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ABSTRACT

Consider an open raulticlass Jacksonian network in equilibrium and a

path such that a customer travelling along it cannot be overtaken by

subsequent arrivals. Then the sojourn times of this customer in the

nodes constituting the path are all mutually independent and so the

total sojourn time is easily calculated. Two examples are given to

suggest that the non-overtaking condition may be necessary to insure

independence when there is a single customer class.
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1. Introduction

In 1957, Reich [1] proved that, in equilibrium, the sojourn times

of a customer in each of two M/M/l queues in tandem are independent,

and in 1963 [2], he extended this result to an arbitrary number of

such queues in tandem. This result was very recently extended by

Lemoine [3] to the case of Jacksonian networks which are trees. Since

trees have no parallel paths, and since the service discipline is FCFS,

every path in a tree network has the non-overtaking property: a customer

travelling along the path cannot be overtaken by a subsequent arrival.

The main result of this paper is to show that in any open multiclass

Jacksonian network, the sojourn times of a customer at the various nodes

of a non-overtaking path are all mutually independent. Since the distribu

tion of the sojourn times at each node is known, it is easy to calculate

the sojourn times for non-overtaking paths.

The paper shows that in a single-class three node network which has

two parallel paths (Figure 3) the sojourn times at the various nodes are

not all independent. Thus the non-overtaking condition cannot be

generally relaxed. It is also shown that for any network with a single

customer class the sojourn times along any path which permits overtaking

cannot be independent at least under light traffic.

The paper is organized as follows. In section 2 the notion of a

marked customer is made precise and some technical results are recalled.

The definition of overtaking is given in section 3 which also contains

two basic lemmas. The main result occupies section 4 and the "negative"

examples section 5. Some concluding remarks are collected in section 6.

2. The marked customer

It is convenient to first recall some results about Poisson processes.
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Let (S,£,P )be aprobability space and Cxjj »t£ R+, an

increasing family of sub-o-fields. For n = l,...,d let N » (Nfc), t^0,

be independent (^f )-Poisson processes with rates X . Let N = (N^...,^),

t >_ 0. We say that N is a (vector) (CJt)-Poisson process with rate

X= (X1,...,Xd). The following statement is the strong Markov property

for Poisson processes (see e.g. [4].)

Lemma 2.1. Let T be an a.s. finite (9^ )-stopping time. Then N is a

(^f )-Poisson process with rate X, where

Nt =NT+t-NT,grt=cyT+t, t>_0.

Consequently CJl and QT •a{Nt,t>0} are independent.
The result will be used below in a slightly different form.

Consider the space (S,VJ- ,PM). Recall that we can always assume that

S consists of the space of sample paths of the Poisson process and N

is just the coordinate map (see e.g. [5, Ch. XIII.]) In the remainder

such a canonical representation will always be used. This allows us

to define the translation operators (6 )» ^O* t >_ 0, by

N • 8 (a) = N ^(a), N •6 (a) = N (a) - N (a), a€ S, s > 0.
s t s+t s t s+t t —

Simple calculations show that {G }, {6 } are semigroups. Now let

(X,9^,Pn) be another probability space, where X is a countable set.

Define

Let (X ), t £ R , be a (^X_)-adapted, right-continuous process with

values in X.

Lemma 2.2. Let T be an a.s. finite (tJ-.)-stopping time. Then for all

bounded Vj - measurable functions $
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E{*(3^,N-eT)|9TT> - *<*,.),

where

$(x) =J <J)(x,o)PN(do), xe x.

Proof. Under P,9C and^ are independent so that on ($1,7+,?)• N is

a (Of ,P)-Poisson process and Lemma 2.1 applies. Now, if <J> is of the form

<k(x,o) = 1.(x)l_(N (a)) where A C x, B C in , t >. 0 are fixed and 1&, 1_
A B t A 15

are indicator functions, then

E{<j>(XT,N.§T)|C]fT} » lA(XT)P{Nt-GTeB|(gTT}, since XT is ^-measurable,

- lA(XT)P{NtGB|c]r0}
- 1 (X^PCN 38}, by Lemma 2.1,

and this is indeed equal to $(0 since, in this case,

*(x) =j lA(x)lB(Nt)PN(do) =lA(x)P{NteB}

The general case now follows by a monotone class argument. n

Consider now a Jacksonian network ^\j with N nodes and L customer

types. The arrivals of external customers of class £ at node i form

an independent Poisson process with rate y . Node i is an M/M/l

queuing system with FCFS discipline and service rate \i± independent

of customer class. A class I customer who completes service at i

changes into a class m customer and either immediately joins the queue

im

ij

ij

at jwith probability rm or leaves the network with probability riQ.

