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ABSTRACT

This paper deals with penalty function and multiplier methods for

the solution of constrained nonconvex nonlinear programming problems.

Starting from an idea introduced several years ago by Polak, we develop

a class of implementable methods which, under 'suitable assumptions,

produce a sequence of points converging to a strong local minimum for

the problem, regardless of the location of the initial guess. In

addition, for sequential minimization type multiplier methods, we make

use of a rate of convergence result due to Bertsekas and Polyak, to

develop a test for limiting the growth of the penalty parameter and

thereby prevent ill-conditioning in the resulting sequence of unconstrained

optimization problems.
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1. Introduction

Since their introduction in 1969, independently, by Hestenes [HI]

and Powell [PI], multiplier methods have become a very popular tool for

constrained optimization. At present, we find a sizeable literature '

dealing with the two main forms of these methods: those of the sequential ^

unconstrained minimization type, which was originally proposed by

Hestenes [HI] and Powell [PI], and those of the continuous multiplier

update type first proposed by Fletcher [Fl]. An excellent review of the

literature on sequential minimization type methods can be found in the

survey papers by Rockafellar [Rl], Fletcher [F2], Bertsekas [Bl] and

Powell [P2] as well as in the book by Pierre and Lowe [P3]. A number of

major results on continuous multiplier update type methods can be found in

the work of Fletcher and his collaborators [F3,F4] and of Mukai and Polak

[Ml] and Glad and Polak [Gl]. For the sequential minimization type

methods, we find results on local convergence, rate of convergence, with

both increasing and finite penalty, and the effects of approximate

unconstrained minimization [B2,B3,B5,P5,P6], but no theoretical results

on automatic penalty limitation. For continuous multiplier update methods

we find results on global convergence, rate of convergence and automatic

penalty limitation [M1,G1].

At least in the case of Hestenes, sequential minimization type

multiplier methods have evolved from much earlier attempts [H2,H3] to

obtain stronger second order conditions of optimality for problems of

the form

min{fCx)|h(x)=0}, (*)

with f:mn -*• m and h: ]Rn -• TR. twice continuously differentiable,

by replacing (*) with the equivalent problem
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min{f(x)+cllh(x) H2|h(x)=0} (**)
2

Specifically, it was shown [HI] that if x is a local minimizer for (*)

satisfying second order sufficiency conditions of optimality, with

multiplier $, then there exists a c^ 0 such that for the augmented

Lagrangian

A (x,<{0 - f(x) +<if>,h(x)> +cllh(x)ll2,
° 2

a\(x,$)
the Hessian ^ is positive semi-definite for all c >. c, so that

dx

x is a local minimizer for I (• ,ty) also. Consequently, this suggested

that a solution to (*) could be obtained by sequential minimization of

Ac('»*j)» for *• a 0,1,2,..., for c sufficiently large, with if>. updated

so as to force convergence of \\> to $. Both Hestenes and Powell proposed

the update formula *±+1 = $± + ch(x±), i» 0,1,2,..., where x. is a

minimizer of lQ(m*$*)• Powell also suggested a scheme for determining a

satisfactory, finite c by means of a test on the rate of decrease of

tlhCx.) II, but has offered no analytic evidence as to when and what sense

his scheme is guaranteed to work, though empirical evidence supports his

claim that the scheme is well conceived. Bersekas in [Bl] claims, without

proof, that Powell's scheme can be proved to work, which we assume to mean

locally, in a neighborhood of a strong local minimizer. Thus, in the theory

of sequential minimization type multiplier methods, the construction of a

globally convergent, limited penalty method has remained until now one

of the major open challenges.

In this paper, we present a class of sequential minimization

methods, for both equality and inequality constrained problems
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which are characterized by the following features (i) the multipliers

are updated as in Hestenes [HI]; (ii) the penalty is increased according

to a new recursive relation, on the basis of a new test on the norm of

the difference of successive multipliers; (iii) the maximum step length

of the unconstrained minimization algorithm to be used is geared to

decrease when the multipliers are updated, and (iv) for best results it

is necessary to use an unconstrained minimization algorithm which converges

only to points satisfying both first and second order necessary conditions

of optimal!ty. These features ensure (under certain conditions) that

(i) the triplets (x^A^i^) (consisting of approximate solution x and

approximate multipliers Ajj'JO constructed by our methods converge to a

Kuhn-Tucker triplet and (ii) that the penalty growth is automatically

arrested.

Although the proofs whch are required to show that our methods

perform as claimed are quite complex, the ideas underlying our work are

quite simple. First, we recall that it was shown by Bertsekas [B3] that

if x is a local minimizer for (*) satisfying second order sufficiency

conditions, with corresponding multiplier $, and if S is any compact set

in m containing i|;, then there exists a neighborhood B of x (which we

show in Appendix 1 to be independent of c) and a c >_ 0 such that for any

c ^ c and ^ € S, there exists a unique x € b which is a local minimizer

of IcC*,t{0. Furthermore, for some M€ (0,«»)

11^-$ II <_mIIim)II

^c >_ c, $ e s (***)

Hx-xll £ MiliHJ;ll
c
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where $= ty + ch(x). This shows that the method of multipliers converges

locally, and that if»± •* if linearly, with the rate constant proportional to

1/c. We shall show that when conditions for (***) to be valid hold,

"*i+l"*i" "* ° linearly, also, with the rate constant also proportional

to 1/c and hence that a test of the type II ip. .--*J <My1, with M > 0,
i+1 i —"

Y € (0,1), arbitrary, will eventually be satisfied for c large enough.

We shall use such a test to detect when the penalty c is large enough.

Next, to ensure that the conditions for (***) to hold are eventually

satisfied, we have to devise a scheme for forcing the pair (x ,t(> ) (triplet

(xi»Xi,^i) for equality and inequality constraints) to converge to (x,tf)
«\ A /t

((x,X,i|>), respectively), a Kuhn-Tucker pair (triplet) with x a strong local

minimizer of (*). This is achieved by observing that as c is increased, the

level sets of I (•,*!>) develop "dimples" around strong local minimizers of

(*). Hence if the step size of an unconstrained method is kept sufficiently

small, the requirement of cost decrease in I (*,ij0 keeps the sequence {x }
c i

within a single "dimple" and hence the sequence must converge (c.f. theorem

(1.3.66) in [P4]). When combined, as in our paper, the penalty limitation

test and step size limitation rule result in a globally convergent

multiplier method with limited penalty growth. Since by design, the

entire sequence constructed by our methods converges to a solution, rather

than only subsequences of those sequences, as is common to claim in

algorithm convergence theorems, we coin a phrase by saying that our

algorithms are totally convergent.

