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SUMMARY

Martingales parameterized by certain families of convex subsets of

H , termed set martingales, are studied. The collection of subsets is

partially ordered by set inclusion and an increasing family of a-fields

is naturally generated by an independent, random measure. It is shown

that square integrable set martingales may be represented as a sum of

certain stochastic integrals with respect to the random measure. The

stochastic integrals are named multiple Ito integrals since they

generalize both the multiple Wiener integral introduced by K. Ito and

the stochastic integral of K. Ito. Some properties of multiple Ito

integrals are found.
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1. Introduction

Inspired by work of Kakutani [6], K. Ito [4] introduced the

isometric multiple Wiener integral. K. Ito [3] also introduced random

integrals in the theory of stochastic integration. It is thus fitting

to name the multiple stochastic integrals with random integrands

originally presented by Wong and Zakai [7] multiple Ito integrals. The

purpose of this paper is to identify and study a broad class of

multiple Ito integrals.

Let A be a collection of subsets of E = Hn. Suppose that (fi,F,P)

is a probability space and that {F,>:A 6 A} is a collection of sub-a-fields

of F such that F C F whenever A C b and F = F_. A collection of
A a E

integrable random variables {X :A € A} is defined to be a set martingale

relative to {F.:A € A} if E[XA|F_] » X„ a.s. whenever A 3 B.
A A1 B B

In this and the following section, it is assumed that the a-fields

F^ are generated by a Gaussian white noise as follows. Let (W(B) :B £ 8(E)}

be a centered Gaussian random measure (i.e. a process parameterized by

8(E), the Borel subsets of E) with E[W(A)W(B)] = li(AOB), where y denotes

Lebesgue measure on E. It is assumed that F =» a(W(B):B C a)v W, where

W is the collection of P-null sets. When n=2 and A consists of sets of

the form [0,z1] x [0,z«] for Zt,z2 _> 0, the framework of Wong and Zakai

[7] is recovered. The case when F is generated by a differential

process [5], [2] (or "general independent white noise"), which includes

both Gaussian white ncise and poisson point processes as special cases,

will be studied in Section 3.

A certain class of parameter sets A is studied in this paper.
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This includes the case when A is the collection of all closed convex

sets and the case when A is the collection of all closed rectangles
n

(where a rectangle in E is any set A C E such that II (a., b.) C A
n i=l x 1

C n [a1,b.] for -» £ a. _< b. £ +«).
i«l x

Given a collection of sets A, points s-,,...,sk in E are said to be

unordered if each of the points lies outside of some A C A which contains

the other k-1 points. The multiple Ito integral of order k involves

stochastic integration over the unordered portion of E . The multiple

Wiener integral defined by Ito [4] is the special case when A = 8(E) and

unordered means distinct.

It is shown that multiple Wiener integrals may be "collapsed" into

multiple Ito integrals. This is used to establish the completeness of

multiple Ito integrals in the space of square integrable set parameter

martingales. This fact generalizes the representation theorem of Wong

and Zakai [7] which, in turn, has its roots in the work of Ito [4]

and Kakutani [6] .

In the remainder of this section, some facts regarding multiple

Wiener integrals will be reviewed. The multiple Ito integral introduced

in the following section will have similar properties.

The multiple Wiener integral of order k as defined in [4] is a map

2 k 2
f "*" ^(f) of L (E ) -*" L (ft) which is characterized by the properties.

k

(i) Ik(h) = n W(A.) if h = 1 for disjoint rectangles

**i > • • • »A, •

(ii) Ik(f+g) - Ik(f) + Ik(g).

•(ill) If f. •> fin L2(Ek), then Ik(fj) -Ik(f) in L2(G).

By convention, if k=0and h€L2(E°) =3R, define IQ(h) =h.
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k
For f:E -»• TR let f defined by

f(tv...,Lk) -Jj.Jf(t ,...,t )

denote the symmetrization of f. For f £ L (E ), f is the projection of

f onto the subspace L„(E ) of L (E ) spanned by symmetric functions.

Note that DfO <_ llfll by the Schwartz inequality.

