

Copyright © 1979, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

MUFFIN: A DISTRIBUTED DATABASE MACHINE

by

M. Stonebraker

Memorandum No. UCB/ERL M79/28

1 May 1979

MUFFIN: A DISTRIBUTED DATA BASE MACHINE

by

Michael Stonebraker

Memorandum No. UCB/ERL 79/28

1 May, 1979

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

MUFFIN: A DISTRIBUTED DATA BASF MACHINE

by

Michael Stonebraker

DEPARTMENT. OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

UNIVERSITY OF CALIFORNIA

BERKELEY, CA.

ABSTRACT

This paoer discusses the design of MUFFIN (Multiple Fast or

Faster INgres), a distributed data base machine being

developed at Berkeley. The basic design goals are higher

transaction rates than achievable through conventional

means, resiliency to failures and support for a wide variety

of data bases in terms of size and complexity of transac

tions. The design exploits the possibilities of parallelism

among large units of work, variable size RAM caches, no con

cept of "GOD" and streamlining of modules through speciali

zation of function.

The design is contrasted with conventional distributed data

base systems and with other proposals for multiprocessor

data base machines.

Research sponsored by the Office of Naval Research Contract
N0039-78-C-0013 and the National Science Foundation Grant
MCS75-03839-A01.

- 1 -

I INTRODUCTION

This paper discusses MUFFIN (Multiple Fast or Faster

INgres), a data base machine under development at Berkeley.

It differs substantially from an earlier proposal [STON78]

and bears little resemblance to other so-called data base

machines [SCHU78, DEWI78, BANE78, LIN 76, COPE733. The

goals of MUFFIN are the following:

1) higher transaction rates (by at least a factor of 10)

than those achievable by one-machine conventional architec

tures.

2) support for geographically remote data in a transparent

way.

3) support for data bases in the 1 mbyte to 100,000 mbyte

range.

4) modular expansion, i.e. the ability to expand transaction

processing capability and/or data base size in a reasonable

way.

5) resiliency, i.e. the ability to survive without crashing

and without data loss or data u availability at least all

single component hardware failures.

The next section discusses the architecture of MUFFIN and

indicates some of the major design decisions that have been

made. After that, we indicate several alternative architec-

- 2 -

tures and our reasons for rejecting them. Then in Section 4

we discuss performance considerations and indicate the

environment in which the intitial MUFFIN prototype will run.

We conclude by indicating the implementation status of the

prototype.

II THE ARCHITECTURE OF MUFFIN

2.1 Overview

MUFFIN consists of two types of processing nodes A-cells

(apolication program cells) and D-cells (data base nodes).

These cells are connected into "pods" using a high speed bus

or local network [CLAR73]. There is no limit on the number

or type of cells in a pod. Pods are connected to other pods

through gateways and lower speed communication links. Fig

ure 1 indicates an example of this architecture having two

pods of respectively two and four cells. It should be

clearly noted that other types of nodes may in fact be phy

sically connected to a structure such as Figure 1. However,

data base software only knows about the above two kinds of

cells.

We first discuss D-cells and A-cells; then we consider the

bus. Lastly, we treat the software environment. The lower

speed communication link is deferred to Section V.

2.2 D-cells

- 3 -

Figure 2 indicates the nature of a D-cell. It consists of a

mandatory part containing a bus interface, a rather conven

tional processor, random access memory along with an

optional disk system.

The following are the key features of a D-cell.

1) The processor is totally dedicated.

The only executable process on a D-cell is the run-time data

base system code. The only interface to the outside world

is through the bus. Moreover, there are no other peri

pherals connected to a D-cell.

2) There is no information managed by a D-cell except a por

tion of a data base.

This data base may reside in RAM if the optional disk is not

present. Otherwise, RAM acts as a cache for the data base.

The size of this cache is an important (application depen

dent) performance parameter.

3) The protocol understood by a D-cell is highly stylized.

The D-cell processor is capable of accepting ONLY messages

containing data nanipulation language commands (DML) in QUEL

[HELD75] and responding with appropriate data and/or comple

tion information.

4) There is no general purpose operating system present in a

D-cell.

- 4 -

At best, a very lean collection of needed utilities will be

included.

5) A variety of disk systems are Dossible.

The disk system is not constrained except that there be one

disk controller. Conceivably, the storage medium could be a

floppy disk.

6) The processor can be quite ordinary.

