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ABSTRACT

The problem of conversion of Decision Tables into optimal Decision

Trees is studied. Its complexity is characterized as NP-Hard in the

strong sense. An approximation algorithm is developed and analyzed.

Some running experiments on random data are described and results

illustrating the average behavior of the proposed algorithm are given.
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1. Introduction

The main purpose of this paper is to characterize the complexity of

a combinatorial optimization problem, both from the exact optimiza

tion point-of-view and from the approximation one. The worst case

complexity is characterized on a theoretical basis, but for the much more

difficult average complexity, we retreated to an empirical characterization.

The analysis of the complexity of a hard combinatorial problem is

not the only goal pursued here. We are also concerned about practical

ways for solving our problem in a satisfactory manner.

The paper is focused on the Decision Tables Conversion problem.

Decision Tables have been known since the beginning of the 60's and continue

to be widely studied. A 1974 survey paper [34] listed more than

100 references dealing with Decision Tables. A complete bibliography of

the subject would be much larger today.

Decision Talbes have been essencially used in information processing

as a programming tool powerful in simplifying flowcharts, and in the

documentation, verification and design of programs. Programmers interested

in using Decision Tables can find at least 40 to 50 software packages

available today on the market, ranging from processors for almost

any programming language (including LISP [42]), to complete compilers [27].

Applications of Decision Tables are not limited to computer pro

gramming. They range over a large class of problems, including informa

tion retrieval and file organization, simulation, testing and trouble

shooting, medical diagnosis and Pattern Recognition [1, 9, 43].

Although the Decision Table Conversion problem is in itself inter

esting, we feel that the approach described here is illustrative and
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typical for a broad class of combinatorial problems.

The paper is divided into 5 sections. The next section reviews

Decision Tables definitions and properties, and states the Conversion

problem. Section 3 is devoted to the characterization of the worst case

complexity. Section 4 develops a particular algorithm and gives the

results of running experiments. The last section presents some concluding

remarks together with interesting open problems related to our subject.

We have paid close attention to the details and clarity of the

presentation. Whenever possible, formal expressions and heavy notations

were avoided. Numerous examples are developed throughout the text.

2. Definitions and Properties of Decision Tables

This section restates briefly the basic definitions and properties

of Decision Tables. It can be skipped by a reader familiar with Decision

Table literature [10, 23, 33, 34].

In the following, a condition x, will refer to a scalar function

which maps some input data into a discrete range R . An evaluation cost

P. of x. is involved as a constant charge each time x. is tested.

Given a set of N conditions (x-,...,^} , a simple event is an

element of the cartesian product R*.. .* TL. . If I is any subset of

{ 1,...,N }, a composite event is an element of the product: II R. .
i€l i

In a simple event all the N conditions have a specified value. But in

a composite event, some conditions have a "donTt-care" value. A

composite event is equivalent to a set of simple events. This set is

defined by expanding the composite event, i.e. by assigning to its don*t-

care conditions all the combinations of their values. An example will help
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clarify our notation: Let {x-, x„, x3, x, }be 4 binary conditions,

i.e. R = {0,1} for i=l,2,3,4; (l,0,<j),<j>) is a composite event, x - and x,

are its donft-care conditions; its expansion is: (1,0,4>, <f>) = {(1,0,0,0);

(1,0,0,1); (1,0,1,0); (1,0,1,1)} . Two events like (1,0,1,0) and (1,0,1,1)

are adjacent. They differ only by one condition, x,, which is their

consensus variable. To compress two adjacent events is to assign a don't-

care value to their consensus variable: (1,0,1,0) and (1,0,1,1) are com

pressed into (l,0,l,<j>). Since events are sets (of simple events), we

employ the usual terminology: disjoint events, intersecting or over

lapping events,...etc. Finally we assume that some statistics are known

which enable us to determine the probability of occurance of any event.

The N conditions of some given set {x-,...»XjJ" are not necessarily

independent. A general formulation of dependency relations consists of

a set D of impossible events, i.e. events which state the forbidden

combinations of conditions values. An impossible event has of course

a null probability of occurance. (For a discussion of dependency relations

in Decision Tables see [12, 17, 18].) We assume nevertheless that the n

conditions can be evaluated in any order.

A decision rule is a relation which specifies the action to be taken

when some particular event occurs. A decision table is a set of decision

rules.

More formally, we define a decision table as a quintuple

T = (X, A, D, E, F) where:

X « { x-,...,x._} is a set of N conditions;

A = {a-,...,a^} is a set of M labels called actions;

D is a set of impossible events, or dependency relations on X;

E is a set of decision events for which an action is specified in the table;

F is a function mapping E into A.
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Furthermore, for a table T the following data are assumed to be known:

- The evaluation costs of the N conditions: (£_,...,1 );

- The statistics on the decision events, usually given by a probability

distribution over E and by the assumption that inside a composite event

the probabilities of occurrence are equidistributed.

Figure 1 illustrates the graphical representation of a decision table

.1 .2 .1 .2 .3 .1 Jti

xl 1 0 ♦ 0 * 0 1 1 10.

X2 1 1 1 * 0 0 0 * 50.

X3 0 ♦ 1 0 0 1 <i> 1 30.

X4 * 1 0 0 1 <J> 0 1 20.

a4 a2 D

Figure 1

This table contains 4 binary conditions and 2 actions. Each internal

column is an event. The last row gives the action to which an event is

mapped, or shows D for dependency events. The condition's costs appear

in the last column, and the event's probability distribution is given in

the first row. Notice that, since in this example the events are non-

overlapping, the probability distribution sums to 1.

There are many different forms of decision tables described in the

literature. An expanded decision table is one where the elements of

D and E are restricted to be simple events. Otherwise a table which con

tains don't-cares is a compressed decision table. An expanded table can

be compressed by the consensus variable technique applied to events mapped

to the same action or belonging to D.
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A set X containing only binary conditions, as in the example of

fig. 1, leads to a limited-entry decision table. An extended-entry

decision table provides provision for multivalued conditions.

A decision table is consistant if any 2 events in E mapped to 2

distinct actions are disjoint. A table is complete if any simple event

of the cartesian product R-x.'. .xp is included either into a decision

event or into an impossible event of D. An incomplete table can be com

pleted implicitly by an Else-rule, i.e. a rule which states a particular

action for all the unspecified events.

In a well studied particular case, each condition defines a partition

over the set of actions. This subclass of Decision Tables is refered to

in the literature as Identification Procedures [5, 6] or "Questionnaires"

[3, 30, 31]. Among the particulars of Identification Procedures, the set

E contains exactly M simple events, one for each action; and all the

remaining events are dependency relations.

Two steps are involved in the processing of a decision table. In the

first step the consistency and eventually the completeness of the table

are checked. (See [8, 17] about this step.)