Naturally } \\ r., = 1. Let {X.} be the solution, assumed unique,

to the equations

Xj -yJ +S £ X»r"J, 1-1 N, l-l,...,L.
j=l m=l J J

I -1
Set X = EX , and assume p = ^ ]i < 1.

I
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Following [6] or [7] we give a precise description of the Markov

process describing the evolution of the state of the network. Let

X = {1,...,L} be the set of all finite sequences of elements in

{1,...,L} including the null sequence $. The state space is X = X ,

so that a state is an n-tuple x = (x.^...^) where x± represents the

customers in queue at node i with the right-most element in x^ being

the class of the customer in service and the left-most element, the class

of the customer who arrived most recently.

We adopt the following notation, a • b is the concatenation of two

elements in X. Also, for x. £ X,

a(x ) « left-most element in x., a(<J>) = 0,

d(x ) = right-most element in x , d(<J>) = 0,

!x,L = number of customers in x. of class £,
' i'£ i

|x.| = l|x.L = number of customers in x ,

and if |x.| > 0 let x be obtained from x by deleting its right-most

elements.

There are three types of possible state transitions and associated

Poisson processes:

(i) Internal Transitions. For 1 <_ i,j <_ N, 1 <_ £,m <_ L, let

e£° -{*Ex|d(Xi)=*}. tJ :eJ -Xwith tJ(x1,-.-..,x|i)
•* £ra= (x. ,...,x.,...,m x ,...,x^), and let N be an independent Poisson

process with rate u.r ..

(ii) External arrivals. For 1 <_i <N, 1 <_ £ <_ L, let U* = X,

Ai : Ui "*" X with Ai(xi»*»*»xN^ = (xi*- •• ff''xj,,. ••,x ), and let n; be

an independent Poisson process with rate y .
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(iii) External departures. For 1 £ i <. N, 1 <_ £,m _< L, let

V*" ={^IdCx^-tl, Dj" :vf -Xwith D^x,,...,^) -(^ ^.....x/,
and let N be an independent Poisson process with rate u r .

Let X be an independent random variable with values in X; X is the

initial state. Then the state process (X ), t > 0 is the unique right-

continuous piecewise constant solution of the differential equation

(2.1), (2.2) below. For E C x let E (E) = l„(Xj, £ (x) = 1, ,(X ).
t h t t ixi t

«t(x) - E [^((tJVVe <x)]E (Ej")dNj"(t)
Z ij£m C 1J t- fc" ^ ^

+E K ((Ab_1x)-£ (x)]£ (uJ)dNj(t)ft t- i t- t- i i

+ [^(dJV^O"? (x)U _(vf)dN^(t), (2.1)
i£m

Vx) "WV- (2-2)

Let N=(N*,...,N^), t>0, with rate X-(X1,...,\d), be the
collection of Poisson processes introduced above. (N ) is given its

canonical representation. The state process (X ) is then a(X ) v yj-

<^*vNadapted, strong Markov process and o(Xn) is independent ofy ♦ Assume

that Xn is given the equilibrium distribution P_ given by

PQ(x1,...,xN) =P1(x1)...PN(xN), (2.3)

i lXil L £KUP (x.) = p. X (1-p.) (p7) X \ (2.4)

£ £ -1
where p = XX, . (See [6] or [8]). The state process (X ) is now

stationary.

