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Abstract

For nonlinear dynamical problems with two degrees of freedom a trans

ition occurs between regions of the phase space in which stochastic motion

is closely bounded by invariant (Kolmogorov, Arnold, Moser or KAM) surfaces,

and regions for which the stochastic motion is interconnected over large

portions of the space. The mechanism by which this transition takes place

is discussed, qualitatively, in terms of the growth of primary and higher

order islands. These islands both change the topology of the phase plane

and introduce stochastic bands near island separatrices. The relationship

between the complete dynamical problem and a two-dimensional mapping is

given. Various criteria for the transition are developed. Quantitative

values of the strength of the perturbation parameter, required to produce

connected stochasticity, are given for the various criteria, as applied to

a standard mapping. In particular, the criteria of loss of linear stability

of the primary islands, resonance overlap, growth of second order islands,

improved overlap criteria, and loss of linear stability at rational iter

ates of the irrational rotation number connected with a given KAM surface,

are considered. The latter two criteria, based on the work of Chirikov and

Greene, respectively, are particularly emphasized.

*
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1. Introduction

It is well known that in most nonlinear systems with two degrees of

freedom, a transition occurs between regions of the phase space in which

stochastic motion is closely bounded by smooth surfaces, and regions for

which the stochastic motion is interconnected over large portions of the

space. The existence of the smooth surfaces derives from a theorem conject

ured by Kolmogorov and proved under different restrictions by Arnold (1963)

and Moser (1962), commonly known as the KAM Theorem. It states that, for

mutiply periodic systems close to integrable ones (for which all traject

ories lie on smooth surfaces), provided the initial conditions correspond

to frequencies sufficiently far from system resonances, the perturbed sys

tem will also have trajectories lying on smooth surfaces. The problem of

proving the KAM theorem is that a Fourier analysis of the fundamental fre

quencies generates a large set of closely spaced resonances, such that a

resonance condition m.(o = 0 is approximately satisfied everywhere. This

requires careful adjusting of initial conditions at each iteration in a

perturbative expansion in order to remain sufficiently far from the reson

ances. Consequently, it has been difficult to estimate the size of the

perturbation at which a KAM curve between two resonances ceases to exist.

It is also possible to show from the existence of homoclinic points (inter

secting trajectories) near the separatrices of resonances that there are

stochastic trajectories in these neighbourhoods (see, for example, Moser,

1973). Therefore the disappearance of a last KAM surface between



resonances implies that the stochasticity is then connected between the

resonances.

It is possible to obtain a sufficient condition for this connected or

global stochasticity by requiring that no trajectory be single valued in

phase i.e. that all trajectories are either island trajectories or inter

secting (stochastic) trajectories. This can be insured by an even stronger

condition that all fixed points are unstable , (Lieberman and Lichtenburg,

1972). However, what we really would like is the weakest possible condi

tion for connected stochasticity, i.e. one that is both necessary and

sufficient. Most attempts to obtain such a sharp condition are at least

partly numerical, and we therefore need efficient methods for numerically

studying the topology of a trajectory.

A convenient way to study phase space trajectories, particularly in

problems with two degrees of freedom, is by means of a surface of section.

If we hold one coordinate of a four dimensional phase space constant, then

the motion is defined on a three-dimensional surface within the four-dimen

sional space; that is, we look only at the discontinuous points of inter

section of the trajectory with the surface. If, further, the energy is

taken as a constant of the motion, then that constant restricts the motion

to a three dimensional surface whose intersections in the surface of section

are then two-dimensional. An existence of another constant of the motion

then reduces the phase space trajectory to a one-dimensional discontinuous

curve of the intersections with the two-dimensional surface of section.

Furthermore, for multiply-periodic motion this curve is asymptotically

dense, except for the set of rationals, which have zero measure. Thus we

can examine the non-linear motion in two degrees of freedom, with constant

Hamiltonian, and determine if an invariant exists, by determining if the

trajectory lies on a closed curve in a surface of section. The technique,

first introduced by Poincare (1892) has been invaluable for numerical

determination of the existence of invariants.



For integrablesystems the equations of a mapping, from the n to n+1

crossing, are (in action-angle form)

Jn+I =J„> Vl -•» + 2'"<J0> <«•'>

where a « wx/a)2 is the rotation number. The mapping given by (1.1) is

called a twist mapping, for which circles map into circles, but with the

rotation number dependent on the radius of the circle. Fixed points of the

mapping occur for a = r/s , where r and s are integers.

If we perturb the integrable Hamiltonian which led to the mapping

in (1.1), the new perturbed mapping can be expressed as

n+i n n n

6 . = 6 + 2ira(J ) + eg(J , 6 )
n+1 n n & n' n

(1.2)

where f and g are periodic and the entire transformation is area preserv

ing. J is no longer a constant of the motion in the perturbed transform

ation. However, there has been considerable progress in understanding the

behaviour of a mapping such as (1.2).. First, if we examine irrational sur

faces with a > r/s and a < r/s , sufficiently far from the rational

o = r/s, the KAM theorem tells us that the surfaces retain their topology

and are only slightly deformed from the unperturbed circles. On the

rational surface a = r/s, and in a neighbourhood about it the KAM theorem

breaks down. However it can be shown that at least 2s fixed points remain

after the perturbation, which become the elliptic and hyperbolic fixed

points of an s-island chain. Mapping theory also demonstrates the exist

ence of the homoclinic points which can be considered as the origin of the

stochasticity.

