Copyright © 1970, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

T

-
Pt

THE EFFECTS OF CONCURRENCY CONTROL ON

DATABASE MANAGEMENT SYSTEM PERFORMANCE

by

Daniel R. Ries

Memorandum No. UCB/ERL M79/20

April 1970

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

‘ll

[

o

0n
vy

The Effects of Corcurrency Cortrol
on
Database Management System

Performance

Ph.D. Daniel Roland Ries EECS

7). p 77
Signature#x%>v44M// , ’

e L ~ T~

Y
Chairman .of Committee

Sponsers: Air Force Office of Scientific Research
Naval Electronic Systems Command

ABSTRACT

The main goal of this thesis is to study the perfor-
mance tradeoffs between parallelism and increased con-
currency control overhead during simultaneous user updates
of a database. During such updates, a database management
system must guarantee that the multiple users do not

interfere with each other.

The potential advantages of parallelism in accessing
a database include the better utilizatior of computer
resources and better resporse times for users. Those
advartages, however, may be offset by the increased use of
system resources to insure that there is ro interference
between the multiple users. Simulation models are used to

study these two conflictinrg aspects of corcurrency control

N

for both certralized and a distributed databases.

One of the most importart desigr decisiorns involves
locking granularity. Locking granularity refers to the
size and hence the number of locks maintained by the data-
base management system. The centralized database simula-
tion results indicated that ir many cases, in particular
if data access is primarily sequertial, coarse granularity
such as file, relation or record type locking 1is prefer-
able. However, if all of the updates are small and ran-
domly access the database, firer granularity, such as page
or record lockirg becomes necessary. If the sizes and
access patterns of updates vary conrsiderably, the simula-
tion results indicated that a lock hierarchy with dif-

ferent sized locks is beneficial.

In a distributed database, the data is stored on dif-
ferent computer sites conrected through some type of net-
work. In such a system, some of the database activities
are local in that they only involve data at one site.
Other database activities are distributed in that they
involve data at several of the computer sitgs. In a dis-
tributed database, increased parallelism is possible dur-
ing simultaneous database activities. However, the cor-
currency cortrol overhead may also ircrease. The simula-
tions modeled é variety of corcurrency control algorithms

to study the additional tradeoffs in a "distributed data-

y.r Y

e

base.

In particular, primary site conrtrol and decentralized
control algorithms were simulated. Ir the primary site
control algorithms, ore site performs the corcurrency con-
trol functiors for all of the other sites. In the decen-
tralized control algorithms, the concurrency functionrs are
distributed to each of the sites and special provisions

must be used to prevent or detect deadlock.

The simulation results indicated that with a high
speed network and mostly local database activities, either
concurrency control approach is acceptable. As the net-
work becomes slower, the decentralized control algorithms
are preferable. If most of the database activities are
distributed, however, the orimary site approach can take
advantage of its "global" knowledge to better schedule the
processing of transactions and thus provide better perfor-

mance than the decentralized algorithms.

These results can provide insights into the desigr
and implementation of the concurrency control mechanisms
for a wide variety of centralized and distributed database

management systems.

(£ 14

»e

ACKNOWLEDGEMENTS

I would like to thank Professor Michael Stonebraker
for his guidance and support in the completion of my doc-
toral program. I would also 1like to thank Professors
Lawrence Rowe and Michael Cooper for reading this disser-
tation. In addition thanks are owed to Karen Erdley for -
diligently and cheerfully typing this manuscript into the
computer and to Eric Allman whose text processing support
tools and expert advice made the computer productior of

this manuscript possible.

I would also like to thank my fellow students associ-
ated with the INGRES project for providing a stimulating
and challenging environrment in which to work. In addi-
tion, the support and encouragement of my colieagues at
Lawrence Livermore Laboratory during the past four years

is greatly appreciated.

Finally, I need to thank my family: my daughter
Cindy, who <claimed I was too o0ld to go to school; my
daughter Robin, who claimed that I would be a grandfather
before I finished, and of course my wife Nancy, who pro-

vided support, patience and understanding.

I would also like to acknowledge the research support

from the Air Force Office of Scientific Research, grant

ii

78-3596, and the Naval Electronic Systems Command, Con-

tract N00039-78-c-0013.