The second step is concerned with the conversion of the decision table

into a computer program. As discussed in the literature [2, 16, 33, 46-48],

the most general method uses the Decision Tree approach.

A decision tree t on N conditions {x..,... ,x-.} and M actions {a- ,... ,a-J

is a tree structure where:

i) each node is labeled by some condition x ;

ii) the branches departing from a node x. correspond to the elements

of R., range of xf;

iii) each leaf or terminal node is labeled by some action a. ; and

iv) a path from the root to a leaf crosses each condition at most once.
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It is easy to see that each leaf of a decision tree corresponds to

an event (a simple event if the path leading to this leaf crosses all the

conditions). Two distinct leaves correspond to two disjoint events, and

any simple event of R_x...xr ±s covered by some leaf. Thus a decision

tree defines a partition on R_x...xp and maps the element of this partition

into {a.,...,aM}. By definition a decision tree is complete and consistant.

Given a complete and consistant decision table T = (X, A, D, E, F),

and a tree t on X and A, t translates T if any simple event is either

included in D or mapped by t and T into two identical actions.

The following tree (fig. 2) translates the table of fig. 1.

C 2 )-*•-*-->->-( 1 )-*--*--}•->n:i

4- 4-

4- 4-

4- ( 4 )-»•-»•->•->• n»i

4- 4-

4- 4-

4- ( 3 )-*■-»■-*•-♦• n:i

4- 4-

4- 4-

4-

4-
n;:2

4-

4-

n: 2

Figure 2

Note: By convention, horizontal branches correspond to the value 1 of

the binary condition, and vertical branches to the values 0.

The cost of a leaf of a decision tree is the sum of the evaluation

costs of all the conditions crossed in the path from the root to this

leaf. The weight of a leaf is the probability of appearance of the event

associated to this leaf. The mean decision cost of a tree t, noted Y(t),

is the weighted sum of the cost of its leaves.
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Let us compute for example the mean decision cost of the tree of fig. 2,

with the data of table 1, taking the leaves in depth first left to right order:

leaf 1: cost: Z„ = 50.

Pr[($,0,<M)] - ~Pr[(0,<j>,0,0) ]+Pr[((J>,0,0,1) ]+Pr[(0,0,1,$)] » .5weight

leaf 2: cost

weight

leaf 3: cost

weight

leaf 4: cost

weight

leaf 5: cost

weight

Finally the cost of t is

¥(t) » 50x.5 + llOx.l + 110x.05 + 80x.2 + 60x.l5 = 66.5

N-l k

There are II (N-k) possible trees translating a table of N r-ary con-
k=o

ditions (i.e. for l<i<N;|r±| = r) [8,41].

The Decision Tables Conversion (DTC) problem is to find a tree translating

a table, minimal for the mean decision cost criterium.

We end this section by defining partial trees, subtables and an algorithm

which converts decision tables into decision trees.

A partial decision tree t is either the empty tree x or a tree where

at least one path from the root does not end in a leaf, i.e. in a node labeled

by an action. Such a path is called an open branch. As to any other path

in a decision tree, an event is associated to an open branch relative to

some decision table T. The don't-care conditions of this event, the element

of E and D which intersect with it and their corresponding actions define a

£2+A1+A4+£3 « 110.

Pr[(0,1,0,0)] = jPr[(0,<j>,0,0)] = .1

Z2+Z1+SLi+Z3 = 110.

Pr[(0,l,l,0)] =|pr[(<J>,1,1,0)] « .05

A2+Jll+JZ,4 ° 80,
Pr[(0,l,$,l)] = .2

£2+ill = 60,
Pr[ (!,!,♦,♦)] =Pr[(l,l,0,<f0 ]+|Pr[($,1,1,0)] = .15
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subtable associated to an open branch. The empty partial tree x has only

one open branch with the entire initial table associated to it.

For the table of figure 1, figure 3 illustrates a partial tree with 3

open branches, and shows the subtable associated to the branch v- - (<j>,4>,0,0)

v1«(*,<i>,0,0) v2=(<|>,<J>,l,0) v3=(<|>,1,$,1)

Figure 3

.05 .2 11

xl

x2

1

1

0 1

0

10.

50.

al a2 D

The following algorithm is the main frame of almost all the heuristics

published for the Decision Tables Conversion (DTC) problem.

Algorithm Al.

Input: a decision table T;

1. Start: with an empty partial tree x •*• x

2. Do While x is a partial tree;

2.1 Take in x an open branch v;

If subtable corresponding to v contains only one action a. Then Do;

Expand x by completing the open brach v with a leaf containg a. ;

End;

Else Do;

2.2

2.2.1

2.2.2

2.3

2.3.1

2.3.2

2.3.3

Choose in the subtable corresponding to v a condition x ;

Expand x by appending a node labeled x to the branch v;

End;

2.4 End;

Output: a decision tree t •«- x translating T.
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We remark that:

i) 2.3.1 is a nondeterministic step

ii) if Z is the total number of leaves of the tree generated, algorithm

Al has a computing time in 0(1).

Although all the results of section 3 and the algorithms of section

4 remain valid for extended-entries decision tables, to simplify the pre

sentation we will restrain ourselves in the remaining to decision tables

with binary conditions.

3. Complexity of the Decision Tables Conversion (PTC) Problem

Although the DTC problem has been widely studied, no polynomial-time

algorithm is known neither for solving exactly the problem, nor for giving

a guaranteed or even a "good" approximation. In this section the worst

case complexity of the DTC problem is characterized and some of its

particular aspects are discussed.

We use in the following the polynomial reduction approach defined

in [14]. Let us recall some definitions from [7] adapted to our case:

•For e>0, t is an e-optimal tree translating a table T if:

[YCO-YCt*)]/^*) £ e, where t* is an optimal tree translating T.

•An algorithm A(e) is an approximation scheme for the DTC problem if for

any table T and e>0, A(e) generates an e-optimal tree translating T.

•A(e) is a polynomial-time approximation scheme if for any table T and

e>0, the running time of A(e) is bounded by a polynomial in the size of T.

•A(e) is a fully polynomial-time approximation scheme if its running time

is bounded by a polynomial in the two variables: (—) and the size of

the table.
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Let us now define a function S, size of a decision table, such that

any T=(X, A, D, E, F) can be coded into a string whose length is polynomial

in S[T]. For this definition, a first remark is that E and D are not

uniquely defined. A composite event can be expanded, or conversely we

can compress a set of events mapped to the same action. Eventually

e=»|E| and d=|D| can be minimized with the algorithm of [26] or an equiva

lent algorithm. But this minimization is itself an NP-Hard problem [40],

and furthermore unnecessary for the conversion of Decision Tables. Never

theless we will assume that any table T is given in a form where e and d

are polynomially related to Sj_ and d . respectively.

