

Copyright © 1979, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

A

ON THE DEVELOPMENT OF CORRECT PROGRAMS WITH THE DOCUMENTATION

by

Andrzej Blikle

Memorandum No. UCB/ERL M79/25

23 April, 1979

t
4

i '
ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94704

ON THE DEVELOPMENT OF CORRECT PROGRAMS WITH THE DOCUMENTATION

by

Andrzej Bliklet

r~

* Institute of Computer Science

Polish Academy of Sciences

PKiN, P.O. Box 22

Phone: 20-38-88 Telex 813556

Key words and phrases: Systematic program development, total

correctness, non-abortion, sound transformations, McCarthy's

logic, documentation by assertions

CR Catagories: 5.24, 5.21

tCurrently visiting the Department of Electrical Engineering and
Computer Sciences, Computer Science Division, University of California,
Berkeley, California, 94720

Research supported in part by the National Science Foundation
Grant MCS77-09906

An earlier version of this paper was presented at the international
conference Formale Methoden un Mathematische Hilfsmittel fiir die

Softwarekonstruktion, Oberwolfach, January 3-13, 1979.

- 2 -

ABSTRACT. The paper presents a method of the systematic develop

ment of correct programs. A program is called correct if it is

partially correct wrt given pre- and post-conditions and if it

neither loops indefinitely nor aborts. The requirement of non-

abortion makes our correctness stronger than the so called total

correctness which is usually understood as partial correctness

plus non-looping. In the described method programs are developed

and transformed together with their documentation. The documenta

tion consists of a precondition, a postcondition and a set of

assertions. The assertions are choosen in such a way that they

may be used in the correctness proof of the program. This provides

an adequate description of the algorithm and may also be useful

in program testing. The rules of program derivation are sound,

i.e. if applied to correct programs they yield correct programs.

The application of the method is explained on the example of the

derivation of a bubblesort program.

3 -

1. INTRODUCTION

The motivation for the structured programming (Dijkstra 1968) was

to help the programmer in developing, understanding, documenting

and possibly also proving correct the program. The latter goal,

however important and worth of effort - see Dijkstra (1976) for an

interresting discussion of this problem - is still quite cumbersome

at least if we first develop the program and only then try to prove

it correct. The idea of developing and proving programs simultane

ously stimulated many authors to formalize the process of programm

ing by describig its steps as more or less formal transformations

(Dijkstra (1975), Darlington (1975, 76), Spitzen, Levitt and

Lawrence (1976), Wegbreit (1976), Bar (1977), Burstal and Darlington

(1977) Bj^rner (1978)). In such an approach every step of a proof

of correctness has the same scheme: we prove the correctness of the

current version of- the program knowing that all former versions

were correct. This observation rises immediately a new idea. Instead

of checking each time that our programming step does not violates

the correctness, we can prove once and for all that in a certain

class of programs this step always preserves the correctnes

(Dershowitz and Manna (1975), van Emden (1975), Irlik (1976),Blikle

(1977A, B, 78), Back (1978)). in this way the correctness proofs of

programs are replaced by the soundness proofs of transformation

rules.

- 4 -

In developing programs by sound transformations we successfully

avoid the necessity of proving programs correct but at the same

time we lose of course, the unique oportunity of learning from

the proof of correctness about many relevant properties of the

program (cf.Dijkstra (1976)). Even if these properties may be

implicitly seen by the programmer through the way he has developed

the program, they certainly will not be seen by the user since

they are not reflected - or even not reflectable - in the speci

fication of programs by pre- and postconditions.

In order to maintain all the advantages of programming by sound

transformations without losing the advantages of having the proof

of correctness in an explicite form we propose in this paper to

enrich the input-output specification of programs by the specifi

cation of the proof of correctness. Technically, the proof of

correctness is specified by a set of assertions nested in the

appropriate places between the instructions of the program.

Program correctness is understood here as partial correctness plus

non-looping and non-abortion. Such correctness is stronger than

so called total correctness which usually means (cf.Manna and

Pnueli (1974) and Manna (1974)) partial correctness plus non-loop

ing. The fact that we deal with the abortion problem makes the

clasical logic inadequate for the treatment of conditions and

assertions in our method. We are using therefore McCarthy's (1967)

partial logic which perfectly fits to that goal.

Another method of developing programs with assertions has been

described by Lee, de Roever and Gerhard (1979). In that method,

however, the underlined concept of program correctness is the

- 5 -

partial correctness and the assertions coincide with Floyd's

invariants.

The fact that we extend the I/O specification of programs (the

pre- and postconditions) by adding assertions seems to have the

following advantages: First of all, assertions describe local pro

perties of programs which may be helpful not only in program under

standing but also in its maintainance and testing. Secondly, know

ing assertions we can recheck program correctness in a nearly me

chanical way. This option may be of interest in all these circum

stances, where we need an extra high reliability of programs;

i.e. in microprogramming. Finally, since our assertions satisfy

the requirements of proofs of termination, they adequately describe

the time complexity of all loops.

The paper is organized as follows. Sec.2 contains the description

of an abstract programming language which provides the experimenta

tion field for the method. Sec.3 is devoted to the particular lo

gical framework which is needed in order to handle the problem of

abortions. Sec.4 introduces the concept of the assertion-correct

ness of programs. The program development rules and the problem

of their soundness is discussed in Sec.5. The last Sec.6 contains

an example of the application of the method in the development of

a bubblesort program. Another such example may be found in Blikle

(1978) where an earlier version of the present method was applied

to the development of an efficient program computing the integer

square root.

2. THE LANGUAGE OF PROGRAMS' DEVELOPMENT AND SPECIFICATION

It is not the aim of this paper to concentrate on the technical

details of a programming language suitable for our method of prog-

- 6 -

ram derivation. All we want to convey to the reader is the general

idea of such a language along with some technical suggestions

about the transformation rules and the programming techniques. The

language which is described below should be considered as only

an experimental version. Since it represents a certain method of

programming and since it is the first approximation of what we may

expect to have in the future, we shall call it PROMETH-1. (pro

gramming method, 1).

PROMETH-1 is a language of programs' development and documentation,

rather than a simple language for coding algorithms. Consequently

we allow there certain abstract constructions and data types which

will be used only in the development and the documentation of

programs but which are not intended for implementation. Secondly,

our language represents, in fact, a family of languages with a

common general syntax and semantics but with different abstract

data types. In other words, we have the option of user-definable

data types. Each time the user intends to derive a program, he

starts from the design of an appropriate data type, thus establish

ing the primitives of the syntax and the sematics of his-problem-

oriented version of PROMETH-1.

