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1. Introduction

Let (ft,{F , 0<t<L},P0) be a probability space and let {X , 0<t<l}

be a PQ local martingale. Doleans-Dade showed that the integral equation

ft

L -1 + L dX

0 S" S

has a unique solution {L , 0<t<l} which is a positive local martingale.

dPIf EQL- = 1 then L is a martingale and -Tr— = L1 defines a new pro

bability measure P with

Results concerning PQ local martingales under P or P local martingales

under PQ have come to be known as Girsanovfs theorem [3]. For example, if

N is a continuous PQ local martingale then N -[N,x] is a P local

martingale where [N,xl is defined intrinsically as a quadratic variation

process.

If {Ft» 0;£t<l} is generated by a Pn Wiener process W then .there

exists a P Wiener process W . Further, any P local martingale Z has

ft - r1 2
the integral representation Z_ = I q dW where q ds < °° a.s.t Jo s s J0Ms
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For processes with two-dimensional parameter the martingale concept has

several extensions [l,8]. The purpose of this paper is to present some

results of the Girsanov type for such processes defined on the probability

space of a 2-parameter Wiener process. When possible, transformation

results are stated and proved in an intrinsic (representation independent)

form.

Preliminary material is presented in Section 2, while the main results

are collected in Section 3. In the remaining two sections, the theorems

regarding martingles and weak martingales, respectively, are proved.

2. The Stochastic Calculus and Likelihood Ratios

The basic definitions of [l] will be used in this paper, and are

summarized as follows. Let R, = [0,~) x[0,«>) denote the positive quadrant
+

of the plane. For two points s = (s-,s2) and s1 = (sj^sp in R+,

s > s1 will denote the condition s- _> s' and s^ >^ s^, sis1 will

denote the condition s| _> s. and s^ > s£, sxs' will denote the point

(s.,8'), and s V s' will denote the point (maxCs^sp ,max(s2,s£)).

i(sVs') will denote the indicator function of the set {sVs1}. 0 will

denote the origin in R and Rz the rectangle {0-<s-*z}. \®\ is tne

set {(SjS1): s^R , s'^R, sAs1}.
z z

Let {W , z^R } be a standard Wiener process defined on (ft,{Fz},PQ)
z zQ

where F = {a(W , s-^z) completed with respect to Pn>. A stochastic process
z s **

X = {X , zG R } is said to be adapted if X is F measurable for eachz zQ z z

z E R . In the following definitions, the process X is assumed to be
z0

adapted and for each z, X is integrable. X is a martingale if z' > z

implies that En(X ,|F ) = X a.s., X is an adapted 1-martingle
u z z z



(2-martingale) if {X ,F } is a one parameter martingale in s- for
S1S2 S1S2

each s« (in s« for each S-). X is a weak martingale if sf > s

implies that E^.-X^-X^.+xjF^ =0a.s.

A proper 1-martingale (2-martingale) is a square integrable, sample

continuous process M. (M_) which is an adapted 1-martingale (2-martingale)

and mean square differentiable in the 2-direction (1-direction).

A process Z is a local martingale if there is a sequence Z of

square integrable martingales such that Z (z,u>) = Z(z,co) for z € R and
n zQ

n >^ N(cd) where N(oj) < °° a.s. A local i-martingale (proper local i-martin

gale, weak local martingale) is similarly defined as the limit of square

integrable i-martingales (proper i-martingales, weak martingales) for

i = 1,2. By the theorems of Wong and Zakai [see 2], all local martingales

have the stochastic integral representation

Z =
z

q(s)dW +
R

r(s,sf)dW dW , (2.1)
R®R S S

z z z

and all proper local 1-martingales (2-martingales) are given by mixed area

integrals

a(s,s,)dsdW , (I 3(s,sf)dW dsf) (2.2)
R <SR S JR ®R S
z z z z

where q is F adapted and (ds-measure) square integrable a.s., and r,
s

a and $ are F v , adapted and (dsds* measure) square integrable a.s.