The suggestive notation

f(s1,...,sk)W(ds1)...W(dsk),
E*

where E = l(s-,...,s. ) 6E :s, ^ s. if i f j} will also be used for

Ik(f). The multiple Wiener integral also has the following properties

(see [2],[4]):

(iv) For fe L2(Ek) and g€L2(Ek'), Ifc(f) =Ifc(f) and

E[Ik(f)Ikl(g)]=l{kskf}ki <f,i>
L (E )

(v) For <j> € L2(E) and \ € <c,

exp(X <f> W(ds) - ~ \'
E S 2

,2r . - ,k• tC t

*8d8) = ^ kl" *8 •••♦s W(d8l)JE S k=0 *• J_k Sl Sk X
E

...W(dsk) (1.1)
2

(vi) The Wiener integrals span L (H). Thus (using © to denote

orthogonal sum),

L2(ft) = 0 {I, (f) :fe L2(Ek)} = 9 Lo(Ek).
k=0 k k=0 s

2. Multiple Ito Integrals and Representation of Set Martingales

In this section we will define a class of multiple stochastic

integrals analogous to the integrals 6<>w and W<>r0W introduced by Wong

and Zakai [7]. Such integrals will be called multiple Ito integrals

since, as in the one parameter case, they generalize (multiple) Wiener
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integrals in that random integrands are allowed. Also the indefinite

Integrals will be defined so that the resulting integrals will be set

martingales relative to a collection A of subsets of E =• ln.

It will be assumed that A is of the following form. Let (6 }be
a

asubset of the unit sphere in E=mn and let p denote its (possibly

infinite) cardinality. Let A =A{Q }be the collection of all closed
convex subsets Ain E such that {9^ contains an outword normal

to A at each point in the boundary of A. The special case P= 2n and

{ei,...,9p} » f(0,...,0,+l,0,...,0)} corresponds to the collection of all
closed rectangles. The special case when(q^ is equal t0 the m±t^^
in E=• 3Rn corresponds to the collection of all convex sets.

Each ACA^.Q jhas the representation
a

where h= (ha)aSp S(1UM)P. Ut |^y| be absoluCe ^^ for

x,y S 3R U {+»} With the conventions (+») - (-H») => 0and |+H »+». A
metric is defined for i,B€Af by

d(A,B) » min(l, inf Zl^-h !) (2#2)
a

where the infimum is over k - (1^), h « (h^ S (m U{+co})P such that
A = A^ and B » B, .

As in Section 1, let (W(B) : B € 8(E)} be a centered Gaussian random

measure with E[W(a)W(B)] » u(aHb), defined on a probability space (ft,F,P).

Let FA =a(W(B) :BC A) vW for AS 8(E), where Ndenotes the collection of

P-mill sets. Formally, W(A) = n ds for a white Gaussian noise n and
AS

F. =a(n :s € a).
As
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Given subsets T, ,...,T. of E *» HQ, define R_ to be the

intersection of all A €A such that A H ^ ^ $ for each i. Let

R = R, , , , for s. ,..., s, S E . A set of points
S-t j•••»s, is* /»•••»! s, / i k

s-,...,sa is called unordered if for 1 < j <. I, s. is not contained in

R . Note that a set of unordered points containss1,...,sj-1,sj+1,...,s£
at most p points. A collection of subsets A^,...,A^ will be called

unordered if s1,...,s» are unordered whenever si £ A^;i a 1,•••,&•

Given a subset D of E ,D will denote the set of (s1»...,sjl) € D such

that s-,...,s. are unordered.

o He k
Let L (E*G) denote the set of adapted u x p square integrable

v 2 ^ ^
functions on T x fl - i.e. f € L (E^xfl) if f:E x Q * m and

a

/\

1) f is 8(E*) x F measurable.

2) f is ii x p square integrable.

3) f(s,«) is F(R ) measurable for each s» (s-,...,s.) £ E^s1,...,sk J- K

2 ^
As usual, two functions in L (E xft) are identified if they are equal

k 2 Me. ii (i
U XP a.e., so that L (E xft) becomes a Hilbert space with IIfB denoting

the norm of f.

2 ^
For f S L (E xQ), let f denote the symmetrization of f:

a

fO^,...,^) •jfj-I «<e ,...,t )
1Note that flfO < BfH by the Schwartz inequality. Let La C(E xQ) denote

— a. w

2 ^
the collection of symmetric functions in L (E xQ); then f is the

2 ^projection of f onto L C(E xfl).
a,o

2 It
An elementary function f € L (E XQ) is a finite linear combination

of functions of the form 1 x x_ (s)Z(w) where E^,...,^ is an

unordered collection of bounded rectangles and Z is a bounded,

F(R17

functions is dense in L (E *ti) as shown in the appendix.
a

) measurable random variable. The collection of elementary
E.
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2 Oc
If f € L (E xft) is elementary then f can be expressed as

f(t.,...,t. ,oi) =» Z (oj) for (tn,...,t.) e t. x...T.
k V-..,^ X ^ *1 \

a 0 otherwise

where T«...,T are disjoint rectangles, Z. . is zero unless
j» m i-,... fi,

T. ,...,T. are unordered rectangles and then Z. is a bounded,
1 \ H""*\

^(Rij ... t ^ measurable random variable. For such f, the (indefinite)
'i \1

multiple Ito integral of order k, denoted f<»W^, is defined by

f°W^ 3I Z. ,W(T, HA) ... W(THa)
a x.,.,.,1, l n

for each A € A. It is not hard to see that foW^ » foW^, that
A A

(f+g)oW^ - fow^ +goW^ if ge L2(Ekxfi) is also elementaryr and that for
A • "A ~ ° a