To conclude, we hope that our work on automatic penalty limitation

and total convergence will prove to be both of theoretical and of

practical interest.
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2. A Scheme for Forcing Total Convergence

In this section we shall deal with penalty and augmented Lagrangian

methods in which the penalty is driven to infinity. We shall show that

under suitable assumptions one can force the sequences constructed by such

a method to converge to a local minimizer of the problem

min{f(x) |g(x)<0,h(x)=0}, (1)

where f : lRn -»- IR1, g: lRn + ]Rm and h : ]Rn + TR1 .

'" We shall iriake use of the following assu^titnis and definitions, as

the need arises.

Assumption 1: The functions f(-), g(0 and h(«) are twice locally

Lipschitz continuously differentiable. *

Let m =• {l,2,...,m}, £ = {1,2,..., A} and for any x £ lRn, let

J(x) ={j Gm|gj(x) >0} . (2)

Definition 1: We shall say that x is a Kuhn-Tucker point for (1) if

x€9- {x|g(x)<0,h(x)=0} (3)

and there exist multipliers XJ >_ 0, jS m, with X3 =0for all j£ J(x),

and multipliers if , k€i, such that

Vf(x) + £ X^Vg^x) + 2 t£jVhj(x) = 0. (4)
j^J(x) k%

We shall denote by A the set of all Kuhn-Tucker points for (1).

Assumption 2: (i) For any x £ IR

X) XjVgj(x) + Z *JVhJCx) = 0, C5)
j^J(x) j<=£

with X3 >_ 0 for all j€ J(x), implies that X^ =0 for all j€ J(x) and

tjr = 0 for all j € _£. (ii) For any Kuhn-Tucker point x, the vectors

Vh (x) , j ^ Zj, together with the vectors Vg** (x) , j e J(x) are linearly

independent. H
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The first part of Assumption 2 is rather strong; unfortunately it

is required by any penalty function method which computes points of zero

gradient rather than global minimizers, by sequential unconstrained

optimization. Since in the absence of convexity one cannot be sure of

computing a global minimizer in the sequential minimization process, one

is inevitably forced to invoke Assumption 2 (c.f. [P4,M1,G1]).

Definition 2: We shall say that x £ y is a strict local minimizer for

(1) if there exists a p > 0 such that f(x) < f(x) for all x $ x such that

xe^O B(x,p), where B(x,p) = {x| Ux-xIU p}, and we shall call such ap

a radius of attraction for x. n

Definition 3: We shall say that x€^ is a strong local minimizer for (1)

if for some r >0, j6m, and i|»k, kS i_, such that P =0for j€ j(x),

(i) Equation (4) holds,

(ii) X > 0 for all j € j(x) (strict complementary slackness condition),

(iii) For

L(x,X,i|») = f(x) + 2 Xjgj(x) + £ iJfVxx)
j^i kea

there exists m > 0 such that

(6)

<yj 32Liizpiy>imM2
*x2

for all

ys%* frl^l^y-o; <vgj(x),y> -o, jej(j)}.
dx (8)

n

We note that strong local minimizers are strict local minimizers

which satisfy a second order sufficient condition of optimality, i.e. they

are a subset of the strict local minimizers. Our final assumptions is
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Assumption 3: Every Kuhn-Tucker point x which satisfies the second order

necessary condition of optimality (7) and (8), with m = 0, is a strong

local minimizer for (1). n

Next, we introduce the usual augmented Lagrangian (see [R2,B5,G1])

F:]Rn x mm x ]R x m -»- m defined by

F(x,X,i|;,c) &f(x) +^ {(l(cg(x)+X)+ll2 -Ilxll2}

+<*,h(x)> +| (Ih(x)l!2 , (9)

where for any yS]R ,y is a vector whose jth component is max{0,y^},

j € m.

We note at this point that V F(x,X,i|;,c) is given by

T T

V/(x,X,i|/,c) =Vf(x) +38|22- (X+cg(x))+ +3h<*> (ijrt-ch(x)) (9a)
2

and that the Hessian matrix 3F(*>^»c> is wen defined provided
9xZ

g (x) 9s XJ/c for all j € m, in which case it is given by

3x 3x j<% 3x

+E &&• <*W<x))
j% 3x

+c{ £ *** <*>* 3«3 <*> 3h(x)T 3h(x), . .
j*<*,X.c> 3X 3X 3x 3x

where

I(x,X,c) ={j€m|gj(x) >-Xj/c}. (9c)

Definition 4: Let x S^fbe any strong local minimizer for (1), with

p>0a radius of attraction. Then, for any X€ mm, i{/ € IR* ,c >. 0,

e >_ 0, we define the level sets C*(X,i|;,c,e) by
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C-(X,iJ/,c,e) - {x|F(x,X,tJ/,c) < f(x) + e}, (10)

and their intersection with the ball B(x,p) by

N- -(X,i(;,c,e) » B(x,p) O C<;(X,tJsc,e). (11)
n

We are finally ready for our first result, which shows that the set

C„(X,^,c,e) is not empty.

m+P.
Lemma 1; Let x be a strict local minimizer for (1) and let S C m

be a compact set, then

x€ Cx(X,T|/,c,e) ¥(X,i(0 € s, Vc >. 0, ¥e .> 0. (12)

Proof: Since x €^f9

F(x,X,iJ,,c) -f(x) +^- {ll(cg(x)+X)+H2 -tlxll2} (13)

and, since cg(x) 4 0, cg(x) + X 4 X and therefore (cg(x)+X) <. X which
T T

implies that II (cg(x)+X)+ll2<_llxll2 and hence F(x,X,*,c) <_ f(x) for all
c ^ 0, which completes the proof. n

The next lemma shows that when c is large enough and e is small

enough, the "dimple" N* -(X,i|;,c,e) becomes contained in any given ball
x,p

B(x,6) about x.

Lemma 2: Suppose that Assumption 1 holds. Let x be a strict local

minimizer for (1), with p > 0 a radius of attraction. Then for any
ttU-0

6 > 0 and any S C 1 9 a compact set, there exist c ^ 0 and e > 0

such that

N- -(X,ip,c,e) C B(x,6) Vc > c, *(A,*) € 3, Ve € (0,e]. (14)

Proof: For the sake of contradiction, suppose that there exist 5* > 0,

S* C]R compact and sequences {c.}. n, {e.}, _ , {(X.,$.)}. nCs*
1 l^u 1 i=U i 1 1—0

00 n

and {x.}.^ C ]R such that c.^«> as i -»• », e \0 as i -*• «>,
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Xi €Nx,p(Xi,,|'i,ci,ei) and xi *B^»^ for ±=0,1,2,..., i.e., for
i =» 0,1,2,...

f(x±) +2~ {BCc^Cx^+X^^2 -llx^l2}

+<*1.Mx1)) +-^ [^(x^lr <f(x) + e± (15a)

and ,

k± ej( k {x|6* <||X_X|| <p}# (15b)

Now, since e^O, f(x) + e± is bounded for all i. Since S* and B(x,p)

are compact and c±>x», as i-»- », HxiB2/2ci, (^.hfc^)) and f(x±) are
all bounded for i»0,1,2,..., and hence, from (15a), -5^- U(c.g(x.)+X )ll2

in 12 12 *°— l'((g(xi) +— \±))Ji and y- Bh(xi)Il must be bounded for i»0,1,2,...