The instruction set of the processor should be oriented

toward supporting ONLY the run-time data base system. In

this context, there is little need for memory management or

virtual memory or hardware protection. By and large the

instructions supported should be conventional with perhaps a

"smart" string compare command included.

2.3 A-cells

A-cells are conceived to be either a "smart" terminal or a

time-sharing system. In either case they will run an

operating system such as UNIX [RITC75] and some complement

of peripherals. The important characteristics of an A-cell

are the following:

1) The application program from which data base requests

ultimately originate must run on an A-cell.

2) Some portion of a data base may reside optionally on an

A-cell.

- 5 -

2.4 The Bus

The cells in a ood are connected together using a bus or

local network. Each cell has a bus interface (say the LNI

[CLAR78], or CHAOS [CLAR73], or maybe even a UNIBUS flavor

of interface). Software in an A-cell must be able to ori

ginate messages to all cells, broadcast messages to subsets

of the cells (if that feature is not supported in the

hardware), appropriately synchronize responses, and multi

plex the bus among multiple sending processes. As such, the

software overhead in an A-cell to send a message may be

non-trivial.

A D-cell, on the other hand, never originates messages. It

simply accepts messages from the bus, executes them and

returns an answer. As such, the overhead in a D-cell should

be much lower.

If the overhead to send and receive messages becomes intoll-

erable, then perhaps the communications code can be run in a

separate processor sitting between the bus interface and the

main processor. This tactic has been employed by the COOLS

system of the Bank of America.

2.5 The Software Environment

The collection of processors described above runs the dis

tributed INGRES software system [EPST78, STON73b]. Hence,

from a software point of view MUFFIN looks exactly like a

- 6 -

distributed data base system (such as SDD-1 [ROTH771).

Distributed INGRES supports a user from an application pro

gram manipulating a data base in QUEL that physically

resides on several processors as if it was resident on his

local cell. Such QUEL commands are processed by a sequence

of local transactions at various sites intersperced with

data movement among sites. The processing algorithms for

distributed INGRES are given in [EPST78]. Here, we only

note that processing on behalf of a transaction can be done

in parallel at various sites (so-called intra-query paral

lelism [DEWI78]), broadcast is a very useful feature, and

multiple commands from different application programs can be

executed concurrenctly (so called inter-query parallelism

[DEWI78]).

Figure 3 shows the run-time software environment which must

be supported. Here, an application program (or terminal

monitor) talks to an end user at a terminal and generates

data base transactions. These are passed to a "master

INGRES" process which we expect will run in the same A-cell

as the application program. The master INGRES coordinates

the execution of a transaction by making calls on "slave

INGRESs" which run at each site where processing on behalf

of the transaction takes place.

These calls are either to run a local QUEL command or to

move data to some other subcoilection. of sites. A local

- 7 -

query is transmitted in parsed form. Consequently, slave

INGRES code contains only QUEL processing code and some of

the utilities. On the other hand, a master INGRES must per

form parsing, query modification for support of views,

integrity constraints and protection [STON75], and have all

the utilities.

We can now discuss further details of the D-cell software.

2.6 D-cell Software

The INGRES algorithms for query processing have been dis

cussed elsewhere [WONG76]. In the interests of higher per

formance in a dedicated environment, we are making the fol

lowing changes to the one-machine algorithms.

1) There is no file system in the conventional operating

system sense. Rather there is a relation storage system

whose details are discussed in the next section.

2) There is no physical protection of data objects.

Clearly, the only process able to access data is the run

time DBMS. Query modification is all the protection that is

needed, and it runs at an A-cell.

3) There is no operating system per se. The slave INGRES

simply reads commands from the bus and' executes them.

Presumably simple multi-tasking is done, although the case

can be made against it [STON73].

- 8 -

4) There is no memory management in the conventional sense.

The slave INGRES code is entirely main memory resident; the

rest of the RAM is a buffer pool.

5) The buffer pool is managed by the DBMS which always

knows, for each access to the buffer pool, which of the fol

lowing four situations it is in.

a) This is not the last reference to the current page; it

should remain in the cache.

b) This is the last reference to the current page for

now, but it is likely to be re-referenced soon (e.g.

inserts to an indexed access method when there are over

flow pages present, inserts to the audit trail, etc.).