any A C A ,

E[(foWk)2] - Ufl ,II _< llfl ,11
A a* Ak

Thus, for fixed A C A, the multiple Ito integral f°\T may be extended
/\ A

to all f € L (E xa) by the requirements that faWA +• g©WA » (f+g)°WA a.s.
a AAA

and f^ -»-foW in L2(ft) whenever Uf,-ffl •*• 0.
n A k

It is easily checked that f°w is a set parametered martingale

relative to A if f is an elementary function. Since conditional

expectations commute with limits in L (ft), it follows that f°W^ is a set
2 /fcmartingale relative to A for any f € l (E xQ).

If p is finite it will be shown next (Proposition 2.3 below) that

there is a sample continuous modification of the multiple Ito integral

{f°W^:A € A}. The topology on A is induced by the metric defined in

(2.2). The map h-»- a^ from IRP to A defined by (2.1) is continuous in

this topology.
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Lemffla 2.1. Let Be8(E) be abounded subset of E. Then there is a

sample continuous modification of (WCifB):A SA} if P<+-•

Proof. If each random variable WCaHb) for A6Ais redefined on a
P-null set, then the Gaussian random process (^ -W^OM.h 6*P> can
be made sample continuous. This is aconsequence of that fact that
«XA,] 1Slk-k* Ifor all k,k' 6F, where Fis any bounded subset
of *P+2n and Cp is aconstant depending on F. By the definition of the
metric on A,the process {w<iTV:A €A} is sample continuous

-for the same modification. B

^ j— Tf M is a separable square integrableLemma 2.2. Suppose p < 4-. If M is a separao

martingale relative to A, then

E[sup|M(A)|2] <4PE[|M(E)|2].
A^A

This inequality may be proved by repeated application of Doob's mammal
inequality for 1-Parameter martingales and positive submartingales [1].

position 2.3. If P<<- -d f6I*<&0>, there is asample
continuous modification of {f«W^:ASA}.

Proof. By Lemma 3.1. the proposition is true if fis an elementary
function. By Le«a 3.2, acontinuous modification of f# in the
general case is obtained as the a.s. uniform (in A€A) limit of the
sample continuous integrals of elementary functions.

It is convenient to extend the multiple ^integral £.»A to fWB
for any Borel set BCEas follows. If 1*L»C*«> and if Bis a
rectangle, then

Jc <2'3)
foC - (fl ,>w a.s.VB - ^V
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Indeed, (2.3) is true when f is an elementary function and hence for

all f by approximation. Now, if B is any Borel subset of E then we can

define a random variable f°WT by (2.3) since the right hand side is still
a

well defined, f°W^ will always be F_. measurable, where B* is the

intersection of all A£A such that BC A. f«W? need not be Fg measurable.

A suggestive alternative notation for f0W~ is

f.«; f(s1,...,sk,oi)W(ds1) ... W(dsk)
Bk

This emphasises that the multiple Ito integral permits random integrands

and integration is restricted to unordered k-tuples of points in E.

Theorem 2.4. (Properties of Multiple Ito Integral)

a) (Linearity) (f+g)°W^ =f°Wg +g°w£ a.s. whenever f,g €L^F^xfl)
and B € B(E).

2 1c
b) (Orthogonality and Isometric Properties) If f 6 L (E xQ),

g € L (ET xfl), and B € 8(E), then

a

2 \
c) (Uniqueness of Representation) For f,fT 6 L (E xfi) and B € 8(E),

a

foW^ =» f'owjj a.s. if and only if fl . » f'l . a.e. (ukxp).B B Bk Bk ^

d) (Projection Property) Given A,B 6 8(E), 1 <, k± p, and f€ L (E^fl),
%\there exists an element E[f FJ Sl (E xft) characterized by the fact

o a
A

that E[f|FB](s,0 = E[f(s,.)|FB] for all s6 E. The multiple Ito

integral satisfies

E[fow£|FB] =(E[f|FB])oWAOB (2.4)
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e) (Elementary Exponential Representation) Suppose p<-H». For all

<j> € L2(E), all complex X, and all AS B(E),

LA°° = exp(X
A

x2 r
<D W(ds) - -r

JA s Z

k

<j)2ds)
A s

k-1 *' s1,...,sk 1 k

f) (Relation to Multiple Wiener Integral) Let h€L(E*). Then the
multiple Wiener integral Im(h) has the representation

I(h) -E[I(h)]' +"^f,P V^ (2#6)
m m k-1 K

where h. 6 L2(E^xQ) for k <. min(m,p) satisfies

Vi v«)= Ws<si vJ1jpk (-)Ka,) a-e-(2-7)
s*» •••»s\^

g) (Completeness or Martingale Representation) Every square integrable
set martingale M relative to (FA:A €A} has a (sample continuous,

if p<-H») modification with the representation

MA -E[MJ + I V«a" f°r Ae Am (2#8)A A ^=1

The sum converges in L2(G) for each A6 A if p is infinite.

