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ABSTRACT

The importance of radial losses in collisional multiple mirror

confinement is investigated for arbitrary values of 3 • Classical

radial diffusion and complete MHD stability are assumed. Analytical

and numerical solutions of the coupled axial and radial diffusion pro

blem are found. The results can be characterized in terms of a single

parameter 01^(1 /x )* where x and x are average values of the
z X z x

axial and radial confinement times. Radial losses are unimportant for

ct<0.5 and improvement in overall confinement can be achieved by in

creasing 3 for these small values of a . When applied to existing

reactor designs, the theory shows that radial losses are important for

one-component reactors but can be made negligible for two-component

(wetwood burner) reactors.
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I. INTRODUCTION

Multiple mirror confinement devices have been considered as

possible fusion reactors [1-4]. A multiple mirror consists of a series

of connected magnetic mirrors, as shown in Fig. 1. It has been shown

[5,6] that in the appropriate plasma density and temperature regime

for which the ion mean free path X is of the same order as the cell

length Z , the axial losses are diffusive with a loss time scaling

2
as L , where L is the device length. Reactor designs with moder

ate lengths and high 3 have been presented [1,3,4]. However the re

quirement that X be small implies a collisional plasma for which

radial losses may be significant. A detailed analysis of these trans

verse losses has not yet been made. In Sect. II of this paper we eva

luate quantitatively the relative importance of radial losses compared

to axial losses for arbitrary values of the plasma 3 by finding analy

tical and numerical solutions to the coupled axial and radial diffusion

problem. The theory yields radial and axial profiles at given values

of 3 . Then, In Sec. I11 we determine quantitatively the relative

importance of radial losses for a given system and find qualitative con

ditions under which higher values of 3 , which increase radial losses as

well as decrease axial losses, can allow more favorable reactor para

meters [3]. We then apply the results of the analysis to previous reactor

designs [1,3,4].
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II. THEORY

We consider the system of Yang and Lieberman [3]. A source

S (particles/sec) injects particles at the center z= 0 of a symmetric

system of length L . The source maintains a steady state against

radial loss with diffusion coefficient D and axial multiple mirror
x r

loss with diffusion coefficient D . Azimuthal symmetry is assumed.

In this two-dimensional system, we use Cartesian (x,z) variables for

simplicity. We assume classical ambipolar radial losses with D =

2
a v . and will support this assumption later. Ambipolar electric

field effects are included in D by a simple correction factor.

We assume an isothermal system with T and T. independent of

x and z and a constant practical value for the magnetic field B
max

in all mirror throats. The density n(x,z) is taken as

n(x,z) = nQ(z)«y(x,z) , with y(0,z) = 1 (1)

where n refers to the center line density and y gives the radial

density variation. The vacuum plasma 3 is related to n and to the

vacuum magnetic field B (z) as
v

B- ^^ (2)

We assume a reactor model with a constant centerline value 3 of the
o

plasma 3 in all mirror midplanes. From Eqs. (1) and (2)
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^4 =const. (3)
B2
V

3 = 3Qy (4)

From the vacuum mirror ratio Mv= Bmax/Bv »we get

.2M n = const. (5)
v o

The plasma radius x and B are related from flux conservation by
v p v

B x = const. (6)
v p

We fix the mean free path regime at the same optimum value

[1,3] in all cells by varying the cell length ^c(z) as

l =TT (7)
c M

where X is the ion-ion (90°) mean free path. We get then

D =p4 (8)
M2

where p is a constant factor which comes from averaging over a Max-

wellian distribution and including ambipolar effects [1], and v=

(8kT./irm.)* . In Eqs. (7) and (8), M is the effective mi rror ratio

i

(9)
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2
For the values of M of interest (e.g., M >1.5), the factor (1-3/M )

varies slowly with 3 . We take for this factor a constant value s =

2
(1-3/M ) where 3 is the radial averaged 3 . Eqs. (8) and (9) then

give

wi th

(1 -3 v)
Dr = a °— (10)
Z v

=J>v(Xn)_ (n)
s(n M2)

o v

Similarly, the radial diffusion coefficient D can be expressed as

D =b t I (12)x 1 - 3Qy

where

2 /v .\ /n
b

\ a I 1 n I I•(•••)• m- 7
V<

The continuity equation is

Using Eqs. (1), (12) and (13), we get

3x \l-ygo »*) b nQ 3z I y 3z ) "»
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•I r^ 1 ^r\
We now assume — -r^- « r— since the z dependence of y(x,z)

y 3z n© oz

comes only through the plasma radius x ^n as seen from Eqs. (3)

and (6).