We must look for a procedure, which can be applied directly to map

pings, as well as to the complete systems from which they arise, to predict

the disappearance of the last KAM curves between the principle system reson

ances. The earliest procedure, advanced by Chirikov (e.g. Chirikov, 1960),

and later refined by him (Chirikov, 1979), to determine such a transition,

is now known as the overlap criterion. In its simplest form it postulates



that the last KAM surface between two lowest order resonances is destroyed

when the sum of the half-widths of the two islands formed by the resonances,

but calculated independently of one another, just equal the distance

between the resonances. The distances are measured either in action or

frequency space, whichever is more convenient. This criterion has an intu

itive appeal, since we know that regions near the separatrix are, in fact,

stochastic. Rigorously, however, the overlap criterion is neither neces

sary or sufficient. One can imagaine the last KAM surface breaking up well

before the islands overlap, due to the interaction of the slowly varying

terms outside of the two separatrices. Alternatively, the solution of the

complete problem may significantly modify the island widths so that they do not

actually overlap when the single resonance calculations predict that they

do. In actual fact, numerical results indicate that the overlap criterion

is too severe a condition for stochasticity. It can, however, be made

sharper by considering both the width of the stochastic region near the

separatrix and the more important higher s-value resonances, between the

main ones. This procedure, as developed by Chirikov (1979), is the main

subject of sec.3. Without the added complexity of these modifications

the simplest form of the criteria still serves as a rough estimate of the

transition, and has been used in a wide variety of problems by Chirikov

(1960, 1979), Ford and coworkers (e.g. Walker and Ford, 1969), Rosenbluth

et al. (1966) and by many others (see Chirikov, 1979, for a more complete

bibliography).

A related procedure, introduced by Jaeger and Lichtenberg (1972),

calculates second order resonances between the island oscillations and the

mapping frequency. They show that before resonance overlap the second order

islands have grown to comparable relative size as the primary islands, and,

by induction, higher order islands have attained similar amplitudes. At

"overlap" the local winding number of the primary island about its fixed

point is a = 1/4, indicating 4 second order islands. The construction

makes intuitively obvious the fact that an overlap criterion is too severe,



and numerically it was found that an island amplitude 2/3 the size, corres

ponding to an n=6 island chain, is sufficient to destroy the last KAM

curve between first order islands. The technique has been applied to a

number of problems, including for example, Fermi acceleration (Lieberman

and Lichtenberg, 1972) and cyclotron heating (Jaeger et al, 1972, Lieberman

and Litchtenberg 1973), giving good agreement with numerical computations.

The modified overlap criterian of Chirikov (1979) also makes use of second

order islands to" determine the stochastic width near the separatrix, but

in his calculation the expansion is performed near the separatrix, rather

than near the singular point.

A third method of determining the stochastic barrier returns to the

examination of linear stability. The idea is that, although loss of

stability of the lowest order islands (s =• 1) is too strong a condition,

the linear stability transition of the high k number islands close to a

KAM curve may give a sharper criterian for the destruction of that surface.

This proposition has been investigated, numerically, by Greene (1968,1979a),

and found to be correct. More specifically, if a surface with an irrational

winding number a is approximated more and more closely by a ratio of

rationals, then the asymptotic stability of the motion about the fixed

points is directly corrrelated to the existence of a KAM surface at the

given a. In particular, between two lowest harmonic (s = 1) primary

resonances the irrational number that is furthest away from neighboring .

rationals can be shown to be the golden mean (vT - l)/2. Thus one expects

that with increasing perturbation parameter the last KAM surface to

disappear would be this one. Numerical calculations by Greene (1979) show

this to be the case. Therefore the transition which destroys the last KAM

barrier to stochastic wandering between s = 1 islands is found by

determining the stability of the rational iterates of the golden mean.

An interesting observation is that the transition occurs when the islands

have local rotation number a = 1/6. Since the primary island is the first



of the iterates, this is related directly to the observation of the

transition using the other methods. It has also been shown to be possible

to accurately calculate the stability of a KAM surface, directly, using

variational techniques by Percival (1979).

If a system has more than two degrees of freedom, then, in addition

to the phenomena described in this paper, a slow diffusion is possible.

This is due to the connection throughout the phase space of narrow bands

of stochasticity associated with the resonance separatrices. The mechanism

was first described by Arnold and calculations have been made by Chirikov

(1979). This diffusion is generally easily distinguishable from the global

stochasticity described here.

Because of lack of space no attempt has been made in this review to

reference the historical development of the subject, and the many contri

butions to a wide variety of examples. References to early work can be

found in Lichtenberg (1969). For more recent developments, the reader

should consult the review by Chirikov (1979).