The page should remain in the cache.

c) This is the last reference to the current page, but

somebody else may reference it soon (e.g. directory pages

for an indexed access method, system catalog pages,

etc.). The page should remain in the cache if there is

room.

d) This is the last reference to the current page, and it

is not likely to be referenced again (ordinary data

pages). The page should be deleted from the cache.

It is clear that treating the four classes of pages dif

ferently in a replacement algorithm will result in a compo

site scheme which will substantially outperform a simple

- 9 -

one-class LRU scheme such as implemented in UNIX. We plan

.to implement just such a four class replacement strategy.

6) The DBMS knows exactly when it is viable to prefetch a

page and additionally knows EXACTLY which one to prefetch.

Again, by implementing exactly the prefetch policy which the

DBMS knows is best, we expect to substantially outperform

typical operating system prefetch strategies. For example,

UNIX blindly prefetches the next sequential page when it

detects sequential access. This is only one case of several

where the next page is predictably known in advance. A DBMS

algorithm can take advantage of all cases.

7) Some commands involve examining a large collection of

records. In this case, the current INGRES strategy of

interpretive execution is wasteful of CPU resources [STON79,

HAWT79]. However, if only one or two records will be

accessed, there is little penalty for an interpreter. The

run-time DBMS knows when a command may involve examining

many records, and will be modified to incrementally compile

on-the-fly a procedure for iterating through a relation

selecting qualifying tuples (the one variable query proces

sor portion of INGRES). Simple commands will continue to be

-interpreted.

This strategy represents far less cost than writing a com

piler from scratch (as in System R [LORI77D. Moreover, we

- 10 -

expect to suffer only a small (if any) penalty for simple

commands compared to compilation. Complex transactions may

well run faster, because we are interpreting access path

selection and order of joining relations. Hence, such

important decisions can be made on-the-fly based on accurate

information on sizes of intermediate scratch relations.

8) The query processing algorithms appear to work well

except in the case of certain equi-joins between relations.

Here, a merge-sort tactic appears to be useful [BLAS77,

SELI791. Hence, we will add this tactic to the query pro

cessing strategy.

However, it should be clearly noted that a merge-sort tactic

will have exactly as many page faults as a tactic which

arranges to sort both relations in question and then do

tuple substitution as in [W0NG7&]. Hence, no I/O time will

be saved; rather we expect to economize on CPU resources

using this tactic.

2.7 The Relation Storage System

A relation is stored in a collection of extents (16 or

less), each of which is a collection of physically contigu

ous 4396 byte data blocks. Available extents are kept on a

free list with a header in a known location (say in block

1). Block 0 will presumably be required for booting the D-

cell. Lastly, the structure of the system catalogs may have

to be stored at a fixed place on the disk and used during

- 11 -

boots. The other alternative is to "hard wire" it into the

D-cell code.

The system calalogs are identical to the ones for distri

buted INGRES with two exceptions. First, the "relation"

relation (which has one row in it for each relation on the

disk system) must have 32 fields added to it. These are:

extent_0_start_address
extent 0 length

extent_15_start_address
extent 15 length

Second, relations are currently grouped together into data

bases. Since there will be only one relation relation

(instead of several in the current system), we must distin

guish which data base a relation belongs to. This will be

done by prepending to each relation name the data base name

to which it belongs.

Notice that there is no need for any protection or for a

tree structured collection of objects, as in UNIX [RITC75].

Lastly, we plan to have a single access method which will be

a dynamic directory structure for keyed files (as in B-

trees) with secondary indices. The reason to have only one

is to save soace in the slave INGRES code so it has some

chance at fitting in 128K of address space (see Section VI).

The reasons for B-trees has been discussed in [STON791 and

- 12 -

will not be repeated here. This access method will be aware

of cylinder boundaries and ensure that directory pages are

put on the same cylinder as pages which they point to. This

will save one seek during each random access to a data page.

2.3 Addressing in a D-cell

Main memory in a D-cell can look as shown in Figure 4. Note

that there is little (if any) advantage to any virtual

memory scheme since memory management is only involved in

manipulating the buffer pool. Also, there is little advan

tage to a one level store (such as implemented in the IBM

System/38). Using a virtual memory approach, I/O is done by

binding a file into the address space of a process and then

handling page faults. Notice that the information on

extents contained in the relation relation is a more compact

representation of disk information than a page map would be.

Hence, space is economized by a "relation descriptor".