Suppose now that at time 0 a customer of type 9. , call him C, is

introduced at the end of the queue at node 1 and that after he leaves

node 1 he proceeds in sequence through nodes 2,3,...,n, maintaining

class identity £. while he is at node i. We wish to analyze the
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sojourn times of C at these nodes. To do this we need to augment

the state description of the network from (X ) given above to (Xfc) say,

so that at t the position of C in the network is given by X^. We do

this simply by increasing the number of customer classes to 2L with zero

external arrival rates for the new classes L+1,...,2L, and by agreeing

to "mark" the customer C as being of class L+£ whenever "unmarked" he

would be of class £. The process (X ) now satisfies a differential

equation analogous to (2.2) and with an initial distribution Pfl of X^

which is obtained from the steady-state distribution P. of X = (X Q,—»^n^

by simply adding of type a customer of type L+£ (namely C) to the left

of X ... The process (X ) is then also a right-continuous, strong Markov

process. It is, however, not in equilibrium and so we may not directly

apply known equilibrium results of Jacksonian networks. (This point is

somewhat overlooked in [l]-[3].)

Definition 2.1. Let L HO and T. the departure time of C from node

i, i - l,...,n. S = T - T - is the sojourn time of C at i.

Evidently T is a stopping time of the process (X ). We show in

section 4 that S ,...,S are all independent if the path (l,...,n)

does not permit overtaking.

3. The non-overtaking condition

£m
Recall the routing probabilities (r..} introduced previously.

Definition 3.4. For 1 <_ i,j < N, write i ->• j if for some £,m

ton ar , > 0. Let

Pij = ^7r=(1»i1»---»1m»J) li")':L1>i1","i2»"-»iin^» for some V'-ii }

Py =U^Ol^P^Tr'Gp^}.
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Thus P . is the set of all paths in the network going from i to j and

P consists of those paths which in addition go via k. Note that

the path (l,...,n) taken by C is in P .

Definition 3.2. The path it = (i ,!_,...,i ) G p permits no overtaking
1 m

if

i ,,
P . C P.n. , for 1 <_ n < v <_ m.

u v n v

The condition means that all paths from i to i must go through i -;

hence a customer who traverses i_,...,i cannot be "overtaken" by
I m

any customer who enters i. after him. In Figure 3, the path (1,3)

permits no overtaking, but the path (1,2,3) does because (1,3) does not

go through 2.

Assumption. In the remainder of the section and the next section it is

assumed that the path (1,2,...,n) permits no overtaking and the nodes

i = l,...,n-l are without self-loop, i.e., r^ = 0, all £,m.

Definition 3.3. For i = l,...,n-l, let

P, = (j|P^£P.M for some kG{i+l,...,n}}.
i J • jkf jk

Thus P consists of all nodes j from which there is a path reaching

{i+l,...,n} without going through i. See Figure 1.

Lemma 3.1. (i) j f ?± for 1 <. j <_ i <_ n-1

(ii) {i} U p. C p 2 < i < n-1
i-1

Proof (i) By the assumption every path from j to k for j < i < k '_ n

must go through i that is, P k = P.fc.

(ii) iG P , since (i,i+l) is a path. Next let jG pi+1« We show

that j€ p Let kS {i+2,... ,n} and it G P such that ir £ ?* . It

* If it € P1.
jk jk

.i+1
P.. such tnat ir ^ J
j^

is enough to show that tt G P^, . If tt G p then tt '= (tt1,*") with
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it' G p and tt" £ P., . But then it" G p since (l,2,...,n) permits no
ji ik. iK

overtaking, and so it G p which is a contradiction. n

In the remainder of this section and the next we shall denote the

augmented state process X by X . There should be no confusion since

we will not need to refer to the unaugmented process. For any subset

of nodes J C {1,...,N} let (X ) = {X |iGj} denote those components of

X which correspond to the nodes in J. It is convenient to introduce

a new node 0 to which go all the customers who leave the original

£ro £mnetwork. (This is in keeping with the notation r n, N.n.)

For i=l,...,n-l, let Q± =?± U{i}, P^ ={j|l^N.j^},

Di«P^U{0},

For i = l,...,n-l define the vector processes N , N. as follows:

i £m £•Nx ={N^^N^jGQ^^.rGp^^.O^JlNa^.mlN}

N1 = Nkj'NkO= ^ Nkj.'Nrll^i'r€pi»^i.1i^miN> (34)
J 4

Thus N consists of the Poisson processes associated with internal

transitions and departures from nodes in Q together with external

arrivals into P.; N consists of these same processes except that

customers leaving P are not distinguished by their destination.