A local semimartingale is by definition the sum of a local martingale,

a proper local 1-martingale, a proper local 2-martingale, and an absolutely

continuous process

Bz = b ds

R s
z



where b is a.s. square integrable. Denoting Lebesgue measure by u, a
s

local semimartingale is conveniently written as

Z = W<>r°W + qoW + u<>aoW + W<>3oy + b°U (2.3)

where r, q, a, 3 are a.s. square integrable and b is a.s. integrable. A local

semimartingale will also be referred to as a representable process. If ty is

an adapted, a.s. bounded process (for example, if ty is a.s. continuous) then
s

the stochastic integral

•

p ,ty , fdW dW fipoZ(z) - | qs^sdWg +
R®R 8.8,T8X8« S S

R
z z z

+

h_ __
z z z z z

f as s'Vs'^s1 + 3s s'^sAs^V8' +IbsV8JR ®R S,S 8KS S JR®R S' A S JR S S

is again a local semimartingale.

A process is a weak martingale if and only if it is the sum of a

1-martingale and a 2-martingale [8]. It follows that all representable local

weak martingales have the representation

Z = WoroW + qoW + u<>aoW + W<>3°y (2.4)

A local semimartingale is a one-parameter local semimartingale in each

direction with the local semimartingale representations

where

zz • JR W'B">«.< +
R

Zyl(z,s,)ds' (2.5)

2 "R
z

z z

Z = J Zw2(z,s)dWg + I Zij2(z,s)ds (2.6)

Z^z.s') =qs, +JI(.K.,)r.t..dH. +fR I(sls';aS)S,ds (2.7)



Zyl(z,s») V +
R

I(sAs')3 ,dW
s,s' s

ZW2(Z'8) = ^s +
R

I(sA s')r ,dW , +
s.s1 sf

Zy2(z,s) = b + I(s U')a ,dW ,
R

s,s' s

I(sAs')3 .ds1
s,s

It is convenient to write (2.5) and (2.6) in the compact form

on

z = ^i0" + V

Z" ^2°" +VV

(2.8)

(2.9)

Note that if Z = yoaoW and Z = yocioW, then Z = Z a.s. if and

-y if zwl(z>sf) = ^(zjS1) for (dsf xdP measure) a.e. (s',a)) for each

z. In this case a will be called a version of a. Hence, a and 3

in (2.3) are uniquely determined by Z up to versions.

The composition Y*X of two local semimartingales X and Y is the

process defined by

(Y*X)z =
R ®R
z z

Yw2(sVsf,8)Xwl(sVs,>s')dW dW ,

+ Y 9(sVsl,s)Xm(sVs\st)dsdW ,

s

Yw2(sVsl,s)X|1(sVsl,sl)dW„dsl

R ®R
z z

R ®R
z z

yi

JR ®R ^ px
z z

(2.10)

Formally, Y*X satisfies 3],32(Y*X) = 3^3^. Y*X is awell defined local

semimartingale if the integrands in (2.10) are a.s. square integrable. In

abbreviated form, (2.10) can be expressed as



Y*X = W.IH2XH1.H + V-Y^-W +W°Yw2Xyloy +V°\2*vl°V

One may define quadratic variation processes for a local semimartingale

with representation (2.1) by

[Z,Z] =b2oy + Uor2oU (2.11)

and, for i = 1 or 2,

<Z,Z>
iz

X^i(z,s)ds . (2.12)
R *

z

The definition (2.12) is consistent with the definition of quadratic varia

tion for one-parameter local semimartingales. Both [Z,z] and <Z,Z> are

intrinsic to Z in the sense that they have representation free, quadratic

variation interpretations [l,2]. Define [Z,z] and <Z,Z> for local

semimartingales Z and Z by bilinearity. If Z has representation (2.3)

and

Z = WoroW + qoW + yo$oW + Wojjjoy + boy (2.13)

then

and

<Z,Z>1(z) = Zwl(z,sl)Zwl(z,s1)ds, , z = (zrz2) (2.14)
R

z

(Z.Z^ = [Z,Z] + (Wor+yoa)Zwloy + (Wof+yoa)Zwloy (2.15)

To obtain (2.15) apply the 1-parameter differential formula [3] to the inte

grand in (2.14) as a function of z2 for fixed z and use (2.7). Similarly,

<Z,Z>2 = [Z,Z] + yoZw2(roW +3oy) + yoZ^roW +goy) (2.16)

The differentiation formula of [7,8] for local semimartingales has

been put into a representation free form [9]. Let F:R + R be a function



with continuous derivatives through the fourth order, and let Z be given by

3k(2.1). Let Fk(x) =-2-£ F(x). Then
Bx

F(Z) = F(XQ) + F1(Z)oZ + F2(Z)o(Z*Z) (2.17)

+«|f2(z)o(<z,z>1 +<z,z>2 -[z,z])
+|-F3(Z)o(Z *<Z,Z>1 +<Z,Z>2*Z+2[Z,Z*Z])
+•|f4(z)o<x,x>2*<x,x>1

whenever the composition operations yield local semimartingales.