Also, fancy buffer management (such as discussed in Section

2.6) is difficult to implement in a virtual memory environ

ment .

Consequently, we expect addressing to be conventional with

no hardware address modification.

Ill OTHER ALTERNATIVES

In this section we suggest some of the architectural choices

which we considered and dismissed.

- 13 -

3.1 Identical Processors

Several other proposals (for example X-TREE [DESP73] and CM*

[FULL771) have suggested using identical hardware nodes con

nected into some structure.

Although we understand the reasoning behind such proposals,

we feel that it is impractical in our environment. There

appears to be a large cost savings to providing only needed

functions in a D-cell and not all the functions which an A-

cell must have. Hence, A-cells and D-cells are expected to

have different instruction sets.

In addition, we expect some A-cells will be smart terminals

and some will be general purpose main frames with a comple

ment of peripherals. Obviously, the same CPU will not serve

both situations. It should be noted that we can conceive of

applications consisting of only smart terminals and no D-

cells or main frame A-cells. In this case we have an "ulti

mately" distributed data base with data under the keyboard

of each operator interacting with it. Consequently, res

tricting A-cells to be main frames seems inappropriate.

3.2 Non Bus Connections

Many other systems do not have a common bus for communica

tion (e.g. DIRECT [DEWI73], CM* [FULL77], RAP [SCHU73], X-

TREE [DESP78]) In our application we expect the benefit of

broadcast to be dramatic. This obviously suggests a bus

- 14 -

scheme.

3.3 Hierarchy of Processors

Several systems have proposed a hierarchy of processors

(e.g. X-TREE [DESP73]). If such a hierarchy is a reasonable

implementation of a bus, then MUFFIN cells could simply be

the leaves of such a tree. However, if data base processing

is to be performed at non leaf nodes, then two serious prob

lems result.

a) resiliency

One obvious tactic is to use higher level nodes for control

information (e.g. concurrency control or crash recovery).

This, in essence, implies that concurrency control and crash

recovery are at least partly centralized. Although crash

recovery in a distributed data base appears to be poorly

understood (at least in the presence of multiple copies of

objects), it appears that "godless" schemes (e.g. [STON73b])

will substantially outperform schemes with "god" (e.g.

[MENA78]).

This conclusion suggests non hierarchical architectures.

b) bandwidth and work distribution

Suppose each leaf ceil in a hierarchy has an equal size

fragment of each of two relations which are to be joined

together. Further suppose the natural hierarchical algo-

- 15 -

rithm is used whereby each cell passes fragments upward if

they must be further examined. Moreover, each cell does

whatever portion of the join it can do that has not been

done by a lower processor.

A simple calculation will verify that 50 percent of the

total work using this algorithm must be done by the root

node. Moreover, every single fragment must be examined by

the root; consequently, it must have enormous bandwidth.

No scheme occurs to the author which does not create a

bottleneck at the root in a wide variety of situations. The

only way to avoid overloading the root is to generate a data

base design which minimizes the number of fragments of a

relation. This clearly reduces possible intra-query paral

lelism.

3.4 Processors on the disk head

Various associative disk proposals have been made over the

last ten years. These include [BANE78] and .[SLOT70] . Such

a content addressible associative disk appears to be a

winner in certain situations (e.g. high percentage of com

plex transactions). However, it has a drawback that it is

not oriented toward the use of a main memory cache.

For small data bases (i.e. data entirely resident in the

cache) and data bases with a considerable amcunt of locality

(i.e. data mostly cache resident), MUFFIN should outperform

- 16 -

an associative disk. The reason is that RAM is substan

tially faster than associative secondary storage for many

DML commands.

Also, for simple transactions MUFFIN should perform compar

ably at smaller hardware cost. For example, finding the

salary of an employee from a relation keyed on employee name

can be done by an associative search of a disk or by an

indexed look-up. Depending on the assumptions made about

the comparison, either tactic can be made faster. However,

the point to be made is that they are in the same perfor

mance ballpark.

Lastly, it is not clear how to cheaply make an associative

disk resilient to hardware failures.

The point to be noted in summary is that associative pro

cessing at the disk level and caching each perform well but

in different environments. Both tactics will presumably

find application in the areas where they have an advantage.

3.5 Two or More Processors in Tandem

Condider the possibility of a D-cell as noted in Figure 5.