»

[3%

\ﬁ‘ '

Yy

29

TABLE OF CONTENTS

Chapter 1 INTRODUCTIONceveeeneen ceeeean ceeereann

1

2

DATABASE CONCURRENCY CONTROL Ceeeraseessenes
CONCURRENCY CONTROL PROBLEMS R
.1 Database Consistency cesean heeseseseseaasense
.2 Deadlock and Rollback cereces cserseces
.3 Database versus Operating System Concurrency

PREVIOUS PERFORMANCE RESULTS ...ceieeeteeaenseccasns
.1 Centralized Databasescc0.. Cheeresesanecees
.2 Distributed Databases e e s ceeee e

OVERVIEW ceeseaenae seses ceeeeesscsasane

Chapter 2 CENTRALIZED DATABASE SYSTEMS;......

1

1

1

2

2

n

INTRODUCTION ..cceeeenn cetene e c e e e sscacneense e e
.1 Performance ISSUES ..coveovecos c e e esecsseaseannan

.1.1 Locking Granularityciceiveiieeeocens ceeeee

.1.2 Locking Overhead ettt ceees

.
—

.3 Lock Duration Ceeeean st e s ee e s eeeeesans

Locking Mechanisms ..i.civeetieinssesassccecccnnsons

.2.1 Physical LoCKS ... iiiiiiietesconcosnasossosaaccnase

.2.2 Predicate LocKS ..viietieeeecescncnnanasn e e e o e

oooooooo

MODEL DESCRIPTION ...ciieeveneeconnonannas .

.1 Transaction Flow ces e e ce oo ana ceeos oo .

12
14
14
15
16
18
19
20
20

21
23

24

iii

2.2 Model Parameters
2.2.1 Workload Parameters
2.2.2 System Parameters

2.2.3 Output Parameters

2.3 Resource Allocation and Usagecceceecnccces

3 RESULTS and DISCUSSION

3.1 An Initial Scenario

3.2 Effects of Workload Parameterscccecccececne

3.2.1 Placement of Locks
3.2.2 Transaction Size
3.2.3 Database Size e

3.2.4 Idle Time BNREEY

3.2.5 Workload Parameter Summaryc.coce.o ceeens

3.3 Effects of the System Parameters Ceesessssseee e

3.3.1 I/0 versus CPU Balance ..

3.3:.2 Multiple I/0 Paths
3.3.3 Lock I/0 Costs R
3.3.4 Lock CPU Costsv.n
3.3.5 System Parameter Summary
3.4 System Extensionrs
3.4.1 Lock Hierarchy
3.4.1.1 The Model Extension ..

3.4.1.2 The Simﬁlation Results

ooooooooooooooooooooooo

iv

26

32
34
36
39
40
47
47
54
57
57
58
59
60
61
62
64
67
68
69
69

71

a2t

3.4.2 Claim As Needed Lockingceeeerceeceens ces 79
3.4.2.1 The Model Extension e ieeasteeeeas e .o 80
3.4.2.2 The Simulation Results ceereeeeens ceeas 81
3.4.3 Summary ...eceieecocens e reeeens e esaean ceaas 86
B CONCLUSTIONS «vveenvoonneonnnonnasanneeonns e 87
4.1 Physical Locking tecesssecnsasasenes e cane 87
4.2 Predicate Locking Ceeeaecaaes cesessssans s 90
Chapter 3 DISTRIBUTED DATABASE SYSTEMS e eeeeienavens 94
1 INTRODUCTION .. veeveveosoescnssnsasasasencsssaconcs 94
1.1 Distributed Databasesceeecanccecenns coesane 94'
1.2 Distributed Database Concurrency Control 95
2 MODEL EXTENSIONS ceteseseneen cesens oo 96
2.1 Network Modelccceececenn Ceceresseresaaneas 97
2.2 Site Model ceseas I teeseceaseess 100
2.3 Model Parameterscc... et escsaeaees ceeaes 104
2.3.1 Workload Parameters e teeeesesss 105
2.3.2 System Parameters Ceeeeesenes cee.e.. 108
2.3.3 Network Parameters Cesisasas e EEREE ceee. 110
2.3.4 OQutput Parameterscocecevsne:......... 112
2.4 Typical Scenariosceeceeeeccccnacoccs ceeeane 115
3 DISTRIBUTED QONCURRENCY CONTROL ceseesen ceeeas 115
3.1 Primary Site Model 1ccceteeccntnscnccce ceeee M7