Later N will be used to construct a simpler network equivalent toc.AI.

Recall Definition 2.1. The next lemma summarizes the crucial

observation that after T _ the progress of C depends only upon the

state of the queues in nodes Q. at T. , and the -processes N1 after

Ti-r

Lemma 3.2. For i = l,...,n-l, there is a measurable mapping <j>.

depending only on P such that
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pi Qi -i.
(SijXT > = MV »N #eT >•

i xi-l Li-1

("depending only on P±" means that $ is the same for all networks

with N nodes L classes for which (l,...,n) permits no overtaking and

which have the same set P .)

Proof. Evidently, there is a function f , depending only on P , such that

P P.

i X L± Xi-1 LU,biJ Ti-1

where F is the set of flows of customers going from P^ to P and

Itq g i(') is the indicator of the random time interval [0,S. ]. By
i

Definition 3.3, F is simply the flows from i to P. (See Figure 1). Hence

there exist functions g and h , depending only on P , such that

S. = g,(xi .N1^ ) (3.3)
1 Xi-1 Xi-1

1ro S1F± 'ST =W^ >"±%K ) (3-4>
lU,biJ Ti-1 i 1 Ti-1 Ti-1

The assertion follows from (3.2), (3.3), (3.4). n

Corollary 3.1. There is a mapping <J>, depending only on (P ,...,P ),

such that

Ql-1(sr...,sn) - <Kxq\n )

Proof. Assume, as induction hypothesis, that for some f . depending

only on (P^... .P^)»

Pi-1 Ql -1(S1,...,S1-1,XTX x) =f1_1(XQ ,N ) (3.5)

By Lemma 3.2, for i ^ n-1,

P1 Q.

1 L± 1 ^-l ^-l
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r.i ..„_. c m1By Lemma 3.1, Q± CP^ and N1 is asubvector of N. Hence (3.5) is
proved for i= 2,...,n. For Sn» observe that

.n snSn - *n0£ ,NU.6 )n n Tn_1 Tn-1

where Nn is obtained as in (3.1) by setting Pn - <t>, Qn - (n),

D = {0,1,...,N}. The assertion now follows since nG p^ and N is
n

-1 n
a subvector of N .

4. The main result.

We show here that the sojourn times S^...^ of C are all

independent. Moreover S± has the same distribution as the sojourn time

of a customer in an M/M/1 queue (in equilibrium) with arrival rate X^^

and service rate u±. Recall that X± is the total average arrival rate

into node i.

We first give an outline of the proof (see Figure 2). The idea

is to reduce the problem to the path (2,...,n). To do this it will be

shown that in<^\|.

a) S and (^29"'fSr? are indePendent5
b) (S9,...,S ) has the same distribution as that of the sojourn

times of C if C were introduced into the network at node 2 with (^M

being in equilibrium.

To prove a) we introduce a simpler network(ta>\)(Definition 4.1) such

that (S ,...,S ) have the same distribution incAJando\J(Lemma 4.2) and
1 n

for which S, and (S~,...,S ) are independent (Lemma 4.A). To prove
1 2 n pc

b) we show that in^W, \ and ^ both have the equilibrium distribution
H" 1

and then b) follows from the fact that (X^) is a strong
r'l

Markov process and T = S. is a stopping time of (Xt). (X^, _ and

Pi 1X do not contain C so that the equilibrium distribution is well
Tl
defined and given by (2.3), (2.4).)
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A/

Definition 4.1. (See Fig. 2) Let^be the network obtained from^by

changing the Poisson processes associated with the latter in the following

way:

For 1 <i <N, 0£j <_N, 1 <_ £,m <_ L,

~£m
N

o if (i,j) eQi xP£

,, = JE nJ* if (i,j) GQ x{0}
1

N.. , otherwise,

and for 1 <_ i <_ N, 1 <_ £ <_ L,

(n* if iGpi
nJ' ° < £ c|an independent Poisson process with rate X , if iG p

Essentially,^\| is obtained by forcing customers who, in^, moved

from Q and P^ to leave the network and then "compensating" the nodes

in PC by external Poisson arrivals with the same average rate. Thus in

o\l the average rate of arrivals of any class at any node is the same

as the corresponding rate incJVJ.