In this paper by an abstract data type (cf. Guttag (1977), Liskov

and Zilles (1975)) we mean a relational system of the form

DT = (D,f.,...,f, q1f...fqm) where D is a nonempty many-
a b.

sorted carier and fiG[D —• D] and q.6[D J •{true,false}]

are partial functions and partial predicates respectively. The

partiality of functions and predicates is an essential point in

our approach and is strongly connected with the fact that we are

dealing with the problem of abortion (see Sec.3). The problem of

- 7 -

data-type specification in PROMETH-1 is skiped. For the sake of

this paper we simply assume that our data type is always somehow

defined - e.g. in the set theory. A very elegant formalism for

data-type specification is provided by the initial-algebra appro

ach (see ADJ (1975), Goguen (1978), Erig, Kreowski, Padawitz

(1978) and papers referenced there).

Given DT we may establish the primitive syntactical components

of PROMETH-1. First, with each f± and q. we associate the

symbols F. and Q. respectively. For simplicity we assume that

"=n will denote both, the identity relation in D and the corres

ponding predicate symbol. We also assume that for each sort in D

there is in the set of q.'s the corresponding sort predicate.

This is a unary total predicate which gives the value true for*

arguments of the given sort and gives false for all other arguments

Typical sort predicates are integer n, array a, etc. We also want

to have constant predicates true and false defined in an obvious

way. Of course, these predicates are total as well.

Having introduced the data-type oriented syntax we establish the

infinite set of identifiers (individual variables) IDE and we

are ready to define the class EXP of expressions and the class

CON of conditions. These classes are mutually recursive, i.e. each

of them is defined recursively with respect to the other. Formally

we should use here a set of BNF equations but for the sake of

clarity we restrict ourselves to a more intuitive definition.

EXP is the least syntactical class with the following properties:

1) IDE ^ EXP

2) F.(E1,...,Ea) £ EXP for any i < n and any

E..,...,E_t fc EXP

- 8 -

3) if c then E1 else E2 fi GEXP for any c eCON

and any E^,E2 £ EXP •

CON is the least syntactical class with the following properties:

1) Q.(En,...,E)eCON for any j <m and any
3 J

Ew...,Eb e EXP
j2) c- -*- c2,c3 € CON for any c^c^^GCON

3) (Vx)cGCON and (3x)cGC0N for any xGIDE and cGCON

Remark. In the applications we identify F± with f± and Q..

with q. and allow the infix notation. Typical elementary ex

pressions are therefore x+tty, U+y)-z, max{klk<2n>, etc. and ty
pical elementary conditions are of the form z<y, a is sorted,

i < length a, etc. U

Having defined IDE, EXP and CON we can define subsequent syntac

tical classes: ASR - of assertions, TES - of tests, ASG - of

assignments, EIN - of elementary instructions, SIN - of simple
instructions and INS - of instructions. We use the BNF formalism

for this purpose:

ASR ::= as CON sa

TES ::= if CON fi

ASG ::= IDE := EXP

EIN ::= skipIabort|TES|ASG[EIN;EIN'

SIN ::= EIN |

if CON then INS else INS fi |

while CON do INS as CON sa EXP od

INS ::= SIN |

SIN as CON sa INS

inv CON; INS vni

The class SIN has been introduced for technical reasons in

order to have an unambiguous grammar. This is necessary for the

definition of semantics. (Sec.4)

So far we have defined rather usual programming concepts, although
with somewhat extravagant syntax. The latter is the consequence

of the assumption that our instructions (programs) are enriched
by assertions. In the semantics of instructions these assertions
play the role of comments and are simply skiped in the execution.
Their role becomes essential in the class of assertion specified

programs (abbreviated a.s. programs). This class is denoted by

ASP and is defined by the equation:

ASP ::= pre CON; INS post CON

In every a.s. program the conditions following pre and post are

called the precondition and the postcondition respectively. In con

trast to instructions, which describe algorithms and therefore

their semantical meanings are I/O functions, the a.s. programs

are claims about algorithms and therefore their semantical mean

ings are truth values. This is formalised in Sec.4.

in order to define the semantics of our language we need to recall

a few elementary facts from the calculus of binary relations. Let

DrD2 and D3 be arbitrary nonempty sets. Given two binary relat
ions R1 ^ Dl xD2 and R2 <£ D2 xD3 we define their

- 10 -

composition by the equation R^ ={ (a,b) IGO (aR^ §cR2b) }.
This operation is associative, distributive over arbitrary unions

and monotone (w.r.t. inclusion £) in both arguments. Instead

of aR.,c % cR2b we frequently write, for short, aR^R^. The
operation of composition may be generalized to the cases where

one of the arguments is a set. Let B c D1 , C 0. D2 and

R C D1 x D2- Then

BR = U I(3b)(bGB % bRa}

RC = {a I(3c) (aRc %cGC}

Of course, BR is the image of B in R and RC is the coimage

of C in R. These new operations are also monotone and distri

butive in both arguments and are weakly associative in the follow

ing sense:

R^R^) = (R1R2)C for R1 Q D^D^ R2 ^ D2XD3' C C D3

(BR1)R2 = B(R1R2) for B S D., , R1 £ D,,xD2, R2 ^ D2xD3

By $ we denote the empty set and the empty relation. Both of

them (if at all they are different!) are zeros of the composition

The case of particular interest is that where D^ = D2 = D, i.e.

where we are considering relations R £k Dxd. In this case the

operation of composition has a neutral element which is the

identity relation

I = {(a,a) |a<=D}

- 11 -

Given an arbitrary R c DxD we define R° = I, R - *« for
i>0 and R* =uT^R1. The latter is called the iteration or the
reflexive and transitive closure of R.

The first semantical object which we define over DT is the set

of states S = [IDE •D]fc. According to this equation states

are total valuations of the set of identifiers, which means that

in our model all the identifiers are global. This assumption can

easily by relaxed and was adopted here for technical simplicity.

It may be partly justified by the fact that we do not need the

concept of a local variable in our example of Sec.6.

In this paper semantics is understood as a function (strictly

speaking a many-sorted homomorphism) which assigns meanings to all the

investigated syntactical entities. This function is denoted by

[] hence [X] denotes the meaning of X, where X may be an

expression, a condition, an instruction etc. Of course, depending

on the class where X belongs, [X] will be of appropriate type:

1) []: EXP »-[S »-D]

2) []: CON »-[S • (true, false}]

3) []: INS *[S »-S]

4) []: ASP Ktrue, false}

Here and in the sequel [X >Y] denotes the set of all partial

functions from X to Y.

The semantics of the class EXP is defined by the following

recursive (schemes of) equations:

1) lx](S) = s(x)

2) [F.(E1,...,Ea)](s) = f.([E-](s),...,[E J(s))
II cl . J- I a J

- 12 -

[E.jKs) if [c](s) = true

3) [if cthen E1 else E2 fi](s) =([E2](s) if [c](s) =false
undefined if [c](s) undefined

This coincides with the usual understanding of expressions both

in programming languages and in mathematical logic. In the seman

tics of CON we have to comply with a rather unusual assumption

that our conditions represent partial functions too. Since this

requires an additional discussion we postpone the description of

the semantics of CON to Sec.3.

Once we have established the semantics of EXP and CON the seman

tics of INS is defined by the denotational equations listed below.