3.2 Primary Site Model 2 ...ueeesenennacnanenons ceee.. 122

vi

3.3 Wound-Wait Modeliievevecvesccnonns teeeaee 123
3.3.1 Original Wound-Wait Algorithm T 123
3.3.2 Simulation Implementatién 125
3.3.3 Additionral Parameters ceesenanans I
3.4 SNOOP Model e 132
3.4.1 SNOOP Algorithmceeeeeenesseeonanonssaas 133
3.4.2 Simulation Implementationcceceeeecesacces 134
3.4.3 SNOOP Parameters creseseanse cheeereeneeaan 137.
4 RESULTS AND DISCUSSION cetesesesess e nes 139
4.1 The Canonical Scenarios aeetesesecsans . 140
4,1.1 Class 1 Transactiors et eceseeeeen s 142
4.1.2 Class 2 Transactionsceeeeeeeennn. eee. 148
4.2 Slave Transactions Ceteseaceeseaeanaene 154
4.2.1 Class 1 Transactionsc0. et 155
4,2.2 Class 2 Transactions Ceeaceacans . Y
4.3 Number‘of Network Nodesicveveecnroncccconns 158
4.3.1 Class 1 Transactions e P 1
4,3.2 Class 2 Transactionscieeeecanenacscasenscs 160
4.4 Percent of Distributed Transactions 162
4.4.1 Class 1 Transactionseeececececsesoneonnans 162
4.4.1.1 Effects of Locking Granularity cee.. 163
4.4,1.2 Model Comparisonscececee Cheeeeeseenaeae 166

4.4,.1.3 Limited Bandwidth e eseseeasesneas cees.. 169

-t

29

vii

4.4.1.4 Alterrate Primary Site Model et 1M
4.4.2 Class 2 Transactionsceeeeeevecnscncececns 171
4.5 Network Parameters Ceeceer e ee e 175
4.5.1 Class 1 Transactionseeeeeecererecnoccccns 177
4}.5.2 Class 2 Transactionsceeeceeeccocene ceeeaen 180
4.6 Canonical Scenario Revisitedcceccecens . 182
5 CONCLUSIONSc00e I 185
5.1 Locking Granularity e teeees e e eccaens 185
5.2 Class 1.Transactions 186
5.3 Class 2 Transactionscceeeeecennns e l. 188
Chapter 4 CONCLUSiONS ceeessseans ceesesenncan 190
1 SUMMARY OF PREVIOUS CONCLUSIONS et eeaeaas ceeees 191
1.1 CENTRALIZED DATABASES cectearssesssecsaaane 191
1.2 pistributed Databases e re e 193
2 FUTURE DIRECTIONS Ceeeeresecearesaanuaes 196
REFERENCES « e vevvvererenesenecncnonensn e 202

™

e

-,

CHAPTER 1

INTRODUCTION

1. DATABASE CONCURRENCY CONTROL

One of the major features of a database management
system 1is to allow multiple users access to shared data.
During such multiple user access (and update), the
"integrity"™ of the database must be guaranteed. The
mechanism which guarantees that "integrity" is commonly
referred to as the concurrency control subsystem of a

database management system.

Two conflicting aspects of the concurrency control
mechanism affect the performance of a database management
system. On the one hand, the concu}rency control can
increase the parallelism allowed in accessing the data-
base. On the other hand, the advantages of such increased
parallelism may be offset by the amount of’ system

resources, or overhead, that are used to insure database

integrity.

The main qgoal of this thesis is to study the perfor-
mance trade-offs between increased parallelism and
increased concufrency control overhead ir order to provide

insights for concurrency control implementations 1in

database management systems.

In the remainder of this chapter, some of the prob-
lems in database concurrency corntrol are discussed and the
previous research results on the performance evaluation of

concurrency control mecharisms are reviewed.

2. CONCURRENCY CONTROL PROBLEMS

2.1. Database Consistency

The database concurrency conrtrol subsystem is respon-
sible for the integrity and consistency of the database
during multiple wuser updates. The following example
illustrates the type of inconrsistencies which can arise

without concurrency controls.

One user is producing a summary report of the total
salaries, taxes and benefits that are paid for a given pay
period. At the same time some other wuser 1is updating
ihdividual payroll records for the "next"™ payroll.
Without some type of concurrency conrtrol, the summary
report may include some data from the "previous" payroll,
and some from the "next" payroll. Thus, the results of
that report would rot accurately reflect either the previ-

ous or rext payroll periods.

Furthermore, the report may not accurately reflect an

individual's payroll record for either pay period. Sup-

.

pose, for{example, that employee x's payroll record was
beirg updated. The summary report might contain the new

salary but the old tax and benefit values.

The concept of "database consistency" refers to the
permissible states of a database. The states which are
permissible may require certain relationships between
various elements in the database. For example, ore such
requirement may be that a departmenrt salary total must.
equal the sum of all of the individual salaries in the"
department. Such constraints are application dependent
and thus difficult to define for .a general database

management system.