A second remark is that N=|x| andM=|A| are not sufficient to char-
N

acterize.the size of a table since the number of events can be in 0(2 )

with no possible reduction even for M«N. (For example M=E, to A^ we

map the 2" simple events with an odd number of "1", and to a^ the 2

simple events with an even number of "1").

Finally a proper definition would be S[T]=max[N, e, d] since Mie.

For practical purpose, we will take S[T]=N each time e and d are polynomially

related to N.

In order to characterize the complexity of the DTC problem we will

use a reduction of the Node Cover (NC) problem. Given a graph G=(X,A) ,

the NC problem consists in finding a minimum number of nodes of X which

cover all the edges of A. NC is an NP-complete problem [14]..

Theorem: The Decision Tables Conversion problem is NP-Hard in the strong

sense.

Proof: Let us define a transformation which maps any instance of the NC

problem into a particular Instance of the DTC problem. From G=(X,A), a

graph with N nodes X={x1,.. .xl,}, and M edges A={a ,... ,a^}, we built the

limited-entry decision table T=(X, A', E, D, f) where



/

(i) A' =AU{aM+1}

(ii) E has M+1 simple events, one per action:

• for 1 <k < M, if afc is in G the edge (x^x.), then in the

event of E mapped by f to the action a, , x. and x, have
k' 1 j

value 1 and the other conditions have value 0;

• in the event mapped to a^^, all the conditions have

value 0.

(iii) D contains all the other events. (Note: D may be explicited in

3 3
less than N events: ( ) composite events which have 3 condi-

2
tions with value 1 and (N-3) don't cares, and ( )-M remaining

simple events which have 2 conditions with value 1 and (N-2)

with value 0.)

(iv) The N conditions in T have p = 1 as evaluation cost; and for

1 <_ k <_ M the event mapped to a, has probability zero, the

event mapped to a^^ having probability 1.

The example of figure 4 illustrates this transformation from G to T.

G: a

0 0 0 0 0 1 P1

xl 1 0 0 0 1 0 1 1 1 <j> 1 1

X2 1 1 0 1 0 0 1 1 <J) 1 0 1
T: Z

X3 0 0 1 1 0 0 Mill 1

x4 0 1 1 0 1 0 $1110 1

al a2 a3 a4 a5 a6 D

Figure 4

Since only one simple event is mapped to each action in T, any tree

translating T has exactly M+1 leaves, one per action. Clearly, an optimal
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tree translating T is one which has a minimum number of nodes in the

path leading to the leaf a^^, since this is the only leaf with a non

null weight.

Let x. ,...,x. be the conditions crossed in the path leading to
1 \

a^x: The event associated to this leaf a^ (has x. =x =•••=x = 0
il i2 \

and the other conditions are don't-cases) intersects with only action

a^^. It follows that the complementary set of events (x. =1 or
1

x4 - 1 or ••• or x =1) overlaps with the other actions a,,... .a,,.
x2 \ 1 m

Thus, in graph G the nodes x. ,...,x cover all the edges a. ,...,a„.
11 Xk 1 Tf

It is then obvious that any optimal tree translating T defines a

solution to the NC problem in G and conversely.

Finally to end our proof we notice that:

(i) T is generated from G by a pseudo-polynomial transformation

4 3(T is defined in 0(N ) steps: N events each being an N-tuple); and

(ii) Node Cover is not a number problem (the magnitude of the

largest number intervening in NC is bounded by N). •

From the precedent theorem, and from Theorem 1 of [7] one easily

deduces that the DTC problem cannot be solved by a fully polynomial

approximation scheme unless P = NP.

Another immediate result follows from the precedent theorem:

Corollary: For any e such that 0 < e < 1/N, the DTC problem on decision

tables of N conditions or less is an NP-Hard ^approximation problem.

Proof: We use the precedent reduction of the NC problem to the DTC

problem. If t is an e-optimal tree of cost k, any other tree t' strictly

better than t will cost at most k-1. The ratio:
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[iKt)-<Kt')]/iKt')>l/(k-l)>l/N>e.

Fore£l/N,tise-optimalifandonlyiftisoptimal.Therestof

theargumentappliesasbefore.•

Thenon-constantboundforeweakensthiscorollary.Nevertheless,

itisimportanttoknowthatintheworstcase,therearedecisiontables

andvaluesofeforwhichane-optimalsolutionisashardtofindasan

optimalone.Wecanruleoutthepossibilityofanapproximationschemein

whichcomputingtimeisnotonlyin0(N/er)butalsoin0(Nk'£).

Untilnowwedidnotconsiderabasicquestionaboutthecomplexity

ofourproblem:isit(morerigorouslyisthecorresponding"decision"

problem)intheclassNP?Surprisinglyitisnot.Anondeterministic

algorithmmustbeabletocheck,foranytreettranslatingatable,if

thecostoftislessthansomeconstantornot.Thecostoftis

computedinatimeproportionaltothenumberofitsleaves.Wemust

theneitherprovethatthenumberofleavesisboundedbyapolynomial

ofthesizeofthetable,orexhibitacounterexample.

Considerthefollowingtable(figure5):

Figure5
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This table T has N independent conditions (D = 0) and N+l events

and actions. Let t be the tree translating T which tests x^ at the

kroot, xN_1 at the 2 nodes of level 1, ..., x„, at the 2 nodes of level

k, and so on until all the paths can reach a leaf. Any event where x-

is a don't care condition overlaps necessarily with more than one action.

No action can then be reached in t until x., is tested in level N. It
N

follows that t has 2 leaves. (Notice that the number of leaves cannot

be reduced since no internal node in t is redundant, i.e. has its two

subtrees identical).

Thus the DTC problem is not in the class NP. But for the particular,

case of Identification Procedures, since only one simple event is mapped

to each action, any decision tree has exactly M leaves, one per action,

and the problem of Conversion of Identification Procedures into optimal

trees is NP-complete. (See [11] for a direct proof which uses a reduc

tion of the exact cover problem with 3-elements subsets.)

No interesting subclass of the DTC problem is known to have a

polynomial time algorithm. An almost obvious case is the identification

procedure which has M = N+l actions; for 1 < k <_ N, action a, corresponds

to the simple event where ^ = 1 and x = 0 for j ^ k; and the simple

event mapped to aN+1 has xx =•••=^ = 0. The DTC problem on this iden

tification procedure is exactly the well known problem of sequencing N

jobs in one machine with processing times, delay rates and no precedence

constraints. It can be solved in 0(N log N) [25].

To end this section let us analyze briefly the complexity of

Decision Tables consistency and completeness problems. The consistency

of a table can be checked by verifying that two events of E mapped to two

distinct actions are disjoints. This is done in at most 0(Ne2)
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comparisons. (Recall e = |e|.)