Proof, (a) and (b) are easily verified if f and g are elementary

functions, and the assertions extend to the general case by an obvious

limiting argument, (c) follows directly from (b). To prove (d), assume

first that f is an elementary function. Then f is a finite linear

combination of functions of the form 9(s,u)) «Z(U) ^x.. .x^00 where
Ar...,Ak is an unordered collection of bounded rectangles and Zis a
bounded, F(RA .)measurable random variable. Now
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k

E[9°W^|F 1 - E[Z HWCiOA^lFj]
A' B- is3l

k

E[Z|F_] H W(AOBnA.)
B i=a

=(E[e|FB])ow^B

since a version of E[6|FB] is given by

E[6|FB](s,u) -E[z|Fb](oj) ^...x^00'

Thus (d) is true for elementary functions fby linearity. The case of
general ffollows from (b) and the fact that the map f+E[f |Ffi] is

2 ^
norm decreasing in L (E xQ).

By replacing *by HA> it suffices to prove (e) for the case A-E.
Then (e) may be proved as in [8] by atwo step procedure. First, the
differential formula for one parameter processes is applied to LA in
each one of the pdirections e1....,8p in E. This yields arepresentation
of L(X) as asum of iterated integrals of order up to p. The second part

of the proof then is to note the equivalence of the iterated integrals
and multiple Ito integrals. This is accomplished by first considering
elementary processes for integrands. The details are straight forward

and are almost the same as in [8] ,and are hence omitted.

To prove (f), first suppose that hhas the form h-^x..^where
A^,...,Am are disjoint closed, bounded rectangles such that ^.....A^

A C R for some permutation
are unordered and A. ,...,a± ^- k.^ .. ,A.

^£+1 m \ *•£

i,,...,i of l,...,m. Then
1' m

m

I (h) - H W(A )
m k=l .

= ( H W(A. )) it W(A )
k=fc+l He k=l ^c

3 VWE
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where

h, (..,....•..») -<» WCA, )(«))1. x...xA. • <2"9)

Thus, Iffl(h) has the representation (2.6) with ^=0if kim, and (2.7)
followsftom (2.9). Since linear combinations of such functions hare

dense in L2(E»), (f) is proved for general hby approximation using the
isometric properties of the multiple Wiener and Ito integrals.

To prove (g), note first that by (f), multiple Wiener integrals can
be expressed as sums of multiple Ito integrals (evaluated at E). Hence,
since multiple Wiener Integrals are total in L2(8), so are multiple Ito
integrals. Thus* the collection of random variables of the form

I a.w" is dense in L2(Q). and is aclosed subspace of L2(SJ), being
k=0

isometric to © I2 -. Thus, any square integrable random variable has
k=*0 *

an integral representation \ V£ Thus, if Mis asquare
k"0

integrable martingale with respect to A then

T k=o K "

for some ^SL.^fl), '« -0....P- Hence, amodification of Msatisfies
(2.8) since each side is amartingale with common final value. "

Remark. If Pis finite, the spanning property (g) can also be
proven by using (a), (b) and (e). Indeed, by (e), expa)^) has a
representation in terms of multiple Ito integrals. Random variables
of this form are total in t2<Q.P) by amonotone class argument and the
fact that exponentials span the class of square integrable functions of
finite collections of Gaussian random variables. Hence, the collection
of random variables of the form f a^ is dense in L2W• The proof

k=0

is completed as before.
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The idea for this proof is essentially due to Ybr [8] . It has the

advantage that completeness is proved from scratch, while the proof we

gave depends on the completeness of multiple Wiener integrals. However,

we have not established (e) in case p is not finite, so that Yor's

proof cannot (yet) be used in this case.

Conjecture. I conjecture that (e) of Theorem 2.1 is also valid for

p - «. One proof might be based on iterated integrals as in the case

p < °°, using (b) and (g) to control the limit. A perhaps more general

approach would be to use property (f) in conjunction with the exponential

formula (1.1) for multiple Wiener integral.

Remark. In all cases, Ito integrals are characterized by the fact

that random integrands are allowed so that integration may be restricted

to unordered points. A different class of integrands, the analog of one

parameter predictable processes, is considered in the next section.

