

Copyright © 1979, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

ALGORITHMS FOR COMPUTER AIDED DESIGN OF

CONTROL SYSTEMS BY THE METHOD OF INEQUALITIES

by

E. Polak and D. Q. Mayne

Memorandum No. UCB/ERL M79/48

26 July 1979

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

ALGORITHMS FOR COMPUTER AIDED DESIGN OF

CONTROL SYSTEMS BY THE METHOD OF INEQUALITIES

E. Polak

Department of Electrical Engineering and Computer Sciences
and the Electronics Research Laboratory

University of California, Berkeley, California 94720

D. Q. Mayne

Department of Computing and Control
Imperial College of Science and Technology

London SW7 2BZ, England

ABSTRACT

This paper collects a number of scattered results on the solution

of both finite and infinite systems of inequalities into a unified

whole. In particular, it presents two methods which solve finite

systems of inequalities in a finite number of iterations and which use

outer approximations techniques for infinite systems of inequalities.

Research sponsored by the National Science Foundation Grant ENG73-08214-A01,
the Joint Services Electronics Program Contract F44620-76-C-0100 and the
National Science Foundation (RANN) Grant ENV76-04274.

I. Introduction

It has been shown that many design problems, including that of

designing controllers for multivariable linear and nonlinear systems,

can be transcribed into the problem of satisfying nonlinear inequality

constraints [1,2,3]. However, design specifications frequently result

in surprisingly difficult inequalities (functional inequalities) for

which standard algorithms are inadequate. Examples of functional

inequalities in the time domain include (hard) constraints on outputs,

states, control magnitudes, control rates etc. in response to standard

inputs (e.g. step inputs); examples in the frequency domain include

stability constraints on Nyquist locus and constraints on the closed

loop frequency response; examples in parameter space include integrity

(e.g. eigenvalues of closed-loop system must lie in open left half plane

for all values of a parameter vector p in a set P). All these

constraints can be expressed in the canonical form g(x) = max{<j>(x,a) \o^A}

<. 0 where x is the design vector and a represents time t or frequency w

or parameter p etc. These constraints are very complex as they are

essentially infinite dimensional. An algorithm for satisfying such

inequalities is presented and it is shown that the efficient operation

of the algorithm requires highly efficient sub-algorithms for finding a

point x which satisfies a finite number of inequality constraints. Two

newly developed algorithms for solving this latter problem are described

and their performance evaluated by means of examples.

-1-

2- Outer Approximation Methods for Infinite Systems of Inequalities

To illustrate how cumbersome inequalities arise , let us consider

the design of a simple feedforward controller, with transfer function

G(x,s), where x are the design parameters. First we are bound to have

simple inequalities of the form x >_ 0. Second, the requirements of

stability, as expressed by the Lienard-Chipart test, say, result in a

system of algebraic inequalities f^(x) <. 0, j « 1,2,..., JU Third,

frequency response requirements may lead to inequalities of the form

g (x,w) _< 0 for all ui £ [wn,aj-], k = l,2,...,m ,and step response require-
u r iu

ments (e.g. on peak overshoot) may lead to inequalities of the form h (x,t)

<_ 0 for all t£ fto»tf^» * = l>2>»'*>mt> and finally it may be necessary to

ensure that the system performance remains within specifications not only

for the normal value x of the design but also for all realizations within

tolerances i.e., for all x = x + t, t £ T. Eventually, when one collects

all of these inequalities one obtains a system of inequalities of the

form

gj(x) <0 j» 1,2,...,Z (1)

<j>k(x,ct) <. 0 Va e^Ak, k= l,2,...,m (2)

where the gJ :H ->• IT and <{> :]R x K. ->•]R are all continuously differen-

tiable. Obviously, the major source of difficulty is caused by the

inequalities of the form (2). Hence, without great loss of generality,

but with a substantial gain in notational simplicity, the general method

for solving (l)-(2) can be explained by considering the simplest case of

(1), (2), viz, the system

-2-

(J>(x,a) < 0, a € Jk (3)

where <J> : 3R xR •+ R is continuously differentiable ando4cIR™ is a

compact set.