Consequently

g(xi)+ ->• 0 as i •* » , (16a)

h(xA) -»• 0 as i -> «> . (16b)

Since {x^^g is bounded, there exists an infinite subset K C {0,1,2,...}

such that x 4 x , as !->•», for some x €(^4. Next, since

Hc±g(x±)+\±)+ft ^0 and lh(xj,)ll >0, it follows from (15a) that for
i =* 0,1,2,...

f(x±) <f(x) +e± +27- I1Xill2 -<*±,h(x±)> . (17)

Hence, since c. •* ~ as i -> «, S* is compact and h(x.) + 0 as i + •, it

follows, by continuity, from (17), that (16a) and (16b) that

f(x) < f(x) , (18a) .

g(x) <. 0 , (18b)

b(x) = 0 . (18c)
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But by definition of p there is no x € (<^ , such that (18a-18c) holds

and thus we have a contradiction. The proposition must therefore be true.
n

m*f*£
Lemma 3: Suppose that Assumptions 1 and 2 are satisfied, that SCl

00 CO 00 Tft

is a compact set, and that the sequences {c.} 0 , ^Y.}i==0 » ^-j^-n C ^ »

{(X.,i|/.)} _ C s are such that (i) c >_ 0, y >^ 0 for all i, c. -»• °° and

y + 0 as i -* », and (ii)

HVxF(xi,Xi,i|»i,ci)0 <y± for i =* 0,1,2,... (19)

If x. •*• x as i -»• °°, then

(i) x is a Kuhn-Tucker point;

CO 00

(ii) the sequences {c.g(x.),}. n and {c.h(x.)}. n are all bounded;
1 It 1—U 1 i l^U

(iii) the following subsequences converge:

(i|>±+cih(xi)) -»- ij, as i+<», (20a)

(c±g(xi)+Xi)+ + X, as i -* », (20b)

F(xi,Xi,i|>i,ci) ^ f(x), as i^ oo, (20c)

where (X,$) is a pair of Kuhn-Tucker multipliers for x.

Proof: Since X.^ is bounded and c -• », it follows that there exists

an i > 0 such that
o —

(g(xi)+Xi/ci)^ =(gj(x±)+X^/c±)+ »0 for all i>i (21)

for all j€ jc(x) A{j <S m.|j£J(x)} (i.e., for jsuch that g? (x) <0).

Hence, by (9a) and (19)

If y± = 0 for all i, it can be proved that, together with (20c), we
have F(x±>Xi,*1,ci) £ f(x) for i large enough.
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lim {Vf(x )+ S (c.gj(x,)+X^) Vgj(x.)
i-~> 1 je=j(x) i i i+ i
i^C

+S (c.hj(x,)+^)Vhj(x.)} =* 0. (22)

It now follows from Assumptions 1 and 2(i) that (c g^ (x )+X^) ,j6i

and (cji (x^)-*-^), j€ i_9 must all be bounded and hence that there exists

an infinite subsequence indexed by K C {0,1,2,...} such that

(c±r(x±)+x|)+ lusi +«, jSi, (23a)

(c.^ (x±)+^) 5$as i-»- «, j€^, (23b)

with (X,iJ;) such that X ^ 0, and

T *> T

3x A + 3xVf(x)+i#-X+i2#-$ =0. (24)

Next, it follows from (23a ,b) and the compactness of Sthat c gJ (x.)+

j€mand c^h3^), j6 %_ are all bounded for i€kand hence, since
ci/rfl0 as i -* «, that g(x)+ =» 0 and h(x) » 0. Therefore, <X,g(x)> = 0,

which proves that x is a Kuhn Tucker point with multipliers (X,$).

It now follows from Assumption 2(ii) that the multipliers (X,$) are unique

and hence that we may choose K= {0,1,2,...}. Finally, since (c±g(x±)+\±) ,

Xi5 i|>i and c h(x ) are all bounded and h(x.) -*• 0 and c. -*- », as i -*- «,

(20c) follows directly from the definition of F in (9), which completes

our proof. n

Normally, we only require from a sequential minimization algorithm,

based on penalty functions, that all the accumulation points of the

sequences that it constructs be "acceptable" solutions. The next

proposition lays out conditions for such a method to be totally convergent

in the sense that the entire sequences that it constructs converge to an

"acceptable" solution, in contrast to merely constructing acceptable

accumulation points.
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Proposition 1: Suppose that Assumptions 1 and 2 are satisfied.

(i) Let {Yi>^Bl0» {p±}°l=Q be SUch that Yi -°» pi >°for a11 ±and Y* "* °*
p± -*- 0 as i -»• «. (ii) For i = 1,2,..., let c be constructed by the

formula c^+1 = a±c±+^±> where c > 0, and a., b are bounded reals

such that ci^» asi->« (e.g., a >. 1, b >. 0 and a.+b. >. 1+6 with

6> 0). (iii) Let SC IR™** be a compact set and let {(X,,^)}" nCs.
i i=0

(iv) Let tx.}. q be an infinite sequence such that

|VxF(xi,X1,«±fc1)l <y±, Vi; (25)

(b) for i» 0,1,2,..., x±+^ is constructed by a step size limited descent

method, i.e.,

k.

.*i+lBXi +̂ VV (26)
where zQ = x., and

^j+l^j1 - Pi* Vj> (27a)
F(z:j+1,Xi,i|)i,ci) <F(zj,Xi,tf»i,ci), Vj. (27b)

00

Under these conditions, if {x.} Q has an accumulation point x which is a

strong local minimizer for (1), then x. -»• x as i •* ».