The completeness problem is much harder. In fact, an event is a

conjunctive clause, and a decision table can be regarded as a disjunc

tion of clauses like a formula of propositional calculus. The complete

ness problem is then exactly the tautology problem known to be NP-

complete [39].

In a particular case where all the events of a table are mutually

disjoint (even if mapped to the same action or belonging to D), the

completeness can be checked in 0(Nx (e+d)). It is sufficient to compute

aithe sum \l over all the events of EUd, a. being the number of don't-
a.

cares of the considered event. The table is complete if J2 = 2 . But

even in this particular case, the definition of an Else-rule, if needed,

remains an NP-complete problem.

4. A Practical Approximation Scheme for the DTC Problem

As one may expect from the previous section, the exact algorithms

known for the DCT problem, based on Dynamic Programming [22,41] or on

Branch and Bound [8,24,36,37] are exponential. The usual move in similar

problems is to retreat from exact algorithms to heuristic algorithms.

Many heuristics have been proposed for the DCT problem [28,32,35,44,45,

47,48], but to the author's knowledge, no one has been proved to be

polynomial.

Heuristic algorithms are generally based on algorithm Al of section

2, to which they add some particular rule in order to choose a "good"

condition in step 2.3.1. Their complexity is directly related to the

number of leaves of the tree generated in the worst case. Other heuristics,

based on the Dynamic Programming approach are systematically exponential.
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For example, [41] shows that the heuristic of [4] converts any table in

0(N2x2N) steps.

We conjecture that only some "poor" heuristics, which do not take

into account costs and probabilities (such as [5,32,48]) could be proved

polynomial. For any other heuristic which handles a complete model of

Decision Tables, counterexamples may be found where the tree generated

has an exponential number of leaves.

The problem seems then hopeless for "large" size tables. We must

give up Decision Trees for converting Decision Tables, and move back to

other less interesting techniques like the rule mask approach [2,7,16].

Fortunately, in most of the practical applications considered until

now, Decision Tables remained fairly small. In programming applications

for example, a 10 binary conditions, 40 actions table is considered an

exceptionally large one in [29]; and [13] analyzing the use of Decision

Tables compilers find out that among a large number of tables (118), a

vast majority have less than 10 conditions. In pattern recognition

applications [1,9], the maximum number of conditions considered is also

in the range of 10 to 20, whereas the number of actions has a limit

between 50 to 100.

Thus, we may still afford to use for the optimization of Decision

Tables algorithms exponentially upper bounded in the worst case, parti

cularly if their average behavior is polynomial. We present in the

remainder of this section such a procedure. It is based on a Branch and

Bound method proposed initially by [39,40] for expanded limited-entries

decision tables, and generalized later. We first introduce the general

Branch and Bound algorithm of [18], then the search representation

proposed by [24], and finally the approximation scheme is defined and
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some of its interesting features and properties are presented. The

section ends with some results from computer runs on randomly generated

data, results which give hints of the average behavior of this approxi

mation scheme.

4.1 An Exact Algorithm for the DTC Problem

The following algorithm is a Branch and Bound procedure, based on a

tree search technique and on an estimate function $ of the goodness of

a partial solution.

Let A be a set of partial decision trees, $ a function mapping A

into R , and Xv(t) the set of all the partial trees which expand T from

its open branch v (Xv(t) contains as many trees as don't-care conditions

in the event associated to v).

Algorithm A2

Input: a decision table T

1. Start: with the empty partial tree A «- {T«-Tn};

2. Do While T is a partial tree;

2.1 Take an open branch v in t;

2.2 If. the subtable v contains only one action a. Then Do;

2.2.1 Expand T by completing the open branch v with a leaf

containing a,

2.2.2 End;

2.3 Else Do; •

2.3.1 A «- (A-t)UXv(t);

2.3.2 t •*• the partial tree with the maximum number of nodes

among the set {t€A|$(t) is minimal}

2.3.3 End;
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2.4 End;

3 Output: a decision tree t-*-T translating T.

As a general property of the Branch and Bound procedure [19-21],

the output of algorithm A2 is an optimal tree if and only if the estimate

$ is a non-decreasing consistent lower bound. In other words $ must

verify:

(i) for any partial tree t' expanding t: $(t) £ $(t');

(ii) for any complete tree: $(t) = ¥(t).

Condition (i) implies that $(t) is a lower bound of the cost ¥(t) of all

the trees that can be generated by completing t.

A consistent lower bound for Decision Trees is based on the proba

bility q to reach an action in a decision table T without evaluating

the condition x . Such a probability q is computed by adding the proba

bilities of all the events of T for which x. is either an explicit

don't-care condition or a consensus variable relative to some other

dependency events or decision events mapped to the same action.

For example in the table of figure 1 we have:

q2 = Pr[(0,<j>,0,0)] + Pr[(l,1,0,0) V (1,0,0,0)]

+ Pr[(l,l,l,0) V (1,0,1,0)]

= .2 + l/2x .1 + i/2x .1 = .3

Those are the only events which can have a don't-care on x«.

The conditional probability q , to reach an action without

evaluating x , given the value of the known conditions at the open branch

v, can be computed similarly.

For example, if the event corresponding to v is (l,l,<f>,<j>) then:

q4/v - Pr[(l,l,0, )] + Pr[(l,1,1,0) V(1,1,1,1)]

= .1 + l/2x .1 = .15
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Those are the only events having x = x = 0 and a don'tcare on x,.
± JL 4

The computation of such q . is considerably simplified by defining

from a decision table T a consensus array which contains for each condi

tion x. all the events which may have x. as a don't-care condition.

For the table of Figure 1, the consensus array is given in figure 6:

*! = <f> x2 - <J> x3 = 4 x4 = *
.1 .15 .1 .3 .1 .1 .05 .05 .2 .2 .1 .05 .15 .2 .15 .1 .15 .05 .1 .25 .15

xl <b <J> <j> <j) 4, * 1 1 0 0 1 1 0 0 1 1 0 1 0 0 1

x2 ill 0 0 0 cj> 4 <J> 1 1 1 0 0 0 1 1 1 0 0 0

x3 10 1 0 0 1 0 1 0 <f> 4 <J> <f> <j> 4> 0 1 1 10 0

x4 Oil 1 0 <J> 0 0 0 l 0 1 0 1 1 4> * <f> <J> <J> 4>

ai a2 al a2 ai a2 al a2

Figure 6

From this array we have directly q. by summing over the event

corresponding to x.. Thus:

q-L = -85 ; q2 = .3 ; q3 = .85 ; q4 = .8

For a branch v, q . is given by summing, with an appropriate weight,

the event corresponding to x. and overlapping with v. If v corresponds

to the event («P,0,cp,l):

ql/v = *3 + 1/2X -1 = '35 ; «3/v = "2 + -15

The following definition of estimate $ has been proved [8] to lead

to a consistent lower bound:

(i)
N

for the empty partial tree xQ: $(0 = £ P1(1"^)
j=1 J J

(ii) for a partial tree x' expanding a tree t by adding to the open

branch v a node labelled x.: $(t') = $(t) + p, x q ,
J J j/v
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4.2 The And/Or Search Graph

We remark that the same event and subtable can be associated to

many open branches of different partial trees. For example the starred

(*) branches of the 2 trees of figure 7 correspond both to the event

(1,1, $,<(>) and then have the same subtable.