If Z = (Z ,...,Z ) is a vector of n local semimartingales and if

F: IR —• 1R has continuous partial derivatives to fourth order, then

(2.17) still yields the integral representation of F(Z) if the terms are

interpreted appropriately. For example, identify

Vz).z -IM>z±
i i

32FF2(Z)..(Z*Z) -̂ ^-o(Zi*Zj)

F3(Z)c(Z*(Z,Z>1) = I (* °(Zt*<Z Z)).
i,j,k i j k J

For n = 2 and F(z,z) = zz, this yields

ZZ = ZQZ0 + ZoZ + ZoZ + Z*Z + Z*Z + <Z,l)1 + <Z,Z>2 - [Z,ZJ (2.18)

This generalization of the differentiation formula given in [7,8] may be

proved, as in [7], by repeated application of the differential formula for

one parameter martingales. (2.18) shows that Z*Z+Z*Z is intrinsic to

Z, Z since all the other terms are. Thus the symmetrization of * is an

intrinsic operation.

Let P be a probability measure on (fi,{F }) equivalent to Pn.

0UdP.Then if En[(-T=-) ] is finite, the likelihood ratio
0



\ = Vigrig

satisfies L = e where [6]

X -(. 6 dW - =r
z , s s 2

z
R

e2ds - I
s 2

p ,dsds'
s.s

R ®R
z z

p f[dW -u(s,xs,s)ds][dW f-u(s,xs,s?)dsl]
s, s s s

R ®R
z z

(2.19)

for some functions p, 6, u and u. In an abbreviated form, (2.19) is

expressed as

12 12X = 6©W -t6 oy - -yop oy + (W-Uu)opo(W-uy)

If p and 9 are any a.s. bounded and adapted processes then u and u

are uniquely determined by

u(z,sf) = 0 , +
s

G(z,s) = e +
s

I(sXs')p ,[dW -u(s,xs,s)ds]
s, s s

I(sAsf)p t[dW t-u(s,xs,sl)dsf]
s, s s

C2,20)

(2.21)

and X is a local semimartingale. It then makes sense to write L = e

= &(p,0). L = e also has the representation [6]

eX =eXo(m+M2*M ) (2.22)

where m is the local martingale part of X and M. (M„) is the local

1-martingale (2-martingale) part of X. It follows from (2.19)-(2.21) that

X^z.s1) = (M1)wl(z,sl) = u(z,s')

Xw2(z,s) = (M2)w2(z,s) = u(z,s)

(2.23)

(2.24)



L = eX also has essentially one parameter representations, as expressed

by

eXwl(z,s') =eXs,Xzu(z,s') (2.25)
eXw2(z,s) =eXzXsu(z,s) (2.26)

Lemma 2.1. Let eX = &(p,9) and suppose p, 9, u and u are a.s.

bounded (for example, they may be sample continuous). Let Z= {Z^ z^Rz }

be a local semimartingale with the representation (2.3). Then the follow

ing identities hold and all terms are local semimartingales.

Z*eX =eXo(Z*M1) (2.27)

eX*Z =eXo(M2*Z) (2.28)

<X,Z> = [X,Z] + (W-yu)opZwloy +Woruoy + yoauoy (2.29)

<X,Z> = [X,Z] +yoZw2po(w-uy) +youroW +youaoy (2.30)

<eX,Z>1 =eXo{<X,Z>1+M2*<X,Z)1 +[x*Z,X]+[x*X,Z]} (2.31)

<eX,Z>2 =eXo{<X,Z>2 +<X,Z>2*M1 +[Z*X,X]+[X*X,Z]} (2.32)

eXZ =ZoeX +eXo{Z+M2*(Z+<Z,X>1) +(Z+<Z,X>2)*M1 (2.33)
+ <x,z>1 +<x,z>2 +[x,x*z] +[x,z*x] -[z,x-x*x]}

e"X =1+e"Xo{-X*<X,X)1-<X,X>2*X +<X,X>1 +<X,X>2-[X,x] (2.34)
- m+M *M }

e"XZ =Zoe~X +e"Xo{Z-<Z,X>1- <Z,X>2 +[Z,x] -[X,X*Z] (2.35)
- [X,Z*X] -(M2-<X,X>2)*(Z-<X,Z>1)

