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I. INTRODUCTION

It Is well known that the reachability problem
for directed graphs is logspace-complete for the
complexity class NSPACE(logn) , and thus holds the
key to the open question of whether DSPACE(logn)=
NSPACE(logn) ([3,4,5,6]). Here as usual
DSPACE(logn) is the class of languages that are
accepted in logn space by deterministic Turing
Machines, while NSPACE(logn) is the class of lan
guages that are accepted in logn space by non-
deterministic ones. The reachability problem for
undirected graphs has also been considered ([5]),
but it has remained an open question whether un
directed graph reachability is logspace-complete
for NSPACE(logn) . Here we derive results sug
gesting that the undirected reachability problem is
structurally different from, and easier than, the
directed version. These results are an affirmative
answer to a question of S. Cook.

Cook's original question was about connected n-
vertex graphs G which are regular of some fixed
degree d. At each vertex v, let the edges inci
dent with v be given the distinct labels 0,1,*",
d-1. Warning: no assumption is made about the
consistency of the labelling - each endpoint of an
edge may label it in a different manner. A se
quence a in {0,1,•••,d-l}* is said to traverse
G from v if, by starting at v and following
the sequence of edge labels a, one covers all the
vertices of G. Call a n-universal if it tra
verses every n-vertex G with degree d, from
every starting point v. Cook's original question
was: are there always "short" (i.e., of length
polynomial in n) n-universal sequences?

The motivation for this question lies in the
attempt to prove lower bounds on the space complex
ity of the reachability problem. This attempt fo
cuses its attention on n-vertex directed graphs for
some fixed n. Then one attempts to prove that any
machine with limited space cannot solve the reach
ability problem for these graphs. One approach is
to try to prove an even stronger result: the reach
ability problem cannot be solved non-uniformly in
logspace. This would mean that, even if we allowed
a sequence {Tn} of two-way finite automata, where
Tn was responsible only for solving the reachabil
ity problem on input strings of length n, the num
ber of bits needed to store the internal state of
TR would grow faster than logn . Many of the
methods used to attack this problem work equally as
well on undirected graphs; hence it is natural to
consider the non-uniform complexity of the reach
ability problem for undirected graphs. If short n-
universal sequences always exist, then not only is
the non-uniform complexity of the undirected

problem logspace, but the machines that demonstrate
this are very simple. Each machine T does no- i

thing more than non-adaptively follow a set of move
instructions and then stop! One of our main results
is that universal sequences do exist.

Theorem: There is an n-universal sequence of
3

length 0(n logn) . (The implied constant depends
only on the fixed degree d.)

The proof of this theorem depends on an analy
sis of random walks in undirected graphs. Consider
a random walk that starts at a vertex v of a graph
G, and whenever it reaches any vertex w, chooses an
edge at random from those edges incident with w, and
traverses it. Let T be the expected number of
edges traversed before all of G has been visited.

Theorem: If G has n vertices and e
edges, then

T<2e(n-1) .

Thus, there is a polynomial time logspace probabi
listic algorithm for traversing an undirected graph.
In a similar vein, we present polynomial-time log-
space probabilistic algorithms for testing whether
a graph is bipartite and for the reachability ques
tion for undirected mazes. It should be noted that
each of these algorithms will have a small proba
bility of failure which can be made arbitrarily
small - in a sense one can trade accuracy for space.

3
The existence of short ( 0(n logn) ) universal

sequences is obtained from the random walk results
by the probabilistic method of Erdos. The method
consists in showing that the expected number of
pairs G,v that a random sequence of length

3
en logn fails to traverse is <1; hence, some uni
versal sequence of this length must exist.

Our analysis of random walks on graphs is also
the starting point for an investigation of certain
interception games. We show that, when an indivi
dual (the mouse) moves among the vertices of a
graph but is oblivious of its pursuer (the eat),
it can be intercepted in polynomial expected time
even when the cat follows an extremely,simple ran
dom walk policy. The bound on the expected time
depends on the complexity of the mouse's motion,
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but in no case exceeds Ofe^n), even when the mouse
computes its trajectory nonrecursively and/or prob
abilistically.