Figure 7

This is due to the fact that the order in which the conditions are

crossed in an open branch does not appear in the corresponding event.

From this important remark, [24] designed a very nice representation which

reduces the search tree of the previous algorithm in the form of an

And/Or graph.(1)
N

The vertices of this graph are the 3 composite events hierarchized

into (N+l) levels. For 0 < k < N, level k contains all the (?) x2k

events which test k conditions and have (N-k) don't-cares. Each vertex-

To avoid confusion, in the following edges and vertices refer to the
search graph, and nodes and branches to decision trees.
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event at level k corresponds to k! open branches of different partial

trees. Any of these branches can be expanded in (N-k) different ways

by testing one of the (N-k) don't-care conditions. Thus (N-k) Or-edges,

called connectors, are issued from a vertex at level k. Each connector

corresponds to a don't-care condition, and is divided into 2 And-edges,

one for each value of this binary condition.

For example figure 8 shows the edges issued from vertices (<f>,<j>,<{>,(})),

(l,<j>,(j>,<j)) and ((j>,0,<j),<J>) of an And/Or graph on 4 conditions.

By similarity with the definitions of section 2, in an And/Or graph

corresponding to a decision table T, a vertex whose event overlaps with

only one action in T is said to be a terminal vertex. If we start at

level zero of the graph, choose recursively at each vertex one connector,

follow its 2 And-edges, and stop only at terminal vertices," we will

generate a decision tree translating T.

Let us now define the cost structure of our search graph. A

connector issued from a vertex v and corresponding to a condition x.

costs p x q./ . It is easy to see that the sum of this costs over all

the connectors defining a partial tree T is: $(t) -$(Tn).
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The cost of a vertex v is defined recursively by:

(i) if v is a terminal vertex, cost(v) = 0;

(ii) otherwise, cost(v) = min[p xq + cost(v. ) + cost(v )]

over all the connectors issued from v; v and v being the
Jl *2

2 vertices successor of v along the connector labelled x..

The connector corresponding to the minimum of this expression is said to

be the minimal connector issued from v (one is arbitrarily chosen if

many lead to the same minimal cost).

Since $ is a consistent lower bound, by tracing down from vertex v~

the minimal connectors (i.e. starting at vfl and following recursively

the minimal connector at each vertex), we will define an optimal tree t*

translating a table. Furthermore, the mean decision cost of t* is given

by the cost of vertex vQ = (<|>,<J>, ...,<{>) : ¥(t*) = $(tq) +cost(vQ) .

The following algorithm, due to [24], generates an And/Or search

graph corresponding to a decision table T, and thus converts T into an

optimal tree. The graph is built progressively. At some step, the

expanded vertices are those who already have all their successors.

Non-expanded vertices have temporarily a null cost.

Algorithm A3

Input: a decision table T

1. Start: P «- {vQ, the vertex at level 0 of the graph};

2. Do While P contains at least a non-terminal vertex;

2.1 Take a non-terminal vertex v in P;

2.2 Expand v by generating all its non previously existing

successors, and assigning to these new vertices a null cost;
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2.3 A «- {v};

2.4 Do Until A is empty;

2#4-1 Take in A a vertex v' at the maximum level of the graph

and remove v' from A;

2-4.2 Compute the new cost of v' and define its new minimal

connector;

2.4*3 M. the cost of v has been changed, Then add to A all

the predecessors of v';

End;

2.5 p "*" a11 tne non-expanded vertices obtained by tracing down

from vertex vQ the minimal connectors;

2.6 End;

3 t«- tree obtained by tracing down from vQ the minimal connectors;
Output: t an optimal tree translating T.

For a proof of this algorithm we may either use the general results

of Branch and Bound procedures, or take the Dynamic Programming approach

for additive And/Or graph suggested in [24]. In this last reference,

it is also shown that algorithm A3 needs in the worst case 0(5N) steps.

4.3 An Approximation Scheme

Any Branch and Bound algorithm can be generalized to an approxima

tion scheme [20,38]. This is indeed avery important feature: a guaran

teed approximation is always better than a heuristic one. Furthermore,

since no polynomial time heuristic algorithm is known for our problem,

an approximation scheme may be, for reasonable values of e, as fast as a

good heuristic.
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We develop hereafter a generalization of algorithm A3 to an approxi

mation scheme.

In algorithm A3, each iteration updates the cost of vertices of the

graph, changes the minimal connectors, and restarts at vertex vn. This

is in fact a backtracking in the search. For the approximation scheme,

the idea is to keep on expanding the graph along the same set of initially

minimal connectors, delaying the backtracking as long as the actual cost

with these connectors does not depart "too much" from the last lower

bound available.

More formally, at some point of the development of the graph, for

the vertex at level 0 we define:

c = cost(vQ) = min {p xq + cost(v ) + cost(v )};
j=ltoN 3 2 Jl J2

c' = the next minimal value of the above expression, i.e.

min {p xq + cost(v. ) + cost(v )}, where jn corresponds
j?% 3 J 31 32 °
to the minimal connector of v..

A = e($(TQ) +c') + c' -c for some e > 0.

The approximation scheme proceeds as follows:

Approximation Scheme AS

Input: a decision table T and a parameter e > 0

1. Start: Expand vertex vQ by generating all its successors and

assigning to them a null cost, compute c, c',

A «- e[$(T0) +c'] +c' -c, and 6 +• A/[$(tq) +c'], define

P •+• {non-terminal successors of v~ along its minimal

connector};

2. Do Until P is empty;

2.1 Take and remove from P a vertex v;
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2.2 Expand v by generating its non previously existing successors,

and assign to these new vertices a null cost;

2.3 Compute the new cost and define the minimal connector of v;

2.4 Decrease A by: A *- A- [new cost(v) - old cost(v)];

2.5 If A > 0 Then Do;

2.5.1 P «- pU {non-terminal successors of v along its minimal

connector};

2.5.2 6 +• min{<S,A/[$(T0) +c']};

2.5.3 End;

2.6 Else Do;

2.6.1 A «- {the vertices ancestor of v};

2.6.2 Do Until A is empty;

2.6.2.1 Take and remove from A a maximum level vertex v';

2»6.2.2 Compute the new cost and define the new minimal

connector of v';

2.6.2.3 If the cost of v' changed, Then A -*- AU{the

ancestors of v'};

2.6.2.4 End;

2.6.3 P «- {the non-expanded and non-terminal vertices of the

graph obtained by tracing down from vn the new

minimal connectors}

2.6.4 Recompute c, c' and A •«• £[$(tJ + c'] +c'-c;

2.6.5 End

2.7 End

3 Generate a tree t by tracing down from v the last minimal connectors;

4 Define e' «- max{0,e-6};

Output: e*, and the e'-optimal tree t translating T.
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Proof: We will first show that t is an e-optimal tree. Let t* be an

optimal tree translating T, t the output of algorithm AS with input T

and e, and let c, c' and A be the last values of these variables in the

algorithm.