For the convenience of wording we assume that x, E, c and IN

possibly with indices will always denote identifiers, expressions,

conditions and instructions respectively.

(1) [as c sa] = I (2-2)

In other words, assertions are semantically equivalent to skip

(e.g. as comments in ALGOL 60).

(2) [if c fi] = {(s,s)I[c](s) = true}

This means that if c fi is a side-effect-free test which

results a skip if c is satisfied and which aborts the execution

whenever either ~c is satisfied or the value of c is undefined

(3) [x:=E] = {(s1 ,s2) ls2(x) = [E](s.,) and

s3(y) = sn(y) for all y6IDE-{x}}

- 13 -

(4) [skip] = I

(5) [abort]= $

(6) [IN1?IN2] = [IN^tlN^

(7) [if c then IN1 else IN2 fi] = [if c fiHlN^ u [if ~c fi][IN2]
(8) [while c do IN as ca sa E od] = ([if c fi][IN]) [if ~c fi]

(9) [IN1 as c sa IN2] = [IN^lINj]

(10) [inv c; IN yni] = [IN]

The semantics of the class ASP of assertion specifies programs

strongly relates to the semantics of conditions and therefore is

postponed to Sec.4.

3. ON THE PARTIALITY OF CONDITIONS AND THE UNDERLINED LOGIC

In the majority of approaches to the problem of program correctness

one may find the assumption that the expressions and conditions

represent total functions. This assumption considerably simplifies

the mathematical model but from the practical point of view is

hardly acceptable. Every programmer knows that both expressions

and conditions may lead to abortion if evaluated in an improper

environment. For instance we frequently cannot evaluate division

on integers and we certainly cannot evaluate the condition

a(i) < a(j) whenever either i or j is outside of the scope of

a. Whereas the first case can easily be detected on the syntacti

cal level (in compile time), the second requires the semantical

analysis.

The partiality of expressions is something to which we already got

used in mathematics, e.g. in the theory of recursive functions,

and therefore it does not require any particular explanation. The

- 14 -

partiality of conditions, however, has not been so widely accept

ed although the need of it in the theory of programs was recogniz

ed as early as in 1961 by J.McCarthy (see McCarthy 1967). We take

the McCarthy's model as the base for our definition of the seman

tics of CON.

Similarly as for the case of EXP (Sec.2) the semantics of CON

is defined by a set of (schemes of) recursive equations

D [Q.(EV...,E)](s) = q.([E1](s),...,[Ebj](s)).

{[c2](s) if [c1](s) = true

[c3](s) if [c^fs) = false

undefined if [c.Hs) undefined

r true if for any state s1 which differs

from s at most in x, [c](s) = true

3) [(vx)c](s) = < false if there exists a state s1 which

differs from s at most in x, such

that [c](s.) = false

u undefined in all other cases, i.e. if there

is no state s- which differs from s

at most in x such that [c](s)=false

but for some states s.. which differ

from s at most in x, [c](s) is

undefined.

- 15 -

r true if there exists a state s1 which

differs from s at most in x,

such that [c](s) = true

4) [(3x)cJ(s) =I false if for any state s1 which differs
from s at most in x,

[c] (s^ = false

L undefined in all other cases

These equations require a few comments. First of all observe that

the evaluation of the condition c^c2,c3 is similar to the, eva"

luation of the if-then-else expressions. If c1 is undefined,

then the whole condition is undefined. If c, is true, then we

evaluate c0 regardless whether c, is defined or not. The same
2 -1

concerns the symmetrical case. For instance x>0 •> x+1>0, x <0

is true for any state s such that s(x) = 0 despite the fact

that [x"1<0](s) is undefined. Some important consequences of this

property of - will be discussed later in this section. Now let us

concentrate on a few examples with quantifiers. Suppose that the

carier D of our data type contains two sorts - integers and

integer arrays, and consider a state s such that for a certain

identifier y, [integer y](s) = true.

Then

1) [(vx)(x+y)2>0](s) = false

2) [(Vx)(x+y)2>0](s) is undefined

3) [(Vx) (integer x -* (x+y)2>0, true)](s) = true

4) [(3x)(x+y)2<0](s) = true

5) [(3x)(x+y)2<0](s) is undefined

6) [(3x)(integer x - (x+y)2<0, false)J(s) = false

- 16 -

In the examples 3) and 6) the quantifiers are restricted to a

certain sort. Since this is a very common case, it is worth to

extend the syntax of CON by allowing the conditions of the form

(V sort x)c and (3 sort x)c, with the following semantics:

[Cv sort x)c] = [(vx)(sort x -. c, true)]

[(a sort x)c] = [(3x)(sort x - c, false)]

Now, 3) and 6) can be written in a more readable way:

7) [(V integer x)(x+y)2>0](s) = true

8) [(3 integer x)(x+y)2<0](s) = false

For further convenience we may extend CON again by allowing the

usual connectives such as v, ^ , - and => . We define their

semantics after McCarthy (1967):

1) [c1 v c2] = [c1 - true, c2]

2) [c1 $ c2] = [c1 - c2, false]

3) [~ Cj] = [c1 -> false, true]

4) [c1 => c2] = [c«j - c2, true]

(3.1)

These connectives constitute a natural generalization .of the

classical case. Indeed, if the values of both c,j and c2 are

defined, then the values of 1) - 4) are the same as in the cla-

sical logic. If c. is undefined, then each of 1)-4) is undefined

but if c1 is defined, then 1),2) and 4) may be defined even if

c2 is undefined. This asymetry may be interpreted as the conse

quence of the fact that in our semantics we execute the conditions

from left to right. E.g. if we execute c^ v c2 and the value of

- 17 -

c. turns out to be true, then we do not care about c2. Due to

this principle neither v nor % is commutative in McCarthy's

logic.

In our approach to programming we frequently have to describe

certain relations which may hold between conditions.For this sake

we first introduce an auxiliary notation. Let for any c

{c}.= {si[c](s) = true}

As is easy to prove, for any c^ and c2

{c1 § c2} = {Cl} n {c2}

{c1 v c2} c (c1} u {c2}

Now, we define four relations in the set CON:

c- ~ c2 if [c.] = [c2] read: c1 is strongly equivalent to c2

c1 c c2 if [c-] c [c2] read: c1 is less defined than c2

c1 «=*» c2 if (c^ = {c2} read: c1 is equivalent to c2

c. => c2 if {c,j} c {c2} read: c^ implies c2

Our strong equivalence coincides with the McCarthy's strong equi

valence but our equivalence is not his weak equivalence.

The set CON may be regarded as a relational system with the operat

ions ~, £ , <—^ , ==7> . Below we sketch some properties of this

system which we shall need in the applications. Proofs are left to

the reader. Here and in the sequel we adopt the convention of using

the words equivalent and implies homonymously: in the sense atta-

- 18 -

ched to and => and in a colloquial sense, e.g. in

saying that c- c c2 implies c. =*>c2. The appropriate meaning

will be always defined by the context.