In [ESWAT76], the concepts of transactions and serial
schedules are introduced. A "transaction" is a set of
related atomic actions involving a database which, if run
alone on a database, preserves database consistency. A
"schedule".for processing transactions is a sequence of
atomic actions from the transactions. A "serial schedule™
is ore in which all the atomic actiors from one transac-
tior are scheduled first, followed by all of the atomic
actions from a second transaction, etc. In other words,
the transactiors are rur one at a time against the data-

base.

A trarsaction schedule is "seriaiizable" if the

effects of the atomic actionrs in the scheduled order are

equivalent to running the transactiors 1in some serial
schedule. If each transactior preserves the consistency
of the database, it is clear that a serial schedule, and
thus a serializable schedule, must also preserve the con-

sistency of the database.

Two protocols for transaction behavior are defined in
[ESWAT76] which are used to insure the serializability of
any schedule. A transaction is said to be "well-formed"
if all transactions acquire a lock (read or write [DIJK68,
COUR71]) before touching (reading or writing) an object of
the datahase. A pransaction is said to be "two-phased" if

it acquires all of its locks before releasing ary locks.

If all transactions are two-nphased and well-formed,
[ESWAT76] shows that any schedule of atomic actions that
does not violate the required lockirg protocols is serial-

izable and thus preserves the corsistency of the database.

Some database management systems Support weaker forms
of consistency where the applications may allow for cer-
tain violations of the well-formed and two-phased proto-
cols [GRAY76]. It has also been showr [BERN78] that seri-
alizatior (or effective serializatior) of transactions 1is
sometimes unrecessary. Throughout this study, however, it
is assumed that the corcurrency cortrol subsystems require

that transactiors are well-formed and two-phased.

d

2.2. Deadlock ard Rollback

Those two protocols do provide solutiors to some of the
concurrency control problems. However, other problems
which the corcurrercy control subsystem must still solve
include deadlock resolutior and the problem of cascading

rollback of transactiors.

A simple example <c¢an be wused to illustrate the'
deadlock ‘problems. Suppose ore transaction locks and
writes object A and another transaction similarly 1locks
and writes object B. Then; the first pransaction requests
a lock on B while the second transaction requests a lock
on A. The four conditions for deadlock [COFF71] are met
since neither transactior can release its existing locks
without violating the two-phased locking protocol. Thus,
a concurrency control scheme must solve deadlock problems

by either prevention or detection and resolution.

If deadlock detection and resolutionr is used it may
be necessary to roll back or undo the effects of a tran-
sactior. Note that if locking is not two-phased, some
other transactior may read the effects of a transaction
which has beer rolled back. In this case the other tran-
sactior must also be rolled back. (Otherwise, the updates
of the rolled back transaction might still appear in other

parts of the database).

This conrnditior is called "cascading" rollback and can
be generated even if two phased locking is enforced. A
trarnsactior may also be rolled back because of a change in
a wuser's mind, or because ofva hardware problem. If that
transactior had released some of its write locks, other
transactions might also have to be rolled back. To
prevent this cascading rollback, many database systems
hold all locks until the end of the transacti&n. In fact,
all of the concurrency control subsystems considered in
this study will require that locks be held until the end

of a transaction.

2.3. Database versus Operating System Concurrency

The concurrency control requiremeﬁts for databases
are different than the concurrency control requirements
for operating systems. One difference is that an operat-
ing system controls simultaneous access to fixed objects;
such as line printers, tape drives, specific addresses in
core, etc. A database system, orn the other hand, controls

access to objects whose names and addresses can change.

Another differerce is that more objects need to be
locked ir a database management system. The database may
contair millions of objects, such as records, field
values, etc., which have to be locked. The number of dif-

ferent objects that can be locked in an operating system

is gererally much smaller.

3. PREVIOUS PERFORMANCE RESULTS

The results of the above problems and consistency
requirements have resulted in a wide variety of different
concurrency control mecharnisms. The goal of this thesis,
however, 1is not to develop new concurrency cortrol algo-
rithms, but to study the affects of various concurrency
control strategies on the overall performance of the data-
base management system by means of simulatior models.
Previous work in this area can be divided into centralized
databases, where the entire database is maintained by one
computer; and distributed databases, where the database is
distributed across several computers connected by some

type of network.

3.1. Centralized Databases

In [NAKA75] a simulatior model is used to study the
performance of a database system. A databa§e system model
and synthetic user application models were run to estimate
system utilizatiorns and average response times. One
result observed was that the system bottlerecked due to
the delays céused by corcurrenrt updates. Whenr the con-

current updates were administratively removed from the

applicatior model (to presumably be run at night), the
average response time decreased by a factor of seven.
Since not all applicatiors allow for admiristrative corn-
currency oonérol, it is c¢lear that concurrency control
mechanisms can sigrificantly affect the overall perfor-

mance of the database management system.