This assumption can be verified once the radial profile

y(x,z) is obtained. For the profiles presented here and especially

. * ., . -r- ^ 1lY_/ 1 9n°^n ifor 3 >0.8 , the assumption is found justified, e.g., - -^j j^T"-0-1

over the entire cross-section, except in the neighborhood of the plasma

edge where y+ 0 and the diffusion analysis breaks down.

Equation (15) then separates into

wi th

_J A / y jy\ =_ f2(z)1-y3Q 3x \1-y3Q 3x ; (16)

o dz

Eq. (16) can be integrated twice. We get first

teste--'M1
8y|
dx

a second time with the boundary condition y(0,z) =1 , we obtain the

radial profile in implicit form

where the boundary condition -r-H =0 has been used. Then, integrating
lx=0

arcsin y+ 1 arcsin (-°- )=Bfx -\ ( 1 -1) (19)/r^ Vi-y3o/ ° 2\/r^; /
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The z dependence of y , contained in f(z) , is related to the

plasma radius x (z) by y(x ,z)=0 , so that Eq. (19) gives

f -J-
X

p

(20)

where g is a function of 3 only given by
o

9 =^ /r^3
arcsin 3 + t

o z
/T7!

-1 (21)

In Fig. 2 the radial profiles from Eq. (19) are given for different

values of 3 » using a dimensionless radial variable p = x/x . As
o 3 p

3 increases from zero to unity, these radial profiles flatten pro

gressively from a portion of a circle to a a uniform square profile.

In Fig. 3, a graph of g as function of 3 is given. The meaning

2
of g is shown in Fig. 3 where we plot the radial averaged value

y and the quantities 1-3 and g(1 -3) as functions of 3 ,

using 3= 3 y from Eq. (4). We observe in Fig. 3 that

g *>

1 -3

rv _

over the range of 3 of interest. The radial flux r =-D —
O X XdX

can be expressed, using Eqs. (12), (18), (20) and (22) as

^-VO-*2)

(22)

(23)

with the flux at the plasma edge r given by bn g . Using Eq. (22)
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r ^(_k_)!° (24)
° \1-B/XP

Fig. 4 shows graphs of the normalized flux y = T /T as a function

of p , for different values of 3o • Tne Peak ed9e flux Tq in

creases with 3 as expected since b/(l-£) corresponds to the clas

sical radial diffusion evaluated at the radial averaged magnetic

field value B given by

B=By (l -3) (25)

At this point we want to make two remarks concerning the edge of the

radial profile in the neighborhood of p - 1 . First, at p= 1 , the

density goes to zero although Eq. (24) shows a finite flux Tq .

We also note from Eq. (10) that D -»-« as y+ 0 . The

diffusion analysis is therefore not valid as p -*• 1 ,

as can be expected since the plasma is col 1isionless near its outer

boundary. More precisely, when the density is lowered to a certain

value n such as X(n )^L , one enters a free-flow regime [1] in
c c

which the axial losses are not diffusive. This corresponds to a value

y = n /n (z) and a value p such as y(p )=y beyond which the
ceo c c> c

solutions given by Eq. (19) are not valid. At this radius pc , one

connects into a free-flow boundary layer where the flux Tq is absorbed.

We note from Fig. 2 that as 3 +1 , P +1 and we are neglecting this
o c

boundary layer at the plasma edge.

Second, we observe from Fig. 2 that the radial profiles get

very flat over most of the plasma cross-section as 3Q approaches
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unity, with increasingly sharper density gradients at the edge. This

arises from the competition between the radial losses which are ex

tremely high at the plasma center and the axial losses which are high

only at the plasma edge. Presumably, transport from microinstabi1ities

[8] or from like-particle diffusion [9] in the region of strong density

gradient can increase the radial losses well over the simple classi

cal value that is assumed here. This problem is investigated in Appendix

A where we extend the diffusion analysis to a two-region plasma with

different D in each region. The analysis shows that a much higher

value of D near the edge does not change appreciably the solutions

of Eq. (19) for high values of 3 . This interesting feature is a char

acteristic of the onion-skin effect which is also relevant to theta-

pinch plasmas [10,11]; the axial loss increases for plasma "layers"

at increasing radii. A high radial loss rate at the periphery where

the axial confinement is poor anyway has little effect. This can also

be seen from the radial dependence of D and D in Eqs. (10) and

(12). It is also shown in Appendix A that a much higher value of D

over a large portion of the central plasma region does not affect the

results appreciably as 3 •*• 1 • The radial losses are already high

compared to the axial losses (density profile almost completely flat

tened), so that it is not possible to further alter the density profile.