In [9] we find algorithms for solving minimization problems with

constraints of the form (3). We can extract from these algorithms a

method for solving infinite systems of inequalities, such as (3). The

basic idea is to decompose the solution of (3) into the solution of a

possibly infinite sequence of finite systems of inequalities of the form

<j>(x,a) 1 0, aGo4fc, k=0,1,2,... (4)

with<^4fc afinite (discrete) subset of <J(. Obviously, for such a scheme

to be efficient, we must have very rapid and finite subprocedures for

solving (4) (with k fixed). Such subalgorithms will be described in the

next section. First we must address ourselves to the construction

of the {Jl and examine the consequences of the scheme we are about to
n 1

propose. Let ^ :H -*-It be defined by

Kx) = max <Kx,a) (5)

then we see that x satisfies (3) if and only if \|>(x) _< 0. Quite obviously,

Kx) is very expensive to compute, even approximately. We shall need to

compute it approximately with progressively greater precision, as the

computation progresses. Let £ :N +1N (3N= {1,2,3,...}) be strictly

monotonically increasing. If we apply &(k) iterations of an optimization

algorithm to the evaluation af (5), we get an a, (more precisely a ,, .)

and an approximate value of i|/(x), which we denote by i[l (x) = <J>(x,cl).

(We assume initialization in a compact set for a).

-3-

We shall assume that our algorithm has the property that |i|> (x) - i|;(x) |

-»• 0 as k -*- «, uniformly with x in any large bounded set. Furthermore, we

shall need a double subscripted sequence, {e }, . which satisfies the

following hypotheses:

HI: e^ = 0 for all k and e., > 0 for all k > j;

H2: e k /* e. > 0 as k -»• », uniformly in j;

H3: e.\0 as j •»••.

As we shall later see, it is advantageous to keep e. as large as

possible for as long as possible. A typical such sequence is defined by

, 1/10 1/10

ejk =100^ - <ES> J'k^'
Master Algorithm

Data: i^- c(^A adiscrete set. Adouble subscripted sequence {e.,}^ •

satisfying Hi - H3.

Step 0: Set k = 0.

Step 1: Compute an x, such that

(Kxk>°0 _S 0for all ae(J(. (6)

Step 2: Compute^, (x,) and a, ^^A such that ^(x.) = <J>(x, ,cl).

Step 3: If \(x.) <. 0, set x^ «x^, set<-Ak+1 =<-^v» set k=k+1and
go to Step 2. Else proceed to Step 4.

Step 4: Construct

Set k = k + 1 and go to Step 1. a

-4-

Before we proceed to analyze this algorithm we note the effect of

the behavior of the sequence e.,: for any given j, <()(x.>a.) > e.v may

hold for k = j and a few more iterations, but as k increases, eventually

<j>(x.,a.) < £.1 is quite likely to occur and j is dropped from {Jk^.-t and
3 J jk K+l

all subsequent^, I = k+2,... . This device tends to keep the cardinality of

(ji^, small, enhancing the rapidity with which the points x, are computed.

Theorem 1: Let 'xjh=Q by any sequence constructed by the Master Algo

rithm. Then any accumulation point x of {x, }, „ satisfies ip(x) £ 0.

Proof: Let ix^'k^O be a sequence constructed by the Master Algorithm. We

distinguish two cases. First suppose that for all k >. kQ the algorithm

cycles in- the loop defined by Step 2 - Step 3. Then we have x= x^

for all k > kQ and $*(\)£ 0 for all k^ k . But by assumption

ip(x-) = lim ik (x,) and hence ^(x.) < 0.
K0 k-*» * k0 ^0
Next, we suppose that the algorithm does not cycle indefinitely

between Steps 2 and 3 and that x,+x as k + », k€KCl, To obtain a

contradiction, we assume that iKx) > 0. Then, since tf»(.) is continuous

(see B.3.20 in [10]) ^(x^ •»• <l>(x) as k -> «, k € K, and therefore, since

\(\) "*" ^\^ as k -> oo, k€ K, there exists a k such that ij;.(x.) >_ i|>(x)/2 >_ e.

— £jk for a11 JGK» 32. ^ and k>, j. But this implies that a. e'-A,
for all j S k, j ^kp and all k _> j +1. Now, by construction of x, ,

(Kx^oO 10 for all a€U^k and hence

♦<V°j> - ° for a11 j GK*j -k> (7)
and k _> j + 1

Now, {Jk is compact and hence <j> (•»<*) is continuous, uniformly in a £c_A.