Several other simulatior studies have also explored
the effects of concurfency control or database system per-
formance. In [SPIT76] the effect of scheduling the lock
requests and releases for the System 2000 database manage-
ment system was examined. In that study, the difference
between lockirg the database for the entire period of a
transaction, as opposed to locking and unlocking the data-
base for each atomic update was surprisingly small. The
additioral parallelism possible with the short locks was
offset by the additioral time spent by the transactions

waiting for that lock.

In [MUN77] several parameters and concurrency coptrol
alterratives were explored by means of a simulatior model.
In that simulatior, alternate methods for choosing a vic-
tim in deadlock resolution were explored. The results of
the simulatior showed that three methods for selectirg a
victim were superior: 1) the victim should be the procéss
which accessed the least amount of data, 2) the victim

should be the process which held the fewest number of

locks; or 3) the victim should be the process which had

used the least amount of computer resources.

In addition to deadlock resolution, the [MUN77] simu-
lation was wused to study the optimum rumber and size of
the lockable data units in the database. The authors con-
cluded that the wunits of locking should be very small.
However, that conclusior was not based on a fixed applica-
tion enviroﬁmént. Instead, the sizes of the transaction
were made smaller as the sizes of the locks were reduced.
Thus whether the observed increase in parallelism was due
to the smaller transactions or the smaller locks 1is
unclear. Two other problems with that study were that
only the CPU utilization was considered and that the CPU
resources of their model were effectively considered
infinite.

In Chapter 2, a simulatior model is used to further
study 1locking granularity, optimum 1lock duration and a

variety of other factors.

3.2. Distributed Databases

Recently, corsiderable attentior has been devoted to
the developmert anrd use of distributed databases [LBL76,
LBL77, LBL78]. 1In such an environment, the data is dis-

tributed across a network of computer systems. The poten-

10

tial benrefits of such distribution include sharing of data
across different computer sites, increased parallelism in
accessing the database, locating data closer to users and

increased reliability.

However, one of the major problems with a distributed
database 1is the development of a concurrency control
scheme to insure database corsistency during multiple user
updates [STON77]. Concurrency control schemes for a cen-
tralized database do not always extend to a distributed

database.

For example, -in a cenrtralized database, a transaction
can request all of its locks at the beginning of its pro-
cessing and release them at the end [CHAMT4]. In this
scenario, the locks are acquired in one atomic action. If
one lock is denied, all locks are denied and the entire
lock acquisitiorn step 1is repeated. Note that in this

scenario, deadlock is impossible.

In a distributed database, however, locks may have to
be obtained at distinct computer sites. Even though the
lock acquisition at each site 1is étomip, deadlock can
still occur because one processirg unit does not access
the entire database. Concurrency control conrsiderations
require that the differenrt processing units communicate
with each other. The communicatior must be used either to

centralize the concurrency control functions or to prevent

11

or detect a decentralized deadlock.

Several solutions to the concurrency control problems
for distributed databases have been proposed [BERNT7,
ROSET77, GRAY78, MENATS8 and'STON78]. To evaluate the per-
formance of the different pfoposals, the number of mes-
sages which must be sent for corcurrency control are
counted. In [BERN77] it is shown that if the transactiors
are known in advance (i.e. only certain known types of
transactions access the database), different fypes of con-
currency control can be used for different types of ¢tran-
sactions and thereby further reduce the network con-

currency control traffic.

Unfortunately, a count of overhead message traffic
does not, by itself, determine the effects of the con-
currency control on the overall performance of the distri-
buted database system. Other factors such as overall sys-
tem load, the amount of non-local processing, and the

scheduling of transactions must also be conrsidered.

In Chapter 3, a simulationr model is used to examine
the effects of these factors as well as the ‘effects of the

message traffic.

In a distributed database, the same data may be
stored at several computer sites. These multiple copies
create additioral corcurrency control problems in that the

copies must be kept mutually consistent during multiple

12

updates. (The simulatiors in chapter 3 do not explicitly
model the multiple copy update scenarios. However, some
of the results of the study can be applied to the multiple

copy update problems.)

Other studies do directly model the multiple copy
update problems but do not address the internal database
consistency issues. In [GRAP76]1, different algorithms for
multiple copy consistency are analysed in terms of the
performance of a distributed database management system.
In ([GARC78], a simulation model is used to compare the
effects of two algorithms [ALSB76, THOM781 on the overall
performance of the distributed database system. Both stu-
dies show that under a wide variety of assumptions a "pri-
mary copbpy model" is better for maintaining multiple copy
consistency. The primary site model basically implies
that the control of wupdates to the different copies is
channelled through a single or primary copy of the data-

base.