- (Z-<X,Z>2)*(M1-<X,X>1)}

Proof. Z appears at most once in each of the terms in (2.27)-(2. 35)

so that each term has a local semimartingale representation with integrands

which are a.s. square integrable (each integrand being the product of a.s.
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bounded processes and at most one a.s. square integrable process). (2.27)

and (2.28) follow from (2.23)-(2.26). (2.29) and (2.30) follow from (2.15),

(2.16), (2.23) and (2.24). (2.31) follows by applying the differentiation

rule for one parameter local semimartingales to the integrand in

<eX,Z>1 =e^Z^oy =j eX(s»xz)u(z,s»)Zwl(z,sT)dsl
z

as a function of z2 for s1 fixed. (2.32) follows similarly. (2.33) is

obtained by applying the differentiation formula to F(eX,Z) = eXZ and

using (2.27), (2.28), (2.31) and (2.32). (2.34) is obtained by applying the

differentiation formula to F(X) =e"X and (2.35) follows by applying

the differentiation formula to F(e"X,Z) = Ze"~X.

Local martingales, local i-martingales, and local weak martingales may

be defined under the law P exactly as they were for law P0. It follows

that a process Z is a P local martingale (a P local i-martingale,

i = 1 or 2, a P local weak martingale) if and only if LZ is a P local

martingale (PQ local i-martingale, P local weak martingale).

The notion of local semimartingale will always refer to representation

with respect to the process {Wz> under the law PQ. Under the conditions
—X X y

of Lemma 2.1, a process Z = e (e Z) is representable if and only if e Z

is representable.

3. Compensation and Representation Theorems

The main results of this paper, which are summarized in this section,

describe martingales, weak martingales and i-martingales under the change of

measure PQ -*• P described in Section 2. There are two types of results;

one type concerns compensation (or transformation) of PQ martingales,
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Pn i-martingales and Pn weak martingales to obtain P martingales, P

i-martingales, and P weak martingales (and vice versa). The other type

of result concerns the integral representation of P weak martingales and

P martingales (i.e., the counterpart of (2.1) and (2.4) when PQ is

replaced by P).

Throughout the remainder of this paper, assume that P^PQ, ~Tf~ ~ &(p>9)

= exp(X) and that p, 9, u and u in (2.19) are a.s. bounded.

Theorem 1 (i-Martingale Compensation). Let Z and N be local semi

martingales, and let i = 1 or 2.

(a) If Z is a P0 local i-martingale, then (and only then) Z-<X,Z).

is a representable P local i-martingale.

(b) If N is a P local i-martingale, then (and only then) N + <X,N>

is a Pfi local i-martingale.

If Z is a P0 local i-martingale, then <X,Z>. is the unique local

semimartingale with (<X,Z> ) = ° sucn that Z-<X,Z>. is a P local

i-martingale.

Remark. Theorem 1 follows easily from the theorem on transformation

of one parameter local martingales. It is also easily proved using the

identities in Lemma 2.1.

It will be convenient to define some operators on the linear space of

local semimartingales. If Y is a local semimartingale, let

T(Y) = <X,Y>1 + <X,Y>2

V(Y) = [X,X*Y+Y*x] - [Y,X-X*X]
oo

R= (I+T)"1 = I (-DV
n=0

T = (I-V)R
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I is the identity operator. It follows easily from Lemma 2.1 that T and

2
V are well defined and that V = TV = 0. Hence (as will be justified by

Lemma 4.1),

I1"1 = ((I-V)(I+T)"1)"1 = (I+TMI-V)"1

= (I+T)(I+V) = I+T+V

These operators are intrinsic since they are defined in terms of ().,[],

and the symmetrization of *.

Theorem 2 (Martingale Compensation). The operators T, V, R, T and

r~ are well defined, linear, and intrinsically defined on the
_1 -

space of local semimartingales. Y is invertible with inverse V . T maps

the subspace consisting of Pfi local martingales onto the space of P local

martingales.

If N(Z) is a P (P) local martingale, then T(N) (f^Z)) is the

unique P (PQ) local martingale such that N-r(N) (Z-r~ (Z)) has no PQ

local weak martingale component.