THEOREM 3.1 The relations ~ and <$=> are equivalence relations

in CON. Moreover " is a congruence, but <—> is not. LJ

The relation <—> is not a congruence since c. «=> c~ does

not imply ~c- <=> ~c2

THEOREM 3.2 The relations c and ==> are partial orderings in

CON/- and CON/ respectively. The operations v and %

are monotone wrt both these orderings and the remaining operations

are monotone only wrt C . | |

THEOREM 3.3 The equivalence ~ is strictly stronger than

i.e. c- ~ c2 implies c. «=

ordering EZ is strictly stronger than =$> , i.e.

implies c. ==s> c but not vice versa. d

c2 but not vice versa. Also the

c1 5 c2

Below we are listing some important equivalences and inequalities

of the propositional calculus in CON:

(1a) (c. v c2) v c3

(1b) (c, § c2) % c3

(2a)

(2b) ci § c1 ~ c.j

v (c1 &} c2)

S$ (c1 v c2)

~ c1 v (c2 V C3)
~ c1 § (c2 <§ c3)

~ c.

(3a)

(3b)

(4a) §* (c2 v c3) ~ (c1 % c2) s/ (c1 § c3)

- 19 -

(4b) c1 v(c2 &> c3) ~ (c1 v c2) ^ (c1 v c3)
(5a) c.v false ~ c^

(5b) c1 ^ true ~ c^
(6) -(-c^ ~ c^

(7a) ~(c1 v c2) ~ -c1 fy ~c2
(7b) -(c, o; c2) ~ -c1 v ~c2

(8a) c-'v -c^ ET true

(8b) c. fy ~c- C false

(9a) ~(3x)c ~ (vx) (~c)

(9b) ~(Vx)c - (ax)(~c)

This proves that McCarthy's calculus with the strong equivalence

is quite similar to the clasical propositional calculus. So far

we have discovered just two exceptions: (1) the lack of the com^-

mutativity of v and % , and (2) the inequalities in the place

of equivalences in (8a) and (8b). On the strength of Theorem 3.3

we can replace ~ by «==?> in (1a)-(7b) and £ by => in (8a),

(8b) . There are also some laws which hold for «=> and =*>

but does not hold for ~ and ^ :

(10a) c. =>c. v c2

(10b) c,j 85 c2 => c1

(11) c, $ c2 «=>c2 % c1

Here the symmetry between v and § is no more the case. In

CON/ ,§ is commutative but v is not. In particular

c- ==£> c2 v c- does not hold!

The discussion of McCarthy's logical calculus given in this section

- 20 -

is far from being complete. We only gave a general outline of

the approach restricted to our needs connected with the develop

ment of the example of Sec.6. This subject definitely deserves an

independent investigation.

4. THE CORRECTNESS AND THE ASSERTION CORRECTNESS OF PROGRAMS

As was already mentioned in Sec.2 the semantical meanings of a.s.

programs are truth values. Accordingly to the traditional wording

of the field we shall say, however, that an a.s. program is correct

rather than true. Below we define two concepts of correctness. The

first is the strengthenning of Manna-Pnneli's total correctness

and may be understood as describing an auxiliary semntics. The

other, called assertion correctness, is the principal concept of

correctnes in our method.

An assertion specified program pre c ; IN post c is called

correct if

<cpr> £ tlN]{cpo} (4.1)

This correctness means that for any state s which satisfies c

the execution of IN terminates successfully - i.e. neither aborts

nor runs indefinitely - and the output state satisfies c .

Observe that in the usual understanding of total correctness

(Manna and Pnueli (1974), Manna (1974)) the problem of abortion

is neglected: successfull termination simply means no indefinite

execution. Consequently, the correctness defined by (4.1) is

stronger than the total correctness. For better explanation con

sider the program

- 21 -

pre integer array A[0:n] ^a=A^i=n

while a(i)<a(i-1) do a:= swap (a,i,i-1);

i:= i-1 od

post a is a permutation of A

where swap (a,i,i-1) denotes the result of swapping the i-th ele

ment with the i-1 element in a. This program is totally correct

(i.e. may be proved correct in the Manna-Pnueli's system) but

it is not correct in our sense since i may reach the value of 0

in which case the execution aborts. For further discussion of

(4.1) and the corresponding proof techniques see Blikle (1977C,79)

The above defined concept of correctness is restricted to global

properties of programs. Below we define the assertion correctness

which refers not only to the pre- and postcondition but also to

the assertions of the program. Intuitively pre c ; IN post c

is assertion correct if it is correct and if the assertions which

occur in IN may be used in the proof of (4.1). The formal defi

nition is inductive w.r.t. the syntax of INS:

(A) For any elementary instruction IN the a.s. program pre cnr;

IN post c is assertion correct if it is correct. Notice thatx po

elementary instructions contain no assertions.

(B) The a.s. program

pre c ; if c then IN- else IN2 fi post c

is assertion correct if

- 22 -

(B1) cpr =>c v ~c
(B2) pre cpr ^ c; IN., post cpQ is assertion correct
(B3) pre cpr^ ~c; IN2 post cpQ is assertion correct

(C) The a.s. program

pre c^; while c do IN as ca sa E od post cpQ
pr

is assertion correct if

(CD cpr =^>ca §E>0
(C2) pre c & E>1 ; if c fi; IN post c § E>0 is a.c.

a

(C3) pre ca %E<1; if ~c fi post c is a.c.

(C4) [if ca § E>1 fi][IN][E] S [E-1]

This definition requires a few comments. First of all E is here

the loop counter i.e. a real expression whose integer value gives

the number of cycles through IN which must be performed in order

to exit from the loop. This concept may be easily generalized

using well founded sets (Floyd (1967)). We do not need, however,

this generalization in our example of Sec.6 and moreover the

arithmetical loop counter has the advantage of giving the expli-

cite estimation of the time complexity of the loop (see the

example in Sec.6). The condition ca is called the loop assertion

and loosely speaking describes the global effect of IN. Under this

interpretation (C1) says that for any state which satisfies the

precondition c ,the loop assertion is satisfied and the number

of cycles to be performed is defined.(C2) says that whenever the

loop assertion is satisfied and the number of remaining cycles is

not less than 1, then the body of the loop is executable, the

- 23 -

successive state satisfies ca again and the number of remaining

cycles through the loop is defined. It also says that the

above property may be proved using the assertions of IN. The con

junction of (CD with (C2) guarantees that under the precondition

c the loop will be executed without abortion and c will be pre-
pr * a

served in each cycle. Two remaining conditions imply that this

execution will not continue indefinitely. Indeed, (C3) claims

that if c is satisfied and the remaining number of cycles is 0
a

then the control exits the loop and the postcondition is satisfied,

The last condition (C4) quarantees that the value of E will fall

under 1 in a finite time since any execution of IN in the environ

ment where c & E>1 is satisfied decrements the value of E by 1
a ' —

(D) If IN.6 SIN then the a.s. program

pre c ; IN- as c sa IN0 post c _
£— pr 1 — a — 2 £ po

is assertion correct if

(D1) pre c ; IN- post c is assertion correct

(D2) pre c ; IN2 post c is assertion correct

(E) The a.s. program

pre c ; inv c.; IN vni post c
po

(4.2)

is assertion correct if the a.s. program pre c ; IN- post c
po

- 24 -

where IN results in from IN by the substitution for each assertion

as c sa in IN the assertion as c &c sa, is assertion correct
— a — a

The condition c. in (E) is called the permanent invariant in (4.2).

and inv c. is called its declaration. The mirror key-word vni
x —

defines the scope of this declaration. Permanent invariants are

used to "factorize" conditions which are permanently satisfied in

a segment of a program. Typical factorizable conditions are these

which describe the unchangable properties of the environment, e.g.

the type of identifiers. More examples are provided in Sec.6.

