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ABSTRACT

The fluid equations are solved for a straight magnetic

field and a single mirror under the assumption of a steady-state, one-

dimensional, isothermal flow. The latter assumption is found to be

a poor one during supersonic, shocked flow; otherwise, it is accept

able. Flow through a magnetic mirror is studied as a function of the

relative viscosity of the plasma and compared to fluid flow through a

converging-diverging nozzle. Finally, applications to multiple-

mirror flow are discussed.
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A FLUID MODEL FOR MULTIPLE-MIRROR AXIAL PLASMA FLOW

PART I PRELIMINARIES

I. INTRODUCTION

This report lays the foundation for studying multiple-

mirror axial plasma flow via a fluid model. The fluid equations are

solved for a uniform magnetic field and for a converging-diverging

field (a magnetic mirror). The latter configuration is of interest

because a multiple-mirror device is a succession of single mirrors.

Our interest in a uniform field is in studying the basic character

istics of the equations and their solutions.

Frequently we will compare the plasma flow along the mag

netic field to actual fluid flow through pipes of varying cross-section.

The similarity is clear after making the following assumptions: the

plasma-vacuum interface is sharp and the plasma is of low 3 > so that

the magnetic field is considered a known function of z . Through

conservation of magnetic flux the plasma cross-section A is also known.1

Thus we may compare the plasma flow to that of a fluid flowing through

a pipe of cross-section A(z) .

Throughout this report the flow is assumed steady, one-

dimensional and isothermal. A steady-state results from an arbitrary

plasma source at the system origin and a sink at the exit. Radial motion

*For high 3 , A(z) is not so simply related to the vacuum magnetic

field but must' be solved for via pressure balance, as in Taylor and

Wesson [1].
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is neglected by making a "long, thin approximation" with B large

enough to prevent any significant radial diffusion. Finally, isothermy

originates from a large electron thermal conductivity which maintains

Te(z)=T ,a constant. This is communicated to the ions via ion-

electron collisions on the time scale x. ^ x. *x» /m./m t. . , where the
le le i e ii

superscript e denotes an ene/igy exchange time, and where t. and
i e

t.. are the ion-electron and ion-ion bcjOuttOJiLYiQ times, respectively.

(See Trubnikov [2].) Thus, for isothermal ions we require that x. «x ,
le s

where xg is the time for a fluid element to traverse the scale

length of inhomogeneity of the fluid I . All other electron effects
s

are ignored in the analysis which follows. With this assumption the

similarity between the plasma flow and that of a viscous fluid is even

more pronounced. In fact, the equation of motion used here differs

from the Navier-Stokes Equation only in the form of the viscosity term.

In a straight system they are identical.

Section II" presents the fluid equations and the derivation

of a second—order ODE for the fluid velocity. This equation is cast

in dimension less form to select out the important parameters of the

problem and becomes the basis formost of this report. Section III

presents the analytical solutions of this equation for a uniform magnet

ic field. In Sec. IV an analytical solution neglecting viscosity

is obtained for a magnetic mirror; however, this solution does not

give transonic solutions (transitions from subsonic to supersonic flow,

or vice versa). The transonic case is discussed qualitatively, drawing

heavily from Shapiro [3]. Finally, the mirror-flow problem, including
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viscosity, is solved numerically and the results compared to the invis-

cid case. Section V ummarizes the results and discusses the applica

tions to multiple-mirror flow.
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II. THE FLUID EQUATIONS

The following are taken directly from Dawson and Uman [k]

ignoring the electrostatic potential and setting 3/3t = 0 .