It is interesting to note that if A is the collection of all Borel

subsets of 3R and if the definitions in this section are used, then

"unordered" is the same as "disjoint." Then the resulting multiple Ito

integral is just the multiple Wiener integral of Section 1.

3. q-Fields Generated by General Stationary White Noise

The multiple Ito integral and representation theorems are given in

this section in case the a-fields are generated by a general stationary

white noise. Suppose that there is a stationary, independent Borel

random measure {M(A):A € 8(E)} defined on the probability space (Q,F,P).

(By independent, we mean that M(A) is independent of M(B) if aOB = <j>.)

Assume that P[|M(A)| > s] + 0 if u(A) ->• 0 for any e > 0. For each A<=8(E),

let FA * aWB):B C A) v W» where W is the collection of P-null sets.
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Suppose A- A{e y as in Section 2. A multiple Ito integral
a

representation of all square integrable set martingales relative to {FrA^A}

will be obtained. The relevant stochastic integrals

involve the Levy representative of M. Some facts about multiple Wiener

integrals (which correspond to A « all Borel sets) will be proved first

and then multiple Ito integrals are considered.

Our assumptions on M imply that

E[exp(iuM(A))] » exp(u(A)iKu))

where

*(u) - iub - | u2n({0» +[ (eiuA-l-iuA)II(dX) +[ (eiuA-l)H(dX)
J0<|X|<1 JW>1

for some bSi and a-finite Borel measure II on 31 with

|X|2
——-r H(dX) < -Ho. Furthermore, M has the representation

X|>0 l+|Xp

M(A) » buCM) + W({t:(t,0)^A» -5- | XEq(dt,dX) + 1,. ..dtH(dX)]
JAx(]R-{0» |A' 1

(3.1)

where W is a centered Gaussian independent random measure parameterized by

8(E) with E[W(A)W(B)] =» H({0})u(AOB) and q is a compensated a-finite

poisson point process (viewed as a random measure) on E x (]R-{0}) with

intensity measure dtH(dX). W and q are independent random processes. The

integral in (3.1) is improper at Ax{0} and converges in probability.

Define an independent Borel random measure Y on E x I by

Y(dt,dX) - q(dt,dX) +W(dt)£(dX).

Let E = E x ]R and let u denote the a-finite measure u(dt,dX) = dt .x H(dX)

on E. Hence, E[Y(dt,dX)2] »£(dt,dX). For functions f1,...,fk on some
set S, define the tensor product f ® ... ® f, to be the function on

S such that
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fl® •••®fk(s1,...,sk) -f^)...^).

The multiple Wiener integral I. :L2(Ek,|ik) + L2(n) is defined by

the following three properties [5], [2] :
k

i) h.^k. ® •-. ® 1. ) = n Y(A.) whenever A. ,... ,A, € 8(E) are
^1 \ i=l L 1 Tc

disjoint and u(A.) < -h», i « 1, ...,k.
SB X

ii) ^(f+g) - ^(f) + ^(g)

iii) Ik(fQ) * ^(f) in probabUity if If-f II -»- o

The alternative notation

f

Ik(f) "J f(s1,X1 ,..., sk,Xk)Y(ds1,dX1)...Y(dsk,dXk)
E »(s„. ,X.)distinct
=3 J. X

is suggestive.

Proposition 3.1. (Additional Properties of General Multiple Wiener Integral)

iv) (Isometric Properties) For f€L2(^,uk), g€L2(Ek ,Uk ),

L (E ,u )
OS =3

v) (Product Decomposition) Let fS L2(Ek,uk) g€ L2(E*fu*').

Suppose f and g have totally disjoint supports in the sense that there

exist A,B € 8(E) with aHb » <f> such that f = f1 and g = gl . Then
Ak B*

^(f ®g) « Ik(f)I£(g) (3.2)

vi) (Exponential Formula). Let a:E •+• ]R be Borel measurable. Define

fa(s,0) if X=0
f(s,X) =< (3<3>

I ct(s,X) .
Ve - 1 otherwise

fl 2j a(s,0)* if X= 0
Ms,X) ~\ (3>4)

- 1 - a(s,X) otherwise.
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Suppose that a,f € L (E,p). Then

L(a) - exp( a(s,X)Y(ds,dX) - h(s,X)dsH(dX))
Ex]R Ex]R

I £ Vf®k>
k=0

k! *k

If the condition a € l (E,u) is removed, then

L(a) =̂ ptl^ «<•.«"«•.«> +ha(s,x)>i,xmdaR«X)]

+1
J{a(s,X)<L,

(ea(s'X)-l-a(s,X))dsII(dX)
X*)}

(ea(s'X)-l)dsn(dX)
(a(s,X)>l,X#)}

(

+f n({o» a(s,0) ds)

is still well defined and is equal to the right side of (3.5)

vii) (Completeness of multiple Wiener integrals)

L2(G) = <9 {L (f):f €L2(E,u)}
k=0 K = =

•® ii(Ek,uk)
k»0 B =

(3.5)

(3.6)

Proof.