Therefore, at high 3 , it is only in a small region near the knee of

the radial profile (see Fig. 2) that the particular value of D is a

sensitive factor. These considerations give us some confidence that

taking D as the simple classical value is a reasonable choice.
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We now consider the axial profiles. We introduce the dimen-

sionless variables

n= no(z)/nlo
(26)

u = z/(L/2)

into Eq. (17), with n. =n (0) . From Eqs. (3) and (6),
lo o

x (z) = x n"* (27)
P po

where x = x (0) . We then have
po p

where

d2n _ 23/2 ,,R*
—- = a n (2b)
du2

L/2 /b\*
a= — U 9

po x '
(29)

The constant a is a measure of the relative importance of radial losses

compared to axial losses. As shown in Appendix B, a can be expressed as

x •*
a*(^ ) (30)

where x and x are some average values of the axial and radial
z x

confinement times for our system. Equation (28) can be solved for the

axial profile with the boundary conditions n(0)=1 and n(l)=e .
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The value of e , which depends on the particular sink condition at the

end of the system, is not known exactly and is treated as a parameter.

In typical multiple mirror experiments and reactor studies [1,3,4] the

end cell density is small compared to the density near the source. We

choose e= 0.1 as a typical value. The axial profiles are not sensi

tive to the particular value of e for the case of interest where

e is small compared to unity. Eq. (28) is solved numerically with the

above boundary conditions and the axial profiles r\ as functions of u

are plotted for different values of a in Fig. 5. The source condition

is

!=/ r dA
z

(3D
z=0

where the integral is performed over the plasma cross-section A at

z = 0 . In Eq. (31) the axial flux r = -D — can be expressed with
^ z z 3z

Eqs. (1), (10) and (26) as

F-— 0-3oY> {-$) (32)z (L/2) o \ du/

We observe from Fig. 5 that as a increases the value of -r- at
3 du

u=1 tends toward zero, which implies that the axial flux r de

creases with increasing a . This is consistent with particles being

removed radially. However, in a real system, all particles are eventu

ally lost axially if one takes into account the free flow boundary layer

mentioned previously. Using Eq. (32), Eq. (31) becomes
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where A and ^
o du

(33) the reduction of plasma axial flow due to finite 3 in the factor

(1 -3) and the increased source requirement due to radial loss in the

The two effects compete with each other. The varia-

with a is plotted in Fig. 6.

Finally, we consider the expression for the particle confine

ment time x

factor - ~
du

tion of -
d̂u

o

o

an
1o

(L/2)

dr,
du

(1 -3) A, (33)

refer to values at z = 0 . We recognize in Eq

X =
/• dV

(34)
S/2

where dV is a volume average for a half system. Using Eqs. (1),

(26), (27) and (33) in Eq. (34), we get

T s
11 «*du

4a (1 -3) / dn
du
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III. APPLICATION TO REACTOR PARAMETERS

In this section, we want to address the following questions

(i) for which values of a are radial losses important?

(ii) under which conditions can a 3 increase be beneficial?

A qualitative answer to (i) can be obtained directly by

considering Fig. 5. We observe that the axial profile begins to be

substantially altered, relative to the case a = 0 , for a>1 . The

expressions for x and x in Appendix B can be used for physical

insight and/or for an approximate answer to (i). A more quantitative

evaluation of (i) requires the use of Eq. (35). Holding everything

constant but a we define by x the confinement time normalized to
a

its value for a = 0 .

x -j

*du

' d-5R
du

lo

(36)