Therefore

-5-

UCx^ct..) - <Kx^,a.)| +0 asj,k +« (8)

with j,k G K and k ^ j +1. Combining (7) and (8), we obtain that

lim iK(x.) < 0 /on
jQK J J w

and, since |if>. (x.) - iKx.)| + 0 as j + », and ip(x.) •* i|»(x), as j + «,

we must have ip(x) £ 0. But this contradicts our hypothesis and hence

we are done. a

Although Theorem 1 does not rule out the possibility that the

cardinality of the sets;_A increases without bound, in practice it has

been found that the cardinality of the sets (_A remains quite small, with

{j/\. containing only a few points. Also, x, is an excellent initial point

for computing x, . by means of one of the algorithms to be described in

the next section and hence the whole computation progresses quite

efficiently.

3. Finite Algorithms for Finite Systems of Inequalities

Consider the system of inequalities

g1(x) < 0 j e m (10)

where m = {1,2,...,m} and the g^ :H -*-R are Lipschitz continuously

differentiable. By analogy with (5), we adopt the notation

tj/(x) = max gj(x) (11)
j%

No confusion with (5) will arise since we need no more refer to the case

of infinite inequalities. We shall need the following additional

-6-

assumptions.

H4: There exists anx*6i such that ty(x*) < 0.

H5: 0 £ co{VgJ(x) |j e i(x)} for all x such that ij>(x) > 0, where

I(x) ={j em|gj(x) =<Kx)} (12)

and co denotes the convex hull of the set in question. n

The algorithms appear to work also under the weaker assump

tion

—: 3xP"~ 8(x)+ "°if and only if S(x)+ "°where §W €3Rm is a
vector with components

[g(x).]j =max{0,gj(x)} j£i (13)

n

It is well known (see e.g. Ch. 4 in [10]) that when H4 and H5 are

satisfied, it is possible to find a point x solving (10) in a finite

number of iterations of any of a number of methods of feasible directions.

A particularly simple version of such an algorithm is developed in [11]

on the basis of the phase 1 Topkis-Veinott method [10]:

Algorithm 1:

Data: xn £]Rn

Parameters: a £ (0,1), S ^ (0,1), y > 0.

Step 0: Set i = 0.

Step 1: If ty(x±) £ 0, stop. Else, compute a direction vector h as a

solution of the linear program (Topkis-Veinott [10])

9TV(xi) A„^n maxi SJ(x,) +<VgJ(x),h> - ,/,(*) (14)
ilhll <y J^

f
Set the cost f(x) = - « and Vf(x) = 0 in the algorithms in [11]

-7-

k.

Step_2: Compute the step length X± =6\ by the Armijo rule [10]:

k =argmax {6k|i^(x +gkh)-</,(x.) <3ka S^x.)} (15)
k<=]N ± ™ x

K
SteP 3: Set xi+1 = x± + $ h±, set i=i+1 and go to Step 1. n

The hypothesis H5 ensures that S^x.) < 0 and h. ^ 0 for all
TVV i7 i

x± £F« {x|gJ(x) £ 0, je m}. The hypothesis H4 ensures that the

minimizer of i(>(#) lies in the interior of F and hence that the boundary

of F is crossed after a finite number of iterations. To be quite precise,

the relevant properties of Algorithm 1 are as follows:

Theorem 1 rill; Suppose that H4 and H5 are satisfied. Then, either

Algorithm 1 constructs an x <= F= {x|g** (x) £ 0, j€ m} in a finite

number of iterations, or it constructs an infinite sequence {x.} which

has no accumulation points (and hence is unbounded). The following

result is obvious.
n

Corollary 1: If the set {x|Kx) £ KxQ)} is compact, Algorithm 1 finds

a solution x to (10) finitely. n

An algorithm such as Algorithm 1 (in [11] we also find more complex,

but also more efficient algorithms in this class), finds a solution

x £ F quite rapidly when the set F is "fat." It can become quite slow

when the set F is "narrow." On the other hand, appropriate versions of

Newton's method (see [4,5]) always converge very rapidly, with only

one hitch: they do not converge finitely. In the rest of this section

we shall show how Newton's method can be combined either with Algorithm 1

or with a boundary shifting technique to obtain a very rapid method for

solving (10) finitely. The simplest version of Newton's method for

-8-

solving (10) was proposed by Robinson [4], Given x., it solves the program
1

3g(x.) <
min{llvllk|g(xi) +—^- v « 0}, k =2,» ' (16)

for a v. and sets
i

Xi+1 = xi + V i=0»l>2,... (17)

where g(x) =(g1(x),... ,gm(x))T. When ilvll^ =max|vj| is used, (16) is a
3

m

linear program, when ilvll2 = £ (vj)2, is used, (16) is aquadratic

program. Either can be used, the trade off being that while the L norm

gives better computational behavior, it makes (16) harder to solve. It

was shown by Robinson that under H5, if \\>(x) is sufficiently small,

then {x±} constructed according to (16) and (17) converges with root rate

2 to an x satisfying i|/(x) £ 0, i.e. for some M > 0, 6e (0,1), !lx -xlU M62 ,

i = 0,1,2,... .