2. Growth of Second Order Islands

2a. A Model for the Primary Resonances

We consider as a physical model for a mapping that of a ball bouncing

between a fixed and an oscillating wall. The problem was originally

examined by Fermi (1949) as an analogue to a cosmic ray acceleration

mechanism. Numerical calculations gave conflicting results, depending on

initial conditions, sometimes indicating oscillatory energy changes and

sometimes indicating stochastic energy changes. Zaslaviskii and Chirikov

(1965) partly resolved this contradiction by showing that for high

velocities, in which the transit time is comparable to the wall-oscillation

period, an adiabatic invariant exists to limit the energy excursions. A

more complete treatment by Lieberman and Lichtenberg (1972) indicated that

for smooth forcing functions the phase plane divides into three distinct

regions. I. At low velocities all fixed points are unstable, leading to



stochastic motion over the entire region. II. At intermediate velocities

islands of stability surrounding elliptic fixed points are embedded in a

stochastic sea. III. At high velocities narrow bands of stochasticity

near separatrices joining hyperbolic fixed points are bounded by regular

orbits. The calculation of the transition between region II and region

III, which is the boundary between contained and global stochasticity,

is the subject matter of this review.

A simplified set of difference equations for the Fermi acceleration

can be obtained by approximating the interaction as that in which the

oscillating wall imparts momentum to the ball without physically changing

its position in space. Assuming the wall oscillates with velocity

vw = Vwo s"^ where ^ = tft, then defining a normalized ball velocity

u = v^vwo' t*ie difference equations for the motion are

Vl = un + sin*n (2''>
and

*n+l " K + M/Vl <2'2>
where 2ttM/u • ai(2Jl/v) with 2£/v the transit time between collisions.

The mapping given by Eqs.(2.1) and (2.2) are area preserving and periodic

in if . The behavior in the neighborhood of a particular value of velocity

can be obtained by linearizing in velocity about the value of u=u that

makes the phase stationary for single iterations of the mapping (s = 1

fixed points). From (2.2) this condition can be seen to be

2ttM/uq = 2irm , m integer (2.3)

The mapping equations then take the form

n+1 n n n+1 n n+1

where 8n =^ - 2irm, I = 27rMun/u£ and K=- 2ttM/u2 . The new mapping

is periodic in both if and I, period 2tt, and the nonlinearity, normalized

to a given value of u = u scales with K. Eqs.(2.4), which have been

called the standard mapping by Chirikov, is locally equivalent to a large

class of mappings.



The fixed points of either mapping are obtained by requiring in addi

tion to (2.3) that the action is also stationary. For the purpose of this

section we concern ourselves only with the s = 1 fixed points, which from

(2.1) or (2.4) gives sin ty = sin 8 =0. Expanding about this fixed

point we obtain the linearized matrix of the transformation

1 1

A =

- K 1- K.

for which detA = 1 as required for area preserving mappings. The eigen

values are obtained from

2 cos a = Tr A (2.7)

from which we have the stability condition, |cosa| < 1, or (2 -K) < 2. Thus

for

K > 4 (2.8)

the elliptic singular point changes to reflection hyperbolic, and there is

no stable motion about single iteration fixed points.

We can also construct a Hamiltonian for the motion in the neighbor

hood of the s = 1 fixed points by introducting a 6-function force into the

equations of motion and then expanding the 6-function in a Fourier series

(Lieberman and Lichtenberg, 1972). The result for the standard mapping is

H=^-+ Kcos 8 I ei2irmT (2.9)
m=-»

where x is a time variable in units of the bounce time at the fixed point.

we are generally interested in -j— « 2tt . Anticipating that the only term

with time variation that will contribute significantly is one with a slowly

varying phase, we keep only terms with m=0 and m= ± 1 to obtain

j.2
H = ~y + K cos 8+ 2K cos 8cos 2ttt (2.10)

Assuming the third term on the right is a perturbation on the motion which

tends to average to zero, we have an unperturbed Hamiltonian

(2.6)

Hq = j + K cos 6 (2.11)1^
2

which is just that of the nonlinear pendulum. Its phase space trajectories



are nearly ellipses around 8 = it, changing to a separatrix trajectory

through 8=0, 2tt . The motion is libration out to the separatrix, on

which the period becomes infinite, and that of rotation beyond.

For our present purposes we expand (2.11) for small 8 near the

elliptic fixed point. The transformation to action-angle variables J , <p ,
o o

to lowest order in 6 and I (which is the linearized motion), is (e.g.

Lichtenberg, 1969)

I» (2 J R)* cos <f> (2.12)
o Yo

8= (2 J /R)^ sin * (2.13)
o o

such that the lowest order Hamiltonian

K^ = GB(o) Jq (2.14)

where

R » (32H/882)/(92H/3I2) (2.15a)

is the aspect ratio of elliptic orbits in phase space, and

flB(o) « [02H/382)02H/al2)]* (2.15b)

For the simple form of the pendulum Hamiltonian in (2.11)

R»K* and ft (o) = K* (2.16)

The peak excursion of I as a function of K is found, approximately, from

(2.11) by taking cos 8=1 at 1=0 such that the maximum excursion at

cos 8 =- 1 is

AIMax=2Ki (2..7)
Since the distance between primary resonances 61 is, in the standard map

ping approximation, just equal to the periodicity 2tt, the ratio of the full

island width to the distance between islands is

2AlMax/Sl =4K*/2tt (2.18)
which can be related to the central angular frequency and therefore the

local rotation number through (2.16)

2AIMax/5I = 4ftB(o)/2TT = 4/n (2.19)

where n = 1/a is the number of second order elliptic fixed points of the

mapping trajectory. Eq. (2.19) is a universal relation between all



neighboring island chains of any order, relating the relative island size to

its rotation number. For example,the experimental observation that the

transition to global stochasticity occurs with the appearance of a set of

six secondary islands (n « 6) implies, from (2.19), that 2AI^ /6I = 2/3.