This quantity is given as a function of a in Fig. 6. For a = 0.5 ,

x =0.92 ; while for a=1 , x =0.74 . These correpond to a reduction

of confinement time due to radial losses of 8% and 24%, respectively

We therefore estimate that radial losses become significant for a ;>0.5

We consider now the second question (ii). The increase in

axial confinement that one can achieve by increasing 3 is reduced

by the corresponding increase of the radial losses. Neglecting the

changes in axial and radial profiles in Eq. (35) the competing factors

For a>2 , Eq. (28) can be integrated once to getare (i'-B)^
du
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approximately -~^0.89otn
du

When normalized to its value for a=0 ,we obtain ^j-

Figure 6 shows this linear dependence. Noting from Eqs. (29) and

(22) that a is proportional to g and that g is inversely propor

tional to (1-3) , it is clear that for a <_2 , the gain due to improved

axial confinement is balanced by the loss due to increased radial dif

fusion as one increases 3 . A substantial gain is possible only for

those parameters which correspond to small radial losses. For

a<0.5 ,&
du

has a much slower dependence on a

o - dn
as seen in Fig. 6, and the product (1-3) -r-

% a

o

du
is a decreasing

o

function of 3 . A more quantitative answer to this point would re

quire a self-consistent optimization of the confinement time x ,

including the variations in length, temperature, density and magnetic

field, as one increases 3 , for given fusion power and reactor Q. .

This is beyond the scope of this paper, since the optimization would

presumably be different for each particular reactor design.

We now turn to a numerical application of the previous

results to the reactor designs given by Logan [1] and Yang [3,4]. First

we evaluate the quantities a and b given in Eqs. (11) and (13).
-3

We take, with T in keV, B in KG, n in cm

v. =(—) =4.9*105(-M (m/s)
\ irm. / \ m /
x i '

16 T'X= v.x.. = 1.1 x1o'° -f
iii n

- 14 -
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a = V.e e( =7.^x10 * -£• (m)

n nr ia"" 10 n log A / ~Kve. =0.95x10 •—^_ (S )
e

(37) cont

where m is the ratio of the ion mass to the proton mass. x.. and
r ii

v . refer to 90° collision times, and log A is the Coulomb Logarithm.

In addition, we estimate p as

P= 11 +^)q (38)

The first factor arises from the axial ambipolar potential

which enhances the ion axial diffusion [12]. The second factor q

corresponds to an average over a Maxwellian velocity distribution of

2
the quantity Xv/M . This factor is function of the ratio of the

mean free path for scattering into the loss cone angle (X* *\»X/M)

to the cell length I [12]. in this analysis, X*/l =1/4 as seen
c c

in Eq. (7) so that q has a constant value. This value is 1.4 [1,3]

Using Eqs. (37) and (38) in Eqs. (11) and (13), we obtam

T5/2
c ir in21 P I / 2. va = 5.5x10 • 2—T (m /s)

1 n. M m
lo v.

b = 5.1 xlO ,7--Lt-^ (mZ/s)
TV

e v,
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where n. , M , S, , and B refer to the values at the central
lo V- 1 v-

cell (z=0). The relevant parameters of the reactor designs consi

dered here are shown in Table I. For each design we first obtain a

and b using Eq. (39) with log A^ 13 • We then evaluate x and

x using Eqs. (B6) and (B7), and determine a with Eq. (B9). Alter

natively, one could use Fig. 3 and Eq. (29) to get the same value of

a . The value of m corresponds to a mixture of deuterium-tritium of

50%-50% [1], 36%-64% [3] and 0%-100% [4] for the warm ions at temper

ature T. . Finally, we obtain x , the decrease in confinement time
1 '' a

due to radial losses from Fig. 6. We note from Table I that for the

reactor design of Logan [1] and its improved version in [3], the con

finement time is reduced ^20% by the radial losses.

