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Abstract - A new model for the study of power
systen: stability via Lyapunov function.'! is proposed.
The key feature of the model is an assumption of fre
quency-dependent load power, rather than the usual
impedance loads which are subsequently absorbed into a
reduced network. The original network topology is
explicitly represented. This approach has the impor
tant advantage of rigorously accounting for real power
loads in the Lyapunov functions. This compares fa
vorably with existing methods involving approximations
to allow for the significant transfer conductances in
reduced network models. The preservation of network
topology can be exploited in stability analysis, with
the concepts of critical and vulnerable cutsets play
ing central roles in dynamic and trnnsicnt stability
evaluation respectively. Of fundamental importance
is the feature that the Lyapunov functions give a true
representation of the spatial distribution of stored
energy in the system.

I. INTRODUCTION

The analysis of power system transient stability
using Lyapunov function techniques has recently a-
chieved a status as a viable tool for on-line security
assessment. Particularly promising results arc report
ed by Gupta and El-Abiad [1], Ribbens-Pnvalla, ct. al.
[2), and Athay, ct. al. [3]. The first on-line appli
cation to a real operating power system is discussed
by Saito et. al. [4]. This follows efforts beginning
around 1970 to apply Lyapunov methods to realistic
multimachinc power systems (5-8] and some twenty years
of interest in such an approach — see surveys by
Ribbens-Pavella [9] and Fouad [10]. A major difficulty
which remains to be overcome rigorously is that asso
ciated with allowing for significant transfer conduct
ances. This is essentially an issue of modeling the
loads in the network. The present paper offers a new
model which can bypass this difficulty while maintain
ing the features related to the success obtained in
previous work.

While many of the assumptions made to arrive at
the usual classical model for transient stability
analysis arc reasonable, that, of ignoring transfer
conductances is usually quite crude [10]. This eman
ates from modeling the loads as impedances (with a
substantial resistive component). These are then ab
sorbed into the bus admittance matrix for a reduced

network based on generator buses. Thus, although the
original transmission network is very reasonably mod
eled as lossless, the reduced network certainly cannot
be in general. Consequently, a path-independent poten
tial function is not readily available for construct-
Lyapunov functions. Attempts to develop general Lya
punov functions have net: very limited success, cspec-

tally when it is considered that ultimately these
functions should replace those based on assuming the
conductances are zero. Pai and Murthy [11] have a
Lyapunov function for the two machine case, but a
generalization has inherent difficulties [12]. Jocic
et. al. [13] report an approach based on large-scale
systems theory, but a clear improvement in practice
is not achieved [14], The inclusion of transfer con
ductances is sometimes handled by some approximation,
cither in the system description [6,15] or in evaluat
ing the 'Lyapunov function1 (or transient energy func
tion) [3,7,16].

A further disadvantage of forming a reduced net
work (by suppressing load buses) is that the original
network topology is lost. This can mask the role of
structural aspects in stability assessment.

In this paper, a new model is presented which does
not rely on a reduced network. This follows from the
reasonable assumption, for bulk power supply systems,
that each load on the transmission network can be
represented as a frequency-dependent power load (as
suming constant bus voltages). Taking this relation
ship to be linear leads to a very simple dynamic mo
del which includes the state variables of the classical

model plus extra variables associated with the loads.
Since the loads are not incorporated into the trans
mission system, it can be quite accurately modeled as
one with zero transfer conductances. Thus, it is a
simple matter to generate Lyapunov functions. Fur
ther, theoriginal network topology is preserved and the
model can be regarded as having structural integrity.
In exploiting this feature, it is natural that circuit
theory ideas play an important role. Although uced in
other areas of power system analysis [17], circuit
theory has not played a significant role in techniques
for stability assessment. Tavora and Smith [18,19]
have used it in a limited way to gain insight into
power system equilibria, while Jenkins and Liu [20]
have formulated a network flow model and used graph
theoretic ideas to develop stability results. The
model used here is presented in two forms: a network
form in terms of circuit matrices and an aggregate
view, which is an adaptation of a similar presentation
for classical models given by Bergen and Gross [21,22].

This formulation proves to be a convenient basis
for consideration of the dependence of stability pro
perties on network topology and system loads. For
dynamic stability, the linearized dynamical equations
are studied. Adapting results in [18,19,23], a result
is given for testing stable equilibrium points in
terms of so-called critical cutsets. For transient
stability," reference .is made to~ the' abovementioned
work on stability assessment using Lyapunov functions
(and transient energy functions). Implicit in this is
the importance of cutsets along which the system tends
to separate. The notion of a vulnerable cutset is
formulated and some indication given of how to use it
in the preliminary stages of transient stability as
sessment. Taking a. transient energy type Lyapunov
function for the aggregate system, it is readily seen
that this is the sum of kinetic energies associated
with the generator rotors aud the sura of potential en

ergies associated with all the lines. Thus the Lya
punov function can truly represent the spatial dis-
ribution of stored energy in the physical power
system. This lends to the concept of a topological



Lyapunov function.
The structure of the paper is as Collowu. Section

II gives a description of the new model. In Section
III, a diHcuBsion is given on the system equilibrium
points and a test provided for stable equilibria. The
concept of a topological Lyapunov function is* the sub
ject of Section IV. In Section V, this is considered,
along with the idea of vulnerable cutsets,in transient
stability analysis. Section VI gives some conclusions
and the Appendix summarize results from circuit theory.

II. MULTIMACHINE POWER SYSTEM MODEL

In this section, a model of a multimachine power
system is developed. Its novelty lies in not taking
the usual step of assuming impedance loads, which are
absorbed into the transmission network. Otherwise, we
make the same assumptions that go with the classical
model — see [9,10,24] for instance.

Our starting point for the model is the network
of buses connected by transmission lines, which is the
one described by load flow equations. The system
shown In Figure la will be used in the sequel for il
lustrative purposes. It has four buses, two of which
have generators attached. In general, suppose there
are m generators and nfl buses in the physical system,
with nfl-m buses having loads and no generation. It
is convenient to introduce fictitious buses repre

senting the internal generation voltages. These are

(c) . •
Figure 1 a) A four bus power network

b) Augmented network with generator bus lines

c) Analogous nonlinear resistive circuit

connected to the generator buBes via reactances ac
counting for transient reactances and connecting lines.
Theue renctnnces can be regarded as'transmission lines'
and henceforth are referred to as the generator bus
lines. Thus in the augmented network there is a total
of n^m+n,. buses. For convenience, we number the ficti
tious generator buses l,...,m, the corresponding physi
cal buses m+l,...,2m and the remaining load buses 2m+l,
...,n. Suppose that within the transmission network
there are lQ lines. Then lQ must satisfy •to<inQ(nQ~1)
and the total number of 'lines' in the nugmonted network
is i»m+4ft. We number the transmission network lines
1,...,4_ and the generator bus lines £Q+1,...,*connect
ed to buses l,...,m respectively. The nth bus will be
used as a reference. For the four bus example, Figure
lb shows the augmented network. At this stage, it is
useful to recognize that the network is analogous to a
nonlinear resistive network with real power correspond
ing to current and the angle difference across a line
corresponding to branch voltage. Assuming a lossless

transmission network and £ P. «0, where P. is the injec-
1-1 . x

ted power at bus 1, Kirchhoff's laws hold in the obvious
sense. For the four bus example, the analogous cir
cuit is shown in Figure lc. The nonlinear resistance
characteristic for each branch is given by the familiar
power-angle relationship for a line. We assume that
the graph for the network is connected and planar and
the branches are oriented according to associated ref
erence directions. We will make use of certain concepts
and results from circuit theory. The Appendix summar
izes some essential facts and further details are a-
vailable In references [25-27].

Now the key assumption of dynamic loads is intro
duced. Let Pn be the real power drawn by the load at

Di
bus i. In general P. is a nonlinear function of volt-

Di
age and frequency. For constant voltages and small
frequency variations around the operating point PJ? ,it

ui
is reasonable to assume

D. i 1
i - m+1,...,n (1)

where D. > 0. Note that as D+0 we obtain a constant

load model. This load frequency dependence is usually
assumed in modeling the power-frequency control system,
but has not been used in modeling for transient sta
bility. Using (1) we are led to

n

j*± (2)
where

M. > 0 i- 1,... ,m (generator inertia constants)

M. • 0 i-mfl,...,n

D, > 0 i- 1,... ,ra (steam and mechanical
damping of generator)

D. > 0 l»m+l,.,.,n (frequency coefficient of
1 load)

P_ » 0 i«l,...,m v

rM,
• 0 l«nr*-l,...,n

Equation (2) looks similar to the usual classical swing
equation model used in previous studies of transient
stability via Lyapunov methods. However, there are
important differences. Along with the mechanical input



.0 .0
powers V" , the loads V" are shown explicitly. Con-

I "I
Hequeully, the network lopolo-'.y It: pie;iervod Jtint ait
in the curse of I he load Mow model.