2b. Second Order Islands near the Elliptic Singular Point

Because of the nonlinearity of the oscillation of the pendulum, the

motion contains harmonic components of the fundamental frequency. These

components can resonate with the fast motion to produce local distortions

in the phase plane, or second order islands. As the complete representation

is rather cumbersome, we separate the problem into expansions valid near

the elliptic fixed point and near the separatrix, the latter to be presented

in the next section.

Near the elliptic fixed point standard perturbation theory (e.g. Born,

1927) can be used to determine the action-angle representation of (2.11) to

next higher order in the nonlinearity, obtaining a Hamiltonian

K(J, *) =^ + K2 (2.20)
where 2tt 2 2

fe-^-^J 41 (f) ^ *d* "re ® (2-2,)
0

and the corresponding frequency __
3K

% -V0) + a? (2'22)

Reintroducing the time-dependent term from (2.10), Eq. (2.20) becomes

where

K = K + K + A
"" "~0 -"2

A=2K cos [(2J/R)* sin *] cos 2irr

The first term can be expanded in a Fourier series in $ , to obtain

09

A=KI dL,[(2J/R)'] sin(2£$ -2ttt) (2.23)
1=0 l

where the 3 are the I order Bessel functions of the first kind. The

terms in A will average to zero with x , except in the neighborhood of .

the action for which 2M = 2tt . For this term, 2% = n , the sinusoid in



(2.23) is slowly varying. We then use the transformation of secular per

turbation theory (see Jaeger and Lichtenberg, 1972) to a locally slow phase

variable

$ = n<f> - 2irx (2.24)

with corresponding action

J = J/n . (2.25)

Averaging over x , as previously, all terms except 21»n are approximately

zero. In the remaining term we expand the action about the local fixed

point with 3K/3J = 0 to obtain

- 32I (AJ)2AK = -^- ±2z± + A sin 4 (2.26)
~ 3J2 2 n

where

A =K3 ((2J/R)*) . (2.27)

The Hamiltonian of (2.26), describing the second order islands, has the

same form as the Hamiltonian of (2.10), describing the primary islands.

With all second order resonances present the frequency separation is

&% =^Bn "flBn+lS 27r/n " 2ir/<n+ !) ~ Vn* (2,28)

For the symmetry of (2.23) only even harmonics exist, and 6 ft., s 2ft /n . In
o a

terms of the action

5ftB = [32K/3(nJ)2]6(nJ) . (2.29)
a —

Using the same procedure as with the first order islands we calculate the

excursion of the first order action,

AJMax =2[A /<32k/3j2)}* » <2-30>
and the second order island frequency,

n*e<°> "U (32K/3J2)]* . (2.31)
us n —

Eqs. (2.28) through (2.31) can be combined to give, as in (2.19) for the

primary islands,
m » 4» no symmetry

2AJ /6J = mftn (o)A^(o) , 0 ,, ^ (2.32)
M Bs B ' m=2, even or odd symmetry

We now show that the second order island amplitude is small compared to



the distance between second order islands, except when the first order

island size is also large. We first calculate ftBg(o) explicitly. From

(2.21) 32K/3J2 a n2K/8R2 = n2/8 which, when substituted in (2.31),

together with A from (2.27) and ftR(o) «K* , gives, for (2.32)

2AJM/6J =2[3 ((2J/R)*)n2/8]* . (2.33)
M n

The argument of the Bessel function has its largest value at tt (the separ

atrix trajectory). Thus for n » ir the Bessel function is exponentially

small, and the 2n order islands are negligible. By a similar argument

islands arising from higher order iteration of the mapping are also neglig

ible. We are now in a position to calculate for what value of the pertur

bation the second order island perturbation is as important as that of

the primary islands. Setting the ratio of (2.33) to (2.19) equal to unity

we obtain for n (n = 1/a)

n\j (tt) = 32 (2.34)
n

Eq. (2.34) is satisfied for n « 5, a 5 island second order resonance.

For n = 5 the effect of second order islands is of prime importance. (A

previously quoted result, which indicated n » 4 at this crossover,

resulted from the omission, there, of a small numerical factor (Lichtenberg,

1979)). By induction, the same result exists between second and third

order islands, and consequently to all orders. Thus we obtain the remark

able result; at acritical value of rotation number of a = 1/5 all higher

order islands simultaneously become comparable to the distance between

them. The result of the sharp transition to the destruction of that last

KAM surface between islands is thus very physically plausible. From (2.16)

the corresponding perturbation parameter is K = 1.2.

