, the
same as branch condition 10. The trap conditions and their associated vec-
tor addresses are shown in Figure 38; their relative priorities are given in
Figure 39. When a micro-trap is initiated, the address of the next (normal
mode) micro-instruction to be executed is pushed on the address stack, so
that the trap routine can use the subroutine return mechanism to relinquish
control. (An exception to this is the control store parity error exception,
which stacks the address of the offending word, rather than its successor. In
Lhis case, control store may be damaged, and processing should not con-

tinue, but the address of the parity error should be reported, via the con-

5 2NN 8
WM

4]
<

‘("Q

137

Vector Address _ Microtrap
100 System Init
101 Unaligned Data
102 Page .
103 M-bit (set modify bit)
104 Protection Violation
105 TB Miss
106 Reserved Floating Operand
107 TB Parity
108 Cache Parity
109
10A
10B
10C Read Data Substitution (error on read)
10D Time Out
10E 0dd Address (11-mode)
10F Control Store parity

Figure 38 - Microtrap vector addresses
low-order twelve bits

highest System Init
CS Parity error
0dd address
Time out
Read Data Substitute
Cache Parity
TB error
Reserved Floating
Protection Violation
Modify Bit
Page Trap
lowest Unaligned Data

Figure 29 - Microtrap priority

sole.)

2.6.3. Micro-ECO

Any machine the size of the VAX-11/780 is bound to have some initial
hardware and firmware bugs. Wisely, the VAX implementors included a
method of repairing the latter in a relatively cheap manner, without replac-

ing any PROM. Micrbprogram changes consist of repaired code, residing in

138

WCS, and an FPLA, which maps PROM addresses‘ (of erroneous code)} into WCS
addresses (of the repaired code). When the FPLA recognizes a bug-y address,
the micro-ECO (for Engineering Change Order) logic forces a micro-no-op
cycle, while the new address is formed. The micro-program continues from
this address, in WCS, until it jumps back into ROM. Forty-eight such changes
may be accommodated. Note that this is not a trap, of the type discussed in
the last section, but only a forced change of locus, triggered by the micro-

program address.

“«“

Frars

a?‘

£

14

ou

P -y
. B N
. 1)

Y

	Copyright notice 1979
	ERL-79-65