Lemma 4.1. The following elements in^WandoWare the same:

(i) the vector process N (and hence N ,...,i=2,...,n-l).

(ii) the subsets Pi>•••>Pn_i

(iii) the equilibrium distribution of the unmarked state.

Proof. (ii) is immediate and (i) follows by checking that (3.1) yields

the same process N1 whether it is obtained from N or N . (iii) follows

from (2.3), (2.4) since the X are the same for^l,^. n

Suppose now that at time 0- the unmarked state of ^A), which we continue

to denote by Xn ,has the equilibrium distribution given by (2.3), (2.4).

At time 0 we introduce customer C at the end of the queue in node 1,

i.e., to the left of X*_. Let T±, S± continue to denote the various

departure and sojourn times of C in^Jy)'
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p_

i

Lemma 4.2. {S.,X,_ |i«l,...,n-l} and {S-,...,S } have the same distribution

ini^Jandr^.

Proof Follows from Corollary 3.1, and Lemma 4.1. n

1 2
Lemma 4.3. Let z , z be independent random variables. Then

E{h(f(z1),z2)|f(z1),g(z1)} =E{h(f(z1),z2)|f(z1)}

for any bounded measurable function h and measurable functions f, g.

Proof. This is obvious if h(f(z1),z2) =h1(f(z1))h2(z2). The result
follows from this using a monotone class argument. °

Lemma 4.4. In<^\|, S. and (S0,...,S ) are independent.
J. z n

Proof. It is convenient to denote

P- P1# Q- Q »P U {1}, R= {i|l<i<N,i£Q}.

The proof is divided into several steps.

Step 1. P(X* |Xg ,SX) =P(X* Is^. (4.1)

To see this define the following vector processes:

a = flows of customers from R to 1,

3 = external arrivals into 1,

Y = external arrivals and service processes in R.

By Lemma 3.2, since T = S ,

(S^X^) -^(xJ^X^N1). (4.2)
By definition of S ,we have (see Fig. 2), X* is measurable with

1
Rrespect to oCS^a.B). Also o(a) C0(Xq,y). Hence

But

1 R
Xg is measurable with respect to o(S-,Xn,B,Y>. (4.3)

<*(X ,£,y) and a(X0_,XQ,N ) are independent (4.4)

-13-



and so (4.1) follows by applying Lemma 4.3 to (4.2), (4.3), (4.4).

1 P
Step 2. X and X are independent (4.5)

A/

By construction ofo\|the link joining nodes 1 and 2 is not part of

E{zV|s =t} = f zV exp(-Xt)^f-= exp(z-l)X
1 Jo lv.

v

Also, by (4.5), z and W are independent. Hence

E{zV} = f exp(z-l)X1t dP{S1<t|W=w}
'1-

l'"

any

loop. Hence, by the output theorem for Jacksonian networks (see e.g. [6]
1 P

or [7]), for the unmarked state X , X are independent. Now at time
bl bl-

p
S. = T , the position of C is known as a function of X since C is at

S-

1 P
the end of queue at node 2. Hence X , X are independent for the

Sl Sl
marked state as well.

p
Step 3. S1 and X are independent (4.6)

bl
p

This is proved by using a technique of Reich [1]. Let W = X and let V
Sl

be the number of customers in node 1 at S1. For any complex number z,

we find

E{zV|w=w} = f E{zV|w=w,S =t}dP{S <t|w=w}
Jo 11

00

=f E{zV|S1=t}dP{S1<t|w=w}, by (4.1).

Now, again by the output theorem, the arrivals into node 1 form a

Poisson process with rate X and so

Since the left-hand side does not depend on w it follows that S and W

are independent, and (4.6) is proved.

Step 4. S and (S«,...,S ) are independent.
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First observe that by the output theorem for Jacksonian networks, the

arrivals into node 1 form independent Poisson processes. Hence (see

Figure 2) (XQ) is a strong Markov process and S;L is its stopping time.