To complete the definition of assertion correctness observe that

every assertion in an assertion correct program is a Floyd's

invariant but not vice versa. The critical point is that the

Floyd invariants usually do not guarantee the executability and

the termination of IN. Indeed, consider the a.s. program

pre real a §• a>0 ^ x=a

x:=x+1

as x=a+1 ^ x>0 sa
-1

x:=x

-1
post x=(a+1)

which is, of course, assertion correct. In the proof of partial

correctness of this program we could use the invariant x=a+1.

This invariant is, however, too weak to prove nonabortion and

therefore it is not an assertion in our sense.

One of our motivations in defining the concept of assertion

correct program was to formalize the property that a given set of

- 25 -

assertions can be used in proving a given program correct. To make

sure that our goal has not been missed we must prove, first of

all, that every assertion-correct program is correct. The proof

of this theorem will also indicate in which way our assertions

may be used in the proofs of program correctness.

THEOREM 4.1 Every a.s. program which is assertion correct is

correct. L-1

PROOF. This must be proved by induction on the syntactical com

plexity of a.s. programs. The first step (case (A) of the defini-

tion) is obvious. In the induction step we must consider the

cases (B)-(E). Since the only nontrivial case is (C) consider the

a.s. program

pre c ; while c do IN as c sa E od post c (4.3)
— pr —•'— — a — —- '" • p<-»

and assume that it is assertion correct. Now, let for any integer

i>0, A. = (c & i<E<i+1}. We shall show the following
— la

1) {c } C U~ A.
v prJ — i=0 l

2) (Vi>1)(A. 9 [if c fi; IN]A±-1)

3) AQ C [if ~c fi]{cpo}.

The conditions 1) and 3) are immediate from (CD and (C3) respec

tively. Prove 2). Let i>1 and let s€Ai. Then sG{ca} and

[E](s) = d for some d with i<d<i+1. By (C2) and the induction

assumption we have

- 26 -

se[if c fi][IN]{ca %E>0}

hence there exists s1 with s[IN]s1# s.,€{ca} and [E](s.j) = d1

for some d->0. Since, of course

s[if c fi]s[IN]sl[E]d1

we get by (C4), [E-1](s) = d^ . Therefore, [E](s1)=dl=[E-1](s) =

= [E](s)-1 = d-1. This implies the inequalities i-1<[E](s1)<i

which implies s.GA. and terminates the proof of 2). Now, from

2) and 3) we prove by induction on i>0

A. C ([if c fd^IND^if ~c fi]{c }.
1 XT

Therefore, by 1), {c r} <==. U~=Q([if c fi;IN.]) x[-if ~c fi] (c }=

=([if c fi][lN])*[if ~c fi]{c } which completes the proof by the
pr

semantical axiom (8) of Sec.2. LJ

As was mentioned in Sec.1 our assertions may be useful not only in

the documentation and the mathematical verification of programs,

but also in program testing. The latter follows from the fact that

each assertion describes the local properties of programs, hence

an a.s. program may be tested not only against a pre- and post

conditions but also against the local assertions. Technically this

may be done by the execution of a modified program which results

in from the original one by the replacement of every assertion

as c sa (case D) by the test if c fi and every loop assertion

with the expression as c sa E (case C) by the test

if c ^ E>0 _fi. If we call such a program a testing copy of the

- 27 -

original program then the following obvibus theorem may be

proved.

THEOREM 4.2. If an a.s. program is assertion correct, then the

corresponding testing copy is correct. I—i

The obvious proof is left to the reader. Of course, we tacitly

assume that the syntax of the language has been, extended in such

a way that the testing copies of programs belong to the language

too. This requires also an obvious extension of semantics.

5. THE RULES OF THE COMPOSITION AND THE TRANSFORMATION OF

PROGRAMS.

The main motivation for our method was to provide sound rules of

programming. In this section We show a few such rules which seera

to have a fairly broad field of applications. By no means, however,

should our set of rules be regarded as complete. To get started

we give three technical lemmas. Proofs are left to the reader.

LEMMA 5.1. For any identifier k and instruction IN the pro

perties

(i) [IN][k] Q [k] and

(ii) (vsrs2)(s1[IN]s2 =»[k](Sl) = [k](s2))

are equivalent. O

This lemma says that the property [IN][k] £ [k] may be read as

IN does not change the value of k. E.g. [x:=x+y][y] c [y].

- 28 -

Of course, we can easily generalize this lemma to the case where

k stands for an arbitrary expression.

LEMMA 5.2 For any function FG[S -S] and any B^B^C-j,^ c S

if

B-j £ FC1 and

B2 C FC2

then B1 nB2 c F(C1 nC2). •

LEMMA 5.3 For any function F€[S -+S] and any Cj ,C2 C S,

fc1 n fc2 c f(c1 n c2) •

Returning to the sound rules of programming we may first of all

observe that the definition of assertion correctnes (A)-(E) in

Sec.4 already provides five such rules. The rule which follows

from (D) is a bit too restricted since it requires that the

first component of the composition be a simple instruction. This

restriction was introduced only for the sake of the unambiguity

of the definition (D) and may be relaxed now:

THEOREM 5.1 For any two instructions IN, and IN2, if

pre c-; IN- post c2

pre c2; IN2 post c3

are assertion correct, then

- 29 -

pre c-; IN1 as c2 sa IN2 post c3

is assertion correct. LJ

PROOF. If IN- is simple then the proof is done by the definition.

Let then IN- be arbitrary. In this case IN^ must be of the form

IN1 as c1 sa IN2 as c2 sa ... INk as ck sa INk+1

for some k>1, where all IN1 are simple. This implies that the

following programs as assertion correct

1 1
pre c-; IN post c

12 2
pre c ; IN post c

k k+1pre c ; IN post c2

Combining these a.s. programs according to the rule (D) we succes

sively get the following assertion correct programs:

k k+1pre c ; IN as c2 sa IN2 post c3

pre ck~1; INk as ck sa INk+1 as c2 sa IN2 post c3
etc. O

Besides the techniques of program development resulting from the

rules (A)-(E) of Sec.4 there is another important class of

techniques which we shall refer to as the introduction of an

invariant. Generally speaking given an assertion correct program

pre c ; IN post c and a condition c we say that we are

introducing the invariant c into our. program if we transform

ft

- 30 -

IN into an IN,, such that pre c 85 c; IN1 post c ^ c is

assertion correct. Below we describe two particular rules of the

introduction of an invariant into a while do loop.