At any iteration of the algorithm, the search graph is equivalent to

a set of partial trees. By updating the cost of all the vertices and

their minimal connectors, and tracing down from vn the minimal connectors,

we will define the partial tree T* with minimal estimate. Thus:

¥(t*) > $(T*) = cost(v0) +$(T0) .

When the algorithm ends, t does not correspond necessarily to the updated

minimal connectors of the graph, since vertices have had new costs without

updating; and the cost(vQ) is no longer c, but: cost(vQ) _> c*, and thus

Y(t*) _> c' +*(Tq). Since the algorithm updates all the costs of the

graph unless A >_ 0, we have:

*(t) = «(TQ) +c+ [e(«(TQ) +c') +c'-c] -A< (1+e) ($(tq) +c') .
It follows that:

rF(t)-V(t*)]/Y(t*) < e .

Since t is e-optimal for input e, if we show that the algorithm produces

exactly the same run (i.e. develops the same vertices in the same order)

with input e' as with input e, our proof will be completed.

Let A correspond to the run with input e, and A' to the run with e'.

The two runs start identically until step 2.4 where the sign of A and A'

are checked. Since

e' <: e => A' < A ;

furthermore

e»>e-6 => A' >A-6($(Tn) +c') >A- ($(Tn) +c')min{1^4rr-r}U — 0 <P(Tn)+C

Consequently A and A' have the same sign, and the two runs proceed iden

tically: t is an e1-optimal tree. Q
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We remark that:

(i) for e = 0, t is an optimal tree and AS is then an exact

optimization algorithm;
N

(ii) for e_> eQ =[£p -$(tq)]/$(t0), AS keeps expanding along the

same set of connectors and never updates the graph. This

procedure with no backtracing corresponds in fact to the

heuristic proposed in [24], but has a decisive advantage over

the heuristic: it gives a guarantee e' of the goodness of the

generated tree. As our running experiments suggest, this

guarantee has a large practical interest.

Let us now illustrate the algorithm AS by developing a running

example on the table of figure 1 with e = .25. (Refer to figure 6 also

for the computation of q..) We first compute $(t ):
4 J 0

«(T0) = I p,(l-q.) = 10x (1-.85) + 50x (1-.3) + 30x (1-.85)
j=l J J

+ 20x (1-.8) = 45.

The vertex vQ is expanded, the cost of its connectors are computed by

Pj xq.j > its successors have a null cost, thus:

vQ = (<M><M); cost(vQ) = min(8.5,15,25.5,16) = 8.5; x is

minimal connector; P + {(0,<M,<|>) »(1»<1>,<M) > and

A «- .25(45+15) + 6.5 = 21.5

The next node to be expanded will be v- :

vx = (0,<f>,<J),<f>); costO^) =min(10,16.5,10) = 10; x2 is

minimal connector; P <- {(1,<J), (f,, 0) ,(0,1, <J>,(j))} since (0,0,^,0)

is terminal; A *• 22.5-10 = 11.5.

v2 = (l,(j),(J),<{)); cost(v2) =min(5,9,6) = 5; x2 is minimal

connector, no vertex is added in P since (l,0,<p,4>) and (1,1,<J>,4>)

are both terminal; A •*- 6.5.
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v3 = (0,l,(f),(j)); cost(v3) = min(6,3) = 3; x, is minimal

connector; P «- {(0,1,((),0)} since (0,l,<p, 1) is terminal, A = 3.5

v4 = (°»1><M); cost(v4) = min(O) = 0, x3 is minimal

connector, A •«- 3.5.

P is empty. The algorithm ends with the following tree (figure 9) and e':

e' = e-min{A/[$(x0) +c']} = .25-3.5/60 = .192

< xi >.»->-»-»< X2 >+-»-»-»n: «i

+ a: «2

< x2 >++•*-»< X4 >-^->4->a: «i

4r < X3 >-»-»-»->Qj ai

* a: «2

a: «2

Figure 9

The cost of this tree t- is:

^(t^ = $(To)+c+ [e[$(x0) +c'] +c'-c]-A = 45 +8.5 +22.5-4.5

= 71.5

This can be verified directly on the tree by:

¥(t) = 60x .35 + 110x .1 + HO x .05 + 80x .2 + 60 x .15 + 60 x .15

= 71.5
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If we try to converse the table of figure 1 with e = .17, the initial

value of A would be 16.7, and after expanding vertex v.. = (0,1,0,<|>) we

will have A = -1.3. Algorithm AS will enter the backtracking loop

(step 2.6) and proceed as follows:

A «- {v^

Updating of v^ costCv^) = min(10+3,16.5,10) = 10;

X/ is minimal connector

A <- {vQ}

Updating of vQ: cost(vQ) = min(8.5+10+5,15,25.5,16);

x2 is minimal connector

A is now empty: P «- {(<j>,l,<M)} since (0,0,0,0) is terminal; and

A +• .17x (45+16) + 16 - 15 = 11.37.

This ends the updating loop. The algorithm progresses by expanding the

next node in P:

v5 = (0,1,0, ); cost(v5) =min(3.5+3,10.5,6) = 6; x4 is minimal

connector; and P +- {(0,1,0,0)} since (0,1,0,1) is terminal;

A «- 11.37-6 = 5.37.

v6 = (0,1,0,0); cost(v6) =min(l,3) = 1; ^ is minimal connector;

P «- {(0,1,0,0)} because (1,1,0,0) is terminal; A «- 4.37.

v7 = (0,1,0,0); cost(v7) = min(0) = 0; x> the only connector is

minimal; both (0,1,0,0) and (0,1,1,0) are terminal; thus P is

empty and AS outputs the tree t2 of figure 10 with e

e' = .17-1.7/60 = .1416.

The cost of.this tree is:

^(t2) = 45 +15 +11.37-4.37 = 67

*.
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< X2 >+->•+-»< %<<4 >+-»+-»QJ Al

* < xi >->->->-»g: ai

4, 4,
4, 4,

* < X3 >->->->->n» ai
4, 4,

4, 4,

+ Dt A2

n: A2

Figure 10

An optimal tree translating this table is given in figure 2.