Therefore, by the strong Markov property,

P{S2....,SjS1,X«i>-P{S2,...,sJX«i>. (4.7)
Next we claim that

P{32.....8jx^i)-P{S2.....Sn|^>. (4.8)

To prove this it is evidently enough to show that

xl and {S9,...,S 9X? }are independent. (4.9)

But by repeated use of Lemma 3.2 and the fact that ?2 U {2} C p.^ = p we

see that

P -2 *
(S„,...,S ) measurable with respect to a(X ,N «0 ); (4.10)
2 n 11

Moreover

—2
X and N • 9 and independent. (4.11)
Sl Sl

From (4.5), (4.10), (4.11) it is easy to conclude (4.9). From (4.7),

(4.8)

p{s2,...,sn|s1,x^ }-p{s2,...,sn|x^ },
p

and conditioning both sides with respect to (S_,X ) gives
1 bl

P(S0,...,S |SlfX* }-P{S_,...,S |x* }. (4.12)
l nib. z n o-

P
Finally, denoting W = X ,

bl
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P(S1,...,Sn) = J]P<Si'---'Sn»Waw) " ZP(S2 SjS ,W-w)P(SlfW-w)
w w

= 2P<s2"--»SnlW=Iw)I>(Sl»W=w)» by (4'12)
w

= £P(S2,...,Sn|w=w)P(S1)P(W=w), by (4.6)

= P(S_,...,S )P(S ).
i n i

The lemma is proved. n

Theorem 4.1. In^Mthe sojourn times S ,...,S are independent. Moreover

S. has the same distribution as the sojourn time in an M/M/1 queue with

arrival rate X and service rate u..

Proof. By Lemmas 4.2, 4.4 S, and {S„,...,S } are independent. Moreover
1 z n

X has the equilibrium distribution given by (2.4) and so S is distributed

P P
as asserted. Now in the network X = X also has the equilibrium

V r
distribution given by (2.3), (2.4) [9]. We can apply the argument above

as

to^and construct an equivalent network^Mto conclude that S« and

{S ,...,S } are independent with S« distributed as asserted. The
3 n l

result follows by successive repetitions. n

5. Paths which permit overtaking

Consider the network of Figure 3 with 3 nodes and only one class of

customers. In terms of the notation of Section 2, and dropping the

superscript since there is only class, we have the following parameters:

arrival rates: Yn = *> ^i ~ 0» Y3 = °»

routing probabilities: x^ =p = l_r13 = ^Zq* r23 " 1; r30 = ly

service rate at node i is u , i = 1,2,3.

We assume that X < u., X < p , X . p < u . Observe that the path (1,2,3).

permits overtaking since the path (1,3) does not go through node 2.
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1 2 3 vAs before let XQ_ - (X0_,X0_,XQJ be given the equilibrium

distribution defined by (2.3), (2.4) and obtain XQ by adding C to

the left of XZ . Suppose C takes the path (1,2,3) and let T , S± be

the corresponding departure and sojourn time.

Theorem 5.1. (i) S. and S. are independent; S« and S- are independent

(ii) S and S are not independent.

Proof, (i) The paths (1,2) and (2,3) do not permit overtaking and so

the result follows from Theorem 4.1.

(ii) The idea behind the proof is this. If S- is large, then C is

likely to leave behind him many customers in node 1. Therefore it is

likely that some of these will overtake C, by using the path (1,3),

and arrive at node 3 before C. Thus at node 3 C will find a larger

queue, thereby increasing S_. This reasoning suggests that S- and S

are positively correlated. We now give a formal proof.

By the strong Markov property (applied to the augmented state

process and its stopping time S.) it follows that

2 3 1a(n;x2,x3) =E{S3|Xg =x2>Xs =x3,Xg =n}

is well-defined. We claim that for all (x«,x~,n)

a(n+l,x2,x3) > a(n;x2,x3) (5.1)

To see this consider Figure 4 and denote by u a realization of all the

independent Poisson processes involved in the description of the system

2 3 1and of (X0_,XQ_). Let v denote a realization of X . Now introduce
2

C to the left of X_ . Let P denote the probability obtained by giving

X the equilibrium distribution. Then it should be clear that

S3(uj,v+1) >_ S3(w,v) for all w,v. (Indeed, since S2(w,v+1) £S2(w,v)
3 3it suffices to show that X (w,v+l) > X (w,v), t >^ 0 and this obvious.)
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Moreover, it is easy to exhibit a set of realizations with positive

probability for which S-(w,v+l) > S-(u>,v); and then (5.1) follows using

the strong Markov property.