Detailed numerical calculations of the second order island structure

have not been made for the standard mapping. However they have been per

formed for a number of two degree of freedom Hamiltonians in which an

appropriate portion of the phase plane in a surface of section is similar

to that of the standard mapping. Probably the closest correspondence is



that of a particle gyrating in a magnetic field and resonating with an

obliquely propagating wave (Smith and Kaufman, 1975; Smith, 1977). Their

Hamiltonian, in the wave frame, can be written in the form

P.2
H a -1 - p Q + p o - e$ I * [f(P )] sin(*-m*).

2M * * °J i *

Choosing P, such that 6 is of order of unity, a few nieghboring har

monics are analyzed near resonance. They chose m=- 1, 0, 1 and with the

appropriate choice of perturbation, amplitude e<f> the result in Fig. I

is obtained. Chains of five second order islands are seen around each

2

•. X •

m

« •.• • • • ^.» _*. .*

<s2S=»

CZ>^

O
"*•: . j<\ •*« * • « •

• • • •

-2l

primary resonance. As expected, the last KAM surface between resonances is

also seen to have disappeared, as the dots represent a single set of initial

conditions whose trajectory wanders freely between the primary resonances.

2jt

Fig. 1

Numerically com
puted trajectories
in a surface of

section for a gyr
ating particle

yt. resonating with an
' obliquely travel

ling wave (from
Smith, 1977)

3. Resonance Overlap Criteria

We know that the existence of homoclinic and heteroclinic points in

the neighborhood of a separatrix lead to local stochastic motion. If the

amplitudes of two neighboring islands become sufficiently large that the

stochastic regions near their separatrices join, then we expect connected

stochasticity between the two resonances. This is the rationale of an



overlap criterion. Starting from this picture Chirikov (1979) has con

structed a sharp quantitative criterion for the transition to connected

stochasticity, i.e. the value of perturbation required to destroy the last

KAM surface between two s = 1 primary resonances. A numerical plot of the

standard mapping of (2.4) , with a value of K = 0.97 , is shown for .five

orbits in Fig. 2. The shaded regions are explored by the stochastic

wandering of a mapping trajectory with the blank regions (those forbidden

by the existence of KAM trajectories) surrounding the main-island elliptic

singularities. Here KAM orbits still exist, isolating the s=2 trajectory

from the s = 1 trajectory, but the s = 4 trajectory has been engulfed by

the stochasticity near the s» 1 island separatrix. The amplitude of the

s= 2 and,to a lesser extent the higher s harmonic islands, as well as

the thickness of the stochastic regions near the separatrices of the

islands, contributes toward the merging of the s = 1 stochastic regions.

>*:•
»*••

• t t i t

r.-«

Fig. 2

Trajectories for the
standard mapping
K = 0.97

(from Greene, 1979a)

3a. Overlap of First Order Resonance

Using the averaged Hamiltonian of (2.11) we have found the maximum

excursion of the primary island in (2.17) to be AL. = 2K* and the



distance between resonances 61 = 2ir . Taking the ratio of 2AI^ /6I = 1

we obtain the simplest overlap criterion for primary resonances

K = (ir/2)2 (3.1)

We know this K is too large, so we improve on it by calculating the ampli

tude of the two iteration resonance (s=2) and define the overlap criterion

as

"iMax + AI2Max = «12 =' ».2)

where the subscripts 1 and 2 indicate the s=l and s = 2 resonances,

respectively.

Following Chirikov (1979) we calculate the width of the s = 2 island

by employing standard perturbation theory to eliminate terms in (2.10)

linear in K. The Hamiltonian to order K2 is

I2 o„ __2 Kz r cos(28 - 2tt(& + m)x) - cos 27r(&-m)x ,- ~*
2 2 4/ (2ir£ - I)(2irn - I) U,J;

&,m

The phase of the first term is slowly varying for 2 -=— - 2ir(fc + m) and

eliminating the integral resonances this is -r- = (2p + l)/2 , p integer.

dfl
Since I = -r- , from the original mapping, I - (2p + l)/2 . Substituting

this into (3.3) with the change in variable 28 = 20 - 2H{% + m)x , for a

given p,(2p + 1 = & + m) , we obtain

j.2 2
H =^ +£ cos 28 —1— 7 ! (3.4)

2 4 (2u)2 n (n - p- I)2

where 28 is slowly varying near the half integral resonances and I2 = I2.

The sum is independent of p and equal to it2 . When this value is substi

tuted in (3.4) we obtain the Hamiltonian for the half integer resonances

H = I2/2 + (K/4)2 cos 26 (3.5)
2 *

which gives a peak amplitude of I at the separatrix

l2Max =K/2 (3.6)

The improved value of K at overlap is then obtained by substituting (3.6)

into (3.2) giving

2K* +K/2 = ir , or K« 1.76 , (3.7)



as found by Chirikov. Eq. (3.7) still overestimates K. We can further

improve the estimate by (1) taking account of the next higher harmonic

(s= 3) resonance and (2) taking account of the finite width of the stoch

astic layer near the separatrix. Chirikov made both of these calculations,

finding the dominant effect to be the stochastic layer width.