THEOREM 5.2 (the postfix enrichment of while do) If

pre c ; while c do IN as c sa E od post c (5.1)

is assertion correct, then for any c-,c'GC0N and any IN-GINS

if

1) pre c & c- ^ E>1 ; .if c fi; IN post c &} cl is assertion
correct

2) pre c & cl ; IN- post c &f E>0 S c- is assertion correct

3) [if ca % c» § E>0 fi][IN1][E] C [E]

then

pre c c$- c-; while c do IN as c §• cij sa IN- as c & c-

sa E od post c^Q § c,

is assertion correct. I—I

COMMENT. Since IN violates tl*e required invariant c- (assumpt

ion 1)), we have to supply the loop body with a recovery instruct

ion IN., leading back to c- (assumption 2)). To make it sure

that the alteration of the loop does not violate the termination

property, we assume that IN., preserves the value of the loop

counter E (assumption 3)). CD

- 31 -

PROOF. We have to check that the resulting program satisfies the

definition (C) of Sec.4. First observe that (C1) and (C3) follow

immediately from the assertion correctness of (5.1). Next, (C2)

follows from 1), 2) and Theorem 5.1. It remains (C4) to be proved.

By the assertion-correctness of (5.1)

[if c § E>1 fi][IN][E] C[E-1]

Therefore by 3) and the monotonicity of composition we get

[i£ ca ^ c1 ^ E-1 £±] [IN] [i£ ca § C1 § B-° fi] ^IN1]̂ E] C [E-1] (5.2)

Now, by 1) (C2) and lemma 5.2 we have

(ca § c1 § E>1} C [if c fi] [IN] {ca $ cJj § E>0} C

C [IN]{ca %c' %E>0}

This implies

[if ca ^ c1 ^ E>1 fi][lN][_if ca§cjj % E>0 fi] =
= [if c^c^ E>1 fi] [IN]

By (5.2) we get therefore

[if ca ^ Cl gj E>1 filtlNjflN^tE] C [E-1] •

THEOREM 5.3 (the prefix enrichment of while-do). If

pre c ; while c do IN as c sa E od post c
pj. s — — * '

- 32 -

is assertion correct and

1) pre c § c- ^ E>1; if c fi IN- post c £5 c^j is assertion correct

2) pre c & c'; IN post c ^ c- § E>0 is assertion correct

3) [if ca ^ C1 §E>1 fiHl^HlNHE] C [E-1]

then

pre c ^ c,; while c do IN., as c& oy c* sa IN as c & c- sa

E od post c ^ c-

is assertion correct. \3

COMMENT. This transformation is dual to the former. The new

instruction IN., , which is executed before IN, violates c- and

the old instruction IN provides the recovery. Since the nonmo-

dification of E by IN- does not imply termination in this

case, we have to assume that IN-;IN has the property required in

the definition. O

PROOF. The case (C1), (C2) and (C3) as in Theorem 5.2. The case

(C4) is obvious by 3). •

The sound rules of programming described so far are either the

rules of composition (B)-(D) or are transformations which change

the structure of the program. Another large group of rules con

sists of transformations which only modify conditions in the

program, but which do not change the control structure. Below we

give three examples of such rules which are commonly used in

program derivation.

- 33 -

THEOREM 5.4 If the a.s. program

£re cpr; IN post cpQ

is assertion correct and c' r =!> cpr and cpo ===s*' Cp0' tnen

pre c' ; IN post c'

is assertion correct. CD

The proof is obvious.

THEOREM 5.5. If in an arbitrarry assertion correct program we

replace:

1) any while-do or if-then-else condition c by c- such that

c ~ c,,

2) any precondition, postcondition or assertion c by c,

such that c ^==> c- ,

then the resulting program is assertion correct. LJ

The proof follows immediately from the fact that in the semantics

of assertion specified programs each branching condition is re

presented by the truth function [c], whereas each precondition,

postcondition or assertion is represented by the set of states

{c}. The essential point in this theorem is, however, that we

cannot replace ~ by <—> in 1) . An appropriate example is

given in Sec.6. We shall also see in that section that many con

ditions, appearing in a.s. programs are of the form c- Sf ... o$ c ,

where c; are elementary. Since § commutes in CON/. . but

does not commute in CON/— (Sec.3) our theorem indicates that

%

- 34 -

the ordering of c. s in c- £5 ... %cn is irrelevant whenever

the latter appears as a precondition, a postcondition or an as

sertion but becomes relevant if it appears in while-do or

if-then-else.

THEOREM 5.6. If the a.s. program

pre c ; while c do IN as c sa E od post c _£L pr' a £L p0

is assertion correct, then the a.s. program

pre c ; while c do IN as c sa E od post c ^ c

is assertion correct. C]

The proof is immediate from the definition (C) of Sec.4.

6. AN EXAMPLE OF PROGRAM DERIVATION; BUBBLESORT

To get started we recall the intuitive idea of bubblesort. Suppose

that we are given a vertical column of bubbles, each bubble having

a certain weight. Suppose that our bubbles constitute an environ

ment which satisfies the following Archimedes' principle:each

bubble which is lighter than its upper neighbor tends to swap with

this neighbor in moving up. At some initial moment all the bubbles

are glued together which prevents them from swaping. In the first

step of bubblesort we free the first bubble from the top. Of

course, nothing will happen since this bubble has no upper neigh

bor. Next we free the second bubble. This time a swap may occur

if the second bubble is lighter than the first one. In each suc

cessive step of our procedure we free the successive bubble which

- 35 -

immediately starts to move up in searching for such a position

in the column which does not violates the Archimedes' principle.

It is intuitively quite clear that in the last step of the proce

dure our column of bubbles will be ordered according to the in

creased weights.

The systematic development of the bubblesort program requires,

first of all, the establishment of an appropriate data-type. It

will be developed in a stepwise manner along with the development

of the program. Since in this paper we skip the problem of the

formal specification of data type, we are using below a mixture

of formal and intuitive mathematics. In many cases we simply refer

to a known mathematical concept (e.g. that of a permutation)

rather than give an axiomatic definition. Despite this informali

ty of our approach it still seems advisable to keep the many-

-sorted algebra style (ADJ 1975) in the specification of sorts

and arities of functions. We start by the first approximation of

our data-type and program.