Here, some portion of the work is done by processor P1 and

some by P2. These could be two levels in a more general

hierarchy such as INFOPLEX [MADN791. There are two conceiv-

able.ways to divide data base processing among two such pro

cessors.

- 17 -

a) Query decomposition runs in the upper processor; every

thing else runs in the lower processor.

This is the approach advocated in [STON78]. However, only

perhaps 5 percent of the total work is done by the upper

processor; the rest is done in the lower one. Only a

hierarchy of one upper processor and several lower proces

sors (perhaps ten) generates a reasonable work distribution.

Resiliency issues discussed in Section 3-3 argue against

such a hierarchy.

b) The access methods run in the lower processor while all

other code resides in the upper processor.

One possibility would be to support the following calls

being passed between the two processors:

GET_PAGE(key)

GET_NEXT_PAGE

INSERT(record)

DELETE(record_id)

REPLACE(record_id, new_values)

Here, P2 would have a one page buffer and would have the

software to search that page and do all higher level pro

cessing. Note clearly that P2 must buffer one page and not

simply one record. The other alternative generates a large

number of calls between the two processors when sequentially

examining a single page. Such a number of calls increases

- 18 -

overhead dramatically.

One the other hand, if P2 has a buffer pool larger than one

page, then it must run the entire access methods. This will

leave P1 nearly emasculated with almost nothing to do other

than those functions normally assocciated with a devive

driver in contemporary operating systems.

As a result, it appears that a one page buffer makes the

most sense. Under these conditions, Table 1 indicates the

approximate work distribution between the two processors.

P1 P2

simple 10 percent 90 percent

transactions

complex 20 percent 80 percent

transactions

Work Distribution

Table 1

Although these numbers are speculative, they are based on

the following considerations. The expensive action in sim

ple transactions is the fixed overhead associated with

start-up and bookkeeping. On the other hand, the expensive

- 19 -

action for complex transactions is searching a page. These

are both (inevitably) in the upper processor.

As a result there is a poor work distribution and little

performance gain with an access method approach. In gen

eral, tandem decompositions have both a problem with work

distribution and with the fact the tasks cannot be arbi

trarily decomposed because of the fixed overhead to communi

cate between and synchronize multiple processors.*

3.6 Two or More Processors in Parallel

Figure 6 indicates what appears to be the desirable archi

tecture for this situation. Although at first glance this

resembles RAP [SCHU78] or DIRECT [DEWI78], there are four

fundamental differences.

a) One (or maybe two) auxiliary processors is all that can

be effectively utilized. RAP and DIRECT suggest use.of a

much larger number. This point is further discussed in the

next section.

b) The auxiliary processors share primary memory with the

controlling processor. The RAP and DIRECT proposals suggest

having separate memory for each processor.

c) The auxiliary processors should be capable of ONLY

accepting a search predicate and a page number in the buffer

pool and marking (somehow) the records on that page which

satisfy the search criteria. The auxiliary processors in

- 20 - -

RAP and-DIRECT are able to execute a richer set of commands,

which include updates.

d) The controlling processor manages the buffer pool and

runs the access methods. Any buffer pool in RAP or DIRECT

appears to be in the separate memory of the auxiliary pro

cessors.

Consequently, the task of the controlling processor is to

run the access methods, fetch pages, manage any locking and

recovery which is done, and reformat and dispose of any

marked pages which must be rewritten. The auxiliary

processor(s) simply searches pages.

For complex transactions such a scheme may win by a factor

of two or three (as discussed in the next section). If it

clearly appears to be a winner, we may experiment with such

a parallel collection of processors. Note clearly that pri

mary memory should not be interleaved location by location

in the traditional way but page by page. In this way there

will be virtually no contention for main memory.

We conclude this section by commenting that both RAP and

DIRECT have separate memories (point b) above) and write

changes to that memory (point c) above). Any system with

these two features suffers from the following difficulties.

a) Loading and Unloading the separate memories may be a per

formance bottleneck.

- 21 -

b) Crash recovery may be difficult.

c) A main memory cache for a disk cannot easily be used.

d) Sorting cannot easily be a tactic utilized for query pro

cessing; in fact, neither system suggest it. Hence, joins

are processed by algorithms with complexity N**2/K where N

is the number of pages in each relation being joined and K

is the number of processors.

One the other hand, MUFFIN can use sort/merge tactics and

achieve complexity of 2N*L0G(N). Sorting will win unless K

is very large.