ION EQUATION OF MOTION

nm,v£ --&bTi>**£K'isf) +<-T«>i:£ <'•>
CONTINUITY EQUATION

^(nAv) =0 (lb)

PERPENDICULAR ION TEMPERATURE

dTi Ti-Tj 2vm /Hv/X2 T±f
V a - + ! L

dz t.. \dz/ A dz

m
i

+
i
ei "i

r7£[f<«>+T(T»e-To>]

33f^[nA". dT{Tl+2TJ.,)] <lc>
PARALLEL ION TEMPERATURE

dTl 2(Tl - Tjj ) 2v.m.

dz x.. 3
11

1 m r«

+-L--S. r^(Te-T')

/dv\ i dv
\dl) ' 2T» d7
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+ _la rnA i(Ti+2Ti,] (ld)
3nA dz L i dz " J- J

FLUX CONSERVATION

B

A= A^ -2- (ie)

In the above, n is the ion density (assumed equal to the electron

density), A is the plasma cross-section, v is the z-component of the

flow velocity (same for ions and electrons), Tn ' and j »

the electron and ion" temperatures (in energy units) respectively paral-

are
i

lei and perpendicular to the magnetic field, m. and m are the ion

and electron masses, v. is the ion bulk viscosity, x.. and x . are
i 11 ei

the ion-ion and electron-ion collision times, and k. is the ion thermal
i

2
conductivity. The reader is referred to Dawson and Uman for a thorough

discussion of these equations.

Although we ultimately set T = Tn =T , Eqs. (1c) and (1d)

are included to evaluate the last term of Eq. (1a). We cannot simply

set T = Tn here since this term is found to be of the same order as

the bulk viscosity term. Setting

dT1 dTji'

dz dz

in Eqs. (1c) and (id), subtracting them from each other and then setting

T - Tn - T thereafter (except in the difference T - Tn ), we obtain

2
Throughout this report all quantities subscripted with a zero are evalu

ated at z = 0 , i.e., A =A(0) , B = B(0) , etc.
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X1 I-' 1 T A d /V \ /0vT - Tn ~ — x.. T — — (— J (2)
1 II 3 11 v dz \ /\ /

Thus, the temperature difference is proportional to the small quantity

x.. , as is the ion bulk viscosity

v. = — x.. T (3)
1 m. 11 v-"

( a of order unity). Substituting Eqs. (2) and (3) into Eq. (1a), we

have

ydva _zL d(nT) } a _d_
dz m.n dz m.nA dz . .. , , ....

1 1 x ' 1

(T..TnA^)+lIlil " d l£\ (
\ 11 dz/ 3 m.v dz dz \ A /

Next we define the following dimensionless quantities

"af- • vi7" • a5f <«sf- • M5^= v (5)
o o o c s

Here i^ is an appropriate reference length in the problem, i.e., the

cell length of a multiple mirror, and v =/T/m. is the sound speed
s 1 r

(also the ion thermal speed). Substituting into Eq. (4) and using the
3/2relation x..=X/vs«T /n , where X is the ion-ion mean-free-path,

we obtain

v±L=Z±L*R +?loj>_±J_ I dv\.1^o _L J_ da d /v2\ tc ,
d? M2 nd5 £c Mq na d? TdJ 3*c Mq nv dc dC IT7 (6a)

The continuity equation becomes simply

nav = 1 (6b)
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Using Eq. (6b) to eliminate n , Eq. (6a) becomes

dv_J_J_ d(av) = ^oJ_
dc M2 av dc I M

M_ co

av
d / dv\ a_ da_ _d_ /v
d? \adJ 3d;d^ay (7)

Equation (7) is a second-order ODE for the normalized flow velocity

v in terms of the known area function a(?) and the two parameters

X /£ and M , hereafter referred to as the "flow equation". Its
o c o M

solution is completely determined given the two boundary conditions

v(0) and dv/d?(0) (or v(0) and v(L/& )) , where L is the system
c

length). The first of each set is trivial since by definition v(0) =1

(The boundary condition v(0) makes its appearance through the para

meter M .) Recall that the terms on the left-hand side represent the
o

ion inertia and scalar pressure, respectively. The term on the right

represents the combined effects of pressure anisotropy and will here

after be referred to as simply the "viscosity term." For v^dv/de;

2 2
^d v/d? ^0(1) , the relative order of each term is easily seen to be

inertia : pressure : viscosity = M : 1 : -t— M
' o & o

c

Thus for M ,X /I « 1 the pressure term is dominant. However, for
o o c r '

v=1/M so that M=1 , the ordering becomes 1 : 1 : (X /£ )(l/M ) so
o o c o

that all terms may be comparable.