In the approximation scheme AS, as well as in algorithms Al, A2 and

A3, the step 2.1 is concerned with the choice of the next vertex to

expand. There are two possible alternatives:

(i) take the lower level vertex in P,

(ii) take the higher level vertex.

In order to develop a smaller search graph and to save backtrackings,

it is necessary to discriminate between partial trees as early as possible

Since generally the lower is the level of a vertex v, the higher are the

values q ^, and then the higher is the cost(v), the first alternative

is more efficient.

A third alternative would be to compute the cost of all the vertices

in P and to expand the most costly one. This is not very interesting

because computing the cost of a vertex is almost as time consuming as

expanding it. Furthermore, this alternative introduces a non systematic

way of developing the search and complicate the implementation of the

algorithm.
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Aimed at improving AS we designed two particular strategies. The

first strategy develops completely the search graph until level K (practi-
K ,. .

cally K = 1 or 2) by expanding all the £ (.) x2 first vertices, and then
i=0 X

proceeding as in AS. This strategy saves a large number of back

trackings, and although one running experiment suggests that the saving

is not compensated by the initial development of the graph, it is

worthwhile to be considered in case of very "flat" cost and probability

distributions.

The second strategy is concerned with shortening the backtracking

loop: instead of updating the entire graph until vertex vQ, we may

increase A appropriately after each updating, and stop the backtracking

as soon as A becomes again positive. In this strategy the algorithm

continues to develop the same partial tree changing only some of its

lower nodes. The length of each backtrack is restrained, but the number

of backtracks is augmented. Besides that, in this strategy we need to

keep track of the updated and non-updated vertices, which considerably

complicates the implementation.

4.4 Some Properties of Algorithm AS

The main advantage of Decision Trees over other techniques of

conversion of Decision Tables is that in a tree only the most efficient

conditions are evaluated. The tree solves automatically the problem of

selection of a subset of "good" conditions, a problem which arises when

the table contains many more conditions than necessary.

A condition x is redundant in a table T, if by removing x. from T
J J

we have no loss of information. In other words, x is redundant in T if

we remove from Tx, the jth component of all the events, and all the
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resulting inconsistent events (mapped to two different actions), and T

is still a complete table.

Consider the example of figure 11. The table T', obtained by

removing x3 from T is still complete: x3 is redundant. But the trees

fcl and t2» both translating T are such that: ^(O < Y(t ), although t«

uses the redundant condition x... It follows that we may miss the optimal

tree by removing the redundant condition before converting a table.

t,

T .1 .2 .3 .4

*1 110 0 110 0 10

x2 10 0 1 10 0 1 10

X3 0 0 0 0 1110 10

al a2 a3 a4 b

< XI >-»-»-»->< H2 >-*.->->->□♦ Ai

* d: A2

< ><2 >++->+DJ A4

d: A3

tt

T' .1 .2 .3 .4

Xl
x2

110 0

0 10 1

10

10

al a2 a3 a4

< X3 >->-»->^Q5 A4

< xi >-»->->.+ < >«2 >++++Q* ai

+ 4,
4, 4,

* D: A2

a: A3

Figure 11

Let us define a fully redundant condition x as one which can be

removed from a table T without loss, neither of information nor of

optimality, for any given cost and probability distributions in T.

If V1 and vi are the two SUDtables corresponding to the two events

where x± = 0 for i i j; and x = 0 and 1 respectively, we have the
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following result:

Lemma: x. is a fully redundant condition in T if and only if one of the

following occurs: •

(i) v. and v! are two identical subtables;
J J '

(ii) one of the two subtables v. or v' has no decision event (only

dependencies).

Proof (Direct part): It is obvious that any x verifying (i) or (ii)

is redundant. Let us assume that an optimal tree t* translating T tests

x . If x verifies (ii) then from the node of t* labelled by Xj only

one branch is issued since the other branch leads to an empty set of

decision events. By removing the node x. from t* we will still reach the

same set of leaves but have a lower cost tree: t* is not optimal. If

Xj verifies (*)» the two subtables corresponding to the two branches of

node x are identical independently of where node x appears in t*. The
•* J

two subtrees issued from node x. have the same set of leaves (they

may have distinct costs). By removing from t* node x. and linking its

ancestor to its subtree of minimal cost, we still reach the same set of

leaves but have a lower cost tree. Thus again t* is not optimal.

(Converse part): Let x. be completely redundant, and t a tree

having x as its root. For any cost and probability distributions,

there exists a tree t* which does not test x. and is better than t.

Since ¥(t*) < ¥(t) regardless of the values of the parameters, ¥(t)

must contain at least all the (formal) terms of ¥(t*). This implies that

t* is a subtree of t. Any node in t which does not appear in t* can be

removed with no loss of information. But a node cannot be removed

unless it has only one branch, or its two subtrees have the same set of
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leaves and thus can shrink together. Root x of t does not appear in t*,

and since it can be removed either (i) or (ii) is verified. •

From our definition of q , it is straightforward that:

(1) x, is redundant if and only if q = 1

(2) x, is fully redundant if and only if one of the following is true

(i) q.i = 1 and no dependency event appears in the consensus

array corresponding to x

(ii) q. = 1 and either x = 1 for all the decision events or

x. = 0.
J

It is also easy to see that if two or more conditions are fully

redundant, all of them can be removed from the table without loss. This

is not true for simple redundancy.

Notice that x may not be redundant in T, and be redundant or fully

redundant in a subtable of T.

A minor change in the definition of the consensus array enables us

to determine easily and to remove the fully redundant conditions of the

initial table or of any of its subtables, each time algorithm AS

expands a vertex in the graph.

The basic assumption when decision trees are used for converting

decision tables is that the N conditions may be tested in any order.

This is not always the case: a condition x. may not be defined unless

x.^ = 1 for example.

Generally we will define a precedence constraint on a condition x.

by a set of events. One of these events must occur in order to be able

to test x..
J
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Some simple modifications in algorithm AS lead to decision trees

which verify the precedence constraints. Each time a vertex v is

expanded, only those conditions which include v in their constraint set

have a corresponding connector and may appear later in a tree at this

branch.

4.5 Some Experimental Results with Algorithm AS

Algorithm AS has been implemented in an APL system running on the

DEC-20 of the University of California at Berkeley Computer Center.