In this paper, we chose for the radial diffusion coefficient

2 £
the absolute minimum value a v . with v = (T /nu) . The real clas-

e ei e e e

sical value could easily be twice as high. Some additional transport

from microinstabi1ities [8] can be expected. Like-particle diffusion

[9] may contribute also since it becomes comparable to the usual clas

sical value from electron-ion collisions given above, when x /a. *v*

(m./m ) ^8 . This is the case for the designs considered here, as
1 e

seen in Table I. If linked quadrupoles [13] are used to provide MHD

stability some enhancement of the diffusion due to the narrow elliptical

fans [9] and to the azimuthal asymmetry could be expected. We feel

therefore that, for safety, a reactor design should allow for a value

of a perhaps twice that found in Table I (e.g., Dx increased by a factor

4). For Logan's reactor [1], this factor of 4 reduces x from 0.78 to

0.48. The improved designs with two-component plasmas [3,4] are found

- 16 -



to be less sensitive to radial loss, essentially because the Lawson

criterion in terms of nx is reduced compared to the one-component

reactor of Logan [1]. Therefore, the values of x are smaller for

these designs, which decreases the relative importance of radial

losses. In the last design considered [4], the hot component con

tributes about 70% of the total plasma pressure and allows a consi

derable reduction in density for the warm component. For this much

less collisional plasma, radial losses are negligible (a =0.10 and

x =0.99) and further improvement at higher values of 3 can be ex

pected. To show this qualitatively, we define an overall confinement

time x* as

1/x* = 1/x + 1/x (40)
Z X

where x and x are estimated using Eqs. (B6) and (B7), respectively
z x

A more detailed analysis would require the use of Eq. (35). For values

of 3 in the range of 0.8 to unity, the B dependence of xz and

x comes mainly from the factor 1-3 • We assume as a first order
x '

approximation that a , b , L and x in Eqs. (B6) and (B7) are

held constant. As one increases 3 , x increases, x decreases
z x

and a maximum value of x* (dx*/d3 =0) is obtained for a value 31

such that x and x are equal. Using Eqs. (B6), (B7) and (40) one
z x

obtains

S, . ! -_i_ 1U1L (k)* (4i)
1 1.22 x

po

One evaluates jL for the various reactor designs by using Table I
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and Eq. (39). For Logan's reactor [1], 3., =0.84 . No significant

increase in t* can be obtained by increasing 3 over its design

value 0.8, since x and x have comparable values at 3 = 0.8
z x

as seen from Table I. A similar result (3. =0.86) is obtained for

the second design [3] of Table I. However, for the two-component

reactor design [4], 3=0.98 and x*=12.5 ms compared to x* = 2.2

ms at 3= 0.8 . This improvement in confinement time can be traded for

a significant reduction in density, magnetic field strength or reactor

length in a self-consistent reactor optimization.

IV. CONCLUSION

We have investigated analytically a linear system where

the axial diffusive loss couples to radial diffusive loss at arbitrary

values of 3 • We assumed classical radial diffusion and complete

MHD stability in a steady state system previously modeled [3]. The

theory shows that as 3+1 , the radial profiles are essentially flat

with sharp gradients near the plasma edge. However, it is shown that

the system is not sensitive to a much higher radial diffusion rate

localized at these strong density gradients, because of the poor axial

confinement (onion skin effect) near the edge of the plasma. The

results of the theory can be characterized in terms of a single para

meter a'v (x /x ) , and show that one can trust quantitatively a

heuristic evaluation of the axial and radial loss using an effective

mirror ratio M and an average magnetic field 3 given in Eqs. (9)

and (25), respectively, even for values of 3 close to unity. Radial

losses are unimportant (e.g. less than 10% decrease in confinement time)
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for a<0.5 . We showed qualitatively that some improvement in overall

confinement can be made by increasing the 3 of a system with these

small values of a . The smaller a is, the greater the improvement.

Finally, it is shown that for one-component reactors [1], radial

losses play a substantial role and cannot be neglected. Such designs

should be optimized with the inclusion of the effect of radial losses.

More recent designs [3,4] with two-component plasmas are found to be

less sensitive to radial loss because of the reduced requirement in

axial confinement. In one case [4], radial loss is negligible and

further improvement in confinement at higher 3 can be expected,

assuming MHD stability is preserved.
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APPENDIX A

We consider now axial and radial diffusion when D assumes

different values in two regions of the plasma cross-sect ion. We

take for regions 1 and 2

b, = k2b 0 < p < p

(A1)

b„ = k2b P01P11

where k1 and k? are two arbitrary constants and b is defined in

Eq. (13). Equation (16) can then be integrated twice in each region

as done previously and the four constants of integration are determined

with the following boundary conditions, y-(0) =1 ,y20)=0 »Y-\~Y2

at p and -^- = -^- at p . The expression for g in Eq. (21)
o 8x 8x o

now becomes

r

r

1 +A,

f^K.
arcsin A2<0

g = ir<*o+ <
>

/A2

log (2(1 +A2+/A2(1+A2))j
>

A2>0

V. J

J

(A2)

where
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3 / y 3
B« = — u - arcsin ( I +
2 k2 ° V/tta:

r

J=K.