(iv) follows by approximation by elementary functions, (v) is

proved by approximating f and g by elementary functions f̂ , g^ with

totally disjoint supports.

(vi) is true if a - c^ where a (s,X) =» 6 if X^ 0, for then (3.5)

and (3.6) specialize to the exponential formula (1.1) for Gaussian white

noise. (vi) is also true if o * a. where a. is bounded and a_(s,X)

» a2(s,X)l for some A € 8(E) with A C E x (!R-{0}) and w(A) < +«.
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Indeed, in this case the quantities in (3.5) and (3.6) may be interpreted

as Stieltjes integrals (defined for each fixed to) with respect to the

compensated Poisson point process Y| of finite total intensity measure.

This reduces (3.5) and (3.6) to algebraic facts which may be easily

proven by induction on the (a.s. finite) number of point masses of Y

contained in A.

Now, for a(s,X) = ci^s.A) + a2(s,X), property (v) yields

(O (« )
L <«> - t XL 2'

00 00

* „* k»" IT \ictl ) Z (a2 }
k=0 *=0 ^

_ r r 11T ,0k,-, ®JL

"JoJo^^^^ ®a2 }

j=0 :- k=0 K J x z

j=0 J* J L *- j=0 2% 3

(3.5) and (3.6) then follow for general a by an easy approximation

argument.

The completeness of the multiple Wiener integrals follows from

(3.5) and the fact that random variables of the form

exp(| a(s,X)Y(ds,dX)),
Ex]R

o

with a » Qh+Bo as in the Proof of (vi), are total in L (fl). n

Remark. Proposition 3.1 and its proof easily generalize to the

case when E is an arbitrary separable measure space with a-finite, non-

atomic measure a. Many properties of multiple Wiener integrals follow

from the exponential formula (3.3), which we have not seen elsewhere.
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i-*th respect to Twill *°w be defined.„e multiple Ito integral with ^ ,
A A be acollection of subsets of E

Let A= A{e }^ s B(E), (B) <+.,

let'i3A lI - _F teiS8(B. Hence, under
BCA) for AC8(E). Note that F& ^xm

dence A~Ax*,set martingales relative to
the correspondence A
{F .AeA} ^ be identified with set martingales relative
tFA-AS M 7 fbordered," and Das in
(FiASW. Define R,, t' s^.-V
=A =* 1 *

Section XXX.2. These definitions are relative "A o^ ^^
-v A function defined on Em apositive integer k. A unc

«f functions of the rormif it is afinite linear combination of functi
(3.7)

zlV---xAk d
A .C,are unordered, bounded rectangles with ^ <--

where A-,.'**^ „ p

^ nJ1 -♦*.!- I.-* ^ Z1S ab0Unded' \ A,
1 Al"",*k -able tet Pbe the o-algebra of subsets of

curable random variable. Let
1 «ed by the elementary functions, and define L^COj* x 0 generated by the ej. k
=L^xfl PUkxP) to be the Hilbert space of P-measurable, u»L(Efxa,P,, By phoning rectangles into unions
^tegrable functions on ]f «• » ^ ^
o£ ^ rectangles and adding 1* —^ ,£ _
that there is at most one nonzero term in the «*-
_bles defining an elementary function, each PO.^ ^ _^

,1,,.- the collection of elementary ™^akes it clear thrt the stone_Weierstrass

theorem and a monotone class argum

elementary functions is dense in I*tf>.
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2

If 9€ L£(Y) is of the form (3.7), define the multiple Ito integral
8«Y^ for A€Aby

A. cj

e.^-2W j^AOA.) (3.8)
Extend the definition to elementary functions fS L2(Y) by linearity.

For elementary f,g, (f+g)«Y^ »foY^ +goY^, and

k 2 1/2 -E[(foYpZ] = Ilfll < IIf(I.

Also, f°Y is a set parameter martingale relative to A and {F :A € A}.

By invoking the requirement that ^oY^ +f»Y^ in L2(fl) whenever
flf.-fli -• 0for ft,f S Lk(Y) the multiple Ito integral I^f) is defined
for all f€I^(Y).

If p is finite, there exists a version of the multiple Ito integral

with nice sample path properties. Note that A =* Afn rrt,,
«, {e x{o}}

a

and the metrics on A and A defined by (2.2) agree under the correspondence

A <* A x m. a function n :A + ]R (or equivalently n :A -»• H ) is outer

continuous (or continuous from the outside) if lim n„ = nA. n has inner
B-A B A
B^A

limits (or has limits from the inside) if lim n exists for each A € A.