Proof: Suppose x± -»• x, with x a strong local minimizer for (1). Then

there exists a radius of attraction p > 0 for x such that x is the only

Kuhn-Tucker point in B(x,p). Let Kr be the infinite subset of {0,1,2,...}

defined by

K\& {i|xi€B(x,p)} (28)
K* * K" ~Then x± •* x, since otherwise x± -»• x with x ^ x, K" C K and x € B(x,p)

a Kuhn-Tucker point by Lemma 3 (i), which is clearly impossible by definition

of p. Next, by Lemma 3 (ii) ,the subsequences {c.h(xi) Kq,, and

^jSCx^.j.Ij^i are bounded and hence, since c.^00 as i -»• «

-13-



K'h(x±) -»• 0, as i •*• « (29)

and

Kfg(xi)+ •• 0, as i + cd. (30)

Now,

F(xi'Xi+l'*i+l'ci+l> - F(x±,Xi,*i,ci)

• i {ci+1" ^^ +rr: w/ - ci° <8<xi) +f xi'
i+1 ,i

2

+

' ^ IX1+1|2 +t IXl'2 +[(ai'1)C^] ^^"^
+<*1+1-*±.h(x1)>- (31)

Consequently, since a±, b±9 \± and i|>. are all bounded, it follows that

e± X0 as i •> », where for i = 0,1,2,...,

e± » maxj{max{0,F(xi,Xi+1,i|.i+1,ci+1) - FCx^X^^.Cj)}} (32a)
j^C

so that

F(xi,Xi+1,^i+1,ci+1) - F(xi,Xi,ij;i,ci) £ e± for all i€ K» (32b)

Next, for i * 1,2,3,..., let

Ci ^Cx(Xi^i'Ci'£i-l+ni-l) ' <33a>

Ni k"x.p^VVWVl*' (33b)
where for i - 0,1,2,...

n. * max {max{0,F(x.,X ,if>.,c.)-f(x)}}, (34a)
jQCf i i i i

and

F(xi,Xi,ipi,ci) £ f(x) + r\± for all i€ K1 . (34b)
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Since it follows from Proposition 2 (iii) that n,\0 as i •+• », we conclude

that e^^ + n^^VO as 1 •*•• «, c±S°° as i"*" °°» and (^t^) e S, acompact

set, for i = 0,1,2,... . It now follows from Lemma 2 that there exists an

i such that
1

N±CB(x,p/2) Vi^i^ (35)

Next, since p± -»- 0 as i -»• «>, there exists an i„ •> i such that p- < p/2

for all i>L. Let i € K* be such that i >^ i . We now prove by

induction that x± S n for all i >i and that ie~KT for all i >. i .

First, by definition of Kf, x <= B(x,p) and by (34b)
3

F(x ,X ,if; ,c ) <_ f(x) + tk < f(x) + e, , + n,
x3 X3 x3 ^ i3 V1 i3

< f(x) + e + n ., (36)
X3 13

since n. -t 21 n. by construction. Hence x. £ N. . Now, suppose that
3 x3 H x3

for i >_ i , i S K1 and x. € N., we shall show that i+1 S k' and xJM ^ N.,,
•5 i i i+1 i+l

to complete the proof. Indeed, with {z.} defined as in (26), we have

because of (27b) that for j = 0,1,2,...,k±,

Zj e A± *{x|»(*.X1+lftl+1,c1+1) <F(Vl1+1^1+1,c1+1)}. (37)

Now, since x± € N± C B(x,p/2) and since iS K1, it follows from (32b) and

(34b) that

F(xi,Xi+1,^i+1,ci+1) <P(xi,X1,t1,ci) + e± <f(x) + e± + n± (38)

and hence we see that z £ A C C . Now, since i >_ i , we must have

A± n B(x,p) C C±+1 n B(x,p) = N±+1 C B(x,p/2) . (39)

Consequently,

min{llz,-z"H|zt GA.n B(x,p) ,z" € B(x,p)°} > J/2 (40)
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and therefore, since p± < p/2, if z. e a O B(x,p), then by (40) and

(27a) z+1 € a± H B(x,p) for j=0,1,2,...,k±. Therefore,

Xi+1 ° Zk +1 €Ai ° B(*'^ CNi+i and i+1 G K* • Consequently, i€ Kf for
i >, i3 and therefore x. •> x, which completes the proof. o

Now suppose that for i = 0,1,2,... we apply an unconstrained

minimization algorithm to F(x,X ,i|> ,c,), that we limit the step size as in

Proposition 1 and that we stop when (25) is satisfied. We shall model this

sequence of operations by a map A(•,«,•,•,•) from 3Rn x mm x mA x 3R1 x m]

into ]R ,x± • A(xi-1,X±,*1,Y1,p1) satisfying (25)-(27b). Now consider

the following algorithm.

Algorithm 1:

Data: x» S mn ,cQ >0, a >_ 1, b >. 0, a+b >1, SC mm'U compact,

•* °°.(W G S* {Yi}i=.0J {pi}i=0' with Yi^°» p^0 as ±
SteP 0i Set i=0 and compute xQ - A(x^,X0,^0,c0,y0,p0).

Step 1: Compute x±+1 =A^.X^^.c^y^p^.

Step 2: Compute c±+1 » ac±+b and (xi+1»*i+1) G S.

Step 3: Set i » i+1 and go to step 1. n

Theorem 1: Suppose that Assumptions 1 and 2 are satisfied, and that the

computation in step 2 is well defined for all i. Consider the sequence

{x^^q constructed by Algorithm 1. For i= 1,2,3,..., let

££± ={x|F(x,Xi,i|;i,ci) <F(xi_1,Xi,^,ci)} (41)

If every Kuhn-Tucker point in lim ££ is a strong local minimizer

and tx^jjaQ bas accumulation points, then x •* x as i -• «, with x a strong

local minimizer.

00

Proof: First, by assumption, {x.}.^ has accumulation points, all

of which, by Lemma 3, are Kuhn-Tucker points. Then, since any limit point

x of {x1}is3Q satisfies x£ lim SL. any such x is a strong local

minimizer and hence the Theorem follows from Proposition 1. n
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Corollary 1: Suppose that the hypotheses is Theorem 1 hold, that

S - S^ x s is such that all the Kuhn-Tucker multipliers (X,$) corresponding

to Kuhn-Tucker points x£lim ££± are in the interior of S, and
that for i = 1,2,3,..., (X ,ij; ) are constructed in Step 2 of Algorithm 1

according to the rule

f(cig(xi)+Xi)+ ^X^ if X^ €s^
xi+l s \ » (41a)

IX. otherwise

r(cih(xi)+ij;i.). =.^.if r± ^ S^
^i+l "{ ' <«•!>>

1 ty, otherwise

Under these conditions, x. •*• x as i -> « , with x a strong local minimizer,

^i*^i^ "*" ^,T^ as * "*" °°> ^^ (*»$) corresponding multipliers, and there

exists a constant M^ (0,«), such that

aXi-xii <f- <iix±-xb2 +ii^ii2 +Y2}i/2 t (42a)

JX -All + II*,..-$11 <-f {IIX.-XB2+ ll*.+$l|2+ Y2}1/2. (42b)

Proof: This corollary follows directly from Theorem 1 and Theorem Al

in Appendix 1. n

3. A Scheme for Automatic Penalty Limitation

We are now going to augment Algorithm 1 by a test which will result

in an automatic limitation of the penalty growth. Before we do so, we

note that in Algorithm 1, we postulated the use of an unconstrained

optimization algorithm which stops when the gradient is small enough.