A stabilized version of Robinson's algorithm was proposed by Mukai

and Polak in [5].. Their version converges globally and defaults to an

Armijo type gradient method [10] for minimizing ilg(x), II2 when Newton's

method fails. The vector g(x)+ S]Rm is defined for all x6En by

[g(x)+]J =maxCCg^x)}, jSm, (18)

Stabilized Newton Method \ 5 1

Parameters: a € (0,1/2), B € (0,1), L » 1.

Data: xn S]Rn

Step 0: Set i = 0.

Step 1; Stop if i/;(x) _< 0. Else, solve the program

-9-

2 3g(x.) <
min{Hvllk|g(xi) +—^— v=0} , (19)

for v± (where II •II is either &2 or ^ norm).

Step 2: If v exists and IIv II £ L, set p. - v , else set
3g(x.)T

Pi = •' ix~ g(xiV

Step 3: Compute the smallest integer k. ^ 0 such that

k. k

ilg(Xi+6 S^+i2 £ (l-2oB hhixjj2 (20)

Step 4: Set xi+1 = x± + 3 p , set i - i+ 1 and go to step 1. *

Theorem 2 \ 5]: Suppose that H5 holds. If the stabilized Newton method

constructs an infinite sequence {x.}, then, either this sequence has no

accumulation points or it converges with root rate 2 to an x such that

g(x) £ 0. n

First we show how Robinson's Newton method can be combined with

Algorithm 1 to produce a method which is both rapid and which also termi

nates finitely. The idea is to take one iteration of Newton's method

followed by one iteration of Algorithm 1, with certain precautions added

to ensure overall convergence.

Algorithm 2 [7];

Parameters: a S (0,1/2), 3 e (0,1), y > 0, L » 1.

Data: x SRn,

Step 0: Set i = 0.

Step 1; If iKx±) £ 0, stop.

Step 2: Solve for p(x.) the Newton program

3g(x.) <
minCflpO|g(x±) + 2K P= 0} (21)

-10-

where D«B is either the A^ or &7 norm. If p(x.) exists and Up(x.)ll £ L,

solve for p'(x.) the modified Topkis-Veinott descent direction program

min max (gj(x.) +<Vg^ (x,) ,p(x) + p'>} (22)
IlpMI-cy j% 1 i

and' set p± « p(x±) + p'(x±). If p(x±) does not exist or Hp(x.)ll >L,

solve for p"(x.) the Topkis-Veinott descent direction program

min max{ga(x.) +<VgJ(x.),p">} (23)
ilp'MUl jSm ± i

and set p. = p"(x.).
1 e x i

Step 3: Determine the smallest integer k. .> 0 such that (c.f. (15))

k. k

*(x.+e V) - <Kx) <a3 i[max{gj(x.) +<Vgj(x.) ,p. >} - i|»(x.)] (24)
11 jQa1 i:L x

k.

Ite2_4: Set xi+1 = x± +6 \±, set i=i+1and go to Step 1. a

The qualitative convergence properties of Algorithm 2 are identical

to those of Algorithm 1, as is shown in the theorem below, reproduced

from [7].

Theorem 3: Suppose that H4 and H5 are astisfied. Then, either Algorithm

2constructs an xg €f={x|gj (x) «0, jGmJina finite number of itera
tions, or it constructs an infinite sequence {x.} which has no accumulation

points. n

Corollary 1 holds true also for Algorithm 2.