Theorem 3 (Weak Martingale Compensation). If N is a PQ local weak

martingale then

N- <N,X>1 - <N,X>2 + [N,X+X*X] (3.1)

and

N = N - yoauoy - yoU3°y - [N,X +X*x] (3.2)

are representable P local weak martingales. The process in (3.1) is deter

mined from N and X by intrinsic operations. N is the unique represen

table P local weak martingale such that N -N is an absolutely continuous

process.
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If M is a PQ local martingale, then M-[M,X+X*x] is a represen

table P local weak martingale.

Remark. It would be desirable to find an expression for N in Theorem 3 which

is intrinsically determined by N and X. The last part of the theorem

shows that this is possible if N is a Pfi local martingale (rather than

just a P. weak local martingale).

Theorem 4 (Weak Martingale Representation). All local semimartingales

which are P local weak martingales may be represented as

qo(W-9y) + (W-yu)oro(W-uy) - yorpoy + yoao(W-uy) (3.3)

+ (W-yu)oboy

where q, r, a and b are a.s. square integrable. Hence, p, 9, u and u

have the interpretation (E denotes expectation under law P)

9(s)ds = E[dW |F ]
s s

u(z,sf)ds» = E[dWst|FgtXz]

u(z,s)ds = E[dWg|FzXg]

p(s,sl)dsdsl = E[(dW -u(z,s)ds)(dW ,-u(z,s')ds')|F . .] .
S S ' SVS

Remark. Since "the a-fields f are generated by a J?n Wiener process, if
z u

z'K z then F and F , are conditionally independent given F f
z z zxz

(using probability measure PQ). However, when Pn is replaced by P, the

conditional independence is lost unless p is identically zero. Indeed,
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this is suggested by the interpretation given in Theorem 4 of p as a condi

tional correlation. As a result, the a-fields {F } cannot be generated
z

by a process which is Wiener on (fi,F ,P).
z

A corollary to the representation (3.3) is that the class of represen

table P local weak martingales is stable under stochastic integration.

Unless p is identically zero, the classes of P local martingales and

representable P local i-martingales are not stable under the operation of

stochastic integration. Hence, there does not exist a counterpart to the

representation (3.3) for P local martingales.

If p is identically zero, then W = W-9°y is a Wiener process on

(ft,F ,Pn) [6], If W generates the same a-fields as W (i.e., "innova-
Z v

tions equivalence" holds for W under P), then P local martingales may

be expressed as qoW +WoroW by the Wong-Zakai representation theorem.

However, innovations equivalence is not necessary.

Theorem 5 (Martingale Representation when p = 0). If p is identically

zero, then any P martingale may be represented as qoW + WoroW where

W • W-9°y.

4. Martingale Results

Theorems 2 and 5 will be proved in this section. The operators T and

V are well defined maps of local semimartingales by Lemma 2.1. The follow

ing lemma shows that R, Y = (I-V)R and Y" are also well defined.

Lemma 4.1. Let T(Y) = <X,Y> +<X,Y>2 for local semimartingales Y.

For each such Y, the series

00

I (-l)nTn(Y) (4.1)
n=0
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converges pointwise in probability to a local semimartingale R(Y). Moreover

(I+T)R = R(I+T) = I.

Proof. By Lemma 2.1 and induction on n, T1^ is a semimartingale for

all n _> 0. Let

Tn(Y) = q(n)oW +Wor(n)oW + yof<n)oW + Wof<n)oy + b(n)

be the semimartingale representation. By (2.29) and (2.30),

T(Y) =Wo(pYwl+r(0)u)oy +yo(Yw2p+ur(0))oW +2[X,Y]
+yo(f^0)u-upYwl+uf^0) -Yw2pu)oy

Hence q^ '= r^ ' = 0, and moreover, q^1' = r'n' =0 for all n > 1. Also

We claim that f_ (s,sf) is a.s. square integrable. Indeed, since u and

p are a.s. bounded and r^ is a.s. square integrable, it suffices to

show that Y„2 is a.s. square integrable. Recall that

W2
(s,s») = I KsXt'Jr^ts.t')^, + I I(sA t')f<0)(s,t')dt'

sfxs sfxs (4.2)

By the Schwartz inequality,

I dsds'M Kskt^f^Cs.t^dt1]
JR ®R Utj . * J

^

R ®R
z z

R iv>
sfxs

(4.3)

ds' I f^s.t'^dsdt' <co a.s.
R ®R

z z

The stopping time constructed in [5] may be used to provide a sequence of

dsds'P(du)) square integrable functions r such that r (s,sf,u)) =r^(s,s*, co)



16

for all s, s1 for n _> N(u)) where N(u>) < ~ a.s. It follows that for

h j> N(03),

j I(sUl)rn(s,t,)dWt? =I KsAOr^s.t^dW^ for SA s' (4.4)

Since

Q[| dsI(sXs')|| I(sXt')r(s,t')dW.f] ] < f E[r (s,t')2] dsdt
Rz Urs'xs tJ W n

< 00

it follows that for all n,

dsdsT
R ®R
z z

(I.
Rs'xs

I(sXt')r (s,t')dW ,
n t

< °° a.s.