This required us to assume that all the Kuhn-Tucker points in a certain

set were strong local minimizers. In [M2], by Mukai and Polak, we find an

extension of Newton's method which converges only to stationary points

that satisfy second order necessary conditions of optimality and hence are

much more likely to be strong local minimizers. The Mukai-Polak
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algorithm in [M2] requires that the function to be minimized have continuous

second order derivatives. As we saw in (9b), the Hessian of F is not

defined everywhere and hence is discontinuous. Nevertheless, the Mukai-

Polak algorithm [M2] can be extended to this case by suitably smearing the

Hessian, as in methods of feasible directions [P4]. We present this new

algorithm in Appendix 2, where we see that it replaces the Hessian of F

by the matrix, with u > 0,

3x j^n 3x

+£ i%I (tW(«» +e3h<x)T ^<X>
jes, 3x 3x 3x

+c £ %^^ . (43a)
j€l(x,X,c,y) 9x 3x

where

I(x,X,c,u) - {j Smjgj(x) >(-Xj/c)-y} . (43b)

In particular, for given X. € nm a e ]R , Cj > o, y. > 0,.
i i i — x —

V± > 0, p± > 0, the algorithm in Appendix 2 will yield, under suitable

assumptions, after a finite number of iterations, a point x. such that

BV(x±,Xi,*i,ci) B- Yi ' (44a)

<y,H(xi,Xi,i|;i,ci,yi)y) >-ujyl!2, Vy €]Rn . (44b)

In addition, if initialized at x = zn,

Xi+1 " -i ' Aj -J+i - -j_._ =*, + E z^i ~z< <44c)

and

izj+rZj •< P± *j > (44d)
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F(zj+rWcx} <F(zj'xi^i»ci) *i • <-44<o

We shall denote the result of the computation by the algorithm in

Appendix 2 by the map A: ]Rn x mm x]R x]R x r x m x]R -»- mn,

so that

xL =» A(xi-1,Xi,ij;i,ci,Yi,pi,pi) . (45)

We shall state our multiplier method with automatic penalty

limitation in terms of this new unconstrained minimization algorithm.

However, any convergent unconstrained minimization algorithm can be

used, and our convergence Theorem 2, to be stated later, will remain

valid, provided its assumptions are strengthened as indicated in Corollary 2.

We shall use the notation

a(x,X,c) -(g(x) +iX)+ -X (46a)

which leads, via (9b) to

T

VxF(x,X,i|;,c) •» Vf(x) +9g^} (X+ca(x,X,c))
T

Algorithm 2

r. x c.
m+Jl

Data: S = S,xs.C]R a compact set containing all possible

Kuhn-Tucker multiplier pairs (X,iJ>) in its interior; x - £ ]Rn ,

(W€s' co-°-
Parameters: a _> 1, b ^ 0 such that a+b > 1; fi G (0,1); sequences

{yi}i=0' *pi}i=0' W}i=0 Such that Yi > °» pi > °' ui >° for a11 i»
00

Y. -»• 0, p. -»• 0, u. -»- 0 as i -*- », and £ yJ < » .
i i i i=0 i

Step 0: Set i = 0, j = 0, £Q = 1.
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Step 1: Compute x± «A(xi-1.,X1,*i,cyY±>V±>f>±)* If ^^'VVV =°>

a(x.,X.,c.) = 0, h(x.) = 0, and H(x.,X.,i|; ,c ,0) is positive

semidefinite, stop. Else, go to step 2.

Step 2: Set f-*± + Cjh(Xi), X- (Xi+cjg(x±))+ (-Xj+c aCx^X^c )).

Step 3: a) If XS S^ set X . =» X. Else, set X =• X .

b) If if €s,set ^±+1 - $. Else, set $±+1 - i|>±.

Step 4: If

c^(Ha(xi,Xi,cj)ll2 +Oh(x±)ll2) <Z±, (47a)

go to step 5. Else, set c.+, =» ac. + b and go to step 5.

Step 5: Set

l+fl

5i« = 9Ci + T,fi+r (47b>

set j(i+l) = j, i = i+1 and go to step 1. n

The properties of Algorithm 2 are summarized in the following

Theorem 2: Suppose that Assumptions 1-3 are satisfied, that the construction

of x. in step 1 of algorithm 2 is well defined for all i and consider a

sequence {x.} constructed by Algorithm 2.

(i) If {x.} is finite, then the last element, say x. , is a strong local

minimizer.

(ii) If {x.} is infinite and (j(i)} is bounded and {x.} has at least

one accumulation point x, then x. •*• x, as i •»• °°, and x is a strong local

minimizer for (1).

(iii) If {x.} is infinite and {j(i)} is unbounded, then {x.} is

unbounded. n

To prove this theorem we shall need the following results.

Lemma 4: Suppose (x,X,tJ/,c), with c > 0 are such that

VF(x,X,ip,c) = 0 , (48a)
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a(x,X,c) =» 0 , (48b)

h(x) - 0 . (48c)

Then x is a Kuhn-Tucker point and (X,i|>) is a corresponding multiplier

pair. Furthermore, if H(x,X,i|;,c,0) is positive semidefinite, then

second order necessary conditions for (1) are satisfied at (x,X,i|>).

Proof: Since

1 i Xj0 - aJ(x,X,c) - max{gJ(x), - M (49)

we must have g(x) ^ 0, X£ 0, and <X,g(x)> = 0. Furthermore, from (9a)

and (48a), since (X+cg(x)) »X+ ca(x,X,c)) we obtain that

7f(x) +!gfc£x +«!£aIj.o.
dX 3x

Hence (x,X,i|>) is a Kuhn-Tucker triplet. Now,

I(x,X,c,0) =. {j|gj(x) >-y*} o(j|gJ(x) -0} -I(x)

and hence

H(x,X,*,c,0)=^fi+S^^-XJ
3x j% 3x

(50)

(51)

j% 3x

V 38J(x)T 3gj(x) ,3h(x)T 3h(x)
j€l(x) 3x 3x 3x 3x

rL(x.X.fl)
2

3x

£ 3gJ(x)T 3jg(x) ,3h(x)T 3h(x)
jei(x) 3x 3x 3x 3x

(52)

Hence, for any y such that W y=0 and <Vg^(x),y> =» 0, for all
v dX

j €l(x),

2

0<<y,H(x,X,i|;,c,0)y> =<y, 3L<X>M) y>
3x

(53)

which shows that the second order necessary condition of optimality is

satisfied at (x,X,tJ0. n
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The following result shows that under certain conditions a sequence of

approximate strong local minimizer for the unconstrained problems

min F(x,X ,i|> ,c.) converge to a strong local minimizer for (1).
x *••

Lemma 5: Suppose that Assumptions 1 and 2 are satisfied. Consider an

infinite sequence {x^"^ constructed by Algorithm 2, with A(•,«,•,•,• ,•)

satisfying (44a-44c) and suppose that x. -»• x as i -*• « (i.e. x is an

accumulation point of {x±}). If (i) x is a Kuhn-Tucker point,

.(i.i)-4^i*c:j(i)g(xi))+, *i+cj^)h(x1)) ^(X,$)~as i-»• «., .a-multiplier
pair for x, and (iii) either j(i) -»• » 0r (X 9i\> ) £ (X,$) asi + «, then

x satisfies second order necessary conditions of optimality for (1).