Our probabilistic graph traversal algorithms
raise a number of questions about complexity class
es. If a problem is in DSPACE(logn) then it is
clearly solvable detemiinistically in logn space
and polynomial time. Similarly, the restriction to
polynomial time is superfluous with respect to non-
deterministic logspace. With respect to probabil
istic acceptance the situation appears to be quite
different. Let RSPACE(logn) denote the class of
languages recognized by probabilistic algorithms

operating in logspace. Let RSPACEP y(logn) de
note the class of languages recognized by probabil
istic algorithms operating in logspace and polyno
mial time. It is known [1] that RSPACE(logn) =
NSPACE(logn) . The results stated earlier imply
that the undirected reachability problem is in

RSPACEpoly(logn) and that the directed reachabil
ity problem is in this class of languages if and

only if RSPACEpoly(logn) = RSPACE(logn) . It re
mains an open question whether or not these two
classes are equal.

2. RANDOM WALKS ON UNDIRECTED GRAPHS

Let G be an undirected connected graph with
n vertices. Let d(i) denote the number of edges
incident with vertex i and let A(i,j) denote
the distance between vertices i and j. Consider
a random walk on G, i.e., a Markov chain in which
the states are the vertices of G, and the transi
tion probability p.

0,

U

IdOT'

U

if

is given by:

{i,j} is not an edge

otherwise

Let T(i,j) denote the expected numberof transi
tions until j is reached, starting from i; in
particular, T(i,i) is the mean recurrence time of
vertex i. Also let n denote the number of ver
tices and e the number of edges of G.

Lemma 1: for, each vertex i of G,

TO.o-affj-.
Proof: (cf. [2]). Let tt(i') be the station

ary proBability of vertex i. Then ir= (tt(1 ),• ••,
n(n)) is the unique vector satisfying

ttP = tt and w(1)+•••+ir(n) = 1.

By direct substitution it is easy to confirm that

Tr(i) =̂ i^- . Then, from the fact that the mean re
currence time of a state is the reciprocal of its

1 2estationary probability, T(i,i) =^rjy =^ryr . •

Lemma 1 has the following useful interpreta
tion. Let {i,j} be any edge of G. Then the
long-run frequency with which this edge is tra

versed from v to w is jt .

tenma ?.: If vertices 1 and j are adjacent
1n G, T(T,j) +T(j,i)<2e with equality if and
only if {i.jl is a cut edge of G.

Proof: From the observation that all transi
tions have the same long-run frequency, it follows ,
that T(i,j) + T(j,i), the expected number of trans
itions during a round trip from i to j and back,
is exactly 2e times the expected number of occur
rences of any particular transition during such a
round trip. The result then follows by noting that
the expected number of transitions from i to j
along edge {i,j} during a round trip is <1 ,
with equality if and only if {i,j> is a cut edge
of G. °

T&mma 3: for all i and j,
T(i,JT+T(j",i)<2eA(i,j).

Proof: By induction on A(i,j) and Lemma 2. •

Define T(i,-)> the traversal time starting
from i, as the expected number of transitions re
quired to visit all the vertices of G, starting
from i.

Theorem 4: T(i ,•) <^2e(n-l) .

Proof: Let H be any spanning tree of G.
Then there is a walk beginning and ending at i
which traverses each edge of H exactly once in
each direction. Let the successive vertices visi
ted in this walk be 1^,1, ,i0,-* •• ,1

0' 1» 2* '2n-2
where

1= 10=12n-2
Clearly, T(i,-) is less than or

equal to the expected time required for the Markov
chain to visit the vertices

in the indicated order

V1-"1r'2* ,i 2n-2

'0»'l

J(i,j) +T(j,i)
{iJ}eH

and by Lemma 2 this is < 2e(n-l)

•E

But this expectation is

2n-3"2n-2^T(ift,i1) +T(i1,i2)+ ••-+T(i,rl_,,i,fl_9)

This theorem supplies, of course, the bound
promised earlier. Note, this bound depends criti
cally on the undirected nature of the graphs. For
arbitrary directed graphs T(i,j) can be finite
but exponential in size.

3. RANDOM WALKS ON EULERIAN DIGRAPHS

A strongly connected directed graph G with
indegree equal to outdegree at every vertex is an
Eulerian digraph. In this section we will show
that random walks on these digraphs enjoy many of
the same properties as random walks on undirected
graphs.