For future reference it is useful to rewrite the condition

for uniform ion temperature in terms of our dimensionless variables.

First it can be shown that x = (l/M) U /% ) (z /x)x.. • Since
s seen

A«1/n this can be written x = (l/M) U A ) U /l ) (x../n) . Hence,
S C O S C ||
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the condition for isothermal ions becomes

x A u
O c M . i ^ /n\

Finally, we should note that Eq. (4) differs from that

used by Miller [5], who derives the force equation directly from Brag-

inskii [6]. The differences, which as of yet have not been resolved,

lie in the explicit form of the viscosity term. Since this term is

usually small, we will not overly concern ourselves with this discrep

ancy.
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III. FLOW ALONG A UNIFORM MAGNETIC FIELD

Setting a = 1 in Eq. (7) we have

X 2dv _]_ j_ dv __ o av d v , *
d? " M2 vd? I M .2 {3)

M " cod?

Notice that the temperature anisotropy term has dropped out, leaving us

with the Navier-Stokes Equation. Dividing by v and integrating once,

there results

where

-'♦i(H - rr(£-)
M co
o

*;s £<•>

Solving for dv/d? , we obtain

£ . oir ( , i (1. ,\| +v. (10)
dC A a I o ' M \v /J o

This equation can be integrated by first separating variables. For

v« ?*0
o

vdv

M 2 /m ^ 1 X0 A .. 1 Cd? ,,-xMv - I M +TT—-r~av,lv+-7- = r 2- (11)
o \ o M £ oj M X. a

o c / o o
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The results of the integration depend on whether M <1 or M >1 . For

v'l « _£_L
o' X 2a .. ,..2

K -'):
o M (M +1)

o o

the expressions are particularly simple3

C =

a

*c 1-M2
o

a

*cM2-1
o

where

1 .

o \ 1/M

o

1/M' - v

- 1

f] + y» - v^
o

*o

aM

2 o^ 5
c 1 - M

1

• jr ln\ 2Mo Vl-1/M2

'1 + u' - v>

H In ' °

v- 1/M'

O J

M < 1
o

(12a)

, M > 1 (12b)
o

(12c)

There are two distinct profiles given by each of Eqs. (12), depending on

the sign of V . For v^<0 ,Eq. (12a) gives the same profile as

(12b) except shifted in c . Choosing v' >0 in Eq. (12b) leads to an
o

entirely unphysical profile in which the velocity increases without bound

Thus, we are left with the two cases M <1 , v' >0 and M >1 , v1 <0
o o o o

3
This inequality is imposed only to obtain the simple forms of Eqs. (12),

and only restricts our placement of the origin relative to the profiles.
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As an example of the former, consider the choices M =0.5 ,
o

v^O.01 ,a=1 for which Eq. (12a) gives the profiles shown in Fig. 1(a)

Here X /& is set to one so that the units of c are mean-free-paths.
o c ^ r

Superimposed on the curve M = M v is that of n , obtained from the con-
o

tinuity relation nv = 1 . The most obvious feature of the curves is that

M-*0 and n^00 at a point c . to the left of the origin, where
mm

c . = r— In

mm M (1-M2)
o o

y
o

1-M2
o

Although we have, imposed an upper limit on |v"| to obtain Eqs. (12),

solutions certainly exist for v1 large. For example, shifting

the curves of Fig. 1(a) to the right by an amount less than \c, . | rep

resents such a solution. The resulting flow is then characterized by

an acceleration and pressure drop within a few mean-free-paths into the

system. Whatever the source of the initial velocity gradient, the impor

tant point here is that bulk viscosity does not lead to an increasingly

accelerating flow, as is the case during fluid flow through pipes with

wall friction [3]. Instead, it simply smooths out the initial gradients,

causing the profiles to asymptote to steady values. Note that for v1 =0

M arbitrary, Eq. (9) has the trivial solution n= v=1 , which may be

easily seen from Eq. (10). We have just shown that the equations have

a preference for such a uniform solution; thus we conclude that the impo

sition of v* >0 does not represent an easily realizable physical system.