The right hand side of (4.4) is thus also dsds1 square integrable a.s.

This plus (4.3) implies that Yw2 and hence also f^1' is (dsds1 measure)
square integrable a.s. Asimilar argument shows that f^ is a.s. square
integrable.

Now, applying (2.29) and (2.30) to compute Tn(Y) = T(Tn_1(Y)) and

using the fact that rW =q(n) =0 for n_> 1 yields that, for n>2,

f{n)(s,s') =p(s,s')| KsXr^f^^Cs.r^dr'
S'XB

f<n)(s,s') = p(s,s') I(sf\r)f<n 1)(s',r)dr
Rs'xs

b<n) -I dsds»{(f^n-1)(s,s»)-f1(n)(s,s»))u(s'xs,s') (4.5)
JR ®R f i\ t
Z Z +(ff i;(s,s»)-f^n;(s,s'))u(s'xs,s)}

Since f^ and f2 are a.s. square integrable and p is a.s. bounded,
(3) (3}it follows easily that f£ and f£ ' are a.s. bounded. A standard
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°° (n)iteration argument then shows that £ f converges uniformly a.s. to an
n=0 i

a.s. square integrable function fi(s,st) for i = 1,2. The stopping time

provided in [5], Lemma 7 of [4], and the uniform convergence a.s. to f.
k

imply that the proper PQ local i-martingale term of £Tn(Y) converges
n=l

pointwise in probability to the proper PQ local i-martingale y°f °W (if

i= 1) or Wof2oy (if i= 2). The uniform convergence of IfY1 and
°° ( \ n

(4.5) imply the uniform convergence of I *> a.s. to an absolutely
n=0

continuous process b. Thus the series (4.1) does indeed converge to a

local semimartingale R(Y).

Finally, note that

k

R(I+T)(Y) = (lim I (-l)nTn) (I+T) (Y)
k-*» n=0

=Y+ lim T(k+1)(Y) =Y
k-*»

where the limit is pointwise in probability. Similarly, (I+T)R = I. The

proof of Lemma 4.1 is complete. •

Lemma 4.2. If Z is a P local martingale, then

r_1(Z) =Z+<X,Z>1 +<X,Z>2 +[x,X*Z+Z*x] -[Z,X-X*X] (4.6)

is the unique PQ local martingale such that Z-T (Z) has no Pn local

martingale part.

Proof. Let Z be a P-local martingale. Then eXZ is a P local

martingale and hence a local semimartingale. Then by Lemma2.1, Z = e~X(eXZ)

is also a local semimartingale. Hence, (2.33) applies and using (4.6) yields

X X —1 XeZ= e op (z) +e o{M2*(.Z+< Z.X^) + (Z4< Z,X> ^M^ (4.7)
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By Theorem 3.2, Z+<Z,X>± is a PQ local i-martingale for i = 1,2 so that

M2*(Z+<Z,X>1) and (Z+<X,Z>2)*M1

are PQ local martingales. Since the class of P local martingales is stable

under stochastic integration V (Z) is also a P local martingale. The

uniqueness assertion in Lemma 4.2 follows from the uniqueness of local

semimartingale representation. •

The complement of Lemma 4.2 will be considered next, completing the

proof of Theorem 2. Let N be a PQ local martingale. Let n , i= 1,2

be proper PQ local i-martingales, and let b be an absolutely continuous

process. Let Z be the local semimartingale

Z = N-ni-n2-b (4.8)

Then Z is a P local martingale if and only if it is a representable P

local i-martingale for i = 1,2. Hence, by Theorem 1, Z is a P local

martingale if and only if

n2+b = <N-n1,X>1 (4.9)

n^b = <N-n2,X>2 (4.10) '

Proposition 4.3. (i) There exist uniquely determined n , n and b

satisfying (4.9) and (4.10). Hence there exists a unique P local martin-

gale N = N-^-^-b such that N-N has no P local martingale component,

(ii) There exist unique local semimartingales m and m„ such that

n^ = <N-m2,X>2 (4.11)

m2 = <N-m1,X>1 (4.12)
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If b is the absolutely continuous process

b= [N,X-X*X] -[x,X*(N-m;L) +(N-m£)*x] (4.13)

then n. =m-b, i = l,2 are proper P-. local i-martingales satisfying

(4.9) and (4.10).