The notation used is essentially the same as
in the last section. One difference is that d(i)
is now the outdegree of vertex i. Note, since
any undirected graph can be considered as an
Eulerian digraph the last section's results are
logically subsumed by the following lemmas.

Lemma 5: For each vertex i, T(i,i) =
d(i)

\t

•^



t-i

Lemma 6: If <1»j> is an edge, then

T(i,j) + T(j,i) < e .

The proofs of Lemmas 5 and 6 are virtually
Identical with those of Lemmas 1 and 2.

Let A(1,j) denote the distance between i and
j in the undirected graph in which every directed
edge <1,j> of G is replaced by an undirected
edge {i,j} .

Lemma 7: T(i,j) +T(j,i) <_ e•A(i,j) .

Proof: Use Lemma 6,'induction on A(i,j) and
the "triangle inequality" T(i ,k) +T(k,j) >.T(i,j). •

We now turn our attention to an application of
Lemma 7. In particular we will construct a proba
bilistic algorithm which operates in logspace and
polynomial time and accepts those strings that are
the descriptions of labelled graphs such that the
connected component that contains vertex 1 is not
bipartite (i.e., contains an odd cycle). The exact
details of how graphs are encoded as strings is un
important provided we can do the following within
the bounds of logspace:

1) determine those vertices which are ad
jacent to a given vertex;

2) remember or "mark" one vertex with a
special marker.

The probabilistic algorithm then proceeds as fol
lows:

Initially it "marks" vertex 1 and sets a
parity counter to 0. It then simply exe
cutes a random walk as described in section
2. At each step the counter is incremented
lmod2. If it ever returns to the marked

vertex and the counter is odd (i.e., con
tains the value 1) then it stops and
accepts the graph as not bipartite.

Note, the algorithm has available to it only ran
dom 0's and Ts with equal probability. It can,
however, simulate a random d-way choice in log-
space in an unbiased way. To say that this algo
rithm works means that if the component of G con
taining 1 is not bipartite then with probability
>% it will determine this in polynomial time. The
key to seeing this is to examine a derived digraph
«\# <\,

G. G has the vertex set of all pairs <v,k>
where v is a vertex of G and k=0,l ; if
<x,y> is an edge of G then

<<x,i > ,<y,i +1 >> (i = 0,1)

is an edge of G (i + 1 is taken mod 2 of course).

The importance of G is: a run of the above prob
abilistic algorithm can be viewed as a random walk

on G starting at <1,0> and terminating if

<1,1> is ever reached. Clearly, G is an
<\j

Eulerian digraph if and only if G is strongly
connected. The latter holds exactly when the com
ponent of G containing vertex 1 is not bipartite.

Since G has 2e edges and 2n vertices, it fol
lows that if <1,0> can reach <1,1 > it can do
so in less than, 2n steps; by Lemma 7 it follows
that the expected time to reach <1,1 > is at

most 4en. Then Markov's Theorem shows that in time
9en the probability that the algorithm discovers
an odd cycle is >'*. This completes the argument
that the algorithm is correct.

4. UNIVERSAL SEQUENCES

Recall that a sequence o 1n {0,1,***,d-l}*
is n-universal if given any n-vertex connected
graph of fixed degree d and any vertex v, start
ing at v and following the labels of the edges of
G as described by a one visits all the vertices
of G. The existence of such sequences of length

o

o(n logn) is a consequence of the main theorem on
random walks on undirected graphs.

Theorem 8: There is an n-universal sequence of
3

length 0(n logn) . (The implied constant depends
only on the fixed degree d.)

Proof: Let a be a random sequence from
{0,1,...,d-l}* of length 2dn(n-l)(dn+2)r"log2n~l .
Here we of course insist that each element of this
sequence is selected independently and moreover
that each of the d labels is equally likely.