This conclusion will be applied in the next section on flow through a mag

netic mi rror.

- 12 -



An example of the case M >1 , v1 <0 is presented in
o o

Fig. 1(b) for M =2.0 , v»=-0.01 , a=1 . As required by basic fluid

theory [3], the velocity decreases and the density increases during vis

cous supersonic flow. These profiles represent a shock front, resulting in

a transition to subsonic flow ( M =0.5 ) over a distance of about four

mean-free-paths. Referring back to Eq. (12b), we see that in general

the two asymptotes of v(c) are v - 1 and v . =1/M , such that
max mm o

2
the shock strength is v /v . =M . In a frame with X /% « 1 , Eq.

max m in o o c

(12b) predicts an almost discontinuous profile. This is expected since

the shock thickness depends on the magnitude of the viscosity term which

in turn is proportional•to X /I . Furthermore, on either side of the
o c

shock dv/dc is very small. Thus, for a fixed value of M , varying

v1 within the range
o

* , (M2- 1)2
0 < |v'| < C 1 °

o M (M + 1)
o o

has the effect of shifting the shock along c • (Letting \>' -+Q drives
o

the shock toward +«.) This behavior will reappear in the following

section on mirror flow.

Before continuing, we should realize that the previous results

are not to be interpreted too literally. First of all we have no justifi

cation in accepting solutions which vary significantly over a few mean-

free-paths. This is a direct consequence of the limitations of the fluid

theory. Thus, we should be wary of the "boundary-layer effect" predicted

by Eq. (12a) or the details of the shock structure of Eq. (12b). As to
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the latter, however, we are justified in accepting the values attained

by the profiles downstream of the shock. This is because the equations

conserve such quantities as mass and momentum flux [3]. That is, the

shock strength predicted by Eq. (12b) is correct under the assumption of

isothermy. However, as mentioned in the Introduction, this assumption

is valid only for T (z)=T , a constant, and x. «x . Referring to
e le s 3

Eq. (8) with I ^X , M^ 1 and n^ 1 , the latter condition is badly

violated and isothermy is a poor assumption. We will not let this deter

us, however, since our ultimate intention is not to study shock fronts

but subsonic, shock-free flow througn a multiple-mirror, for which iso

thermy is a fair assumption. If desired we may imagine the temperature

maintained uniform across the shock by some external means.

- 14 -
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IV. FLOW THROUGH A MAGNETIC MIRROR

For this section and the remainder of this report we use

the area function

•(C) = ^f+^fcos 2w5 (13)

where Rs B /B . , the mirror ratio. This function is sketched for
nia j\ m i n

R=2 in Fig. 2. Substituting Eq. (13) into Eq. (7) results in an expres

sion that can be solved easily only in the limit X /l =0 . In this
o c

case, Eq. (7) becomes

dv _ J_ d In av

o

Solving for dv/d? ,

dv 1 da
d4)

d? 3dC(Mv)2-1

This can be integrated to yield

2 2
v - — in av » 1 (15a)

M
o

Using Eq. (6b) we can write this in terms of n

'n2(l-^lnn) =12
a

- 15 -
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Eqs. (15) are sketched in Fig. 3 for R=2 and the two choices (a)

Mq =0.25 and (b) Mq =2.0 . As expected the subsonic solution is char

acterized by a density minimum and a velocity maximum in the mirror

throat, and the supersonic solution by just the opposite. Notice further

that for a(c) periodic with period unity the solutions are similarly

periodic. This means that there is no overall density (pressure) drop

across a succession of such mirrors. We will return to this point in

the final section. Referring to Eq. (14), the solution becomes singular

at v=1/M (M=1), preventing a transonic solution.