B+A

BQ^

Let B € 8(E) be a bounded subset of E with u(B) < +«.

Lemma 3.2. There is a modification of {Y(Affe):A € A} that is outer

continuous and has inner limits with probability one.

Proof. Let G± = {(t,X) €e-Exm:|t| <if (|x| >i or X-0)}
QO —

Then u(G.) <+» and U G » E. Let Yi(A) - Y(APG.0b). For each i, Y1
i»l l a 1

is the sum of an independent Gaussian measure and a compensated Poisson

point process of finite total intensity, so we may choose an outer

-19-



. ot ti| (Use Lemma 2.1 for the
•1.1, inner limits modification of * \kcontinuous with inner ^^gales relative to

Gaussian part.) «(¥*>*«£>-* «"
{F :A € A}, and

,lCT*(i>-«in»)2l -»<*»!> *° -1*~
„ ,emma 22and adiagonal subsequence argument,

t. A ff A Hence, by Lemma ^.^ <*""for each A A. ^ ^^ ^ ^ fot
there is asubsequence ^AV••• modification

- -^ ~* -:rr:iu^-—**o£Wirt>«*SAl. This provides the

«« 33 Letp<+- *rf«lj0O. ««.•-*»»•
°"T"a"ltioa 3 •-• v ,. u * f.v^l is outer, t-„ -mtezral £»r such that f* lA lsedification of the multiple Ito integral

continuous with left limits.

Ptoo, If fis an elementary function, then the -U*UU-
T> ls outer continuous with left 1**-**•*"—"integral fI» f .{f^:AeA> is the a.s..-iform limit of

X. general, amodification of ^A ^&̂ ^
the outer continuous inner limite. -UP eX ^^
o£ elementary functions by Proposition 2.1. Thi
^ outer continuous and has inner limits. ^FotfSL(t)andanyB€8(E),.<lefineKbyfTB Cl, «

F° k . <- .€Aas is easily proved for•-h the previous definition if B^ a asXhis agrees wxth the prev approslmatiou.
elementary functions and then for general f«̂
^ .34 (Properties of Multiple Ito Integral - General
SlSSESSJ^- C£d;peIldent Noise)

(f+f)^=f^*^B
E[(f°Yp(S^B )J " X{k«k'> B

'3
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b) (Projection Property) For A,B €8(E) and f€l£(Y),
ECfoY^] «(E[f|FB])oW^nB (3.9)

(In (3.9), E[f|Fj (s,0 » E[f(s,-)|FJ a.e. for each s€ Ek and a

version E[f|F_] € L~(Y) is chosen)

c) (Elementary Exponential Representation) Suppose p < +». Let

a€ L2(E,u) and define f,h by (3.3), (3.4). Suppose off S L2(E,u). Then

for each A € S(E),

L = exp( a(t,X)Y(dt,dX) - h(t,X)us(dt,dX))
A U

ksi S-»• • •»s,

d) (Relation to Multiple Wiener Integral) Let h€L (E™^). Then the

multiple Wiener integral I 00 has the representation

min(m,p) .

Im(h) -E[Im(h)] + ^ Vi

where h. € L?(Y) for k£ min(m,p) satisfies

hk(s1,...,sk,oJ) =Im.k(n(s1,...,sk,-)l^k (•))(«)-
S;L,...,sk

for a.e. oj and s. = (t.,X ) € E for i - l,...k.

e) (Completeness or Martingale Representation) Every square integrable

set martingale N (relative to A) has a (outer continuous with inner

limits, if p < +00) modification with the representation

NAS I VYA' AGiA k«0 * A

The sum converges in L (G) in case p is infinite.
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Remark. The proof of Theorem 2.4 easily extends to prove Theorem 3.4.

The properties a), b), d) and e) of Theorem 3.4 and their proofs are

very much independent of what type of independent random measure Y is.

This is only true for e) when given the fact that multiple Wiener integrals

with respect to Y span L (fl).
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APPENDIX

The notation of Section 2 will be used in this appendix. The

purpose of this appendix is to prove the following proposition.

A

Proposition A.l. The class of elementary functions is dense in L (E xQ).