Also let Xr „ be a family of random variables
u,V

indexed by n-vertex connected regular graphs (with
degree d) with a distinguished vertex v which
is defined as follows:

G,v

1, if starting at ^v in G
and following a one fails
to visit all of G;

0, otherwise

Let Y = I Xfv „ where the sum is over all such
b,V «\,

graphs and vertices. By the definition of Y, if

Y equals 0 then a' is n-universal: this fol-

lows since Y counts the.number of "counter exam

ples" to the assertion "a is n-universal." The
key to the probabilistic method is to show that,

when a is a random sequence, the expectation of

Y, E[Y], is <1; this will clearly imply that a
universal sequence of the required length exists.
Since expectation is linear,

E[Y] =IE[XG>V].

We shall show that, for any G and v,

E(Xr J <2-(dn+2)rlog2n"lin-dn+2 To see tMs$
u ,V

consider

quences s
as the concatenation of random se-

•>s(dn+2)rl0g,n-1 each of lengthrV
2dn(n-l). By Theorem 4 the expected traversal
time for G from vertex v is ^dn(n-l). Hence,
by Markov's theorem, the probability that s,

traverses G from v is >%. Similarly, the
probability that s2 traverses G, starting from
whatever vertex w is occupied at the end of s<|,
is >h , etc. The probability that none of the

sequences s, ,s
T'2»

traverse G is



l2-(dn.2y-log/'ln-(dn42) ^

E[Xr ]<n"dn+2 . Since the number of labelled
u, V

dnH
n-vertex graphs with deqree d is less than n

It follows that ClY] <ndnfl •iTdn,;f <n"1 <1
(I

By contrast with this result, universal
sequences for the traversal of n-vertex directed
graphs in which each vertex has outdegree d must

be of length at least dn +n-l .

5. INTERCEPTION PROBLEMS

In this section we consider certain problems of
strategy related to the following situation. Two
individuals, the cat and the mouse, are moving from
vertex to vertex of a connected graph. Each move
requires one unit of time. The cat's object is to
intercept the mouse, i.e., to occupy the same ver
tex at the same time. Neither individual senses
the other's position until interception actually
occurs. In this respect the situation differs from
conventional pursuit games in which each individual
can modify his trajectory according to his observa
tions of the other's motion.

We will assume throughout that the cat's be
havior is very simple, and requires no global know
ledge of the graph: he merely alternates between
phases in which he delays, Or waits, at a fixed
vertex, and phases in which he follows a random
walk on the graph. Various policies for the cat
will differ according to the stochastic experiment
he conducts in order to decide when to switch be
tween waiting and walking.

The Case of a Finite-State Mouse

We first consider the case where the mouse is a
deterministic finite-state automaton. Each of his
moves and each of his state transitions is deter
mined by his present state and by information local
to the vertex he currently occupies; this informa
tion is in the form of labels on the edges incident
with that vertex.

We assume that

(i) there is a set {1,2,—,d} of
possible labels.

(ii) for each ordered pair <v,e> such
that v is a vertex and e is an
edge incident with v, there is an
edge label L(<v,e>); if edge e
joins vertices v and w, the
labels L(<v,e>) and L(<w,e>)
are not necessarily equal.

(111) no label appears twice at the same
vertex; i.e., if e and e' are
distinct edges incident with v,
then L(<v,e>) f L(<v,e' >).

It foilows from these assumptions that each vertex
has degree <_d .

The behavior of the mouse is determined by:

a finite set of states

an Initial state qQ;
an initial vortex vQ;

a Lranailum function fi: QxD •• {1,2,* *' ,dl xQ,
where D is the family of nonempty subsets of
|1,?,•••,d) . Ihis function satisfies the follow
ing restriction: if 6(q,S) =x then xcS.

When the mouse is at vertex v In state q, it
observes the set of labels

S = {L(<v,e>) |e is incident with v} .
Then, if 6(q,S) = x,q' , it moves along the unique

edge e such that L(<v,c>) = x, and it enters
state q' .

We consider a simple policy for the cat. It

Q;

starts at some vertex wQ, and at each step it

uses the following stochastic decision rule:

if the current vertex v has degree d then

(i) with probability -^ »remain at vertex v;
(ii) with probability ^ ,move along a ran

domly chosen edge incident with v.

Thus, the cat can be regarded as executing a
random walk on a graph H obtained from G by
adding a loop at each vertex (a loop contributes
2 to the degree of its vertex).