We now discuss qualitatively the family of solutions, both

subsonic and transonic, for an inviscid fluid flowing through a converg

ing-diverging nozzle. We imagine being given the inlet pressure p and
o

investigating the flow as a function of the exit pressure p . Refer

ences are repeatedly made to Fig. 4, taken from Shapiro, p. 140, which

is for adlabatic flow of a perfect gas. Initially, entirely subsonic

flow results when p1 is reduced below p , as in Fig. 3(a). This is

shown by case (a) of Fig. 4. Lowering p1 further, state (b) is even

tually reached, where the velocity in the throat has reached M=1 (sonic

flow), but the flow downstream is still subsonic. The flow is now choked,

meaning that no further reduction in p affects the flow upstream of

the throat or increases the fluid flux. Between cases (b) and (f) there

exist no values of p. that result in smooth shock-free flow. Case (f)

corresponds to a unique value of p1 for which shock-free supersonic flow

does exist in the diverging section. Cases (c) and (d) represent shock

fronts involving abrupt transitions from supersonic to subsonic flow. As

P1 is reduced from that of case (b) the shock is seen' to progressively
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move down the nozzle. The flow approaches that of case (d), in which

the shock occurs at the exit. Except for case (f), further reduction

of the exit pressure results in oblique shocks outside the nozzle, as

represented by cases (e) and (g). These effects are two-dimensional

and cannot be treated in our simple theory.

The flow characterized in Fig. 4 is that of an adiabatic,

inviscid fluid. We wish now to investigate the effects of isothermy

and viscosity. For X /% « 1 we expect Fig. 4 to be qualitatively

duplicated since the viscosity term of Eq. (7) is then small. The

slight amount of viscosity simply gives structure to the shock fronts

(Fig. 1(b)) so that no singularities occur in the flow equation. Fur

thermore we expect that our imposition of constant temperature only

affects the magnitude of variation of v and n , but not the general

behavior characterized in Fig. 4.

The flow equation (7) is solved numerically using an inte

grating routine devised by Gear and Hindmarsh [7]. The program requires

a system of first-order ODE's necessitating the definition of a new

va r iab 1e

Eq. (7) then becomes

£>L = Ida. [-LL*±/2\v^] 1 £c 1 I"/,. t 1 \ , 1 idal
dC adcVL3aadc V+3a j VJ +a X~ iV LlV"FTVJ V mT I di"J

o o o

(16b)
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In the following, a is set to 0.96 [6]. The routine further requires

all boundary conditions to be given at C=0 , namely v(0) and v'(0) .

(As mentioned earlier, we have defined v(0) =1 so that v(0) appears

through the parameter M^ .) Thus, given a value for X /£ , the solu-
o " o c

tion to the system of Eqs. (16) is completely determined by the set M

and v' h v' (0) .
o

To generate curves similar to those of Fig. 4, X /% is
o c

set to 0.01 , so that the fluid is nearly inviscid. From the findings

of the last section, v1 is set to zero since the plasma initially seeso 1-7

a straight system da/d^(0)=0 . Two cases of entirely subsonic flow

are presented in Fig. 5 for M =0.25 and M =0.3 . We immediately
o o

note that the small amount of viscosity shifts the velocity maximum and

density minimum into the divergent section of the mirror. As M is in-
o

creased to duplicate case (b) of Fig. 4, a value is reached for which sonic

flow first occurs at a point slightly beyond the mirror throat. This situ

ation is represented by the case labeled M =0.3175 . As M is increased
o o

further, the flow becomes supersonic over a short distance with a subse

quent smooth transition back to subsonic flow. This behavior is inter

preted as a weak shock developing in the divergent section of the mirror.

As Mq is increased still further, approaching sonic flow in the throat,

the shock front grows in amplitude, steepens, and moves downstream. Curves

for which M = 1 in the throat are presented in Fig. 5, corresponding

k
The value of M in the mirror throat is simply estimated from the curves.