Now it is known [9] that the unmarked state at time S. also has

1 2 3
the equilibrium distribution. Hence X and (X ,X ) are independent.

Sl bl Sl
Also

a(n) - E{S3|Xg =n}

- E E<S3lXSn=X2'XS =X3'XS=n}P(XS1=X2'XS=X3)
x2,x3 1 1 1 1 l

= TjT a(n;x2,x3)p(x2,x3), say
X2,X3

Since p(x2»x ) >0 for all x2 >_ 0, x^O, it follows from (5.1) that

a(n+l) > a(n), n >^ 0.

Next observe that

~ (Xt)mb(n|t) =P{Xg inlSj-t} =£ "j exp(-Xt),
1 m=n

is such that

b(n|t') > b(n|t) > 0, n >, 0, t'f > t > 0.

Finally, let

00

c(t) =E{SjS =t} =£ E<sJXc =n,S =t}P{X^ =n]s =t>
3 X n=0 J bl L bl

OO

= V E(sjx* =n)P(X* =n|s =t), by the strong Markov property,
n=0 3 Sl bl l

oo

= £ a(n)[b(n|t)-b(n+l|t)]
n=0

We claim that

c(t') > c(t), t' > t > 0
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To prove this observe that £ a(n) = ES~ < °° and J^ b(n|t)
n=0 J n=0

= E{X IS =t> = Xt < °° so that the following calculations are justified.
Sl 1

Let t* > t > 0. Then

OO

c(t') - c(t) = J] a^Xtbdilt^-bCn+DltOl-IbdilO-bCn+lIt)]}
n-O

OO

= 5] {a(n)[b(n|tf)-b(n|t)]-a(n)[b(n+l|t')-b(n+l|t]}
n=0

00

1 E {a(n)[b(n|t')-b(n|t)]-a(n+l)[b(n+l|t,)-b(n+l|t)]}
n=0

= a(0)[b(0|t')-b(0|t)] > 0.

This shows that

E(S3|S1=t,> >E{S3|S1=t}, t1 >t>0

and so S.., S- are not independent. n

For our second example we return to the N node network discussed

earlier. Suppose there is a single customer class. Let cy = e(y ,...,y ),

0 < e < 1, be the external arrival rates, {r } the routing probabilities

and eX « c(X ,...,X ) the average total arrival rates.

Suppose the path (l,...,n) permits overtaking. Let i >_ 2 be the

largest integer such that (l,...,i) permits no overtaking but (l,...,i+l)

does. From now on let i+1 = n. And let tt = (l'-l^1,... ,m* ,n) be a

path "parallel" to (l,...,n) as in Figure 6.

As before let C enter node 1 at TQ = 0 when the network is in

equilibrium. Suppose C leaves i at T and let S = T.-T. ... S has the

same distribution as the sojourn time for a M/M/1 queue with input rate

cX. and service rate u., and so

PfS^s} = 1 - exp{- u^l-p^s}, s^0 (5.2)
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where p = eX y. . Also

P{T n-T <s} = P S.+...S <s}, (5.3)
n-1 1— 2 n-1—

where the S are distributed as in (5.2) and moreover they are independent

by Theorem 4.1 since (l,...,n-l) permits no overtaking.

We shall show that S. and S are dependent, at least for e > 0
1 n

sufficiently small. We adapt an argument of Burke [10].

Let E be the event that there is a customer, say C1, in service at

node 1 « l1 at time T which is when C leaves 1. The probability that

C' takes path tt' is

r' = r1.2'r2'3,,',r(m-l),m|rm,n

r1 > 0 since tt1 is a path (Definition 3.1).

For each node n let M be an independent random variable with the
n

service time distribution,

P{M <y} = 1 - exp{- y y} . (5.4)
n—r n

and let

Q = M1,+...+Min,.