3b Second Order Island Overlap near the Separatrix

The Hamiltonian of (2.11) can be written in action-angle form, for

arbitrary initial conditions, using the definition of J and the corres

ponding angle variable

2tt

(2HQ+ 2K cos 8)* d8 (3.8)
o

8

*-[ & r (3.9)
J (2H + 2K cos 6)2
o °

Eqs. (3.8) and (3.9) can be written in terms of elliptic integrals (see

Smith, 1977)

J-K*(8/tt)[E(k) - (l-ic2)D(ic)!, K<1 (3.10)

<f» - (tt/2)[D(k)]"1 F(5, k) , k< 1 (3.11)

Here D(k) and E(jc) are the complete elliptic integrals of the first and

second kind (the usual symbol for D is K), F(€, k) the incomplete form of

D, 2k2 = 1 + H/K , and £ = 8/2. The quantity k is a measure of the

normalized oscillator energy, with k = 1 at H/K = 1, the separatrix

energy. Setting <j> = 2tt in (3.11) we obtain the normalized frequency

ftB(ic)/ftB(o) » t/2D(k) (3.12)

with an asymptotic value for k near unity of

K^l nBGO/nB<o) =-(ir/2Hn[<l -K2)*/4] (3.13)

A general overlap condition for second order islands can be written

from (2.32), after substituting for G from (2.31) as

2AJ/6J =2(AjdftB/dj|)* n/ftB = 1(even symmetry) (3.14)

where the quantities are now evaluated for arbitrary values of the action.



From (3.12) and (3.10) we obtain

dft
U TTfc

kD3 1 -k

We obtain A from a Fourier analysis of the third term in (2.10). The

calculation is rather complicated, involving complex integration to evalu

ate an improper integral. Smith and Pereira (1978, see their App. A) find

A•» <'/p>W , q=exp(- (1 -K2)J) (3.,6)
" 1- (- q)"

Fukuyama et al. (1977) using a simplified form of (3.16) have plotted the

percentage of the primary action space for which second order islands

occur, as a function of N = n(o). They find a rapid increase in this

percentage at N =5, consistent with our other results. However, we know

that a simple overlap criterion is too strong for merging of second order

islands, just as it is for the primary islands.

To perform a self-consistent calculation we first simplify (3.14) by

expanding (3.15) and (3.16) near the separatrix to obtain

2AJM/6J = 16 N3exp [-irN/2]/Tr(l - k2) (3.17)

which can be written in terms of the separatrix thickness h = (1 - H/K)

by substituting h/2 = 1 - k2 in (3.17). We expand the fundamental

Hamiltonian of (2.11) to obtain

AI/I = h/4 (3.18)

An improved overlap criterion, including the thickness of the separatrix is

then ,
(1 + h/4) 2K* + K/2 = tt (3.19)

For self consistency we can set 2AJ/6J = 2KVtt in (3.17) and substituting

for h from (3.18) and (3.17) with N = 2tt/K* , (3.19) can be written as

an an equation for K, alone

[1 + (2TT)VK5/^)exp (- *2/K*) ]2K* +K/2 =* (3.20)

The solution obtained numerically is

K = 1.2, (3.21)

or to the nearest rational island number N = 5. The calculation of the

^J-^lD-P-^lft.. (3.15)



self consistent value of K is a little different than, but in the spirit

of, a calculation by Chirikov (1979). He derives a second order standard

mapping by linearizing a mapping near the separatrix. He also introduces a

weighting factor in second order to bring his analytic results into close

agreement with a detailed numerical analysis of the transition which gives

K = 0.99.

In the Fermi acceleration problem, renormalization of (2.1) and (2.2)

gives the standard mapping with K = u /2ttM . Numerically, for the fully

nonlinear mapping, Lieberman and Lichtenberg (1972) found the barrier to

global stochasticity, at ufe « 2.8 /m~. If one sets u, = u this gives

a value of K = 0.8, significantly different from K = 1.0, found for the

standard mapping. This difference can be readily explained by a difference

in definitions between u^ and u . The value of ii was taken at the limit

of the stochastic motion, corresponding to the last KAM surface. However,

the analogy to the standard mapping relates K to the value of u at the
o

center of the primary island associated with the last KAM surface. This

occurs at uq = 2.5M. The corresponding value of K=1.0 agrees with

results for the standard mapping. The nonlinearity associated with the

Fermi acceleration, decreasing the perturbation strength K with increasing

u , creates sufficient asymmetry to destroy the last KAM surface at u < u
o

but retain the one for u >uq . In principle one might expect stronger

nonlinearities to give more significant deviations from the standard mapping,

*• Stability of Fixed Points near Irrational Winding Number

4a. The Basic Elements of Greene's Method

The method developed by Greene (1968, 1979a) for finding the exact

transition to global stochasticity postulates a correspondence between two

properties of the system: the disappearance of a KAM surface having an

irrational winding number a, with the destabilization of the elliptic

singular points of the high harmonic rational iterates (a - r/s, r, s

relatively prime integers, with s large), which approach the irrational a



in the limit s •+ » . The correspondence is justified numerically. We

first explore some of the basic elements of the method.