Hence, there is a small uncertainty involved in the actual value.
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to M =0.3225. An interesting phenomenon occurs if M is chosen
o s o

just slightly larger so that M is barely greater than unity in the

throat — the solution for v diverges, indicating an unphysical solu

tion. An example is the case labeled M =0.325 . Thus, the numerical

solutions preserve the phenomenon of choking — no physical steady-state

solutions for M larger than a critical value. Furthermore, it appears

that choking occurs for M=1 in the throat even during isothermal vis

cous flow.

In order to proceed further and generate curves analogous

to cases (b) through (f) of Fig. 4, we begin the integration at C=0.5

(in the mirror throat) where we may accurately impose the condition M=1 .

This leaves only the quantity v'(.5) with which to determine the flow.

As argued in the inviscid fluid case, the flow upstream of the throat is

unaffected by reducing the exit pressure. Thus, in the following cases

the profiles upstream of the throat are those for critical flow. It should

be recalled that the relevant physical parameter that is being varied

here is the exit pressure (density) via the boundary condition v'(.5) .

Thus, only those values of v'(.5) giving n(1.0)<n . (1.0) are
— cr 11

valid. This condition translates to v'(.5)>v' . (.5) . It is found
— en t

that there exists a maximum value of v'(.5) above which the solution

diverges. This valve, which we will denote by v' (.5) , corresponds to
' max ' v

the instance of smooth, shock-free supersonic flow, as in case (f) of

Fig. 4. Furthermore vmax(-5) is found to be only slightly larger than

v' :«.(*5) , leaving us only the restricted range v1 . (.5)<v'(,5)<v' (.5)
crit crit - - max

This case is hereafter referred to as "critical flow". In the following

discussion its solutions n and v are subscripted with "crit".
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with which to work. In order to generate a shock front and move it down

stream, v'(.5) must be chosen very near v1 (.5) . To accomplish this,
max r '

the program was modified to search for that value of v'(.5) which

yields a specified value of n(1.0) , the physical boundary condition.

The results for three choices of n(1.0) are presented in Fig. 5, labeled

n(l.O) =0.85, 0.65, and 0.2 . As evident from the curves, the differ

ences between their values of v1 (.5) are unnoticable. The case n(1.0)

=0.20 corresponds to all but the "tail" of the shock having moved out

the system.

Thus, we have seen that the boundary condition on dv/dc is

only important in generating the flow profiles downstream of the throat

in a choked system. Otherwise M has by far the dominant role. We

have also seen that the effect of v'(.5) is the same as in our previous

study of shocks in a straight field — that is, it shifts the location of

the shock. Finally, we should mention that isothermy is a fair assumption

only for the case labeled M =0.25 . That this is so can be seen using
o 3

Eq. (8) with X /A =0.01 , a /£ a£ (from the curve for M ), M*0.5

and n^O^ (worst cases). For larger values of M , the scale lengths

for density and velocity variations are too short for ion-electron colli

sions to maintain T. a constant.
1

To complete our study of viscous flow through a single mirror,

we now consider the flow of a more viscous plasma. To do this we increase

the value of X /£ in Eqs. (7) and (16b). However, we are limited in

the fluid theory to X «Z , where as before l is a typical scale
s s

length for variations in n , v or A . Analogous to Eq. (8) this condition

can be written in terms of our dimension less variables as

- 20 -
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For M>j/nTTrnT , this condition is less stringent than that of Eq. (8).

To begin, we define I in terms of A(z) for which I /% «\ . For
s s c

n=1 , Eq. (17) then demands that X /l «£ . Choosing X /I =0.1
o c o c

and vQ =0 ,we present two cases of purely subsonic flow in Fig. 6 as

the curves labeled M =0.15 and M =0.25 . We make the following com-
o o 3

parisons to Fig. 5: (1) the points of velocity maxima and density minima

are displaced farther downstream of the throat. (2) For the same value

of Mq (for example, Mq =0.25 )the pressure (density) drop across the

system is greater.