The probability that C will encounter a busy server at node n

conditioned on the event E is P{X _>0|E}.
n-1

Lemma 5.1. PttJJ _>0|E} >r'P^T^-T^Q-ttU.
n-1

Proof. Cf is in service at 1' at T^ and so will complete service at

T + M ,and enter 2' with probability r^,. If C finds 21 empty,

he will immediately enter service. If C finds another customer in

service call the latter C1. Then C will complete service at 2' at

time T, + M,. + M0, and move to 3' with probability r , ,. In any case,
112 ^ J
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conditioned on E, C will enter 3' at T + M^ + M2, with probability

r » fr ,~,. Continuing in this way, and renaming customers if

necessary, C' will enter node n at time T1+M1,+..,+M^, = Tj+Q with

probability r*. If C' encounters a customer in service at n call the

latter C1. Then C will leave n at T. + Q + M so that C* is in service
1 n

at n during the random interval (T1+Q,T-+Q4-M ) and so he will block C

if the latter's arrival time at n, T ,, falls in this interval. The
n-1

assertion is proved. n

Lemma 5.2. There is 6 > 0 such that for all 0 < e < 1,

b(e) = r'P{Q<T n-T.<Q+M } * 6.
n-1 In

Proof. The "blocking" probability is given by

m m-1 m

b(0 =r'PiJ]^ < £ s± <E\.-^n>

where M, , is distributed as in (5.4), S. as in (5.2), and all of them

are independent. For any e b(e) > 0, since, for instance, for fixed

numbers 0 < a < b,

m m-1 m m m-1

P^Z^t < E si< EMki+Mn> >P(53Mk.<a>p^a <E Si<b}P{Mn>b} >0.

Moreover b(e) varies continuously with e and so the assertion follows.
n

Customers arrive into node 1 at an average rate e> > 0. They

need not arrive in a Poisson stream, but since the unmarked process is

stationary, there is t(e) < «» such that with probability at least one-

half a customer arrives at node 1 if S. = T. > t(g), i.e.,

P(E|S1>T(£)) =P(X^ >0|S1>x(e)) >1/2.
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Combining this with Lemmas 5.1, 5.2 gives the estimate

P(x£ _>0|si>T(e)) >1/2 6. (5.5)
n-1

Now S is the service time for 1 + X^, customers. Hence from (5.5)
n n-l~

E{S |S_>T(e)} > (1/2 6+1)y"1.
n i n

On the other hand the unconditional distribution of X,^ is just
n

its equilibrium distribution [9] and so,

Esn - u-Pn'"1";;1.
and so for e, equivalently p , sufficiently small

E S |s.>T(e)} > ES
n1 1 n

so that S. and S are dependent.

Theorem 5.2. Let be a Jacksonian network with a single class. Along

any path which permits overtaking the various sojourn times are not all

independent for sufficiently low traffic intensities.

6. Concluding Remarks

In networks which are trees every path permits no overtaking and

so the sojourn times at the various nodes are independent. Thus the

results of [3] follow from Theorem 4.1. One interesting example to

consider is the so-called "full duplex" system of Figure 6 in which there

are two classes of customers, the first travelling right to left and

the second travelling in the opposite direction. By Theorem 4.1 the

sojourn times of each customer class at various nodes are independent.

It may be worth recalling here that by the output thereom [6,7]

customers of each class leave the system in a Poisson stream, although

by the example in [7] the flow of customers between any two adjacent

nodes is not Poisson.
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Theorem 5.2 establishes a strong presumption in favor of the

conjecture that the independence holds only along paths which permit no

overtaking. Suppose that of a node in the network has an M/M/m

queuing system with m >_ 2. The existence of parallel servers clearly

permits overtaking and this suggests that independence will not hold

along a path containing such a node. This has been shown by Burke [10]

for light traffic in a tradem connection of 3 nodes in which the middle

node is M/M/m, m >_ 2 and the extreme nodes are M/M/1. It should be

possible to extend this result.
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FIGURE CAPTIONS

Figure 1. (1,2,3,£) permits no overtaking.

Figure 2. Sojourn times in o\l><~AJ are identically distributed

Figure 3. (1,2,3) permits overtaking

Figure 4. Equivalent network for example.

Figure 5. (l,...,n) permits overtaking.

Figure 6. The full-duplex system.
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