SORTS

Int - integers

Arr - arrays; each array is a total function

a: {0, ,n} —- Int, where n>0

Bol - {true, false}

FUNCTIONS

+ , - , 0, 1 - the arithmetical functions and constants

- 36 -

length: Arr —- Int - the length of an array

component: Arr x Int -Int - the i-th component of an array;

according to the common style we shall write a(i)

in the place of component(a,i)

Seg: Arr x Int —• Arr - the initial segment;

seg (a,j) = (a(0),...,a(j)) for 0<j<length a

PREDICATES

integer, array - the sort predicates (Sec.2)

< , < - The usual arithmetical inequalities

is sorted: Arr —»-Bol

a is sorted: ~ (V integer i)(0<i<length a =>

z> a(i)<a(i+D)

perm : Arr x Arr —• Bol

a- perm a2 :r a., is a permutation of a2

Now, we may establish the first approximation of our program

which we shall informally call the propulsion loop. Here and in

the sequel the operational part of the program will be framed in

order to distinguish it visually from the specification part.

pre array A^a=A^j=0^k = length A

inv k = length a ^ a perm A £5 0<j<k
- —

while j<k do j := j+1

as true sa k-j od

vni

post j=k

<pi>

- 37 -

This program only defines the framework of further approximations

and is, obviously, assertion correct. Into this program we shall

introduce the invariant seg(a,j) is sorted using the postfix

enrichment of the loop (Theorem 5.2). Let

and let

c- :~ seg (a,j) is sorted

ci :~ se9 (a,j-l) is sorted & j> 1

.c :r k = length a tq a perm A Cj 0<j<k

Of course, c is the permanent invariant declared in P-. Now,

accordingly to Theorem 5.2 we have to check that the program

pre c% c1 % k-j>1;

if j<k fi; j:= j+1

post c 65; c!

is assertion correct and we have to construct an instruction

IN- such that the following two conditions are satisfied:

pre c <% c' ; IN- post c ^ c- ^ k-j>0 is a.c. (6.1)

[if c 8f cJj § k-j>0 fiJtlN^tk-j] C [k-j] (6.2)

The first requirement is, of course, satisfied. Therefore, on the

strength of Theorem 5.2, for any IN., which satisfies (6.1) and

(6.2) the subsequent program is assertion correct. We write it

already in a simplified form removing c- from the precondition -

- 38 -

since for j=0 it is always true - and replacing j=k § c, in

the postcondition by j=k % a is sorted, since j=k § k = length a

§ sea(a,j) is sorted implies j=k § a is sorted. Formally we

apply here the Theorems 5.4 and 5.6.

pre array A ^ a=A ^ j=0 fy k=length A

inv c

while j<k do

j:=j+1

as seg (a,j-1) is sorted § j>1 sa

IN.

as seg (a,j) is sorted sa k-j od

vni

post j=k &$ a is sorted

(p2)

Since there are many IN- which satisfy the conditions (6.1) and

(6.2), our P2 represents a class of sorting procedures organized

accordingly to the following iterative scheme: given an array

a where seg(a,j) has already been sorted, increase j by 1

and permute a in such a way that the new seg(a,j) is sorted

again. Our prospective bubblesort belongs to this class. In order

to describe it we extend our data type by two new sorts, four new

functions and one new predicate

- 39 -

SORTS

Vec - vectors; each vector is a total function v: N >-Int

where N is an arbitrary finite set of integers

Set - finite subsets of Int

FUNCTIONS

swap: Arr x int x int »-Arr;

swap (a,i,j) is, for 0<i,i<length a, the result of

swapping the i-th with the j-th element in a

but: Arr x Int >-Vec

a but i is, for 0<i<length a, the restriction of

array a to the domain

{0, ,length a} - {i}

max: Set *- Int

max B is the maximal element of the set B

bd: Arr x Int >-Int; read: bubbledepth

bd(a,i) = if i<0 v a(i)>a(i-1) then 0

else max {d|a(i)<a(i-d)}

PREDICATES

First we extend the formerly defined predicate is sorted to the

sort of vectors. We also assume that the empty vector satisfies

this predicate. Now, we define the new predicate.

- 40 -

bubbles in seg(,) : IntxIntxArr —>-Bol

i bubbles in seg(a,j) :~ 0<i<i<length a %
seg(a,j) but i is sorted

i<j z> a(i+1)>a(i)

The following may be proved easily:

bd(a,i)>1 ~ i>0 §a(i)<a(i-1)

i=j § J>1 %i bubbles in seg(a,j) <=>

<=» i=J § 3>1 § sea;(a,j-D is sorted

bd(a,i) = 0 § i bubbles in seg(a,j) =?>

==> seg (a, j) is sorted

%

(6.3)

(6.4)

(6.5)

Using the predicate i bubbles in seg(a,j) we may construct the

assertion-specified program which describes the bubbling process:

pre c § i=j ^ j>1 § i bubbles in seg(a,j)

inv c

while bd(a,i)>1 do

a := swap(a,i-1,i)

as i-1 bubbles in seg(a,j) sa

i := i-1

as i bubbles in seg(a,j) sa bd(a,i) od

vni

post c ^ bd(a,i) = 0 § i bubbles in seg(a,j)

(P3)

The assertion correctness of this program may be proved directly

from the definitions (C) and (D) of Sec.4. This proof is left to

the reader. Now, we modify (P3) into the form required by the

- 41 -

conditions (6.1) and (6.2). This is done in the following steps.

(1) The pre- and postcondition are modified on the strength of

(6.4) and (6.5); cf. Theorem 5.4.

(2) The while condition bd(a,i)>1, which is inacceptable from

the practical viewpoint, is replaced by i>0 ^ a(i)<a(i-1); cf.

(6.3) and Theorem 5.5.

(3) The program which results in from (1) and (2) is combined

sequentially (rule (D) of Sec.4) with the program

pre c fy j>1 fy seg(a,j-1) is sorted

i := 3

post c § i=j %j>1 § seg(a,j-1) is sorted

We get

pre c^ j>1 & seg(a,j-1) is sorted

inv c

l := 3

as i=j § j>1 § seg(a,j-1) is sorted sa

while i>0 ^a(i)<a(i-1) do

a := swap(a,i-1,i)

as i-1 bubbles in seg(a,j) sa

i := i-1

as i bubbles in seg(a,j) sa bd(a,i) od

vni

post c § seg(a,j) is sorted

(V

.*

- 42 -

This program is assertion correct since it has been derived from

another assertion correct programs using sound transformations.

Since c =>k-j>0, the latter condition may be added to the post

condition of (P.). Therefore, the instruction of (P4) satisfies

(6.1). It also satisfies (6.2) since neither j nor k is

modified in (P.). Consequently, the instruction of (P4) has all

the properties required from IN- of (P2) and may be substituted

there. In this way we get the final version of our program:

pre array A cj a=A & j=0 ^ k = length A

inv k = length A fy a perm A ^ 0<j<k

while j<k do

j := j+1

vni

as j>1 ^ seg(a,j-1) is sorted sa

i := j

as i=j 8j j>1 § seg(a, j-1) is sorted sa

while i>0 §a(i)<a(i-1) do

a := swap(a,i-1,i)

as i-1 bubbles in seg(a,j) sa

i := i-1

as i bubbles in seg(a,j) sa bd(a,i) od

as seg(a,j) is sorted sa k-j od

post j=k S; a is sorted

This program is, of course, assertion correct. Observe that if in

the inner loop we replace the while condition i>0 §a(i)<a(i-1)

by the condition a(i)<a(i-1) % i>0 which is equivalent - but

not strongly equivalent - to the former, then we get a program

- 43 -

which is no longer correct. That new program aborts whenever the

value of i reaches 0 since in that case a(i)<a(i-1) cannot be

evaluated.