It will he convenient to in-ike lite nsr.iimpt ion lli.tt
n 0]j£ P, »0, hut in practice this mny not he reasonable

1-1

for the period following a fault.. A resolution of
this is achieved by adopting the idea suggested by
Willems [28]. Adding equations (2) gives

m n n n
£ Mi + £ d « - £ p
ioi -1 -1 i=l i=l

The required equilibrium is given by &j~&*
constant, for all i,j. Thus allc is a

W , 0the same constant speed u>

(3)

» c.., where

at. approach

From (3), we have

n a /n

i-i y i«i *
(Recall that D > 0

transformation

for all i.) Then consider the

"i""

pi '!- D.w

It is easy to check that

..0angular velocity is u'w ° 0. Henceforth, we assume that
this change of reference has been carried out if appro
priate and drop the prime superscripts.

More convenient forms of the model can be derived

as state-space descriptions and some flexibility is
achieved by using various notions from circuit theory.
The following is largely an extension of the develop
ment in [21] to the present situation. The m genera
tors require a state-space dimension of 2m-1 with
nonuniform damping [9,21] so, on including the loads,
equation (2) defines a state-space of dimension n+m-1.
The state variables can be chosen as the m velocities

u. & 6. and n-1 internodal angles a. » 6.-5 . However,
other choices of angles for the state arc useful. Dc-

T T T
fine 6 n [6.... 6 ] , u>«» [u,.. .u> ] anda n [a,.. .o ,] .

1 nJ — 1 n - U. n-lJ

Also, define a vector of line angle differences £

n

i»l
pi 0 and the equilibrium

buses i and j
where ov *=• 5.-5. for the kth line joining

~ -*o and a are related to 6 viaThe vectors _ _ _
transformations o = L£ and a D T 5_. Matrix T is given
by

I ° [I -, :~£]
— *-n—1 • —

where 1^ is the (n-1) identity matrix and e the (n-1)
vector with unity entries. Now we introduce the reduc
ed incidence matrix

I
—m

-t i -m
i

I 0
_ t —*

where At is the reduced incidence matrix of the trans
mission network. Then, we have

A o

T
A*T6

(4)

(5)

Now pari It Ion T accord lug lo

Hence

I < 0
m i -

it

T
L» AT"

!b i *•]
i T
AT
--t-t

-I 0
-m --H

(6)

As an alternative to a_ we may wish to use a set of n-1
tree branch angle differences Q.. With the chosen
numbering system, we further number cotree branches

first and then the tree branches. Writing a •*» [oO ]

and defining transformation 6_*= K£, we see that K can
be obtained as an appropriate submatrix of L. Note

T ""*
that £= 0^ 0 where £ is the fundamental cutset matrix

— T
and so alternatively L=(£ K. These matrix relation
ships can be explored further for their own sake, but
we only study them further as required in the sequel.

With the resistive circuit analogy in mind, we
define the constitutive relationship for branch k by
pk"Rk^°k** where Pfc ls tne Power How in the branch.
We have

8k(0k) " bk Sln °k (7)

where ^i."!*.. and it is assumed always that branch k
connects buses i and j. In vector form, write P_•=£.(£).

0 n~^~ 0
P " - £ P., so there are n-1 independent excess

i"l
0 0 0 T

node powers. Let P = [P. ... P .] . Then via nodal
— x n—i

analysis (A-3), the load flow can be written

P » A £(o)

Now

A£(ATa) £ f(a) (8)

Note that

n-1

f1(a) •= 53biRsin (o1-ak)+binsina1, i»l,...n-l
k=l

Ml (9)

Alternatively, in terms of tree branch angle differenc
es, we get from (A-5)

P-A£.(ST0.) »Iq(0) (10)'

Now define

M » diag[Mi>

D" diag{D1)

Then it is straightforward to show that (2) can be
replaced by [21]

Mu+Du+ TT [f(a) -P°] =0 (11)

With appropriate partitioning of M,D and using (6),
(11) ban be rewritten as

H-lHj +D^ +T* [f(a) -P°] -0

'2.2w2 +T* [f(a) -P°] -0

(12a)

(12b)

where subscripts 1 and 2 refer to the generators and
loads respectively.

We now proceed to develop a third model descrip
tion as so-called normal form or state-space form.
Firstly, we have
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- TA + T2a,2 (13)

Using (12b) to eliminate m2 in (13) along with (12a)
gives

i-I^i -hh1^ {K& "-]
ix --nx\^i - Hi1.^ [f(£) -P°]

(14a)

(14b)

Equations (14) define the system trajectories in a
statfe-space of dimension m+n-1.

Equations (2), (12) and (14) give three alterna
tive mathematical representations of the model. Equa
tions (12) and (14) give aggregate representations,
but substituting equation (8) provides the structural
information In terms of circuit matrices. Sometimes
it is convenient to have (12) or (14) in terms of tree
branch angles 6_ or write (12) in terms of branch an
gles o. Using The above transformations, these alter
native representations can be developed as required.

The assumption that all D±> 0 is certainly reason
able, but a comment is in order on the case where some
D are assumed to be zero. Further, the above has
implicitly assumed generator damping to be nonuniform.
Setting D. -0 or with uniform damping the obvious
extension of the classical case applies. That is, the
state-space dimension is reduced by one. Setting some
of the load D.->-0+, however, gives a model in terms of
differential and algebraic equations. Mathematically
this is relatively more difficult to accomodate. In
view of the presence always of some frequency depen
dence in the load, this will not be investigated fur
ther.

III. EQUILIBRIUM POINTS AND LOCAL STABILITY

Before considering the global stability proper
ties of the system described by equations (14), atten-
;tlon should be given to the equilibrium points and
;their stability.
! In the previous section, we saw that without loss
|of generality the equilibria correspond to (o,u)-(ae,0)
|where a? is constant. From (14), we have

HIi(«e) -I°J -o
!where

L.
T -IT

i o
-m —

* ^
+ lTe>< e

n

vithDj-diaglD^,....^)

(15)

Thus N has rank n-1. Then using (15) the equilibria;
are given by to - 0 and the solutions of

To study properties of the solutions of (16), we note
that f(«) in continuously differentiable and identify
its Jacohian matrix denoted by F(o). The (l,j)th ternr
of F(o) is given by \

r n-1
Df1(a) J bJn cos «1 + E^iic coeCaj-a^, i-J "(
7«~ "\ k*^

kj»i

-b4. cos (c^-a.), i|*j

Since F(o) has full normal rank, (16) has a finite num
ber of isolated solutions in Tn-1 [29]. Unfortunately,
there appear to be no useful results on answering ques
tions related to the exact number of solutions for a
given P9 unique stable solutions etc. Tavora and Smith
[18] have given some useful insights, by way of exam
ples, into how the number of solutions depends on net
work topology, line power transfer coefficients b.,,
andP.0. •

The starting point for stability analysis of (14)
is a solution of (16) about which the system is locally
stable. The study of stable equilibria seems largely
to rely on the intuitive idea that if all lines satisfy

|o?| <tt/2, then the equilibrium is stable. From a
combination of ideas in [19,23], we can actually state
a precise version. In view of structural integrity of
the model, the test takes some significance in its be
ing based on making tests on cutsets. Further, the
techniques employed prepare the way for the study of
transient stability in later sections. For the study
of local stability, we firstly' linearize equations (14)

about the equilibrium point (a ,0) to obtain differen
tial equations in variables Ao • a -a° and Acoj - w^
"H? - u.. This gives

M

*1

-I^T^a0) Tx
.-1-T.-Hi I*F(a") -« ^-M_1D,

La

(17)

S-l

Study of (17) could proceed by eigenvalue techniques
or Lyapunov methods. The latter turns out to give a
simple answer and an appropriate Lyapunov function is
a quadratic counterpart to the one to be used for
transient stability [23]. It is convenient to define
the polytope

{o6Rl :loj <a/2, i-1, .*>

'We observe that for o°€A*, then F(o°) Is nonnegative
[definite; this follows from Gershgorin's Theorem [30]
Isince F(o°) is diagonally dominant with positive di
agonal elements. Motivated by stored energy, consider
a possible Lyapunov function as

V(Ao .Mj) -*| wJm^ +-j AoTP<£°>Ao

ife6)-!0 (16)' Differentiating V along the solutions of (17) gives

We call the function £(•) the flow function [18). nue.
to the periodic dependence of £(a) on a, the domain of
the flow function is the n-1 dimensional torus. That.

is we write frT^-i-lR11""1 where

I11"1 - {o mod 2n :oSm11"1}

V(Ao.u^) -c-t^(-M^tJf(o°)Aa-M^D^)

+AoTF(o°)(-T^TjT^Aa+1^)

-^D^-Ao^Co0)!^"1!^0)^ (18)



Now V H Implies tlwtl i.^ 0 ami

T2F(o0)Ao h0
From (17), u^ =0 gives

j liI(«0)Aa H0
i

Equations (19) imply

TTF(o°)Ao2 0

(19a)

(19b)

(20)

Then, if ,F(o ) is positive definite, V is positive def
inite and, since T* is a full rank matrix, (20) gives
that V = 0 implies (A«,w.) = (0,0). From standard Lya
punov stability theory [31], we then have that the
equilibrium point (f* »j)) is asymptotically stable.
However, so far it has only been demonstrated that

0 £.£(a ) is nonncgative definite on polytopc A . To ob
tain the final statement of stability conditions, we use
a result given by Tavora and Smith [19]. We will refer
to lines with zero synchronizing coefficients, i.e.,
for which cos o. «-» 0, as zero-valued. A cutset of
zero-valued lines is called a critical, cutset. Then,
from [19], we get that det F(aU) • 0 in A* if and only
If the system has a critical cutset. Hence, the equi
librium point (a°,.0) is asymptotically stable if gOGA*
and there are not critical cutsets. The absence of
critical* cutsets is ensured by having a tree of lines
which are not zero-valued. We can now summarize the
result as it pertains to system (14) as follows.