The Mean Residue; The residue of a tangent mapping may be defined as

R = { (2 - TrA) . (4-0

Comparison with (2.7) shows that

R = sin2 a/2 (4.2)

where a is the phase shift per iteration of the mapping. There is, there

fore, stable motion about the fixed point for

0 < R < 1. (4-3)

Over a full cycle of the periodic orbit, the matrix of the linearized

standard mapping of (4.3) is, for rational winding jiumber a = r/s ,

s

a = n

i=l

1-K cos 8. 1
l

- K cos 8. 1
l

(4.4)

from which TrA can be determined. When K is large it is intuitively

obvious that R * Ks. Greene has also shown that to be true for small K

and postulated it to be true for all K. This implies that the residue is

exponential with the orbit length which is proportional to s. For orbits

with R > 0 it has a transition, for large s , from values approaching zero

for stable orbits, to very large values and thus unstable orbits. It is

therefore natural to investigate the behaviour of a quantity proportional

to the s root of R defined by

f= (|R|/6)1/S (4.5)

which Greene calls the mean residue. The constant 6 is chosen for rapid

convergence, ie. reliable answers for relatively small s, and can always

be set equal to one. The test for stability, then, is f < 1.

Continued Fraction Approximation to Irrationals: It can be shown

that the best way to approximate irrationals by rationals is with a con

tinued fraction expansion. For an irrational between 0 and 1, this expan

sion is represented by a set of positive integers

a = [a , a , a ...] (4.6)
1 2 3



where a^ is determined by reciprocating a and taking the integer part,

a2 is determined by reciprocating the remainder and again taking the inte

gral part, etc. The expansion is unique and the successive iterates of

this continued fraction r /s , where a is the last term taken, best
n n n

approximates a . The larger the a the more rapid the convergence. We

expect the last remaining KAM surface to be that surface farthest from

rationals, which implies the lowest value of the a *s. Clearly that value
n

of winding number is the one for which all a » 1 for which aT = (/F- 0/2.
n I

Oj has long been known to be of special significance, and has been given

the name of the golden mean. We therefore examine the stability of the

iterates <xIn to determine the transition to global stochasticity.

The above also suggests the procedure to find the disappearance of the

last KAM surface in any localized region of the action space. We choose

the appropriate irrational surface by requiring that its partial fraction

expansion end up converging as slowly as possible, that is, a « [a.... a.,

1, 1...] , where a^ - a are chosen to place the winding number in the

appropriate portion of the space.

It is efficient, but not necessary, to use continued fraction expan

sions in employing the general technique. For example, Lunsford and Ford

(1972), basing their calculation on the earlier work of Greene (1968), used

the method to examine the disappearance of KAM orbits for the Henon and

Heiles potential U(x,y) « £(x2 + y2 + 2x2y -2/3y3). Lunsford and Ford

found that a choice of cf ='k ± 1/n where k is a set of harmonics chosen

over the range of interest k « 4, 5, 6, 7, 8 etc. and n is allowed to run

over a set of integers 1<n<nQ, proved a convenient (but not precise)

method of determining the transition. Greene (1979b) has also obtained the

transition for the Henon and Heiles potential, using the more precise version

of the method described here.

4b Numerical Calculations

The Numerical Procedure: We briefly review here procedures to perform



the numerical calculations to be described in this section. The details of

the procedures used by Greene are described more fully in his papers

(Greene, 1968, 1979a, 1979b). (1) We consider that the problem has been

represented as a mapping, eg. the standard mapping or the Fermi acceler

ation mapping. We note that for a complete two degree of freedom problem

this requirement may present serious difficulties, as a mapping constructed

by intersections with a surface of section can only be obtained numerically.

Greene (1979b) has used natural symmetries to overcome this difficulty for

the Henon and Heiles potential. (2) Find the primary (s= 1) elliptic fixed

points to high accuracy, analytically, if possible. (3) On a symmetry line

of the phases, numerically compute the rotation number a as a function of

the distance in action away from the fixed point. This must be done as a

long time average. However the high harmonic fixed points o = r/s, which

have the same symmetry as the primary fixed points, will be accurately

determined after s mappings. (4) Choose a set of iterates a = r /s
n n n

near some irrational a where the test for stochasticity is to be made. If

one is looking for the transition to global stochasticity, where the last

KAM surface between adjacent s» 1 fixed points is destroyed, then the set

of iterates are those found from the partial fraction expansion of the

'golden mean*. (5) Find the linearized mapping in the neighbourhood of

the singular points, A, defined by

x - x - A(x - x )

g

where x is the value of x (near x ) after s iterations of the mapping,

and x is the coordinates of the particular fixed point under investiga

tion. This can normally be accomplished numerically1 from the second par

tial derivatives of the Hamiltonian evaluated at the fixed point (see

Greene, 1979b, for details). (6) Calculate f = |r|/B) , as discussed

in sec. 4.4a, to determine, for a given perturbation strength, whether f> 1.

Numerical Results; For the standard mapping, (2.4), Greene (1979a)

used the method to explore the properties previously discussed. He



changed variables to transform the mapping to be periodic in the unit

square, rather than in 2tt, but this does not alter any results. Fig. 2

gave his numerical results for five orbits for K = 0.97, slightly smaller

than that required to destroy the last KAM curve. Because of symmetry

around a = 1/2, there are two last KAM curves. Also, the s= 1 separatrix

trajectory is probably diffusing very slowly beyond the limits shown,

which could correspond to a near-adiabatic irrational surface. That is,

due to the limits placed on the integration time, the fate of the orbits

is not certain from this picture. Other slightly less stable KAM sur

faces, corresponding to other irrational winding numbers, may still exist.