Theorem 9: The expected time for interception
of any q-state mouse on a n-vertex graph with edge
labels drawn from {l,2,*-«,d} is

<nq +(d+2)n(n-l)+ (d+2)n3q2 .
Proof: Define a total state for the mouse as

a pair <v,q>, where v is a vertex of G and
q is an internal state. The next total state is
completely determined by the present total state.
Thus the mouse eventually enters, and repeats for
ever, a cycle of distinct total states.

The time required for the cat to intercept the
mouse is the sum of three terms:

(i)

(ii)

t,, the time until the mouse enters his

cycle of total states;

t«f the time thereafter until the cat

first visits a vertex which occurs in
some total state in the cycle;

(iii) t3, the time thereafter until the cat
intercepts the mouse.

Clearly, t, < nq. To estimate t2, let j
be a vertex occurring in a total state of the cycle,
Given that the cat is at vertex i at time t1
the expected value of t2

+TH(i,j) denotes the expected number of steps
for a random walk on H to reach j, starting at
1 .

t? is <TH(i,j).+ Hence,



&-;

3

E[t9] < max T (1.J) . Since H has n vertices
1 dand at most (2 +l)n edges, Lemma 3 shows that

max TH(i,j) <(d+2)n(n-l) ,so E[t2] <(d+2)n(n-l) .
Finally, we bound the expected value of t3 .

Let the sequence of total states on the mouse's

cycle be C = co,ci»*'*»cm-l ' Let H have vertex
set {l,2,**-,n). Then, ^once the mouse is in his
cycle, the joint motion of the cat and the mouse
can be described as a random walk on a digraph K
with vertex set {1,2,*•-,n)xC . If H has an
edge from v to w, then K has an edge from
<v,Ci> to <w,c.+lmodm>, for 1= 0,1,---.m-l;
a loop from v to v generates two such edges for
each i. It is easy to see that K is Eulerian.

Let x be the vertex occupied by the cat at
time t. +t2 . Let c- be any total state in the
cycle C having x as its first component. Then,
the conditional expectation of t,, given x and

Kci » is < T (<x,c^ >,<x,c. >) . The digraph K

has m(d+2)n edges, and A (<x,c. >,<x,ci >) <
(i-j)modm, the length of the sequence of transi
tions from <x,c. > to <x,c.j > in which the cat
remains at x while the mouse progresses around C
from c. to c. . By Lemma 7 the conditional ex-

pectation of t, given x is
2

< m(d+2)*n«(i-j)mod n < m (d+2)n . Hence,

E[t3] <m2(d+2)n <n3q2(d+2) . n

A Uniformly Good Interception Policy

We next present an interception policy for the
cat which works well, on the average, against any
evasion policy for the mouse. By an evasion policy
for the mouse we mean an infinite sequence {v(t)>
of vertices; v(t) is interpreted as the vertex
where the mouse resides at time t. We do not re
quire that this sequence correspond to a walk along
the edges of G, or that it even be computable.

The idea behind the cat's interception policy
is to determine by a stochastic experiment when to
switch between periods of waiting and periods of
executing a random walk on G. The stochastic ex
periment is so designed that the cat's position
quickly becomes quite unpredictable.

The experiment is based on a fact first ex
ploited by Gill [1] in his proof that probabilistic
machines determine the same space complexity
classes as non-deterministic ones:, a probabilistic
machine with space s can "count" not just to 2s

but to 2 . (In order to count this high just

wait until 2s l's occur in a row in a random
stream of O's and l's.)

Let F=Hog^Sdfn-l))"1. In our first version
of the interception policy we assume that the cat
Is given the integer F. At each time step the cat

flips a fair coin, and he keeps track of the number
of heads since the last tail. As soon as this num
ber becomes equal to F he switches from a waiting
period to a random walk period, or vice versa. Im-

r- —\

plementation of the policy requires 'log2F bits
of auxiliary storage to keep track of the count.

Theorem 10: For every evasion policy, the ex-
2

pected time until interception is £ 576e (n-1) e

0(e2n) .

The proof requires three simple lemmas which we
state without proof.