Theorem 1. Consider an equilibrium point for
the power system satisfying (16). Suppose that cP € A4
and the generator bus lines are not zero-valued. Then
the equilibrium point is asymptotically stable if the
transmission line network has no critical cutsets.

For a normal operating condition, of course,
these conditions arc easily met. However, after a
fault or during abnormal loading conditions the system
could be operating close to the boundary of polytopc

A . Actually, in [19] the region of stable equilibrium
points is claimed to be bigger than A* and given by the
so-called principal region. However, in general, this
principal region would not be easy to calculate and it
appears that A* is a close approximation to it.

IV. TOPOLOGICAL LYAPUNOV FUNCTION

Under normal operating conditions, the system
will be in or near an equilibrium state satisfying the
stability conditions of Theorem 1. A fault can alter

P , the transmission topology, or the coefficients b

giving new post-fault equilibrium states (if _P is feas

ible; i.e., if P lies in the range of f(O). Whether
the system settles to the post-fault s.e.p. is studied
via transient stability analysis using equations (14) as
the basic model. We use a Lyapunov function which is
motivated by stored energy of the aggregate system.
This, of course, has been the basic Lyapunov -function
going back to early work. However, with the present
new model and using some circuit theory ideas — see
Appendix A — additional insights into stability assess
ment are possible.

Suppose that (a°,0) is a stable post-fault equi
librium point. We define the Lyapunov function

V:lRn"1xiRm^iR by • •

ij

v(SL»iil> "2-1-^1-1 +W<2.»2.°) (21)

where

W(u,u°) - f [f(/.)-C(a°)]Td-'.
JaO

In this: form, it is a direct generalization of the
Lyapunov function used by Bergen and Gross [21,22] and
represents the sum of aggregate kinetic energy and
potential energy. The integral defining the potential

function W(£,a ) is evaluated over an arbitrary path

between £ and a. Since V(a) is symmetric, the inte
gral is path independent and V is well-defined. It is
interesting to note the following.

Theorem 2. The function V given by (21) can also
be written as

k»lk1^

I
where

h(Vok) - (sin u - sin o.)du

Proof: From equation (8), we have

f(C) -A£(AT£)

Then the potential function is given by

W(a,a°) «P~ [f(£)-f(e°)]Td£

{

t&(AT£)-£(ATa°)]TATd£

0 T
l£(u) -£(o )] du

(22)

on setting u*=AT£ and using transformation to branch
angles. Using (7),

iv(W(e,a ) •» 53
k'

(sin u- sin a.)du (23)
a

Thus the total potential energy is seen to be the sum
of the potential energies of the individual branches.
What is interesting here is that just as the kinetic
energy may be identified with individual generators,
the potential energy may be identified with individual
transmission lines (including generator transient re
actances). Thus the Lyapunov function truly reflects
the spatial distribution of stored energy in the phy
sical system since the original; topology has been pre
served in the model. Hence we refer to the function
(21) or (22) used in connection with model (14) as a
topological Lyapunov function.*

To actually show that V given by (21) is a Lyapun
ov function involves a simple modification of thesteps
used for the quadratic energy function in the previous
section. Firstly, we determine a region where W is

positive definite. Consider the function h(«,o. ) and

suppose o 6A . Then h(«,o. ) is a positive definite

and strictly monotone increasing function over the

interval (ok»oJ!) with a - - ir-o? and ou
Now define the polytope

» u* - a,
k*



t IKrl(o°)'- {oCm1 :otC (oj.oj) 1-1 ,4)

**, 0,,„**,. I). , alt- IK
We denote the closure and boundary of r (o ) by I l£ )

and ST*^0) respectively. .Obviously, from (23), W(.,u )
Is positive definite over the polytopc r (where a
- ATo Is assumed throughout). The above mentioned
monotonicity property implies that all u.c.p. s must

lie on or outside of aT'*^0). Now differentiating V
along the trajectories of (14) gives

vfe,*^) --uJd^ -If^-lCfi0))^1!^.^)-!^0)]
(24)

Thus, since Dj >0, D2 >0, V is at least negative
semidefinite. Corresponding to (20), we have V = 0
implying

TT[f(o) - f(a°)] =0 (25)

Hence, since T is full rank, (25) implies f.(a) - f.(a )
i 0 and V SO only at equilibrium points. In the usual
way, well-known stability results 131]/' determine a
region of asymptotic stability defined by

nA -{(0.5^) :VCo,^) <V£(o£)} (26)
where V. is chosen so that fl£ excludes all the u.e.p.'s.
In particular n£ excludes (c*,0), the u.e.p. of lowest
potential energy.

It is interesting also to note that substituting
(12b) into (24) gives

Vfe.o^) --wTD w (27)
Equation (27) shows that all the T>f act similarly to
account for dissipation of energy, and the simple pos-
itivity of the coefficients insures that V <. 0. Thus
the precise values of the D^ which vary and are dif
ficult to measure, are not needed.

V. VULNERABLE CUTSETS AND TRANSIENT STABILITY
ASSESSMENT

The major part of the effort to make Lyapunov
methods work for transient stability assessment in
realistic power systems has been directed to efficient
algorithms for estimating the region of stability in
the state-space. In this section, we look briefly at
how the techniques can be interpreted, and possibly
improved upon, with the new model. A complete presen
tation is beyond the scope of this paper.

Most methods for finding the extent of stability
rely on calculating (or approximating) theu.e.p. (o*,0)
with lowest potential V4(et°) -W(o*,o°) [1,2,6,18,32].
Other work is not explicitly concerned with calculating
u.e.p.1s. Bergen and Gross [33] and Pal and Narayana
[34) present minimization procedures on the polytope

'ar^Co0) (or its equivalent in o space) for estimating
a close lower bound for V«. The novel feature of the

procedure in [33] is its simple graphical calculations.
Thus it is more in the spirit of the equal area crit
erion for two-machine systems. All of the abovemen-
tioned work is motivated by the need to avoid the pro
hibitive computational task of calculating all theu.e.
p.'s and then, testing each one to find W(o*, o°). In
looking for fundamental aspects of .this problem, we are
led to the role of system structure in the solution
techniques. Ribbens-Pavella et al. [2] take the atti
tude that the most likely consequence of instability is

for otto generator to lone synchronism. This reduces
the problem to leiilltif, 2(n-1) u.e.p.'m. In otlior
results 11,32], the loss of groups of machines is ex
plicitly allowed for. Physical reasoning reduces the
number of possibilities for the system to split up.
For instance, Gupta and El-Abiad [1] restrict atten
tion to cutnets containing the line on which the fault
occurred. For present purposes, it issufficient mere
ly to note that the transient stability problem seems
related ino fundamental way to a ranking ofthenetwork
cutsets in terms ofwhatwillbe referred to here as vul
nerability. The structural integrity of the present
model adds to the meaningfulness of such a concept.

In the special case of P - 0 there is a simple
connection between u.e.p.'s and power flows on .trans
mission network cutsets. In particular, the u.e.p. of
lowest potential may easily be identified and calculated
by examining an index of vulnerability for all the cut

sets. In the case P_ • 0, the solution £ • 0 is the
8.e.p. and by (16) the (neighboring) u.e.p.s. have the
property o - 0, + tt. We will refer to lines with

|o\ | <• tt as saturated
every u.c.p

lines. Thus, corresponding to
is a set of saturated branches. A further

result is stated in the following proposition.

Proposition. Assume that P - 0. Then a subset
of the saturated branches corresponding to an u.e.p.

form a cutset.

Proof: For a three bus triangular mesh structure the
result is trivial since either all branches arezero or
two are saturated andonezero. Since the system graph
is planar, we can consider it as an interconnection of
triangular meshes and single branches (by introducing
internal zero branches if necessary).