IV MUFFIN PERFORMANCE

In this section we indicate the performance possible in MUF

FIN in a few situations. We also indicate ballpark numbers

for how fast various components should be. Throughout, we

will make a collection of assumptions which are at least

vaguely realistic. Prior to building a prototype MUFFIN

there is little more that we can do. These assumptions now

follow.

a) The overhead for an A-cell to send or receive a message

is 5000 CPU instructions.

2) The overhead for a D-cell to send or receive a message is

100 instructions.

- 22 -

3) The overhead per QUEL command in an A-cell for "master

INGRES" processing is 100,000 instructions (200,000 if pars

ing and validity checking is done at run time).

4) The overhead per command for "slave INGRES" processing in

a D-cell is 25,000 instructions.

5) The time to search a 4096 byte page for qualifying tuples

in a D-cell is 25,000 instructions.

6) The wall clock time in a D-cell to fetch a page from disk

randomly is 30 msec.

7) The wall clock time in a D-cell to fetch a page from disk

sequentially is 10 msec.

We now indicate the performance of a D-cell under the above

assumptions for the following situations.

a) Simple queries — data in the cache — few records exam

ined

Here the D-cell must simply pay the fixed overhead for a

command (25,000 instructions) and there is no I/O activity

regardless of the number of disk drives.

b) Simple queries — data on the disk — few records exam

ined

Here, we assume that two random disk reads must be done (60

msec). This can be thought of as one directory page and

- 23 -

one data page under the assumption that the root node of the

directory in in the cache. Again, 25,000 D-cell instruc

tions must be executed.

c) Complex queries — many records examined

Here, many sequential reads will be performed each requiring

10 msec, of wall clock time. Also, the fixed overhead will

be inconsequential. What will determine performance is the

25,000 instructions per page to search it.

Table 2 now indicates the performance which can be expected

in each situation and what speed CPU in mips (million

instructions per second) is required to achieve it.

number of disk drives

simple

cache 40*speed of the CPU in mips

queries

simple

disk 17 XACTS/sec. 34 XACTS/sec. 51 Xacts/sec.

queries (.42 mips) (.34 mips) (1.26 mips)

- 24 -

complex 100 pages/sec. 200 pages/sec. 300 pages/sec

queries (2.5 mips) (5.0 mips) (7.5 mips)

D-cell Performance

Table 2

Performance of a D-cell appears to be reasonable with a 1-2

mip processor. The only situation where this is too slow is

complex queries. Even there, two or three such machines are

all that can be effectively utilized. This is the reason

for suggesting in Section 3.6 that there will only be a

small number of auxiliary processors in parallel.

For the present we will continue the discussion under the

assumption that a D-cell employs a PDP-11/70 class machine

with a speed of about 1 mip and turn to the bandwidth needed

on the bus.

For simple disk transactions, we assume that four messages

must be sent on the bus, that an acknowledgement is "piggy

backed" on the next message and that a message is 200 bytes

in length.

If so, under the assumption that a D-cell has one disk

drive, the bandwidth needed is:

B = (200 bytes/message)*(4 messages/transaction)*

(17 transactions/sec/D-cell)*

- 25 -

(number of D-cells)

i.e.

B = (13,600 bytes/sec)*(number of D-cells)

Hence, 74 D-cells can be supported on a 1 mbyte/sec. bus.

If a processor has more than one disk drive or data is

resident in the cache, this number drops. However, it

should be clear that many D-cells can be supported on a very

ordinary bus (i.e. a few megabits/sec.)

We now turn to complex transactions. The solution to com

plex transactions involves moving data and executing local

transactions. In the algorithms of [EPST78], a D-cell (or

any slave INGRES) ALWAYS performs a join or a restriction

and a projection prior to moving any data. In such a compu

tation, we assume that a D-cell must process four pages to

obtain one which it will ultimately move. Hence, we assume

that any result is 1/4 the size of the object from which it

was extracted. Hence, a D-cell examines 40 pages per second

and generates 10 pages per second for transmission, i.e.

40,960 bytes/sec. Clearly, 25 D-cells will saturate a 1

mbyte/sec. bus. Moreover, because transmission may occur in

bursts, saturation may occcur somewhat sooner.

We turn finally to the speed of A-celis. For simple tran

sactions an A-cell can do 5-10 transactions per second times

the CPU speed in mips. It appears to be reasonable to

- 26 -

assume that the number is 5 for a 1 mip CPU.