(iii) N = T(N).

Proof. Part (i) follows immediately from part (ii) — the uniqueness

assertion in (i) follows from the fact that if n-, n« and b satisfy

(4.9) and (4.10), then m- = n +b, nu = n2 +b and b satisfy (4.11)-

(4.13) which have a unique solution by (ii).

If m_ and m„ are local semimartingales satisfying (4.11) and

(4.12), then GOmo = ^m2^Wl = ^ so t^iat mi an<* mo must have the

integral representation

ml = yofi°W + bi (4.14)

m2 = W°f2oy + b2 (4.15)

Let N = W°r°W+q°W be the integral representation for N. As usual,

f-, f«, r and q are square integrable a.s. and b_ and b„ are absolutely

continuous.

Using (2.29) and (2.30) and equating proper local i-martingale terms

yields that (4.11) and (4.12) are equivalent to the four equations

yof^w = yo{ur+(N-m2)w2p}oW (4.16)

Wof2oy = Wo{ru+p(N-m1)wl}oy (4.17)

b1 = [N,X] - yo{(N-m2)w2pu+uf2}oy (4.18)

b2 = [N,X] - yo{up(N-m1)wl+f1u}oy (4.19)
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Now (4.16) and (4.17) are true if and only if there are versions of f± and

f2 so that, for sKs1,

f.(s,s') ={^(s^Ms,8*) +p(s,s,)(q(s) + I(sU,)r(s,tl)dWtl)}
1 JpR iw

s xs

- P(s,st)

Vxs

KsUMfo/s.t^dt1

f2(s,sf) ={r(s,sl)u(s,s') +p(s,s,)(q(sl) +
R t....
s'xs

- p(s,st) I(sl^t)f1(sl,t)dt
R iu
s xs

(4.20)

I(tXs,)r(t,sl)dWt]}

(4.21)

By an argument used already in the proof of Lemma 4.1, the quantities in

brackets in (4.20) and (4.21) are a.s. square integrable. A standard Picard

iteration argument then shows that there exist unique, a.s. square integrable

solutions to (4.20) and (4.21). The convergence is uniform a.s. Hence,

(4.16) and (4.17) have a unique (up to versions) solution f^ f2» Substi

tution of (4.20) and (4.21) into (4.19) and (4.18) respectively yields that

b- = b„ = b a.s. where b is given by (4.13). This proves part (ii).

To prove N = T(N) note first that (4.11) and (4.12) imply that

m1+m2 = T(N) -Td^-hi^)
or

+mn = (I+T)'1T(N)"l™!

Using (4.22), (4.13) becomes

b=-V(N-mi-m2) =-V(I -(I+T)"1!) (N) =-V(I+T)_1(N)

Combining (4.22) and (4.23) yields that

N=N-m1-m2+b =(I -(I+T)"1! -VCl+T)"1) (N)
= (I-V)(I+T)"1(N) = T(N) .

(4.22)

(4.23)
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The proof of Proposition 4.3 and hence also of Theorem 2 is complete. ••

Corollary to Theorem 2. If Z is a P local martingale with no

PQ local martingale part (i.e. [Z,z] = 0), then Z is identically zero a.s

Proof. Let 0 be the identically zero process. Then Z and T(0)

are each P local martingales with the same P0 local martingale part

(namely, 0) so Z = T(0) = 0. •

1 2
Proof of Theorem 5. If p is identically zero then X = 9©W —«9 oy

by (2.19). It follows that Tn = 0 for n _> 3 so the series defining R

is finite. The result is (using (2.29) and (2.30)),

R(N) = (I+T)"^

=N- (N.X^ - <N,X>2 + <X,<N,X>1>2 + <X,<N,X>2>1

=N- <N,X>1 - <N,X>2 + 2[N,X*X]

and

VR(N) = [X,R(N)*X+X*R(N)] - [R(N),X-X*X]

= 0 - [N,X-X*X]

So for any Pfi local martingale N = W©roW+qoW,

T(N) = N- <N,X>1 - <N,X>2 + [N,X+X*X]