Since we have an u.e.p., a.t least one branch must
be saturated. . Now, using KVL and the result for a
single mesh, one can argue that the result holds in
general. Starting from a saturated branch, we can
build up a line of saturated branches through meshes
with saturated branches in common. This line can ter
minate by having the only adjoining mesh at the zero
branch or if the line rejoins itself. In either case,
a cutset of saturated branches has been generated. n

It is easy to see that an u.e.p. can correspond to
a number of saturated cutsets. For instance, each
generator bus line in Figure lb could give a separate
saturated cutset at an u.e.p.

Continuing then with the simple special case of

P_ -0. Let (oe,0) be an u.e.p. of interest. Then,
from Theorem 2, we have

W(ae,0) - £ V(V0)
k-1 K K

Now h(a£,0) -

Thus

of - +*
k —

W(oe,0) - 2 E h.
k-1^

where the summation is

numbered k.,...,k
X 8

(28)

er the 8 saturated lines

Then we have exactly, in view of

the proposition, that the u.e.p. (o*,0) and most vul
nerable cutset are provided by minimizing the sum in
(28) over all cutsets. (If there is more than one
saturated cutset corresponding to an u.e.p., obviously
a more vulnerable cutset can be found by setting some
branch angles to zero.) It is convenient to introduce
some notation. Let C. denote the ith cutset and we
write C± - (l^...,!) where i. identifies the jth



branch in the ith cutset. Then we have

A{A2 Eb,

as an index of vultinernWl It y for it li cutset. (A larger

v. corresponds to a less vulnerable cutset.)

The situation where P =• 0 is certainlynot realis
tic in practice, except insofar as it approximates very
low power levels. However, the idea of ranking the
Vulnerability of cutsets has been illustrated with a

simple exact answer. Now, in general where P ^ 0, we

will call branches saturated at an u.e.p. a when n/2

il°ill3w/2. However, exact calculation of the u.e.p.'s is
to be avoided, so an index of vulnerability depending on
this is not acceptable. This difficulty can be over
come by adopting some ideas used by Prabhakara and El-
Abiad [32] for estimating all the u.e.p.'s. A measure
of the system vulnerability at a cutset can be obtained
by picturing a separation of the system into two parts
along the cutset. This is illustrated in Figure 2. It
is convenient to consider the polytope !'*(£") corre-

Figurc 2 System separation on a cutset
0 0 T 0sponding to s.e.p. (a ,0) where £ a A a . By posing

the hypothetical situation of the separation occurring

with £ on ar (o ), an index of vulnerability becomes
obvious. Assigning a reference direction for the cut
set C., we denote the set of positively oriented branches
in C. by CJ* and the remaining branches in C. by CT.

Then a positive shift of line angles from £ (relative
to the cutset reference) on to af*1^0) selects the 'cor
ner point' £+ defined by

<• keci+
°k,keci"

.Similarly, a 'corner point' £~ for negative shift of
line angles can be defined with obvious modification.
We have from Theorem 2

M(2.+.2°) «£ V^k**0^
(29)

We propose that W(£ ,£ ) and its negative separation

counterpart W(o ,o ) represent the index of vulnera
bility for cut'JetC.. Introducing the coefficients u£
•» h(u. ,u. ) and p. » h(o. ,o. ) for all the lines, this

motivates definition of cutset vulnerability indices by

- 2Ll>
k"k +5 Vk

Li

£ Kh +£ KhkHk

°l

(30a)

(30b)

An overall index for the cutset is

Q^ •min {v .v^)

and for the system is

C\) = min C\)
1 X

Evaluating^/, for each cutset gives a ranking according
to vulnerability. Note that calculation of the coeffi
cients in (30) is simply done via

u". «• 2[cos ok + (ok-Tj/2)sin a^}

y^ •*• 2[cos o° +(o°+n/2)sin o°J

Ola)

(31b)

For P °0, we have u.
I

P, • 2k -and C\)± »v± -vt".
Having set up the index "*-\A, how, and within what

limitations, can we depend on it? Of course, in general,

we cannot expect Q/ to be an accurate estimate of V^.
The main utility seems to lie in providinga preliminar-
y identification of weak cutsets. Then, using this in
formation along with other information like fault posi
tion, we can concentrate on finding the corresponding
u.e.p.'s and an accurate estimate of V.. It is inter
esting, however, to observe that the method used by
Prabhakara and El-Abiad [32] appears very accurate at
least for low power levels. We can then anticipate
that, for this case,("\/ will indeed be a useful esti
mate for V^. As power levels Increase, the u.e.p.'s are
less related to hypothetical separation situations and
there is a greater need for follow-up calculations to
calculate V..

As a simple illustration of the use of vulnerabil
ity indices, the following example is considered.

Example. For the network illustrated in Figure 1,
we use the values for power transfer coefficients b.

0
and powers P. from an example in [18] (with some addi

tions to allow forgenerator lines). Thepowersare given

by .''/;•

P„ " 2.0 P_ - 1.0
Gl D3
P » 2.0 , . P -.0.8
G2 V

P^ - 1.2
'. D5 •• •

P^ - 1.0

Firstly, we note that for P '=0cutset {2,4} is most
vulnerable and expect this to be the case for very .low
power levels. At the powers: given above, the relevant
coefficients (31) for each line are tabulated in Table
1. The corresponding cutset vulnerability indices are
tabulated in Table 2 and they reveal that cutset {1,2}



is most vulnerable. The three cut-nets U,3), {2,4}
(most vulnerable at very low powers) and {2,3} form an
almost equally vulnerable group wilh the remainder hav
ing decreasing vulnerability. We have from [18] that
the exact value of V£ (found by a lowest saddle point
search) is 1.63 corresponding to cutset {1,2} being
saturated. Thus the vulnerability indices have identi
fied the weakest cutset. Note that,in the case consid
ered, the power levels are an appreciable proportion of
the line capacities. In fact, at the exact u.c.p. cor
responding to cutset {1,2} line 2 has p, - b2 - 0.5.
Thufl we do not expect the overall vulnerability Index
^to give aclose estimate of V£. However, from Table
2, we do have^U - 1.89 which is an acceptable course
estimate.

TABLE 1

.Calculation of Branch Vulnerability Coefficients

Line bk
0

°k
(radians)

-S
I

1 2.0 0.597 0.559 4.091

2 0.5 0.152 1.548 2.498

3 2.0 0.569 0.605 3.991

4 1.0 0.124 1.627 2.404

5 5.0 0.412 0.905 3.421

6 6.0 0.340 1.064 3.161

TABLE 2

Calculation of Cutset Vulnerability lndl<:ea

Cutset (2,3) (1,2) 13,4) {1,4) (1.3) {2,4} (5) (6)

Vl 8.755 1.893 2.837 3.522 2.329 2.401 4.524 6.384

Vi" 2.460 9.431 10.385 9.810 16.163 3.653 17.103 18.968

VI. CONCLUSIONS

A new model for the study of. power system stability
has been discussed. The significant feature of this
model is its structural integrity which goes hand-in-
hand with an explicit presence of the system loads in
the network. This avoids the difficult problem of how
to account for transfer conductances in reduced network
models. To give a conceptual view of how this model
relates to stability analysis,the concepts of a topo
logical Lyapunov function and vulnerable cutsets have
been introduced. In view of the relationship with suc
cessful techniques for the classical model, the rank
ing of cutsets using vulnerability indices could prove
to be a very useful preliminary step in transient sta
bility assessment.
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APPENDIX

Some simple results in the analysis of nonlinear
resistive circuits are presented. Familiarity with
basic concepts is assumed. More complete details may
be found in [25-27].

Figure 3 Nonlinear n-port resistive network

Coiuilder the n-port repreaetit at Ion given lit Fig
ure 3. Thin relent to an Inlertoiiiieet Ion of V. nonline

ar ret;hit orh at N ° n+1 nodes. The Nth node is taken

at; a reference. The interconnections are. described by
an oriented graph which is assumed to be connected.
AsKoriatcd reference directions are used. The resist

ors are described by Jk - gk(vy), where j. and v.
denote the kth branch currentandvoltage respectively.
Each node, other than the reference, has an injected
current I., 1 ™ l,...,n.

Standard circuit matrices are the reduced inci

dence matrix A and the fundamental cutset matrix Q.
These nxfc matrices have full row rank and describe the

interconnections of the circuit graph. Matrix A is
based on specifying branches incident at the nodes
whereas £ specifies the branches in fundamental cut
sets. Then Kirchhoff's laws have the convenient form
for the above n-port

Al-I

v ™ A e

KCL

KVL

(A-l)

(A-2)

where j_, _v, £ and I_ are vectors of branch currents,
branch voltages, node-to-datura voltages (here serv
ing as port voltages also) and injected currents res
pectively. Combining (A-l), (A-2) and the branch re
lationships gives

I "A ^(A c) <A-3)

This specifies the aggregate n-port description in
terms of circuit structure and branch resistance char

acteristics. An alternative description is obtained
by using matrix (*> to relate all branch voltages to
just n tree branch voltages z.