We can summarize our ballpark numbers by noting that for

simple disk transactions with the property that each tran

saction involves only one D-cell, a MUFFIN system of 74 D-

cells, 252 A-cells and a 1 mbyte/sec. bus can execute 1253

transactions per second. On the other hand, a data base

design which has the property that each transaction must

involve all D-cells will result in the above MUFFIN system

processing only 17 transactions per second. Hence, the suc

cess of MUFFIN for simple transactions requires a data base

design which puts all data needed by most transactions at a

single site.

For complex transactions a 1 mbyte/sec. bus will not

saturate until 25 D-cells are involved. Moreover, the algo

rithms in [EPST78] can attempt to maximize the number of

processors which are involved in processing a command. For

such transactions it is reasonable that up to 25 times the

performance of a single machine system can be obtained.

V COMMUNICATION BETWEEN PODS

We now consider the issue of multiple pods connected by a

"long haul" network such as the ARPANET. The argument in

favor of running a different protocol on this net than on

the local net are coherently summarized in [CLAR78]; hence,

one machine in each pod must serve as a gateway and convert

- 27 -

between the protocols.

•

From a software standpoint, distributed INGRES software sim

ply sees more nodes in a distributed data base system. Only

the query processing optimization tactics must know that

communication between some cells is expensive and others is

cheap. Hence, the algorithms of [EPST73] must be expanded

to include this knowledge and relevant gateway code must be

written. Other than these items, a "long haul" network is

transparent.

VI IMPLEMENTATION STATUS

The physical environment in which the MUFFIN prototype will

live is indicated in Figure 7.

We have two VAX's which will serve as A-cells and run the

UNIX operating system and can dedicate (at least for short

periods of time) an 11/70 to serve as a D-cell. We will

attempt to "shoehorn" slave INGRES code into 128K bytes and

run it in kernal mode. Perhaps we will convert D-cell

software to run on a Zilog Z-8000 class CPU sometime in the

future.

These three machines are connected by a packet switched

local net [ROWE79] based on LNI hardware from University of

California, Irvine [CLAR73]. It will run in excess of 1

mbit/sec and support up to 2**16 processors. Hence, modular

expansion of a MUFFIN system is straight forward. Lastly,

- 28 -

the ARPANET will serve as the long haul network.

The current status of the software is that distributed

INGRES runs in this environment and processes transactions

against a distributed data base. Some of the optimization

tactics in [EPST78] (and some others) have been implemented.

Concurrency control and the updating of multiple copies of

data have been thought out [STON78], but implementation has

not yet begun. It should be noted that resiliency (goal 5

from Section 1) will be provided by supporting multiple

copies of objects. This should be contrasted with the "mir

rored disk" approach of the TANDEM T-16 system.

Finally, software for slave INGRES on a dedicated D-cell

involves substantial changes to the innards of INGRES.

These changes are just now commencing.

REFERENCES

[BANE78] Banerjee, Jayanta et. al., "Concepts and capabili

ties of a Database Computer," TODS, Vol 3, No. 4,

December 1978.

[BLAS77] Biasgen, M. and Eswaren, K., "Storage and Access

in Relational Data Base Systems," IBM Systems

Journal, December, 1977.

[CLAR73] Clark, D. A. et. al. , "An Introduction to Local

- 29 -

Area Networks," IEEE Transactions on Communica

tions, November, 1973.

[COPE73] Copeland, G. P. et. al. "The Architecture of

CASSM: A Cellular System for Non-numeric Process

ing," Proc. First Annual Workshop on Computer

Architecture, 1973.

[DESP78] Despain, A. M. and Patterson, D. A., "X-Tree: A

Tree Structured Multi-processor Computer Architec

ture," Proc. Fifth Annual Symposium on Computer

Architecture, 1978.

[DEWI78] Dewitt, D. J., "DIRECT - A Multiprocessor Organi

zation for Supporting Relational Data Base manage

ment Systems," Proc. Fifth Annual Symposium on

Computer Architecture, 1978.

[EPST78] Epstein, R. S., et. al., "Distributed Query Pro

cessing in a Relational Data Base System," Proc.

1978 ACM-SIGMOD Conference on Management of Data,

Austin, Texas, May, 1973.

[FULL77] Fuller, S. H. et. al., "A Collection of Papers on

CM*: A Multi-Microorocessor Computer System," Dept

of Computer Science, Carnegie-Mellon University,

Pittsburgh, Pa., February, 1977.