7. FINAL REMARKS

Practically all the issues discussed in this paper has only been

sketched and require further development. First of all we should

learn more about McCarthy's logic. Secondly, we should better

develop the set of program derivation rules. Thirdly, the language

PROMETH-1 should be extended by new programming constructions and

by the appropriate subset of data-type specification language.

Finally, some attention should be given to the methodology of

programming iii PROMETH.

ACKNOWLEDGEMENTS

I wish to express my thanks to Hans-Eckart-Sengler, who discovered

a mistake in an early version of my example of Sec.6. In order to

correct this mistake I decided to introduce a partial logic into

PROMETH. It was Antoni Mazurkiewicz, who suggested me to use

McCarthy logic in that place. I am deeply greatful to him for

this advise. I also wish to express my grattitude to Krzysztof

Apt with whome I have discussed some general logical problem of

this approach. Finally, my thanks are also addressed to Andrzej

Tarlecki, who pointed out another mistake in my example and con

veyed to me many interesting remarks about the earlier version

of the paper.

- 44 -

REFERENCES

Back, R.J. On the correctness of refinement steps in program
development, Dept.of Computer Science, University of Helsinki,
Report A-1978-4.

Bar, D.(1977) A methodology for simultaneously developing and veri
fying PASCAL programs, in: Constructing Quality Software
(Proc.IFIP TC-2 Working Conf.,May 1977, Novosybirsk), North
Holland, Amsterdam 1978.

Bj^rner, D* The Vienna development method (VDM): Software speci
fication % program synthesis. In: Mathematical Studies of
Information Processing (Proc.Int.Conf.Kyoto, August 1978),
307-340 to appear in LNCS by Springer Verlag.

Blikle, A.(1977A) A mathematical approach to the derivation of
correct programs, in: Semantics of Programming Languages
(Proc.Int.Workshop, Bad Honnef, March 1977), Abteilung In-
formatik, Universitat Dortmund, Bericht Nr.4,1 (1977) 25-29.

Blikle, A.0 977B) Towards mathematical structured programming, In:
Formal Description of Programming Concepts (Proc.IFIP Work
ing Conf.St.Andrews, N.B. Canada, August 1-5, 1977, E.J.
Neuhold, ed.) 183-202, North Holland, Amsterdam 1978.

Blikle, A.(1977C) A comparative review of some program-verifica
tion methods. Mathematical Foundations of Computer Science
1977 (Proc.6th Symp.Tatranska Lomnica 1977) Lecture Notes
in Computer Science 53 Springer Verlag, Heidelberg 1977,
17-33.

Blikle, A.(1978) Specified programming, In: Mathematical Studies
of Information Processing (Proc.Int.Conf.Kyoto,August 1978).

Blikle, A. (1979) A survery of input-output semantics and program
verification. ICS PAS Reports 344 (1979).

Burstall, &.M. and Darlington, J. (1977) A transformation system
for developing recursive programs, J.ACM, 24(1977), 44-67.

Darlington, J. (1975) Applications of program transformation to
program synthesis, Proc.Symp.of Proving and Improving Prog
rams, Arc-et-Senans 1975, pp.133-144.

Darlington, J.(1976) Transforming specifications into efficient
programs. New Directions in Algorithmic Languages 1976 (ed.
S.A.Schuman), IRIA Rocquencourt 1976.

Dershowitz, N. and Manna, Z. (1977) Inference rules for program
annotation, Report No STAN-CS-77-631 (1977)-.

Dijkstra, E.W. (1968) a constructive approach to the problem of
program correctness. BIT 8(1968), 174-186.

Dijkstra, E.W. (1975) Guarded commands, non-determinizm and a
calculus for the derivation of programs, Proc.1975, Int.
Conf.Reliable Software, pp.2.0-2.13 Also in: Comm.ACM, 18
(1975), 453-457.

Dijkstra, E.W. (1976) Formal techniques and sizable programs, Proc.
1st Conf.Eur.Coop.Inf. Amsterdam 1976, Lecture Notes Comput.
Sci. 44, 225-235 (1976).

- 45 -

Emden van, M.H. (1975) Verification conditions as representations
for programs, manuscript (1975).

Emden van, M.H. (1976) Unstructured systematic programming. Dept.
CS, Univ.Waterloo, CS-76-09 (1976).

Erig, H.; Kreowski, H.J.; Padawitz, P. (1978) Stepwise specifica
tion and implementation of abstract data types, in: Automata
Languages and Programming (Proc.Fifth Coll.Udine, July 1978),
Springer-Verlag LNCS 62, New York 1978, 205-226.

Floyd, R.W. Assigning meanings to programs, Proc.Sym. in Applied
Math., 19 (1967), 19-32.

Goguen, J. (1978) Some ideas in algebraic semantics, (manuscript)
presented at IBM Conference in Koto (Japan), 1978.

Goguen, J.A.; Thatcher, J.W.; Wagner, E.G.; Wright, J.B. (1975)
Abstract data types as initial algebras and correctness of
data representations, Proc.Conf.on Comp.Graphics, Patern
Recognition and Data Structure, May 1975, 89-93.

Guttag, J. (1977) Abstract data types and the development of data
structures. Comm.ACM, 20(1977), 396-404.

Irlik, J. (1976) Constructing iterative version of a system of
recursive procedures, In: MFCS (Proc.Int.Symp.MFCS' 76)
Lecture Notes in CS, Springer-Verlang, Heidelberg 1976,
vol.45.

Lee, S.; de Roever, W.R.; Gerhart, S.L. The evolution of list-
copying algorithms, Six ACM Symposium on Principles of
Programming Languages, January 1979.

Liskov, B.H.; Zilles, S.N. (1975) Specification techniques for
data abstraction, IEEE Trans.on SE Vol Se-1 No 1 (1975),
7-19.

Manna, Z. (1974) Mathematical Theory of Computation, Mc Graw-Hill,
New York 1974.

Manna, Z.; Pnueli, A. (1974) Axiomatic approach to total correct
ness of programs, Acta Informatica (1974) .

McCarthy, J. A basis for a mathematical theory of computation.
In: Computer Programming and Formal Systems, R.Braffort and
D.Hirschberg edb., North Holland Amsterdam 1967, pp.33-70.

Spitzen, J.M.; Levitt, K.N.; Lawrence, R. (1976) An example of
hierarchial design and proof. New Directions in Algorithmic
Languages 1976 (ed. S.A.Schuman), IRJA, Rocquencourt 1976.

Wegbreit, B. (1976) Goal-directed program transformations,
IEEE.TSE. Vol SE-2, No 2, (1976), 69-79.

	Copyright notice 1979
	ERL-79-25