Then, we have

KVL (A-4)

J_ «= A £(£ z) (A-5)
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Abstract - A new model for the study of power
system titabJiity via Lyapunov functions is proponed.
The key feature of the model is an assumption of fre
quency-dependent load power, rather than the usual
impedance loads which are subsequently absorbed into a
reduced network. The original network topology is
explicitly represented. This approach has the. impor
tant advantage of rigorously accounting for real power
loads in the Lyapunov functions. This compares fa
vorably with existing methods involving approximations
to allow for the significant transfer conductances in
reduced network models. The preservation of network
topology can be exploited in stability analysis, with
the concepts of critical and vulnerable cutsets play
ing central roles in dynamic and transient stability
evaluation respectively. Of fundamental importance
is the feature that the Lyapunov functions give a true
representation of the spatial distribution of stored
energy in the system.

I. INTRODUCTION

The analysis of power system transient stability
using Lyapunov function techniques has recently a-
chieved a status as a viable tool for on-line security
assessment. Particularly promising results arc report
ed by Gupta and El-Abiad [1], Rihbens-Pnvalla, ct. al.
[2], and Athay, et. al. [3]. The first on-line appli
cation to a real operating power system is discussed
by Saito et. al. [4]. This follows efforts beginning
around 1970 to apply Lyapunov methods to realistic
multimachine power systems [5-8] and some twenty years
of interest in such an approach — see surveys by
Ribbens-Pavella [9] and Fouad [10]. A major difficulty
which remains to be overcome rigorously is that asso
ciated with allowing for significant transfer conduct
ances. This is essentially an issue of modeling the
loads in the network. The present paper offers a new
model which can bypass this difficulty while maintain
ing the features related to the success obtained in
previous work.

While many of the assumptions made to arrive at
the usual classical model for transient stability
analysis arc reasonable, that, of ignoring transfer
conductances is usually quite crude [10]. This eman
ates from modeling the loads as impedances (with a
substantial resistive component). These are then ab
sorbed into the bus admittance matrix for a reduced

network based on generator buses. Thus, although the
original transmission network is very reasonably mod
eled as lossless, the reduced network certainly cannot
be in general. Consequently, a path-independent poten
tial function is not readily available for construct-
Lyapunov functions. Attempts to develop general Lya
punov functions have met very limited success, espec

ially when it is considered that ultimately these
functions should replace those based on assuming the
conductances are zero. Pai and Murthy [11] have a
Lyapunov function for the two machine case, but a
generalization has inherent difficulties [12]. Jocic
et. al. [13] report an approach based on large-scale
systems theory, but a clear improvement in practice
is not achieved [14]. The inclusion of transfer con
ductances is sometimes handled by some approximation,
either in the system description [6,15] or in evaluat
ing the 'Lyapunov function1 (or transient energy func
tion) [3,7,16].

A further disadvantage of forming a reduced net
work (by suppressing load buses) is that the original
network topology is lost. This can mask the role of
structural aspects in stability assessment.

In this paper, a new model is presented which does
not rely on a reduced network. This follows from the
reasonable assumption, for bulk power supply systems,
that each load on the transmission network can be

represented as a frequency-dependent power load (as
suming constant bus voltages). Taking this relation
ship to be linear leads to a very simple dynamic mo
del which includes the state variables of the classical

model plus extra variables associated with the loads.
Since the loads arc not incorporated into the trans
mission system, it can be quite accurately modeled as
one with zero transfer conductances. Thus, it is a
simple matter to generate Lyapunov functions. Fur
ther, theoriginal network topology is preserved and the
model can be regarded as having structural integrity.
In exploiting this feature, it is natural that circuit
theory ideas play an important role. Although used in
other areas of power system analysis [17], circuit
theory has not played a significant role in techniques
for stability assessment. Tavora and Smith [18,19]
have used it in a limited way to gain insight into
power system equilibria, while Jenkins and Liu [20]
have formulated a network flow model and used graph
theoretic ideas to develop stability results. The
model used here is presented in two forms: a network
form in terms of circuit matrices and an aggregate
view, which is an adaptation of a similar presentation
for classical models given by Bergen and Gross [21,22].

This formulation proves to be a convenient basis
for consideration of the dependence of stability pro
perties on network topology and system loads. For
dynamic stability, the linearized dynamical equations
are studied. Adapting results in [18,19,23], a result
is given for testing stable equilibrium points in
terms of so-called critical cutsets. For transient
stability, reference is made to the abovementioned
work on stability assessment using Lyapunov functions
(and transient energy functions). Implicit in this is
the importance of cutsets along which the system tends
to separate. The notion of a vulnerable cutset is
formulated and some indication given of how to use it
in the preliminary 6tages of transient stability as
sessment. Taking a. transient energy type Lyapunov
function for the aggregate system, it is readily seen
that this is the sum of kinetic energies associated
with the generator rotors and the sum of potential en
ergies associated with all the lines. Thus the Lya
punov function can truly represent the spatial dis-
ribution of stored energy in the physical power
system. This leads to the concept of a topological



Lyapunov function.
The structure of the paper Is as follows. Section

II gives a description of the new model. In Section
III, a discussion is given on the system equilibrium
points and a test provided for stable equilibria. The
concept of a topological Lyapunov function is the sub
ject of Section IV. In Section V, this isconsidered,
along with the idea of vulnerable cutsets,in transient
stability analysis. Section VI gives some conclusions
and the Appendix summarize results from circuit theory.

II. MULTIMACHINE POWER SYSTEM MODEL

In this section, a model of a multimachine power
system is developed. Its novelty lies in not taking
the Usual step of assuming Impedance loads, which are
absorbed into the transmission network. Otherwise, we
make the same assumptions that go with the classical
model — see [9,10,24] for instance.

Our starting point for the model is the network
of buses connected by transmission lines,which is the
one described by load flow equations. The system
shown in Figure la will be used in the sequel for il
lustrative purposes. It has four buses, two of which
have generators attached. In general, suppose there
are m generators and n> buses in the physical system,

with nQ-m buses having loads and no generation. It
is convenient to introduce fictitious buses repre

senting the internal generation voltages. These are

(0
Figure 1 a) A four bus power network

b) Augmented network with generator bus lines

c) Analogous nonlinear resistive circuit

connected to the generator buses via reactances ac
counting for transient reactances and connecting lines,
these reactances can be regarded as'transmission lines'
and henceforth are referred to as the generator bus
lines. Thus in the augmented network there is a total
of n=*nH*nn buses. For convenience, we number the ficti
tious generator buses l,...,m, the corresponding physi
cal buses m+l,...,2m and the remaining load buses 2m+l,
...,n. Suppose that within the transmission network
there are lQ lines. Then lQ must satisfy *0<i»Q(nQ~l)
and the total number of 'lines' In the augmented network
is a«m+«.0. We number the transmission network lines
1,...,£_ and the generator bus lines fcQ+l,...,Aconnect
ed to buses l,...,m respectively. The nth bus will be
used as a reference. For the four bus example, Figure
lb shows the augmented network. At this stage, it is
useful to recognize that the network is analogous to a
nonlinear resistive network with real power correspond
ing to current and the angle difference across a line
corresponding to branch voltage. Assuming a lossless

transmission network and ]j£ P. «* 0, where P. is the injec-
1=1

ted power at bus i, Kirchhoff's laws hold in the obvious
sense. For the four bus example, the analogous cir
cuit is shown in Figure lc. The nonlinear resistance
characteristic for each branch is given by the familiar
power-angle relationship for a line. We assume that
the graph for the network is connected and planar and
the branches are oriented according to associated ref
erence directions. We will make use of certain concepts
and results from circuit theory. The Appendix summar
izes some essential facts and further details are a-
vailable in references [25-27].

Now the key assumption of dynamic loads is intro
duced. Let Pn be the real power drawn by the load at

Di
bus i. In general P_ is a nonlinear function of volt

age and frequency. For constant voltages and small
frequency variations around the operating point P^ ,it

is reasonable to assume

where D. >

load model. This load frequency dependence is usually
•assumed in modeling the power-frequency control system,
but has not been used in modeling for transient sta
bility. Using (1) we are led to

wdA+1 bij ai*<vV"Pi"P2«-PS
where

D4 i i i • 0*4*1,... ,n (1)

0. Note that as D.-+0 we obtain a constant

i-i,
j-i (2)

M > 0 i«»l,...,m (generator inertia constants)

M. • 0 i»m+l,...,n

D. > 0 i«**l,...,ra (steam and mechanical
1 damping of generator)
D. > 0 i*»m+l,...,n (frequency coefficient of
1 load)

P_ • 0 i-l,...,m

pR • 0 i-m+l,...,n
Mi

Equation (2) looks similar to the usual classical swing
equation model used in previous studies of transient
stability via Lyapunov methods. However, there are
important differences. Along with the mechanical input

.



powers P.. , the. loads V are shown explicitly.
I "I

sequently, the network topology Is preserved just as
in the case of the load flow model.