Proof: To establish a contradiction, suppose that there exists a y € ]Rn

such that ^|j^- yoo, <Vgj(x),y> =• 0for all jSi(£)f and

<y, SKr f}r) y>=, .5 < o. Since by Assumption 2, the vectors Vh** (x),
3x 1j € _& together with the vectors VgJ (x), j € I(x) are linearly

independent, it follows from the Implicit Function Theorem that there

exists a sequence of vectors {y.}.®. in. Rn such that y -»• y as i-»- »,

and

3h(x )
3x 7± -0, <Vg3(xi),yi> -0 for all j€i(x),

(54a)
for all i € k .

2

Hence, from continuity of the scalar product and of 3L^*?*y*^ ,it follows
3x

that there exists an i € k such that
o

32L(x±, (X^c. (1)g(xi))+^1+ci (i)h(xi)) A
±9 3x2 V <"4

for all i € K, i >. i (54b)

(since (X±+c (i)g(x±))+ 5Aand Of^+c, m11^)) 5$as i+»by
assumption) . Now by definition,
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^i'W^arV • 32t(xi(xi+ci(i)g(xi))+^i+ci(i)h(xi))
3x2

+ cj(D
E 3gJ(x.)T 3gj(x.) 3h(x,)T 3h(x.)

^vV'KiW sr—st^-et—dir-
(55)

So, suppose that j(i) •> «, then c.,.. -• <» and hence X^/c./jX -*- 0 as
J(i) i j(i)

!-»•«>, because X.^ is bounded. Since the gJ(») are continuous and u. ••*• 0

as i •>• », X ^ 0 for all i and

I<Vxi»cj(i)»,1i) 3UI «*<*!> >~xi/cj(i) "V» <56a>
we see that in this case there exists an i, > i such that

1 — o

I(xi,Xi,c^^,yi) C i(x) for all i€ k, i >, i (56b)

and hence, from (54a,b) for some i? >_ i ,

<y±»H(xi,Xi,i(;i,cj(i),pi)yi> <-6/4 <-u±, for all i€K, i>i2,

(57)

which contradicts the definition of A. Similarly if (X ,tj> )£ (X,J),
i Kas i -»• •, X^ + 0 as i -»• «, for all j£ I(x) and hence (56b) must again

hold for a suitable i >_ iQ. But then (57) must hold, which again leads

to a contradiction. This completes our proof. n

The next two results are analogs of Lemma 2 and Proposition 1 for the

case case where c is kept constant rather than driven to infinity.

Lemma 6: Suppose that Assumption 1 is satisfied and that x is a strict

local minimizer for (1), with p > 0 a radius of attraction. Then for any

6 > 0, S C ]R compact and c > 0 there exist e > 0 and y > 0 such that

N„ S.tt.*»c,e) n {x|!lh(x)II < y, Ua(x,X,c)ll < y} C B(x,6)

for all e E [Q,z]9 (\9$) € s . (58)

n
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We omit a proof of this lemma since its proof is almost identical

to that of Lemma 2.

The following proposition can be proved using Lemma 6 in more or less

the same way as Proposition 1 was proved using Lemma 2.

Proposition 2: Suppose that Assumptions 1 and 2 are satisfied. Let c > 0
GO

and let {p*}*^ te such that p. > 0 for all i and p. -*• 0 as i -»• «. Let
CO K •*

{x.}. Q be such that h(x.) + 0 as i •> » and x. -*• x, for some

K C {0,1,2,...}, with x a strong local minimizer for (1), with

corresponding Kuhn-Tucker multipliers (X,$). Let {(X ,^.)}._0 c 3R

be such that (X ,ip.) ->• (X,$) as i -»• », and a(x. ,X ,c) •*• 0 as i •*• ».

Furthermore, suppose that for i « 1,2,3,..., x. is constructed by a step

size limited descent method, i.e.,

\
xi= xi-i+ £ (,j+i'"j> (59a)

where z_ =* x. - and

"zj+i-z-j11 <P±» *J (59b)

Under these conditions, x, •*• x as i -*• °°. n

We are finally ready to give a proof of Theorem 2.

Proof of Theorem 2:

Ci) Suppose {x,} is finite, with last element x. . Then it satisfies

the test in step 1 of Algorithm 2 and hence V P(x. ,X, ,4». ,c. ~*) =» 0,

a^Xk,Ak,Cj(k)^ " °» h^xk^ 3 °* and H^xk,Xk,\,ci(k),°^ is Positive
semidefinite. It now follows from Lemma 4 that (x, ,A, ,tJv) is a

Kuhn-Tucker triplet satisfying the second order necessary conditions of

optimality for (1). Hence, by Assumption 3, x is a strong local

minimizer.
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(ii) Next we suppose that {x.} is infinite, that j(i) is bounded

K a
and that x. +xas i •* ». Then there exists an i such that 1(i) = i

i o J Ji

« j(i ) for all i > i , and by (47a)
o' - o

/«_/__ , xn . n, , ^n ) < e#s ror all i > i
o

c (Ila(x.,X ,c. )lT + flh(x,)i!Z) < ?., for all i>iao i 1 30 i - i - <

Since by construction in steps 2 and 3 we always have

"wv2 i e5<i)u<w<w (6ia>
and

"W^i1 ic2(i)"h(xi>"2 Wb)
it follows from (60) that

Bxi+i"xi|2 +D*i+r*iD2 - h for a11 i - ^ (62a)
so that for all k >_ 1,

9 i+k-1
»WV +"W*/ < £ «j (62b)

j=»i J

Next, we show that by construction in (47b), £. is bounded for all

i. Indeed, since y + 0 as i •* », there exists an i- such that

1+0
— Yi+1 < 1-9. for all i1 ix (63a)

Hence, from (47b)

€i+1 1 *Z± + (1-9) for all i >_ i^ (63b)