4, OVERVIEW

This thesis will analyze the effects of concurrency
control or the performance of both centralized and distri-
buted databases. In both cases, simulatior models are
used ¢to study the tradeoffs between inqreased parallelism

and increased locking overhead.

13

One parameter of primary interest is the locking
granularity. Locking granularity refers to the size of a
lockable unit or granule which covers a portion of the
database. Locking granularity can be extremely fine (i.e.
ore lock is associated with each sector of a disk). Or,
locking granularity could be extremely coarse (i.e. one

lock is associated with each disk drive).

In Chapter 2, an extensive simulation model is
presented which explores a large class of concurrency con-
trol alternétives. The model is parameterized to provide
insights into the locking parameters for a wide variety of
database systems.. The simulatior experiments study 1lock-
ing granularity, the overhead costs of locking, the tran-
saction types and sizes, a locking hierarchy, and the
times when locks are acquired. Most of these results have

been published previously [RIES77, RIES79].

Ir Chapter 3, the simulation models are extended to
distributed database Systems. These experiments study the
effects on performance of locking granularity, four dis-
tributed corcurrency cortrol algorithms, the transaction

types and sizes, and various network related parameters.

In Chapter 4, the major results these studies are
summarized and several directions for future research are

Suggested.

CHAPTER 2

CENTRALIZED DATABASE SYSTEMS

1. INTRODUCTION

In order to insure the consistency conditions dis-
cussed in chapter 1, a variety of concurrency control
mechanisms [CHAMT74, CODA71, ESWAT6, GRAYTS, GRAY76,
MACRT6, STEA76, STON74] have been proposed and implemented
in single machine database management systems. In this
chapter the performance issues of these types of mechan-

isms are examined.

Clearly there are advantages to iﬁcreasing the paral-
lelism in processing transactions. Unfortunately, the
price of this increased parallelism is the increased over-
head which must be expended to achieve it. The goal of
this chapter is to study the tradeoff between these con-
flicting performance considerations on a single machine

database management system.

In section 2, a simulation model 1is developed to
study that tradeoff. 1In sectior 3, the results of experi-
ments with thét simulatior model are reported. In addi-

tion, two _extensions to that model are used to study

14

15

alternate concurrency control mechanisms. Finally, the
major conclusions are summarized in sectiorn 4. In the
remainder of this section, the performance issues and
approaches of centralized concurrency control are

reviewed.

1.1. Performance Issues

An evaluation of concurrency control must include an
analysis of the tradeoffs between the overhead spent on
locking versus the advantages of allowing more parallel
access to the database. The advantages of increased
parailelisms are in terms of better user response time and

increased machine utilization.

The amount of overhead spent on locking is dependent
on several parameters of the concurrency control mechan-
ism. These parameters include the size of a lockable
unit, the costs of setting and releasing locks, the pro-
portion of resources required for locking and the length
of time for which the 1locks are held. Each of these

parameters is considered in turn.

16

1.1.1. Lockirg Grarularity

All of the corcurrency cortrol mechanisms involve the
locking of 'some physical or logical portior of the data-
base. The smallest portiorn of the database which can be
locked is referred to as a "granule". The size of a
granule varies in different database management systems.
In some systems (CODASYL [CODAT73], System R [ASTR761],
DMS-1100 [GRAY75]) the granule may be as small as one
record. Other systems (System 2000 [SPIT76], IMAGE
[HEWL77]) support ore granule covering the entire data-
base. Still other systems (DBMS-11 [DEC77], LSL [LIPS761)
support intermediate sized granules such as files or

areas.

There is a clear tradeoff between 1locking overhead
and parallelism bhased on the locking granularity. Fine
granularity allows a higher degree of parallelism at
greater cost in managing locks. For example, assume that
a granule correspords to a record in a database. Then the
transactions may run in parallel without conflict as long
as they access distinct records. However, the database
system must be prepared to handle as mary locks as there

are records in the database.

Coarse granularity, on the other hand, inhibits

parallelism but minimizes management of locks. If the

17

granule is corsidered the entire database, no transactionrs
will run in parallel. The database system keeps track of

only onre lock.

Different sized granules can be supported in a 1lock
hierarchy [GRAY76]). 1In a lock hierarchy, a tree structure
of locks is supported. A transaction can either expli-
citly hold locks on lower branches of the tree, or impli-
citly hold those locks by explicitly locking an qncestor

node common to all of the lower branches.