[HAWT79] Hawthorn, P. and Stonebraker, M., "Use of Techno

logical Advances to Enhance Data Base Management

- 30 -

System Performance," Proc. 1979 SIGMOD Conference

on Management of Data, Boston, Mass., June 1979.

[HELD75] Held, G. D. et. al., "INGRES - A Relational Data

Base System," Proc. 1975 National Computer Confer

ence, Anaheim, Ca., May 1975.

[LIN 76] Lin, C. S. et. al., "The Design of a Rotational

Associative Memory for a Relational Data Base

Management Application," TODS 1,1, March 1976.

[LORI77] Lorie, R. A. and Wade, B. W., "The Compilation of

a Very High Level Data Language," IBM Research,

San Jose, Ca., RJ2008, May 1977.

[MADN79] Madnick, S. E., "The INFOPLEX Data Base Computer:

Concepts and Directions," COMPCON 79, Sanfran-

cisco, Ca., February 1979.

[MENA78] Menasce, D. A. et. al., "A Locking Protocol for

Resource Coordination in Distributed Systems,"

Proc. 1978 SIGMOD Conference on Management of

Data, Austin, Texas, June 1973.

[RITC75] Ritchie, D. and Thompson, K., "The UNIX Time-

Sharing System," CACM, June 1975.

[R0TH77] Rothnie, J. B. and Goodman, N., "An Overview of

the Preliminary Design for SDD-1: A System for

Distributed Data Bases," Proc. 2nd Berkeley

- 31 -

Workshop on Distributed Data Bases and Computer

Networks, Berkeley, Ca., May 1977.

[ROWE79] Rowe. L. A. and Birman, K. , "Architecture of a

Local Network with Broadcast Facilities," in

preparation

[SCHU78] Schuster, S. A., et. al., "RAP. 2 - An Associative

Processor For Data Bases," Proc. Fifth Annual Sym

posium on Computer Architecture, 1978.

[SELI79] Selinger, P. G. et. al., "Access Path Selection in

a Relational Data Base System," Proc 1979 SIGMOD

Conference on Management of Data, Boston, Mass.,

June 1979.

[SL0T70] Slotnick, D. L., "Logic Per Track Devices," in

Advances in Computers, Vol 10, Academic Press,

1970.

[STON75] Stonebraker, M., "Implementation of Integrity Con

straints and Views by Query Modification," Proc.

1975 ACM-SIGMOD Conference on Management of Data,

San Jose, Ca., June 1975.

[STON73] Stonebraker, M., "A Distributed Data Base

Machine," Electronic Research Laboratory, Univer

sity of California, Memo No. M73-55, June 1978.

[STON73b] Stonebraker, M., "Concurrency Control, Crash

- 32 -

Recovery and Consistency of Multiple Copies of

Data in a Distributed Data Base System," Proc. 3rd

Berkeley Workshop on Distributed Data Bases and

Computer Networks, San Francisco, Ca., August,

1973.

[STON79] Stonebraker, M. , "Requiem for a Data Base System,"

Electronics Research Laboratory, University of

California, Memo M79-10, January 1979.

[WONG76] Wong, E. and Youssefi, K., "Decomposition - A

Strategy for Query Processing," TODS 2, 3, Sep

tember 1976.

- 33 -

< l£> BUS

A D D A

<c

D A

=> BUS

An example of the MUFFIN architecture

Figure 1

A

Bus Inter face I

Conventional Processor

Data Base Cache

(RAM)

j Disk Controller |

Disk (s)

A D-cell

Figure 2

Mandatory
Part

Optiona
Part

A-Cells
or

D-Cells

User <=>

SLAVE

INGRES

Application
Program

Master

INGRES

MUFFIN Run-Time Environment

Figure 3

A- Cell

DBMS

Buffer

Pool

Layout of a D-cell

Figure 4

> K*4096

P2

?

P I

A Tandem Interconnection

Figure 5

Controlling
Processor

1
Memory

Disk

System

A Parallel Architecture

Figure 6

Auxiliary
Processor

ARPANET <:

A-Cell

PDP-ll/780
A-Cell

PDP-ll/780

The MUFFIN Hardware

Figure 7

>

D-Cell

PDP-ll/70

	Copyright notice 1979
	ERL-79-28