It will he convenient to make the assumption that
" 0
2^ P. •*• 0, hut in practice this may not he reasonable
i»l

for the period following a fault. A resolution of
this is achieved by adopting the idea suggested by
Willems [28]. Adding equations (2) gives

Con-

n n
(3)

i°i x x i°i x x i=i x

The required equilibrium is given by 6.-6

C. is a constant, for all i.i. Thus all

c.., where

... ~„ - constant, for all i,j.
£j . 0the same constant speed w

to. approach

n n /n

i-i 7 i»i x

From (3), we have

(Recall that D. > 0

transformation

for all i.) Then consider the

K

w. - u

It is easy to check that 53 Pj *•* 0 an<* the equilibrium
i»l

..0angular velocity is u,v *-* 0. Henceforth, we assume that
this change of reference has been carried out if appro
priate and drop the prime superscripts.

More convenient forms of the model can be derived

as state-space descriptions and some flexibility is
achieved by using various notions from circuit theory.
The following is largely an extension of the develop
ment in [21] to the present situation. The m genera
tors require a state-space dimension of 2ra-l with
nonuniform damping [9,21] so, on including the loads,
equation (2) defines a state-space of dimension n+ra-1.
The state variables can be chosen as the m velocities

u s 6. and n-1 internodal angles a. «*• 6.-6 . However,

other choices of angles for the state arc useful. De-
iT

fine 6

Also, define

T TI6....6 ] , ta «-» [b>....(D ] and a0 [a-,...e„_1]

[I

n-lJ

differencesa vector of line angle

where o. • <5i*-6. for the kth line joining
buses! arid j. The vectors J£ and o_ are related to £ via
transformations o = L£ and a *> T 6_. Matrix T is given
by

.i:-2J
where I _. is the (n-1) identity matrix and e_ the (n-1)
vector with unity entries. Now we introduce the reduc
ed incidence matrix

I
—m

A. ' -I
I

I

I
t

where A is the reduced incidence matrix of the trans

mission network. Then, we have

o a A e

T
A*T6

(4)

(5)

Now part It ion T according to

Hence

I * 0
m i ••-

T
AT "

1b! =•]
• T

0 I A*T

1 | -I 0
—m ! —m

I

As an alternative to a_ we may wish to use a set of n-1
tree branch angle differences e.. With the chosen
numbering system, we further number cotree branches

first and then the tree branches. Writing £ «=• [o*jT]
and defining transformation 8_= K 6_, we see that K can
be obtained as an appropriate submatrix of L. Note

T "~
that £= Q 0_ where (£ is the fundamental cutset matrix

T
and so alternatively L- £ K. These matrix relation
ships can be explored further for their own sake, but
we only study them further as required in the sequel.

With the resistive circuit analogy in mind, we
define the constitutive relationship for branch k by
PjcBgk(ok) where pfc is the power flow in the branch.
We have

•MV =bksin °k

(6) ;

(7)

where b. *= b . and it is assumed always that branch k
connects buses i and j. In vector form, write p_= &(o).

0 n—"** o
Now P « - >J pj » so there are n-1 independent excess

i«=l
0 0 0 T

node powers. Let P a [P. ... P ,] . Then via nodal

analysis (A-3), the load flow can be written

P • A £(a)

T A
*•• A jb^A Si) a L($0

Note that

(8)

n-1

^(a) • 23biksin (aj-a^+b^ sinc^, i°l,...n-l
k=l

kH (9)

Alternatively, in terms of tree branch angle differenc
es, we get from (A-5)

I cA£(fiTP_) -L,(£)

Now define

M = diag{M }

D = diag{D }

(10)

Then it is straightforward to show that (2) can be
replaced by [21]

Mu+ Dw+ TT [f(a) - P°] = 0 (11)

With appropriate partitioning of M,D and using (6),
(11) fcan be rewritten as

H]^ +%!£! +li [!(«) -P°l -0

-2-^2 +2-2 t£(2> "5°J "P-

(12a)

(12b)

where subscripts 1 and 2 refer to the generators and
loads respectively.

We now proceed to develop a third model descrip
tion as so-called normal form or state-space form.
Firstly, we have



a « T w

- 1& + I2S>2 (13)

Using (12b) to eliminate t^ in (13) along with (12a)
gives

kx " ^I^iiii "^l t£<2) " I°l
(14a)

(14b)

Equations (14) define the system trajectories in a
statin-space of dimension m+n-1.

Equations (2), (12) and (14) give three alterna
tive mathematical representations of the model. Equa
tions (12) and (14) give aggregate representations,
but substituting equation (8) provides the structural
information in terms of circuit matrices. Sometimes
it is convenient to have (12) or (14) in terms of tree
branch angles 8_ or write (12) in terms of branch an
gles o. Using the above transformations, these alter
native representations can be developed as required.

The assumption that all D^> 0 is certainly reason
able, but a comment is in order on the case where some
D. are assumed to be zero. Further, the above has
implicitly assumed generator damping to be nonuniform.
Setting D, -0 or with uniform damping the obvious
extension of the classical case applies. That is, the
state-space dimension is reduced by one. Setting some
of the load D.-»-0+, however, gives a model in terms of
differential and algebraic equations. Mathematically
this is relatively more difficult to accomodate. In
view of the presence always of some frequency depen
dence in the load, this will not be investigated fur
ther.

III. EQUILIBRIUM POINTS AND LOCAL STABILITY

Before considering the global stability proper
ties of the system described by equations (14), atten-
:tion should be given to the equilibrium points and
•theirstability.
1 In the previous section, we saw that without loss
•of generality the equilibria correspond to (of.,u))»(oe,0)
iwhere ae is constant. From (14), we have

NIK"6) •f I• 0 , <15)

'.where
T -IT

* s1
n

withD,-dlaglDBrt.lf....Dl|_1)

Thus N has rank n-1. Then using (15) the equilibria,
are given by u • 0 and the solutions of

KjlVp0 (16),

We call the function fX*) the flow function [18). nue.
to the periodic dependence of £(<*) on g_, the domain of
the flow function is the n-1 "dimensional torus. That.

is we write f^:Tn~ ->*lRn~ where
1

T0"1 - {a mod 2tt : a em""1) !

To study properties of the solutions of (16), we note
that £(•) is continuously differentiable and identify
its Jacobian matrix denoted by F(a). The (l,j)th term-
of F(a) Is given by j

r n~13f. (a) I b. cos a. + Sb<t, coe(a.-ak), 1-J
A ~ m( ^ * k-i lk *

Da k»»i

-b±. cos (ctj-a.), i!*J

Since F(a) has full normal rank, (16) has a finite num
ber of isolated solutions in T"-1 [29]. Unfortunately,
there appear to be no useful results on answering ques
tions related to the exact number of solutions for a
given P9 unique stable solutions etc. Tavora and Smith
[18] have given some useful insights, by way of exam
ples, into how the number of solutions depends on net
work topology, line power transfer coefficients b.,,
and PO. -

The starting point for stability analysis of (14)
is a solution of (16) about which the system is locally
stable. The study of stable equilibria seems largely
to rely on the intuitive idea that if all lines satisfy

|o?| <tt/2, then the equilibrium is stable. From a
combination of ideas in [19,23], we can actually state
a precise version. In view of structural integrity of
the model, the test takes some significance in its be
ing based on making tests on cutsets. Further, the
techniques employed prepare the way for the study of
transient stability in later sections. For the study
of local stability, we firstly' linearize equations (14)

about the equilibrium point (a ,0) to obtain differen
tial equations in variables Act « ct - o° and Acjj » Wj
-at? -w,. This gives

-I^T^FCa0) T,"
-1 T 0 -1

-% I1K2.) -21 \

Act

(17)

*1

Study of (17) could proceed by eigenvalue techniques
or Lyapunov methods. The latter turns out to give a
simple answer and an appropriate Lyapunov function is
a quadratic counterpart to the one to be used for
transient stability [23]. It is convenient to define
the polytope

A4 -{oS-r4 :\a±\ <n/2, i»l,...,*)

Vte observe that for o°€Aa, then F(ctU) is nonnegative
[definite; this follows from Gershgorin's Theorem [30]
isince F(ct°) is diagonally dominant with positive di
agonal elements. Motivated by stored energy, consider
a possible Lyapunov function as

! VCAo.up - \ ^jS-x +\ toTF(a°)Aa
Differentiating V along the solutions of (17) gives

' V(Ao .Uj) - w^(•*i£1I*F(a0)Act. -M^D^)

| +AoTI<«0) (-I^I^IC"0)^*!--.^
I " •^J»1a1-AaTF<gi0)T2^"^(ct^Aa (18)

,1

*-. i



Now V 0 implies thai w, 0 and

lJ?(2°>AS£ 5o
From (17), ^ =0. gives

T 0

i

Equations (19) imply

TTF(a°)Aa2 0

(19a)

(19b)

(20)

Then, if F(a) is positive definite, V is positive def
inite and, since T* is a full rank matrix, (20) gives
that V = 0 implies (An,to.) = (0,JO). From standard Lya
punov stability theory [31], we then have that the
equilibrium point (a°,0) is asymptotically stable.
However, so far it has only been demonstrated that

0 I
F(ct ) is nonncgative definite on polytope A . To ob
tain the final statement of stability conditions, we use
a result given by Tavora and Smith [19]. We will refer
to lines with zero synchronizing coefficients, i.e.,
for which cos a. *-» 0, as zero-valued. A cutset of
zero-valued lines is called a critical cutset. Then,
from [19], we get that det F(crO) = 0 inA* if and only
if the system has a critical cutset. Hence, the equi
librium point (a°,£) is asymptotically stable if cOga4
and there are not critical cutsets. The absence of

critical cutsets is ensured by having a tree of lines
which are not zero-valued. We can now summarize the
result as it pertains to system (14) as follows.