With such a hierarchy, the costs of locking for large
transactions may be greatly reduced since it is cheaper to
set one large lock than to set many small locks. However,
the 1locking costs for the transactions using small locks
may increase. Those transactions would have to set all
the 1locks 1in the path from the leaves to the root of the
tree. Again a tradeoff is observed between the parallel-

ism allowed and the locking overhead.

For example, consider a two-level hierarchy where one
lock at the top level controls access to the entire data-
base and many (more than ore) locks at the lower level
control access to individual "parts" of the database. A
transaction which accesses the entire database can
exclusively 1lock the one top level lock. Without a lock
hierarchy and just the small locks, it would be much more

expensive for that transaction to lock all of the small

fa

18

locks.

The above 1lock hierarchy, however, increases the
locking overhead for the transaction which just access one
"part" of the database. That transaction must set the
higher-level 1lock in an "intention" mode [GRAY76] (imply-
ing that explicit locking is required at the lower 1level)
and still lock the individual part of the database. Thus,
that transaction sets two locks. Without a lqck hierarchy
and just the small lock, that transaction would set only

orne lock.

1.1.2. Lockirg Overhead

Concurrency control overhead refers to the amount of
computer resources utilized by the 1locking mechanism.
This "overhead" can be thought of és the difference
between the resources required by a transaction in a
multi~usér system and the resources that would be required
if the transactior could be run as the only use} of the
database. The locking mechanisms must compete with the
transactions for memory, CPU cycles, and I/0 channels.
Thus, as a locking mechanismvincreases in complexity and
requires more resources, it will start to interfere with

the rurning of the transactions.

19

The ratio of resources spent for locking to resources
spent for processing transactions is critical. For exam-
ple, a ratio of one implies that it is as -expensive to
lock a granule as .it is £o process the data in that
granule. In this case, two transactiors could have been
run without locking in the time it takes a transaction to
set its locks, process the data, and release the locks. A
less expensive concurrency control which orly allowed half

of the parallelism might provide the same throughput.

1.1.3. Lock Duration

Another factor which affects the degree of parallel-
ism and the cost of concurrency control is the time period
for which the locks are held. Two simple procedures which
insure that a transaction is two-phased (See Chapter 1)

are:

1) set all locks at the beginning of a transaction or

-

2) hold all the locks until the end of a transaction.

If the second option is chosen, the locks can still
be preclaimed as in option 1 or requested and granted as

needed by the trarsaction.

A performance tradeoff is again possible. By not

locking resources until they are required, additional

20

parallelism is possible. However, the locking overhead
costs are increased by two factors. First, the con-
currency control mecharism must check for deadlock
[COFFT71]. Second, if deadlock is detected, a transaction
may have to be restarted. The resources already used by a
restarted transactiorn should also be included as overhead
costs since they would not have been used if the transac-

tion was run by itself,.

In summary, the important performance parameters are

locking granularity, locking overhead, and lock duration.

1.2. Locking Mechanisms

Two general options have been proposed for single
machine concurrency control -- physical locks and predi-

cate locks.

1.2.1. Physical Locks

Physical locks are placed on records, pages, seg-
ments, files, areas or the entire database. In this case,

a "granule" refers to a physical portior of the database.

With physical locks, a data manipulatior command can-
not proéeed if a @granule it needs is locked by someone

else. Various strategies for requesting and releasing

21

locks - have been' suggested [CHAM74, GRAY76, STEAT76,
MACR76]. Some of these strategies require the detection

resolutionrn of deadlock.

The basic idea behind physical 1locking is straight
forward. If a transaction needs to read a portion of the
database but not write it, a read or shared 1lock must
first be obtained on a granule which physically covers
that portion of the database. Other transactions which
also read that portion or a portion covered by the same

granule can share that lock.

If all or a portion of the granule is to be updated,
an exclusive lock must be obtained which cannot be shared
by other running transactions. The two-phase requirement
insists that no locks can be released until the transac-

tion has acquired all of the locks that it needs.

1.2.2. Predicate Locks

A predicate lock can be set on the exacp portion of
the database which is to be accessed. The portion of the
database which is locked is determined by predicates or
qualifications associated with the transaction. The
predicate (i.e. "all records with date field values in

June, 1976") restricts the transaction to a logical subset

2]

L2

22

of the database. Such locks do rot necessarily corresponrd
to any physical portion of the database. This approach is

explored in [FLOR7Y4, STONTH, ESWAT6].