= WoroW + qoW (4.24)

where W = W-9oy. Since Y maps onto the set of all P local martingales,

any P local martingale has the representation (4.24). •
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5. Weak Martingale Results

Theorems 3 and 4 will be proved in this section. Suppose that M is a

PQ local martingale. Then trivially

eX(M-[M,X+X*x]) =(e^-^M]) - (eX[M,X+X*X] -[eX,M]) . (5.1)

local weak martingale. (This may be proved by using integral representations,

but is an "intrinsic" fact [l].) By (2.22),

X X. XSince M and e are both PQ local martingales, e^I -[e ,M] is a P

[e ,M] =eo[M,m+M2*M1] =eXo[M,X+X*X] . (5.2)

Using the differential formula (2.18) and substituting in (5.2) yields

eX[M,X+X*x] -[eX,M] =[M,X+X*x]oeX +eX*[M,X+X*x] +[M,X+X*x]*eX

which is a PQ local weak martingale. In view of (5.1), eX(M -[M,X+X*X])

is a PQ local weak martingale so that M-[M,X+X*x] is a P local weak

martingale.

Now, let N be a representable PQ local weak martingale. Then N

may be expressed as

N = M+yoaoW+Wo3oy = M+n-H-^ (5.3)

where M is a PQ local martingale, and n- = yoaoW (n2 = Wo3oy) is a

proper PQ local 1-martingale (proper PQ local 2-martingale). By

Theorem 1 and the result regarding M above, the following processes are

all representable PQ local weak martingales:

nl~ ^x^l =nl " ^x*^! ~ <n1,X>2 + [n;L,X+X*x]
n2-<n2,X>2 =n2 - <n2,X>1 -<n2,X>2 + [n2,X+X*X]

{M-<M,X>1> + {M-<M,X>2> - {M-[M,X+X*X]}

= M - <M,X>1 - <M,X>2 + [M,X+X*X]
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The sum of these processes is

N- <N,X) - <N,X>2 + [N,X+X*X] (5.4)

which is thus also a Pn local weak martingale as advertised.

The proofs that M-[M,X+X*x] and (5.4) are P local weak martingales have

been intrinsic (essentially representation independent) and are thus likely

to remain valid in a more general setting.

Since [n ,X+X*x] = 0 it follows that

N -[N,X+X*x] -yoauoy -yoU3°y (5.5)

= (M-[M,X+X*X]) + (n- -yoauoy) + (n2-you3°y)

The first term on the right has been shown to be a P local weak martingale.

It will be shown that the other two terms are also. Let B- = yoauoy and

apply (2.33) to get

eXn;L =n^ +eXo{n1+M2*(n1+<X,n1>1)+<X,n1>1+[X*n1,X]}

and

e^ =B1oeX +eXo{B1+M2*B1+B1*M }

Hence

XeA(n1-B1) =K+ e o{<X,n1>1 +[X*n1,X] -B^

where K is a representable P0 local weak martingale. Applying (2.29)

shows that

(X.n^ + [Xfcn^X] - \ = WopOi^oy

Xis a representable Pfi local weak martingale, so that e (n_-B_) is one
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also. Therefore n -yoauoy (and similarly n« -you3°y) is a P local

weak martingale. Therefore, each side of (5.5) is a P local weak martingale.

Finally, to prove the uniqueness assertion in Theorem 3, it suffices

to show that if B is an absolutely continuous process and also a P local

weak martingale, then B is identically zero a.s. Since B is absolutely

continuous, (2.33) yields

e^ =BoeX +eXo{B +M2*B +B*M1>
so that

B=e~Xo{eXB -BoeX} +M2*B +B*M1

which shows that B is also a Pn local weak martingale. Hence B is

identically zero a.s. The proof of Theorem 3 is complete. •

Proof of Theorem 4. Given q, r, a and b as in (3.3), let

a = a -ur, 3 = b -ru and N = q°W + W°r°W + y°a<>W + W°3°y. Then

N in (3.2) is equal to (3.3) which is thus a representable P local weak

martingale.

Conversely, any representable P local weak martingale Z may be written

Z = N-B where N is a representable Pfi local weak martingale and B

is a bounded variation process. Let N = W©roW+q©W +yoaoW +Wo3©y be the

semimartingale representation of N. By the uniqueness assertion of

Theorem 3, Z must equal N of (3.2), which is equal to (3.3) with

a = a+ur and b = 3 +ru. •
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