Theorem 1. Consider an equilibrium point for
the power system satisfying (16). Suppose that qS e A*
and the generator bus lines are not zero-valued. Then
the equilibrium point is asymptotically stable if the
transmission line network has no critical cutsets.

For a normal operating condition, of course,
these conditions are easily met. However, after a
fault or during abnormal loading conditions the system
could be operating close to the boundary of polytope

A . Actually, in [19] the region of stable equilibrium
points is claimed to be bigger than A2- and given by the
so-called principal region. However, in general, this
principal region would not be easy to calculate and it
appears that A* is a close approximation to it.

IV. TOPOLOGICAL LYAPUNOV FUNCTION

Under normal operating conditions, the system
will be in or near an equilibrium state satisfying the
stability conditions of Theorem 1. A fault can alter

P , the transmission topology, or the coefficients b..
0 •*

giving new post-fault equilibrium states (if J? isfeas

ible, i.e., if P lies in the range of f(«)). Whether
the system settles to the post-fault s.e.p. is studied
via transient stability analysis using equations (14) as
the basic model. We use a Lyapunov function which is
motivated by stored energy of the aggregate system.
This, of course, has been the basic Lyapunov function
going back to early work. However, with the present
new model and using some circuit theory ideas — see
Appendix A — additional insights into stability assess
ment are possible.

Suppose that (ct°,0) is a stable post-fault equi
librium point. We define the Lyapunov function

VtlR11"1* IRm-»-lR by

IT 0
(21)

where

J** ft

* ir(^-c(a0)]Td*,
ctO

In this form, it is a direct generalization of the
Lyapunov function used by Bergen and Gross [21,22] and
represents the sum of aggregate kinetic energy and
potential energy. The integral defining the potential

function W(«,a ) is evaluated over an arbitrary path

between « and a. Since F(<x) is symmetric, the inte
gral is path independent and V is well-defined. It is
interesting to note the following.

Theorem 2. The function V given by (21) can also
be written as

i.

k-l
»&.-!> - \ E Vk +E.V(v°k>

k=l

°">=Jo
where

h(ok, (sin u - sin cOdu

Proof: From equation (8), we have

f(£) °A£(AT£)
Then the potential function is given by

W(a,a°) =f" [f(£)-f(o°)]TdI

•£

l£(AT£) -£(aV)]TAT°£

[£(u)-£(ar0)]Tdu

(22)

on setting ucA^_ and using transformation to branch
angles. Using (7),

ib"LW(a,au) •- £
k1

(sinu- sinak)du (23)
a

Thus the total potential energy is seen to be the sum
of the potential energies of the individual branches.
What is interesting here is that just as the kinetic
energy may be identified with individual generators,
the potential energy may be identified with individual
transmission lines (including generator transient re
actances). Thus the Lyapunov function truly reflects
the spatial distribution of stored energy in the phy
sical system since the original topology has been pre
served in the model. Hence we refer to the function
(21) or (22) used in connection with model (14) as a
topological Lyapunov function."

To actually show that V given by (21) isa Lyapun
ov function involves a simple modification of the steps
used for the quadratic energy function in the previous
section. Firstly, we determine a region where W is

positive definite. Consider the function h(*»°i.) an&

suppose £ G A . Then h(*,0.) is a positive definite

and strictly monotone increasing function over the

interval (ow»ol!) with o a - tt-a. and a «• ir - o.
k*

Now define the polytope



r£(o0)*- {o Gir*:o1C (oJ,uu) 1-!,...,£)
We denote the closure and boundury of T (o ) by f (o_ )
and Sr4(a°) respectively. Obviously, from (23), W(. ,u )
1b positive definite over the polytopc 1' (where o

- ATo Is assumed throughout). The above mentioned
monotoniclty property implies that all u.e.p.'s must

lie on or outside of 3?4(o0). Now differentiating V
along the trajectories of (14) gives

v^) - -"iVi - ii<&-l<sP)?l2»l1$il<s)-l<&H
(24)

Thus, since D, >0, J>2 >0, V is at least negative
semidefinite. Corresponding to (20), we have V 5 0
implying

2TUL(o) -Ite°)l - ° (25)

Hence, since T is full rank, (25) implies f.(ct) - f.(ct )
SO and VsOonly at equilibrium points. In the usual
way, well-known stability results [31]/ determine a
region of asymptotic stability defined by

0£ -<(«.«!) :vca,^) <v4(a!!)} (26)
where V. is chosen so that ft^ excludes all the u.e.p.'s.
In particular 0. excludes (a*,0), the u.e.p. of lowest

potential energy.
It is interesting also-to note that substituting

(12b) into (24) gives

V<a,w,) »-uTD w (27)
Equation (27) shows that all the T>i act similarly to
account for dissipation of energy, and the simple pos-
itivity of the coefficients insures that V <. 0. Thus
the precise values of the D., which vary and are dif
ficult to measure, are not needed.

V. VULNERABLE CUTSETS AND TRANSIENT STABILITY
ASSESSMENT

The major part of the effort to make Lyapunov
methods work for transient stability assessment in
realistic power systems has been directed to efficient
algorithms for estimating the region of stability in
the state-space. In this section, we look briefly at
how the techniques can be interpreted, and possibly
improved upon, with the new model. A complete presen
tation is beyond the scope of this paper.

Most methods for finding the extent of stability
rely on calculating (or approximating) theu.e.p. (a*,0)
with lowest potential Va(o0) »W(o*,o°) [1,2,6,18,32].
Other work is not explicitly concerned with calculating
u.e.p.'s. Bergen and Gross [33] and Pai and Narayana
[34] present minimization procedures on the polytope
ar1^0) (or its equivalent in e space) for estimating
a close lower bound for V£. The novel feature of the
procedure in [33] is its simple graphical calculations.
Thus it is more in the spirit of the equal area crit
erion for two-machine systems. All of the abovemen-
tioned work is motivated by the need to avoid the pro
hibitive computational task of calculating all theu.e.
p.'a and then testing each one to find W(o*, a0). In
looking for fundamental aspects of .this problem, we are
led to the role of system structure in the solution
techniques. Ribbens-Pavella et al. [2] take the atti
tude that the most likely consequence of instability is

for one generator to lone synchronism. This reduces
the problem to tottl lug 2(n-1) u.e.p.'s. In othur
results 11,32], the loss of groups of machlnos is ex
plicitly allowed for. Physical reasoning reduces the
number of poHsibiliticH for the system to split up.
For instance, Gupta and El-Abiad [1] restrict atten
tion to cutsets containing the line on which the fault
occurred. For present purposes, Itissufficient mere
ly to note that the transient stability problem seems
related in a fundamental way to a ranking ofthe network
cutsets in terms ofwhatwillbereferred to here as vul
nerability. The structural integrity of the present
model adds to the meanlngfulness of such a concept.

In the special case of P • 0 there is a simple
connection between u.e.p.'s and power flows on .trans
mission network cutsets. In particular, the u.e.p. of
lowest potential may easily be identified and calculated
by examining an index of vulnerability for all the cut

sets. In the case J? «•» 0, the solution £ e» 0 is the
s.e.p. and by (16) the (neighboring) u.e.p.s. have the

o^ " 0, + ir. We will refer to lines with

lines. Thus, corresponding to
A further

property ~.

\o.\ **» it as saturated
every u.e.p. is a set of saturated branches.
result is stated in the following proposition.

Proposition. Assume that P » 0. Then a
of the saturated branches corresponding to an
form a cutset.

subset

u.e.p.

Proof: For a three bus triangular mesh structure the
result is trivial since either all branches arezero or
two are saturated and one zero. Since the system graph
is planar, we can consider it as an interconnection of
triangular meshes and single branches (by introducing
internal zero branches if necessary).

Since we have an u.e.p., a.t least one branch must
be saturated. , Now, using KVL and the result for a
single mesh, one can argue that the result holds in
general. Starting from a saturated branch, we can
build up a line of saturated branches through meshes
with saturated branches in common. This line can ter
minate by having the only adjoining mesh at the zero
branch or if the line rejoins itself. In either case,
a cutset of saturated branches has been- generated. n.