The three different strategies presented previously were programmed with

the lower level vertex alternative for the development of the search graph,

A pseudo-random generator of decision tables has been designed. It

takes as input N, the number of conditions, p, the proportion of depen

dencies in the table, and r, a maximum ratio between parameters. It then:

(i) defines d= JNx 2P+1~NJ, d=number of events in D;

(ii) generates e uniformly in [N,3N], e = |e|; and M uniformly in

[2.MJ;

(iii) generates e+d events by taking randomly an event v in a set S

and expanding it for a randomly chosen condition among its

don't-cares; S is set initially to the event vQ = (0,0,...,0);

(iv) distributes randomly the events of S among the M actions and

the set D;

(v) generates N cost parameters (p^...^) uniformly distributed

in [l,r] and e probabilities uniformly in [l,r] and normalized.

The decision tables thus generated are consistent and complete.

Algorithm AS has been used on random tables with 5 to 10 conditions.

After each call of AS, the following data were recorded:
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(i) the ratio of the cost of the tree generated to the maximum cost
N

(i.e. to I p );

(ii) e', the improved upper bound of the relative gap to the optimum;

(iii) the total number of vertices of the search graph (denoted u);

(iv) the number of expanded vertices of the search graph (denoted s);

(v) the number of backtrackings of the algorithm (denoted b);

(vi) the CPU time of the call; and

(vii) the number of APL operators interpreted during the call

(denoted y).

The goals of such experiments were:

(1) to estimate the amount of computer resources spent at each call

of AS versus only the search characteristics (u, s, and b), independently

of the particular implementation of the algorithm and the system used;

(2) to characterize the average complexity of the approximation

scheme AS for the DTC problem, relative to the size of the table N, M,

e, d and to e;

(3) to characterize e', the improved upper bound, and e , the real

relative gap to the optimum, versus N, M, e, d and e; and

(4) to compare the efficiency of the different strategies for

expanding and updating the search graph.

Although more than 1500 runs of algorithm AS were recorded, only a

subset of these goals is actually reached. This is due partly to the

large number of variables which intervene in our problem. But the main

reason in fact is related to the tremendous difference which can be

found between two randomly generated decision tables of the same size.

Because of this important variability, any consistent mean must be

averaged over a large number of tries.
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Not enough experiments were recorded with different numbers of

dependency events for each table size in order to characterize the

influence of the parameter d. The following results concern only

decision tables with independent conditions, and are derived from a set

of 12, 12, 11, 9, 4 and 2 different tables with respectively N = 5, 6,

7, 8, 9 and 10 conditions. For each table 10 experiments with different

costs and probabilities were recorded. In each experiment, algorithm AS

has been called 5 times, with inputs eQ (no backtracking), e1 = 0.1,

e2 = 0.05, e^ = 0.01, e, = 0; and 5 trees ranging from the heuristic one

to the optimal one were generated. Not all the experiments could lead

to 5 runs of AS: in the case where the output e' of input e. was such

that: e^ < e^ < e.+1, the calls from e±+1 to e. were skipped.

A total of 1147 runs support the following results. The statistics

were done with the IBM package STATPACK.

We first found that the number y of APL operators interpreted during

a run and the CPU time of this run are correlated with a coefficient

better than 0.99. Since the CPU time depends on the actual load of the

machine and varies significantly for two calls on exactly the same data,

we chose to record our results versus y only.

We also observed that u, the number of vertices of the graph, and

s, the number of expanded vertices, were linearly dependent.

We tried then to characterize y by a polynomial of N, s, and b.

A multiregression showed that among second degree polynomials of these

3 variables, the best result was given by

y = a + N(s + 3*b)

for which the multicorrelation coefficient was R = 0.98. This formula

supports the intuitive belief that independently of the implementation,
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algorithm AS has a complexity in 0(Nx (s+b)).

With the top backtracking strategy (where each updating brings one

back to vertex vQ), the average complexity of algorithm AS versus N and

e is given in figure 12, whereas figure 13 displays the average values

of e' and eR. Because of the relatively small number of experiments for

N = 9 and 10, we do not have reliable measures for these points.

UtVo"

loo

6« .

4.

-3
y x 10 N=5 N=6 N=7 N=8

eo 4 5 7 13

e = 0.1 7 12 17 52

e2 =0.05 8 13 20 66

e3= 0.01 9 14 24 90

e4=0 10 17 31 114

Figure 12
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e' xioo N=5 N = 6 N=7 N= 8

eO 13 19 17 22

e=0.1 7.5 8 9 9

e=0.05 3 3. 7 4.2 4.5

e x 100 N=5 N=6 N=7 N= 8

eo 2 3 4 5

e=0.1 0.1 0.2 0.3 1

e = 0.05 0.05 0.1 0.1 0.2

Figure 13

From figure 12, we can conclude, with the necessary reserves due to

the low range of N, that the average behavior of algorithm AS grows from

a less than quadratic complexity for e= eQ (no backtracking), to an

almost exponential complexity for e = 0 (optimal solution). Notice that

the gap between e = eQ and e = 0.1 is as important as the gap between

e = 0.1 and e = 0.

From figure 13 we remark that the improvement of e' over e decreases

when N increases or when e decreases. The real relative difference e
R

follows a similar behavior, and seems to be at a constant ratio (around

4) to e'. This ratio is low enough to give to e' a practical interest:

it is as important to know that a heuristic solution (e = en) is in the

average at 5% of the optimum as to be sure that a particular heuristic

tree cannot be worst than 20% optimal, for example.

Our last results concern the comparison of the 3 strategies of AS.

Figure 14 shows the average complexity for N = 7 versus e for strategy

S1 = top backtracking, S2 = short backtracking, and S3 = complete expan

sion of the graph until level 2 and top backtracking later.
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Figure 14

This figure shows clearly the superiority of strategy S-. For the

asymptotic value e = eQ, S1 and S2 are equivalent since there is no

backtracking.

A side advantage of S-, which is to give a lower e', has not been

quantified.
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5. Conclusion

Compared to Dynamic Programming which needs systematically 3 steps,

and to heuristics which are neither proved polynomial nor guarantee the

goodness of their solution, we believe that for converting Decision

Tables, the Branch and Bound remains the most interesting method. The

And/Or search graph and the e' feature of algorithm AS improve considerably

the advantages of this approach.

If used systematically with eQ (no backtracking), the implementation

of AS is almost as simple as the implementation of the dynamic programming

algorithm, and the computer resources needed are those of a heuristic

algorithm.

We conjecture that by assuming some hypothesis only on the cost and

probability distributions of a table, it will be possible to prove that

AS is in the average polynomial, or polynomial "almost everywhere"

following the approach of [15].

In another interesting open problem, each condition has two distinct

costs: an evaluation cost and a loading cost. A limited space enables

us to put some conditions in the main storage where the loading cost is

null. The problem is to find an assignment of the conditions between

the main and the secondary storage, and a decision tree converting a

table, optimal for the mean decision cost.

We conjecture that if the loading cost of a condition x. is propor

tional to the space x will occupy if assigned to the main storage, a

modified algorithm AS will lead to a solution at a constant bound from

the optimum.
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