Now, if £± <, 1, then, from (63b), £ £ 1 and if £. > 1, then from

C63b), Ci+1 <_ 0C± + (1-6)5± = 5±. Consequently, £± 1 min{l\£ }for all

i. Returning to (62b), we see that

i+j^-1 i+k-1 i+k-1 i+k-2 ,_ i+k-1

j-i J j-i J X 9 j-i J j«±-i * 9 j!3i J
(64a)
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Hence

itiL-2 1+e i+k-1
(1-6) £ h-~Qh-l-h-*-l+}ir 2 T.. (64b)

j-i j=i

00

Since ^ is bounded for all i and £ y <«, it follows from (64b)

that £ £ < « for all i and hence that

oa

£ €. •> 0 as i•* «. (65a)
j=i J

.JJe therefore, conclude from 462b) that for all k >_ 1,

IUi+k"Xi1'2 +l*l4k"*i|2 +° as *+"» (65b)
and hence that {(X^iJ^)} is Cauchy, so that X -»• X, i|> -• if as i -*- «,

i
for some (X,$) G m . Now, from (65a), 5 + 0 as i •»• « and hence from

(60), we conclude that

a(xi,X±,c ) •* 0 as i^ », (66a)
Jo

h(x±) •* 0 as i + ». (66b)

K *
Hence, since x. -»• x, by continuity,

A •* ^

a(x,X,c. ) = 0, h(x) =• 0 and V F(x,X,i|>,c. ) = 0.
Jo x J0

Therefore, by Lemma 4, (x,X,ij)) is a Kuhn-Tucker triplet. Since it also

follows that (X±+c g(x )) -* Xand (i|;.+c. h(x.)) •> { as i -> », we
Jo 1 Jo

conclude from Lemma 5 that the Kuhn-Tucker triplet (x,£,$) satisfies

second order necessary conditions of optimality for (1). But by

Assumption 3, x is then a strong local minimizer for (1). Finally, it

follows from Proposition 2 that x. -»• x as i + «>.

(iii) We now suppose that jCi) •*• °° as !•*•<» and we will show that

{x^} has no accumulation points. To obtain a contradiction, suppose

that Xi "*" x as i "* "* Then» by Lemma 3, x is a Kuhn-Tucker point, and

-26-



and (^i+cig(xi))+ +Xand ^ + c±h(x±) +jas i+•, with (X,$) a

corresponding Kuhn-Tucker multiplier pair. It now follows from Lemma 5

that x satisfies second order necessary conditions of optimality for (1).

Hence, from Assumption 3, x is a strong local minimizer for (1) and therefore,
A

by Proposition 1, x± -»• x as i •* ». Now, since by assumption on S, (X,iji) must

be in the interior of S. * S., there exists an i such that
A ip O

(Xi+Cj(i)8(xi))+ €Sx and <*±+cj(1)Mx1)> e S^ for all i>iQ and

^i+1 = *± + cj(i)h(xi) for a11 iL i0« It now follows from Theorem Al

that there exists an L > i and an M € (0,«) such that

iui+1-xD2 +n*i+1-$«2 <-£- (0*t-Xl2 +O^B2)
cj(i)

2+ My± for all i >, ix (67a)

Let ±2 >, ±1 be such that M/c.,.s < 6 and My. < 1 for all i>i , then,

from (67a)

llxi+1-x02 +llij,i+1-$ll2 ^ndlx^xO2 +fl^ll2) +Y±

for all i>i2, (67b)

for some n < 6. Consequently, for k » 1,2,3,...,

1Ui +k"X|2 +°*i +k""*112 ink(,Ui -^,2 +D*± -*°2>
Z Z 2 Z

+ £ n Y. (68a)
i»i J

2

and

0xi wi-1'2 +D*i 4fcfr*»2 <nk+1(0x± -xO2 +1^ -$02)
z . Z Z 2

+ 2-» n Y, . (68b)
i=i J

It therefore follows that
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"V^r^+k"2 +\+v*i-\-**2 £nka-H,)(Oxl2-xn2 +»*i2-*o2)
i2+k-l ^+k-i-j

+ £ n2 (l+n)y, +y, ., (68c)
J-i2 2

Since i^+k > i2 f°r k " 1»2,..., we conclude from (68c) and the

construction of (X. -»^1+1) ia step 3, that

cKi2+k)(lla(xi2+k'Xi2+k»cj(i2+k))112 +I,h(xi2+k)i|2)
< nk(l+n)(Ilx. -xll2 + U -$il2

H 2
i +k-lV* L i,+k-l-j

+ £ nz (l-n)y. + y. (68d)
J«i2 * 12*

Now, from (47b), and since from Step 0 of Algorithm 2, £Q = 1,

i +k i2+k~1 V*"1"*

i+k V^-1 1-Hc-l-J ,
=62 +(1+6) g_ 92 V 8V (69)

Since 0 < 1, 0 < (1+6)/8 and since n < 6, it follows from (68d) and (69)

that

C?(i2+k)l,a(xi2'Ai2+k'Cj(i2+k>B2 +1,h<xi2+k>"2 ±%+k
for k - 1,2,... (70)

which shows that the test in step 4 of Algorithm 2 must have been

satisfied for all i > i2 and therefore j(i) could not have been

increased an infinite number of times, as hypothesized. Hence, if

j(i) •+• °° as i •+• », then {x.} cannot have any accumulation points. This

completes our proof. n
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The following result should be obvious.

Corollary 2: Suppose that all the assumptions of Theorem 2 are

satisfied and, in addition, that every Kuhn-Tucker point in lim ££±

is a strong local minimizer. Then the conclusions of Theorem 2 remain

valid even when the condition (44b) is removed from the qualification

of A (i.e. even when only a first order stopping rule is used). n

Conclusion

Our initial intention was to construct a scheme for limiting the

penalty growth for multiplier methods. However, the mechanisms that

presented themselves worked only if the sequence {x.},.constructed

by the multiplier method without penalty growth limitation, converged,

and moreover, the limit point had to be a strong local minimum. Now,

in general, a sequence constructed by a standard penalty function method

may have several accumulation points and hence it was necessary to

devise a modification to standard practice in order to force the entire

sequence to converge. This was achieved by limiting the step size of the

unconstrained optimization algorithms to be used in the construction of

the x^s. In addition, a special second order unconstrained optimization

algorithm was devised, which converges only to strong local minima. Once

this was done, we proposed a test for penalty limitation based on

the rate of convergence of multiplier methods, established by Bertsekas.