However, at K = 0.9716, there is a clearly different behaviour of the KAM

surfaces at the golden mean, and at K = 0.975 the invariant is certainly

destroyed as trajectories are seen to diffuse through it (albeit very slowly).

Greene has calculated the values of f at the rational continued

fraction iterates of the golden mean for K = 0.9716, and at K = 0.9, which

we can compare. These results are shown in Table 1.1. We see a clear

transition from f < 1 at K = 0.9 to f w 1, asymptotically, at K = 0.9716.

We also note the dramatic change in R for long orbit lengths (large s) ,

from the asymptotically small value for stable orbits to the value near

R = ± 0.25 at the transition.

Table 1.1

K » 0.9

r /s
n n

£M

2/3 0.93896

3/5 0.91959

5/8 0.92775

34/55 0.92727

55/89 0.92409

89/144 0.92406

144/233 0.92701

K = 0.971635

r /s
n n

fc+>
R

1/1 0.971635 0.24291

1/2 0.971635 0.23602

2/3 1.014042 0.26068

3/5 0.993528 0.24201

377/610 0.99999965 0.24995

. 610/987 1.00000009 0.25002

987/1597 0.9999970 0.24988
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Fig. 3 Fixed points of the standard mapping for successively better
approximations to the golden mean. 3A: K = 0.95; 3B: K = 0.9716.
The dots are elliptic points, the crosses hyperbolic points
(from Greene, 1979).

The physical picture of this breakup of the KAM surface at the golden

mean can be explored by plotting the physical positions of the fixed points

at successive pairs of continued fraction iterates. This is done in Fig. 3,

comparing K=0.95 for which ff1"1a )£0.977 with the case of K= 0.9716
\n •+ °° n/

for which, as we have seen, f ( "° a )~ I.000 . Because each successive
\n"*-00 n/

golden mean iterate has approximately 1/a more fixed points than the pre-

ceeding one, and because two iterates are used to bracket the actual a ,

the horizontal scale is expanded by (1/a)2 to keep the same number of

points in successive frames (labelled (a), (b), (c). To preserve the aspect

ratio where the fixed points lie roughly on a parabola, the vertical scale

is expanded by (1/a)1* . For K = 0.95, in Fig. 3A, we see that successive

iterates appear to converge uniformly down to the KAM surface. This is con

trasted with the results for K = 0.9716, in Fig. 3B, where the successive



sets of fixed points appear to have an underlying variability that has

structure at every scale. This observation can be explained in terms of

our previous results that a winding number of a = 1/6 implies local island

amplitudes that are 2/3 of the distance between islands. Thus the island

structure on the previous scale is always sufficiently large to disrupt the

next finer scale.

5. Summary of Transition Criteria

In Table 2 we summarize the various criteria for the transition

between stochastic regions closely bounded by KAM surfaces and connected

or global stochasticity, for the characteristic problem of the standard

mapping. The criteria are arranged from the strongest (most overstating

the condition on the perturbation amplitude required for stochasticity),

to the sharpest (both necessary and sufficient). Because no fully analytic

theory of the transition exists, the sharper the criterion, the more

important the numerical element becomes. The criterion is also presented

in terms of the winding number a = ft11(o)/2ir of the primary resonance.

The third item in the table is from Lieberman and Lichtenberg (1972) and

has not been discussed in detail in the text. The last item in the table

gives the numerically determined transition for the fully nonlinear Fermi

mapping for comparison with the standard mapping which is linear in

momentum.



Physical Criterion

linear stability of
primary resonance

overlap of
primary resonance

no single-valued
functions 1(0)

second order

islands important

improved
"overlap" criterion

loss of stability
at rational iterates

of golden mean

numerically determine
from fully nonlinear
Fermi acceleration

Table 2

Criteria for Transition to Global Stochasticity

9 + IMapping: I . = I + KsinG
n+1 n n

Mathematical Criterion

cosftB(d) = 2" Tr(2 + K) = 1

2AI
max

CI

2K2

2tt
= 1

„ , „ . 0 2ttMu +u.<-2 ;w=
w 8 ' u

U = - w2 sin0/(27iM + wsin0)

AJ/6J
AI/6I

J (TOn2/2N£
n

16/n*
1

(-c-JH yAIIM + M2M = "
SX'

f = 2 - TrA
1/.' lim r /~5- 1

» s-h» s

For Eqs.(2.1) and (2.2)

!
L.c - 2.5 M

l

n+1 n+1

K ft b(o)/2tt

4
1 t

2

(t)!
*

1

4

2
1 t

4

1.2
1 *

5

1.2
1 *

5

0.9716
1 t

6

1.0
j_ t*
6

Characterization

sufficient

(very strong)

(strong)

sufficient

(sharp)

(sharp)

(very sharp)

(very sharp)

t calculated from tangent map * calculated from averaged Hamiltonian

* '• »'
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