An alternative approach to pushing Newton's method "over the brink"

in a finite number of iterations was proposed in [8] . The idea is quite

simple: substitute for the system (10) the system

-11-

g3 (x) + e£ 0 j6B, (25)

with e > 0 such that (25) has a solution and apply Newton's method to

that system. In the process, Newton's method finds a solution x to the

original system (10) in a finite number of iterations. The only diffi

culty with this approach is that one does not know in advance for what

values of e > 0 the system (25) has a solution. The idea proposed in

[8] for finding a satisfactory e > 0 is as follows. If e > 0 is small

enough and xQ is such that ip(xQ) is small enough, then, the sequence

constructed by Newton's method [8] satisfies

21
iKx.) £ " e + MS i = 0,1,2,... (26)

for some M > 0 and 6 6 (0,1), both independent of e. Hence, if for

k = 0,1,2,..., we let e = Y^Eq* with y G (0,1), and i = JL , where l is an

integer such that L / » as k ->• «>, we get for z = x in (26):
k

Uzk) £-Y^q +M62 k£0 (27)

for k finite, sufficiently large. With a little more work, it can be

shown that if an additional safeguard (see (30), below) is added, and,

A kfor each value of e a e. a Yien' Newton,s method is applied to (25) for

at least Z. iterations, then the inequality (26) eventually becomes

valid and by (27), the process must be finite. The exact structure of

the algorithm in [8] is as follows.

Algorithm 3.

Parameters: a € (0,1/2), 3e (0,1), L » 1,-Yi* Y2 g (0»1) > <$ e (0,1),
00

integers iL.}, n such that JL .. > JL for all k.
k k=0 k+1 k

-12-

Data: zQ €]Rn, eQ >0.
Step 0: Set k = 0.

Step 1: (Initialization of Newton's method [5] for (25).) If iKO £ 0,

stop. Else, set i = 0, xn » z. , e = e, .
Ok k

Step 2: Solve the linear or quadratic program

min{ilvll|g:,(xi) + <Vg3(xi),v> + e£ 0, jSm} (28)

for v .

Step 3: If v exists and Hv il £ L, set p - v.. Else set
3g(x±)T

P± = te~~ Se<xi)+ where Se<x)+ G]Rm is defined by g*(x)+ =max{0,gJl(x)
+ e}, IG m(negative gradient direction of h\g (xj II2).

I. e i +

Step 4: (Armijo step length rule) Compute the smallest integer j >. 0

such that

llg£(xi+33pi)+li2 £(l-2a3j) -ge(^±)+B2 (29)

Step 5: Set n = x, + 03p .
i+1 i e±

Step 6: (Test if it is time to reduce e.) If i > JL and
— k

*(xi+l} - "^(x^ +(l-Y^C^-D^ (30)

Set Zk+1 ^ Xi+1' ek+l "" Y2ek' set k = k + 1 and go to Step 1. Else set

i - i + 1 and go to Step 2.

Theorem 4 T81: Either Algorithm 3 constructs a z, €Kn satisfying (10) in

a finite number of iter

no accumulation points.

a finite number of iterations, or the sequence {z,} is infinite and has

-13-

4. Computational Aspects

Algorithm 1 will work even when the assumptions for Newton's method

are not satisfied and hence is the most robust of the three. Also, when

the set (x|i|;(x) £ 0} is "fat," Algorithm 1 makes rapid progress, but it

can become quite slow when that set is "thin." Algorithm 2 combines

these robustness aspects of Algorithm 1 with the added speed of conver

gence inherent in Newton's method. However, this is done at the price

of having to solve an additional linear program at each iteration.

Algorithm 3 totally depends on the properties of Newton's method. Thus,

when the required assumptions are satisfied, it is as fast as Algorithm

2 and somewhat more efficient, because only one linear (or quadratic)

program needs to be solved at each iteration. However, it requires some

what more skill to use, because of the need to select en and y , y .

To illustrate the ease with which systems of inequalities can be

solved by the algorithms in this paper, we present the examples, below,

which were solved using Algorithm 2. Algorithm 3 gave basically identi

cal results except for example 3 on which it failed because the assump

tions for Newton's method are grossly violated.

Example 1. The feasible set consists of infinitely many squares

centered at ((2m-l/2)ir,2mr) for all integer values of m,n. The set

is defined by:

1 «sin x £ 0

2 n
- cos x £ 0

with xQ - (1,2), a feasible point (-3,0416,1.4708) was located in one

step (a (modified) Newton step).

-14-

Example 2. The feasible set consists of a pair of squares centered

at (-ir/2,0) and (3ir/2,0), and is defined by:

1 «sin x. £ 0

2 n
- cos X £ 0

x - 3ir £ 0

2
x - tt/2 £ 2

- x - it £ 0

2
- x - tt/2 < 0

With xQ = (0,75), a feasible point (-3.0416,1.4708) was located in four

iterations. The sequence of points generated were (1,74), (1,75), (1,72),

(-3.0416,1.4708), the first three steps being first order, and the final

one a (modified) Newton step.