The combined result is a globally convergent multiplier method with

automatic limitation of penalty growth. Finally, it should be pointed

out that similar results can also be developed for multiplier methods

using a second order updating formula for the multipliers (e.g. Fletcher

[F5]). This extension is advisable especially when one uses a second order

unconstrained optimization algorithm; the required proofs, based on a

rate of convergence result due to Bertsekas [B4] are essentially routine.

-29-



Appendix 1. Rate of Convergence.

The following theorem is a slight extension of results proved by

"Bertsekas [B3] and Polyak and Tret'yakov [P6].

Theorem Al. Suppose that Assumptions 1 and 2 are satisfied and suppose

that x is a strong local minimizer for (1) with multipliers X and i|J. Then,

given real sequences W^^o,tc1>^sB() with y >0, c± >0, i=0,1,2,...,
m+Jiand Yi + 0, ci •»• » as i + «, and givexi S C m a compact set, there exists

an integer i > 0 and a scalar e > 0 such that for any i > i , for all

(X,i|;) € s and for all v £ mn such that IM <_ y., there exists a unique

point x (X,i|/,c ) in B(x,e) which satisfies

VF(xv(X,i|>,ci),X,i|>,ci) =v (Al)

Furthermore, for some scalar M > 0,

[lxv(X,^,Ci)-x!l2 <̂ (Ox-Xll2 + 0^-K,ll2) +My2 (A2)
Ci

and

BXv(Af*,c±)-Xl2 +0ij5v(X,i|;,c)-p2 <-^ (Ox-X02 +IIi|,-5«2) +My2
(A3)

where we have used the notation

Xv(X,^,c) = (X+cg(xv(X,4>,c))+ (A4)

*v(X,*,c) - 4» + ch(xv(X,iji,c)) b (A5)

This theorem extends Bertsekas1 result in two ways. First, he

assumes that {y.c } is bounded for all i, whereas we only assume that

Y^ + 0 as i ->• «. Second, Bertsekas1 theorem implies that the e-ball

within which the solution to (Al) is unique depends on i, whereas in

our statement this ball is indpendent of i and this insures that any

-30-



sequence converging to x will eventually be captured in that

neighborhood. We omit the proof of our theorem because it is essentially

identical to Bertsekas1 proof provided that one restates the Implicit

Function Theorem in the special form below.

Lemma Al (implicit function theorem). Let f:Hm x ]Rn •* ]Rn be

continuously differentiable and let x € mm, y € ]Rn be such that
o o

f(xQ,yo) = 0; moreover, suppose that the Jacobian —with respect to the

last n variables is nonsingular at (x ,y ). Then there exist two scalars
o o

a > 0, g > 0 and a unique mapping u of D a B(x ,<x) C n.m into
o

V = B(y,3) C ]Rn such that f(x,u(x)) =* 0 for every x€ u. Moreover, u

is continuous in U and u(x ) = y . Finally, a and 8 do not depend
00 its \-13f(x ,y ) A

directly on f but only on an upper bound on 0 5 =— Dand on

a function <J> : ]Rm x ]Rn x ]Rn •* ]Rn defined as

<Kx,yx,y2) =f(x,yi) - f(x,y2) - || (xQ,yo)(y;L-y2) • (A6)
n

The importance of this reformulation is demonstrated in the following corollary.

Corollary Al Let tj = {f |c £ C} be a parametric family of functions

satisfying the hypotheses of Lemma Al and suppose that there exists a.scalar

M > 0 such that

3f -

V1 (vyo} • ±M ¥cGc (A7>
and suppose that, for some <{> : ]Rm x ]Rn x ]Rn -* ]Rn

9f

f^x^) - fc(x,y2) - j± (xo,y0)(y1-y2) - <Kx,y;L,y2) Vc € c;
(A8)

Then there exist two scalars a > 0, 8 > 0 such that for any c € c there

exists a unique mapping u of U - B(x ,a) C mm into V = B(y ,3) C lRn
CO o

satisfying f (x,u (x)) - 0 for every x C u. Furthermore, for all

c £ C, u is continuous in U and u (x ) =» y . n
c c o 'o
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Appendix 2. A Second Order Algorithm

The following algorithm is an extension of an algorithm proposed

by Mukai and Polak [M2]. Since the augmented Lagrangian is in general not

twice continuously differentiable we have introduced a "smearing"

scheme which is an analogous to the use of e-active constraints in

Polak and Zoutendijk methods of feasible directions [P4] [Zl] and is related

to the e-bundles used in nondifferentiable optimization (see Demyanov ED1,2],

Polak-Sangiovanni-Vincentelli [P5]. Furthermore we have introduced a

limitation of the stepsize, as required in our theory.

In the sequel we shall make use of the following simplified

notation

g(x) = 7 F(x,X,iJ>,c) (A9)

H(x) •» H(x,X,iJ>,c,u) (A10)

with H(x,X,ij;,c,u) as defined in (43a). For given (X,i|>,c,y) we define,

as in Mukai-Polak, the function $:Rn •* IR by

<Kx) =min -|{<e,H(x)e> |Hell £11}. (All)

The following algorithm is used to compute a point

x1 = A(x,X,i|/,c,y,u,p) (see (44a-d), (45)).

Algorithm Al.

Data: a€ (0,1), 3€ (0,1), 0 < e « 1, xQ - x, u > 0, y >0

Step 0; Set i « 0.

Step 1; Compute <Kx.) and an

e± e{e €mn|<g(x1),e> <0, Hell <_ 1, ((.(x^ -|<e,H(x±)e> }. (A12)

Step 2: If •Kx^ >.-u and Hg(x.)H £ y, set x1 = x. and stop;

else go to step 3.
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Step 3. If (j>(xi) < 0 go to step 6; else go to Step 4.

Step 4. If the least eigenvalue of H(x.) is less than e , go to step 6;

else go to step 5.

Step 5. Compute h± =-H(x±)~ g(x±), set v »1and go to step 8.

Step 6. Compute h. = -g(x.) + e.

Step 7. If (h^.HCxj)!^) <_ 0, set vq =1and go to step 8; else set

vq = 8 where k. >_ 0 is the smallest integer satisfying

kJ.B <-< gU±) ,h±> /< h^HCx^) (A130

Step 8. Compute the smallest nonnegative integer I, satisfying

*ivQ8 Dh±B < P (A14)

and

f(x±+vo8 \)-f(x±) <a[vQ8 1<g(x±),hi> +| (vq8 V^HU^h^] .

(A15)

Step 9. Set x±+1 =* x± + Vq8 "t^, set i = i+1 and go to step 1. «

Theorem A2. Either the sequence {x.} constructed by the above algorithm

is unbounded or the algorithm terminates after a finite number of steps,

yielding xf » A(x;X,ip,c,y,]i,p).. n

We omit a proof of this theorem since it follows the same lines as the proof

given by Mukai and Polak and is rather tedious.
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