Lfflmna A.2. The class of sample-continuous, adapted functions on E x Q

2±
is dense in L (fi xfl).

a '

A

Proof of Lemma. Define an open set Ce by

G =» {(t-,...,t.) € E :R has non-empty interior}.
j- «t 1* **'' k

Suppose that f<= L2(EkxQ). Then faf + f where f- » fl„ and f„ » fl .
a j. z j. i* 4. pC

It will be shown that f., and f« (and hence f) may each be approximated
A

with arbitrary precision in L (e xQ) by sample-continuous adapted functions

It suffices to consider the case when f. is supported by an open

set GQ with compact closure in G for a.e. u. For e > 0, define

f1(s1,...,sk,w) a

uV(sr...,sk)) ^(Si)..#>s^
if (s-,...,s, ) <= G,

s^ 0 otherwise

where, for (s-,...,sk) £ G ,

A
.kA (8^...,^) « {(t1,...,tk) € E :t± € Rg

and |t.-s.| _< e(l+diam{s1,.. .,sk>) Vi}

Then f, is adapted and sample-continuous on GQ.

-23-
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E 2 1c
Claim: f converges to f, in L (E x&) as e -»• 0. To prove the

J. la /

, . 2 ^
claim, first note that f can be well-approximated in L (E xQ) by (not

necessarily adapted) functions g(s1>... ,sk,w) which are bounded, continuous

and have support in GQ for each fixed w. (By an easy monotone class

argument.) For such g, if ge is defined by the right side of (A.l) with

f^ replaced by g, then g converges to g pointwise and hence in
2 Ak
L (E x&) by Lebesgues* bounded convergence theorem. By Jensen's inequality

and Fubini's lemma,

ige-fEn2 -Etf
GQ y(f(sr...,sk) JA«(. ,*••* \^1>•••»^T-'

<E[|

G0

where

.£S (s1,...,sk)

2
- g(r^,...,rk)dr_...drfc) ds....ds.]

G0 ^ sfc) iA.(.i....,-k)f^--V
2

- g(r,1,...,rk)) dr1...drkds....dskJ

EtJ (fl(si»•••»sk)-8(s1»•••»sk))2Se(sr... ,sk)dsr..dsk]
(A. 2)

*/.e,_ .. X,.eGQ u (A (r1,...,rk)) {A6-^,....^p^,...,sk)}

dr.... dr. .
1 k

It is not hard to see that Se(s1,...,sfc) is locally bounded on

G0 * C0,e0J for some e0 >°» so that S£(s1,...,sk) <Kfor all sr...fsk
and z ± eQ by the compactness of GQ. Thus by (A.2), Bg -f II <_ Kflg-fil.

Therefore
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fff-fell < llf-gll + lig-gefl + llg^f£ll < (i+K) lf-g| + Ug-g£!l

for e1 £Q. Since llf-gll and «g-gefl can be made arbitrarily small, the

claim is proven.

The functions f are adapted and continuous on the open set G .

The functions f , and so also f, can therefore be well-approximated in
A

*. k V
La(E xJ2) by sample continuous functions on E of the form ufe where u
2,Je_ . _ 1

A

kis a continuous (deterministic) function on E ,0£ u£ 1, and u = 0 on

GS-
It remains to show that f9 may be well-approximated by sample

continuous functions in L2(Ekxfl). Now, for s-,...,s. S GC, R
a ± k s«,. ••,s,

has zero Lebesgue measure so that F(R ) ^ A/, the collection of
sl,,,,msk A

P-null sets. Thus, f^s^... ,sk,u>) »g(s1,...,sk) a.e. where g€L (Ek)

is defined by g(s1»...,sk) = E[f2(s1,... ,sk)]. By a monotone class

argument, there is a sequence of continuous functions on E^ converging
2 1c

to g in L (E ). Since deterministic functions are always adapted, the
A

same sequence converges to f„ in L2(E xQ). n
2 a

Proof of Proposition. Suppose that f is a bounded,. sample-continuous,

adapted function on E x q. Assume that the support of f is contained

1c
in a fixed compact subset of E for each w. By Lemma A.l it suffices

2 \to prove that f may be approximated in L (E *&) by elementary functions.

Let mbe a positive integer. For each n-tuple i = (i^ ,...,i^)

of integers, let A. denote the rectangle in E - Rn defined by

(1) (1) (n) (n)
A, = <- - , - ] x ... x (-i li ± ]

i mm mm

For each unordered collection A. ,...,A, of k such rectangles, choose a

k-tuple

-25-



<S1X k'">ski ^e\,...,^n(-\x---x\^>1l'*"'ik.

\ V
Define

' i_ ,.. •, i. i^,...,ik
•>sk ) if (slf...,sk) Sa x...xa

1 iC

and A ,...,A. are unordered for
11 \

some i_,•..,i,
hm(sl,---'sk)a {

\*
otherwise

Then h^ is an elementary function for each m and h converges to f point-

wise as m -*».«. Furthermore, hm is uniformly bounded and has support

contained in a bounded subset of Ek, independently of m. Hence, h * f
2,Jc

in La(E xfl) by Lebesgue's bounded convergence theorem.
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