Example 3. The feasible set is defined by:

(0.999)2 £ (x1)2 + (x2)2

With xQ = (0,15) a feasible step was located in four iterations, all

steps being of the (modified) Newton type.

Example 4. The feasible set is narrow crescent defined by:

(x1-!^)2 +(x2-l)2£ 0.25

-(x1-l/2)2 -(x2-l.l)2 £0.26

2
x - 1 £ 0

Starting from an initial point (0.5,-6.0) a feasible point is located a

-15-

five iterations, all of the (modified) Newton type.

Example 5. This problem is based on one suggested by Powell. The vector

1 2 3coordinates (x ,0), (x ,xJ) of two vertices of a triangle (the third

being (0,0)) and the centers (x ,x), (x ,x) of two discs of unit

radius. A point x is feasible if the triangle has a specified area a

and the two discs lie inside the triangle and do not overlap each other.

These constraints can be specified as:

1 n
x .> 0

x3_> 0

t 4 6.2 . , 5 7.2
(x -x) + (x -x) - 4 _> 0

x - 1 > 0, i =5, 7

3 6_2 i+1
X X —X X - f\ j i r

,, 2,2., 3.2,1/2 -X- °' ±=4>6[(x) +(x)]

f 2 1. i+1. 1 i. 3
(x -x)x "+(x -x)x _ -
r, 3.2., 2 ,1,2,2,1/2 1 >0» i- *. 6
[(x) +(x -(x))]

a- 1/2 xV3 >0

With xQ = ((3), (0,2),(-1.5,1-5),(5,0)) and a = 12, a feasible point

((5.8381),(0.4448,4.1062),(1.250,2.3237),(2.8434,1.0505)) was achieved

in six iterations. The minimum value for a has been obtained by Powell

as 11.6569.

-16-

5. Conclusion

We have presented three efficient method for solving both finite

and infinite systems of inequalities. We hope that these methods will be

of significant use to those who design systems by the method of

inequalities.

-17-

References

[1] N. Zakian and U. Al-Naibk "Design of Dynamical and Control Systems

by the Method of Inequalities," Proc. IEE, Vol. 120, No. 11, 1973,

pp. 1421-1427.

[2] J. W. Bandler and H. L. Abdul-Malek, "Advances in the Mathematical .

Programming Approach to Design Centering, Tolerancing and Tuning,"

Proc. 1978 JACC, Philadelphia, Oct. 14-21, 1978, pp. 329-344.

[3] E. Polak and A. Sangiovanni-Vincentelli, "On Optimization Algorithms

for Engineering Design Problems in the Distributed Constraints,

Tolerances and Tuning," Proc. 1978 JACC, Philadelphia, Oct. 19-21,

1978, pp. 344-353.

[4] S. M. Robinson, "Extension of Newton's Method to Method to Mixed

Systems of Nonlinear Equations and Inequalities," Tech. Summ. Rep.

1161, Math. Research Center, Univ. of Wisconsin, Madison, Wisconson,

1971.

[5] H. Mukai and E. Polak, "On the Use of Approximations in Algorithms

for Optimization Problems with Equality and Inequality Constraints,"

SIAM. J. Numer. Anal., Vol. 15, No. 4, 1978, pp. 674-693.

[6] S. M. Robinson, "Bounds for Error in the Solution Set of a Perturbed

Linear Program," Linear Algebra and Its Applications, Vol. 6, 1973,

pp. 69-81.

[7] D. Q. Mayne, E. Polak and A. J. Heunis, "Solving Nonlinear Inequali

ties in a Finite Number of Iterations," Memorandum No. UCB/ERL M79/12,

University of California, Berkeley, California.

[8] E. Polak and D. Q. Mayne, "On the Finite Solution of Nonlinear

Inequalities," Memorandum No. UCB/ERL M78/30, University of

California, Berkeley, California.

-18-

1

[9] C. Gonzaga and E. Polak, "On Constraint Dropping Schemes and Opti

mally Functions for a Class of Outer Approximations Algorithms,"

SIAM J. Control & Opt., Vol. 17, No. 4, 1979.

[10] E. Polak, Computational Methods in Optimization, Academic Press,

1971.

[11] E. Polak, R. Trahan and D. Q. Mayne, "Combined Phase I-Phase II

Methods of Feasible Directions," Math. Progrannn-jnpr, vol. 16, No. 4,

1979.

-19-

	Copyright notice 1979
	ERL-79-48