As Mq is increased, M=1 first occurs at 5=0.675 , pre

sented by the curves labeled M =0.315 . Increasing M further results
o o

in a region of supersonic flow followed by a very slow transition back

to subsonic flow, such as the case labeled M =0.325 . As M is in-
o o

creased still further, the region of supersonic flow increases until for

MQ =0.331 the flow downstream of the throat is entirely supersonic. Thus,

we see that shock-like behavior vanishes in such a viscous plasma. As

Mq is increased further, the position of the velocity maximum and density

minimum moves out the exit. The curves for M* 1 in the mirror throat

are given by those labeled M =0.353 . Unlike the case X /% =0.01 ,
o o c

no catastrophic behavior occurs for M>1 in the throat. Referring back

to Fig. 5, we notice that for M<1 in the throat the velocity profiles

exhibit inflection points near the throat. However, for M>1 jn tne

For M=1 in the throat it can be shown using Eq. (16b) that this position

is the inflection point.
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throat, no such point exists and the profiles diverge. In the present

case, however, the inflection point moves relatively slowly toward the

exit as M is made greater than unity in the throat. Two examples are

the curves labeled M =0.36 and M =0.4 . In this sense the numerical
o o

solutions no longer demonstrate an obvious choking effect. We instead

resort to intuition and a cursory study of the flow equation in asserting

that choking still occurs for M=1 in the throat, even with substan

tial viscosity, and that the profiles with M>1 here are unphysical.

Since shock fronts do not occur there is no need to initialize the inte

grations in the throat, where we specify M=1 and vary v'(.5) . This

is because we are able to generate all exist densities (pressures) down

to that analogous to case (f) of Fig. 4 via the parameter M0 alone.

Although the curves are much smoother than those of Fig. 5,

isothermy is found to be a poor assumption for all the cases shown in

Fig. 6. Even for M =0.15 where %/% =0.6 , M =0.3 and n-0.9 ,
o s c

the inequality (8) is badly violated. This is because X /I is a fac-
o c

tor of ten larger than that of Fig. 5, resulting in relatively few ion-

electron collisions. Finally we check if Eq. (17) is satisfied with

&s/&c defined in terms of n and v ,and taking into account the

substantial decay of n along ? (which lengthens the mean-free-path).

Because W& «s large where n is small, Eq. (17) is still found to

hold (although barely).
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V?

V. CONCLUSIONS

Comparing Figs. 4 and 5, we see that the flow of a nearly

inviscid plasma through a magnetic mirror is very similar to fluid flow

through a converging-diverging nozzle. However, the flow of a moderately

viscous plasma is quite different, in that shock fronts do not develop.

The fact that isothermy was a poor assumption does not hinder us in

applying the results to subsonic multiple-mirror flow, in which shocks

are excluded and the flow is usually slower. To see how this is done,

consider a "half-system" with z = 0 corresponding to the midpoint of

the multiple-mirror and z= L an exit. In the limit X /% =0 , Eqs.
o c ^

(15) give the solution for a(&) periodic With a(c) given by Eq. (13),

Fig. 3(a) represents an example of the profiles at any particular mirror

of the device. As mentioned at that time, there is no change in the over

all levels of density and velocity from mirror to mirror. However, the

inclusion of viscosity results in an overall decrease in density (pressure)

and an acceleration of the flow from mirror to mirror, as evident from

the entirely subsonic profiles of Figs. 5 and 6. This effect is more

dramatic with greater viscosity. For small pressure differences between

the ends of our half-system, the flow will be as described. As the pres

sure difference is increased, sonic flow and subsequent choking will first

occur in the exit mirror. In physical systems in which the exit pres

sure is low, a choked flow is a reasonable assumption, and M=1 in the

exit mirror throat becomes a "natural" boundary condition. Since we

are not concerned with the flow beyond the exit mirror throat, shock^

fronts do not occur in the multiple-mirror. Furthermore, the flow is

everywhere subsonic, adding to our justification in assuming isothermy.

These observations will be made more quantitative in a forthcoming report.
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