It is easy to see that an u.e.p. can correspond to
a number of saturated cutsets. For instance, each
generator bus line in Figure lb could give a separate
saturated cutset at an u.e.p.

Continuing then with the simple special case of

P°»0. Let (ae,0) be an u.e.p. of Interest. Then,
from Theorem 2, we have

I

w<«e.o) - E V(V0)
k°l

Now h(ok,0) - J2 ,o£ -+w

Thus

W(oe,0) - 2 £ b. (28)
k-k,

where the summation is over the s saturated lines
numbered k.,...,k . Then we have exactly, in view of

the proposition, that the u.e.p. (a*,0) and most vul
nerable cutset are provided by minimizing the sum in
(28) over all cutsets. (If there is more than one
saturated cutset corresponding to an u.e.p., obviously
a more vulnerable cutset can be found by setting some
branch angles to zero.) It is convenient to introduce
some notation. Let C. denote the ith cutset and we
write C± - {±v...,i )where 1. identifies the jth

^



branch in the it.li cutset. Then we have

^fl2 L b.

as an Index of vulttneraMllt y for ith cut.uet. (A larger

v. correspottds to a less vulnerable cutset.)

The situation where P ° 0 is certainly not realis
tic in practice, except insofar as it approximates very
low power levels. However, the idea of ranking the
Vulnerability of cutsets has been illustrated with a

simple exact answer. Now, in general where P -/ j), we

will call branches saturated at an u.c.p. a when n/2

<Jo?J<3n/2. However, exact calculation of the u.e.p.'s is
to be avoided, so an index of vulnerability depending on
this is not acceptable. This difficulty can be over
come by adopting some ideas used by Prabhakara and El-
Abiad [32] for estimating all the u.e.p.'s. A measure
of the system vulnerability at a cutset can be obtained
by picturing a separation of the system into two parts
along the cutset. This is illustrated in Figure 2. It
is convenient to consider the polytope r*(o°) corre-

Figure 2 System separation on a cutset
0 0 T 0

sponding to s.e.p. (a f0) where £ a A a . By posing
the hypothetical situation of the separation occurring

—£ 0with £ on 3T (o ), an index of vulnerability becomes
obvious. Assigning a reference direction for the cut
set C., we denote the setof positively oriented branches
in C.Try Ct and the remaining branches in C. by C^.
Then a positive shift of line angles from £ (relative
to the cutset reference) on to aF-^Oj0) selects the 'cor
ner point' £+ defined by

•:. k*c,+

V kGci"

Similarly, a 'corner point' £*" for negative shift of
line angles can be defined with obvious modification.
We have from Theorem 2

+ 0."(£»£) - £ b. h(ok ,a")
(29)

+ 0We propose that W(£ ,o ) and its negative separation

counterpart W(o_ ,o ) represent the index of vulnera
bility for cutuctC.. Introducing the coefficients u£

" h(ok,0k) and l,k " h(ok,0k) for °U thG llnC8» thls
motivates definition of cutset vulnerability indices by

- £ K\" + £ b. u.
k'k Tt k*k

(30a)

pVk +SVk (30b)

An overall index for the cutset is

C\)± ° min {v± .v^)

and for the system is

C\) = min C\)
i

Evaluating^/, for each cutset gives a ranking according

to vulnerability. Note that calculation of the coeffi
cients in (30) is simply done via

Pk » 2[cos ofc + (ak-n/2)sin ak]

uk » 2[cos o° +(o°+n/2)sin o°]

(31a)

(31b)

For P B0, we have u. » p. =2 and "-l/. ° v. => v.~.
— — k k .ill

Having set up the index M/i» bow, and within what
limitations, canwe depend on it? Of course, in general,

we cannot expect C[) to be an accurate estimate of V£.
The main utility seems to lie in providinga preliminar-
y identification of weak cutsets. Then, using this in
formation along with other information like fault posi
tion, we can concentrate on finding the corresponding
u.e.p.'s and an accurate estimate of V.. It is inter
esting, however, to observe that the method used by
Prabhakara and El-Abiad [32] appears very accurate at
least for low power levels. We can then anticipate
that, for this case, C\f will indeed be a useful esti
mate for V^. As power levels Increase, the u.e.p. 's are
less related to hypothetical separation situations and
there is a greater need for follow-up calculations to
calculate V..

As a simple illustration of the use of vulnerabil
ity indices, the following example is considered.

Example. For the network illustrated in Figure 1,
we use the values for power transfer coefficients b.

0
and powers P. from an example in [18] (with some addi

tions to allow forgenerator lines) . The powersare given
by

P„ o 2.0 P_ • 1.0
Gl D3
P„ » 2.0 Pn = 0.8
G2 D4

P„ » 1.2
D5

P- - 1.0

Firstly, we note that for P •= 0 cutset {2,4} is most
vulnerable and expect this to be the case for very low
power levels. At the powers given above, the relevant
coefficients (31) for each line are tabulated in Table
1. The corresponding cutset vulnerability indices are
tabulated in Table 2 and they reveal that cutset {1,2}



la most vulnerable. The three cutsets (1,3}, {2,4}
(most vulnerable at very low powers) and {2,3} form nn
almost equally vulnerable group with the remainder hav
ing decreasing vulnerability. We have from [18] that
the exact value of V, (found by a lowest saddle point

search) is 1.63 corresponding to cutset {1,2} being
saturated. Thus the vulnerability indices have identi
fied the weakest cutset. Note that, in the case consid
ered, the power levels are an appreciable proportion of
the line capacities. In fact, at the exact u.e.p. cor
responding to cutset {1,2} line 2 has p, - b2 • 0.5.
thud we do not expect the overall vulnerability index

•-A/to give aclose estimate of V£. However, from Table
2, we do have Q) "1.89 which is an acceptable course
estimate.

TABLE 1

.Calculation of Branch Vulnerability Coefficients

Line bk <
(radians)

<
I

"k

1 2.0 0.597 0.559 4.091

2 0.5 0.152 1.548 2.498

3 2.0 0.569 0.605 3.991

4 1.0 0.124 1.627 2.404

5 5.0 0.412 0.905 3.421

6 6.0 0.340 1.064 3.161

TABLE 2

Calculation of Cutset Vulnerability Indices

Cutset {2,31 (1,2) {3,4) {1.4} (1,3) {2,4} {5} {6}

V

8.755

2.460

1.893

9.431

2.837

10.385

3.522

9.810

2.329

16.163

2.401

3.653

4.524

17.103

6.384

18.968

VI. CONCLUSIONS

A new model for the study of. power systemstability
has been discussed. The significant feature of this
model is its structural integrity which goes hand-in-
hand with on explicit presence of the system loads in
the network. This avoids the difficult problem of how
to account for transfer conductances in reduced network
models. To give a conceptual view of how this model
relates to stability analysis,the concepts of a topo
logical Lyapunov function and vulnerable cutsets have
been introduced. In view of the relationship with suc
cessful techniques for the classical model, the rank
ing of cutsets using vulnerability indices could prove
to be a very useful preliminary step in transient sta
bility assessment.
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APPENDIX

Some simple results in the analysis of nonlinear
resistive circuits are presented. Familiarity with
basic concepts is assumed. More complete details may
be found in [25-27].
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Figure 3 Nonlinear n-port resistive network

('omiidor the n-port representation given in Fig-
tiro 3. ThiH refern to nn intorc-onneet ion of Knonline

ar resistors at N *=• n-t-1 nodes. The Nth node is taken

as a reference. The interconnections are described by
an oriented graph which is assumed to be connected.
Associated reference directions are used. The resist

ors are dctjci'lbcd by Jk • Bi,(v.), where j. and vk

denote the kth branch current and voltage respectively.
Each node, other than the reference, has an injected
current I., i a l,...,n.

Standard circuit matrices are the reduced inci

dence matrix A and the fundamental cutset matrix Q.
These nxi. matrices have full row rank and describe the

interconnections of the circuit graph. Matrix A is
based on specifying branches incident at the nodes
whereas £ specifies the branches in fundamental cut
sets. Then Kirchhoff's laws have the convenient form

for the above n-port

Aj_ » I_ KCL

v « A e KVL

(A-l)

(A-2)

where j_, j/, e and 1^ are vectors of branch currents,
branch voltages, node-to-datum voltages (here serv
ing as port voltages also) and injected currents res
pectively. Combining (A-l), (A-2) and the branch re
lationships gives

I - A £(Axe) (A-3)

This specifies the aggregate n-port description in
terms of circuit structure and branch resistance char

acteristics. An alternative description is obtained
by using matrix Q to relate all branch voltages to
just n tree branch voltages z.

T
v Bfi z

Then, we have

I •= A £(£ z)

KVL (A-4)

(A-5)
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