+ <

arcsin
A2 +1- Vo

(l"Vo)eoj
A2<0

>

log
2A9 + 2(l-y 6 ) + 2(k,/kj3 /A9(1-y*)

2 OO ZIOZ o A2>0

M2 1 -y 3
7o o

where u and y =y(p ) are related by
o o o

and

o

• , 1 • /V^oarcsin y + arcsin

1-y 3'o o
ki u° 2 \ /r^F

-2-<(vs)2('-^)-0-M)

-1

J

(A3)

(A4)

(A5)

Consider first the case of a higher radial diffusion near

the plasma edge. As a typical example, we take p =0.8 and 3 =0.95

k- is unity and k« varies. For each value of k2 ,we first deter

mine y from Fig. 2 since the solution in region 1 corresponds to

those graphs. Then u is obtained from Eq. (A4), A from Eq. (A5),

B- from Eq. (A3) and g from Eq. (Al). We normalize g to the value

(k =k =1) given by Eq. (21). The results are shown in Fig. 7, curve

(a). We note that a much higher diffusion rate near the plasma edge

does not change appreciably (< 10%) the value of g . Then a , which

is proportional to g , also does not change appreciably.
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We consider now the case of a high radial diffusion over

the central region of the plasma cross-section. For example, pQ =0.5

and 3 =0.95 . kn is unity k- varies. We obtained g as pre-
o L I

viously and the results are given in Fig. 7, Curve (b). We note that

in the limit of k1 •*« , g-H+P . This may be expected since in that

limit y =1 and the radial profile is the same as in Fig. 2 except
'o

for a flat region of extent p
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APPENDIX B

To evaluate in a heuristic way the relative importance of

radial losses compared to axial losses for the system considered in

this paper, we define "average" confinement times against radial and

axial losses, xx and x , respectively, with

_ (L/2)2
X

z
2D

z

x

-2
X

= _£
X

2D
X

(B1)

(B2)

where x is the axial averaged value of the plasma radius and D and
P z

Dx the radial averaged values of the diffusion coefficients. From

Eq. (27), assuming the linear axial profile corresponding to a «1 ,

we get

x = 1.21 x (B3)
p po v :>}

Using Eqs. (10) and (12), we estimate,

n2 = a(l -3) (B4)

Dx = b/(1 -3) (B5)

so that Eqs. (B1) and (B2) become
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(L/2)2
x = — (B6)
Z 2a(l-3)

1.5x2 (1 -3)
_e°_x =

2b (B7)

The constant a defined in Eq. (29) can be expressed as

a function of x and x if we use, for 3o>0.8
z x —

g - -^SL. (B8)
(1-6)

This expression is essentially the same as in Eq. (22). The factor

0.93 is derived from Fig. (3). We use Eqs. (B6), (B7) and (B8) in

Eq. (29) to obtain

x '*
a= 1.12 (^ ) (B9)

which relates the value of a in this paper to the estimates of the

axial and radial times x and x , given by Eqs. (B6) and (B7),

respectively.
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FOOTNOTES

Nonadiabatic effects [7] that can in principle allow a much less

collisional plasma are not considered in this paper.

2 - f1We use here the Cartesian average y = y(p)dp . In addition, y

Jo
is normalized to its value for 3 =0 in Fig. 3.

o
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FIG. 2 Normalized radial profiles y(p) for different values of 3
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o

FIG. 3 Averaged density y , average 3 , 1 ~3 , g and g(l -3)

as function of 3
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FIG. k Normalized radial fluxes y(p) for different values of 3
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FIG. 5 Normalized axial profiles n(u) for different values of a
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FIG. 6 Source intensity
dn

du
and confinement time x normal -

zed to their values at a=0 , as functions of a
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FIG. 7 Relative increase of g(ct) compared to the case k =k =1

(a) Enhanced diffusion at the plasma edge (k =1 , k^= k ,

3Q =0.95 , tQ =0.8)

(b) Enhanced diffusion at the plasma center (k = k ,

k =1 , 3 =0.95 , t =0.5)
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