Lemma 11: In a random walk on G starting at
vertex i, the expected number of visits to vertex
j in the time period [0,1," *,x-l] is

>^-(x-T(1,j)).
Lemma 12: For any integer t such that

^-=—

0 <_ t <_ 2 - 1, the probability that, at time

2F+F- 1, the cat is in his first random walk per
iod and has executed t random walk steps (so that

F
his first waiting period is of length 2 +F-l-t)

1s >2-(F+2>.

Lemma 13: The expected number of flips of a
fair coin until F consecutive heads occur is

< 2F+2 .

Proof of Theorem 10: Let {v(t)} be an eva

sion policy. Let v* =v(2F+F-l), and let Pt
be the probability that, afteV t steps of a
random walk on G starting from wQ, vertex v*
is occupied. By Lemma 11,

V P >M (2F-T(wQ,v*)) >J_ (2F-2e(n-l))
}_ vt - 2e u - 2e
t=0

By Lemma 12, the probability tfiat the cat inter

cepts the mouse at time 2 + F- 1 , and at that
time is executing his first random walk, is

t=0

> 2-<F+2> >J_ 2F-2e(n-l)
t -2e F+2

By Lemma 13, the expected time between the end of

the Kth random walk period and the end of the
F+? F+3

(K+l)th random walk period is < 2-2r '=2 .

Hence the expected time until interception is
,F+3 < 5766^11-1)

1 2t'-2e(n-1)
5i" ,F+2



If F 1s not known to the cat, he can simply
use the successive trial values F=l,2,3,"<
To determine how long to stick with a given trial
value F, he flips a fair coin after every alter
nation between waiting'and executing a random walk,
and increments F whenever F consecutive heads
are observed. Against any evasion policy, the ex-

pected time until interception is 0(e n), and,
with probability tending to 1, the storage re
quirement can be made O(loglogn).

6. CONCLUSIONS
There are a number of open questions that re

main. First, .there is the question of just v/hat is

RSPACEpoly(logn) . Is this class equal to either
DSPACE(logn) or NSPACE(logn) ? A proof that

RSPACEpoly(logn) =NSPACE(log n) would of course
yield a polynomial time logspace probabilistic al
gorithm for reachability in all directed graphs;

on the other hand, a proof that RSPACEpoly(logn) =
DSPACE(logn) would yield a new deterministic log-
space algorithm for the reachability problem for
undirected graphs. Either result would be very
interesting. As usual since

DSPACE(logn) c RSPACEpoly(log n) c NSPACE(logn)
any separation result would be very strong for it
would solve the long standing question: is

DSPACE(logn) = NSPACE(logn) ?

The reachability problem for undirected graphs
can be solved in logspace and 0(ne) time by a
probabilistic algorithm that simulates a random
walk, or in linear time and space by a conventional
deterministic graph traversal algorithm. Is there
a spectrum of time-space trade-offs between these
extremes? Also, is there a logspace algorithm for
the undirected reachability problem that is never
incorrect and, uniformly for all graphs, runs in
polynomial-bounded expected time?

A third class of open problems concerns uni-
3

versal sequences. Can the upper bound of 0(n logn)
on universal sequences be improved? Currently we
know of no lower bound that grows faster than en.
Also of interest is the question of a constructive
upper bound: can a constructive sequence yield a
polynomial upper bound?

Another aspect of universal sequences is the
failure of directed graphs to have polynomial
length universal sequences. However, there still
remains the whole question of non-uniform space
complexity of the directed reachability problem.
There are many ways to define this notion; one
attractive way is based on the size complexity of
finite automata. Suppose L is a language. We
say that L has non-uniform space complexity S(n)
if, for every n, there is a two-way deterministic

finite automaton with at most 2 ^n' states which
correctly accepts strings from L and rejects

those from U when restricted to inputs of length
n. Our results here on universal sequences can be
viewed as showing that the set of threadable un
directed mazes ([6]) has non-unif6rm complexity

logn . Our construction yields a very non-adaptive
automaton. Perhaps a more adaptive one can always
in polynomial time traverse any directed maze.

A final question concerns the role of symmetry
in the complexity of computation. Is there a
fundamental principle involved in the fact that a
symmetric random walk has a polynomial expected
traversal time v/hile a directed one need not? Or
is this merely chance?
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