In predicate locking, a predicate corresponding to a
selection criteria of a transaction is submitted to the
locking mechanism. If the locking mechanism can "prgve"
that a transaction does not conflict with any running
transactions, the 1locks are granted. Otherwise, the
requesting transaction must wait. A propositional logic
"theorem prover" can be used to prove that two transac-
tions do not conflict. The sophistication of the theorem
prover can be varied depending on phe tradeoff between

increased parallelism and CPU recourses used for locking.

The granularity in predicate 1locking also varies.
For example, a predicate such as "employee_no=1234" might
restrict the transaction to one récord. On the other
hand, a predicate such as "departmentzengineering" might
represent hundreds of reéords. Notice that predicate
locks, like physical locks, can be acquired throughout the

duration of a transactior.

Predicate locking has two obvious advanrtages. One is
that a predicate 1lock can accurately describe the exact
logical portion of the database that is to be accessed by

a transaction. The second 1is that the cost of setting

23

such a lock depends or the number of simultaneous transac-
tions actually submitted and not or the amount of data

that is actually accessed.

However, the predicate locking mechanism may need-
lessly keep a transaction from running. Suppose the
predicate "AGE>29" has been granted a lock for a running
transaction and that another transaction issues the
request "AGE<31". If no ore with AGE=30 were in the data-
base, both transactions could be allowed to run. But the
predicate locking mechanism would require that the second

transaction waits.

Thus, predicate locking may reduce concurrency con-
trol overhead at the expense of allowing less parallelism

in accessing the database.

2. MODEL DESCRIPTION

A simulation model is used to investigate the tra-
deoffs between concurrenc& control overhead and increased
parallelism. The model is described by first explaining
the flow of transactions around a closed-loop model. Next
the model input and output parameters are discussed.
Firmally, the allocatior and competition for resources - in

the model are described.

24

2.1. Transaction Flow

The running of transactiors against a database 1is
simulated by assuming there are a fixed rumber of transac-
tions which are cycled continuously for TMAX time units
around the model shown in fiéure 2-1. A transaction goes

through the following steps:

1) Arrive on the pending queue
2) Acquire locks

3) | Process I/0 requests

4) Process CPU requests

5) Release locks

6) Generate a new transaction and return to step 1

These steps are explained in more detail below.

Initially, the transactions arrive one time unit
apart and are placed on the pendirg queue. The transac-
tiorn is removed from the PENDING gqueue and.'all required
locks are requested. 1If the locks are granted, the tran-
saction is placed orn the bottom of the I/0 queue. If the
locks are denied, the transaction is placed on the bottom
of a BLOCKED queue. The blocking transaction is recorded.

(The description of which 1locks are required by a

25

Granted

¥ y
Pending . 1/0
queue Denied queue
a8 |Blocked
queue
CPU
queue
Release

locks

Figure 2-1 Simulation model

e’

(Y

26

transaction is given in sectior 2.3.) Note that no 1locks
are held while or the blocked queue so deadlock is impos-

sible.

After completing the I/0 required, the transaction is

placed on the bottom of the CPU queue.

After completing the CPU fequired, the transaction
releases 1its 1locks. At this point a new transaction is
added to the end of the PENDING queue. (Note that each
transaction goes through orne I/0 phase and one CPU phase.
Although they are sequential in the model, the result
would be the same if each transaction were to go through
many I/0 - CPU phases in a single cycle.) All transactions
that were blocked by the completed transaction are placed

on the front of the PENDING queue.

2.2. Model Parameters

The input parameters can be divided int§ those that
characterize the worklcad, and those that characterize the
system. Workload parameters describe the database and the
transactions that are run against that database. System
parameters describe the computer system and/or the data-
base managemert system characteristics. The output param-
eters characterize the throushput, overhead and utiliza-_

tion of the system. These parameters are all described in

27

more detail below.

2.g.l. Workload Parameters

The workload input parameters are summarized in Table
2-1, The number of transactions, NTRAN, in the system is
fixed. The closed loop model could have two interpreta-
tions. As each ‘transaction completes, the user submits
another transaction. Alternately, the transactions could
~be viewed as application programs. When one of these com-
pletes, another application program enters the system to

take its place.

The database size, DBSIZE, refers to the number of
entities in the database. 1In this model, the database is

an abstract collection of entities. An entity can be

Table 2-1 Workload Parameters

Parameter _ Description
NTRAN number of transactions
DBSIZE number of entities in the database
RAD a transaction size parameter.
AMEAN mean for exporential distribution
of transaction size.
BMEAN another mean for exponrential distribution

of transactior size. Used with AMEAN for
hyper-exporerntial distribution
of transactionr sizes.
ALPH "cut of proportion between AMEAN
and BMEAN.
LKPLMT lock placement assumption (see below)

4,

w’

28

thought of as the unit of data moved by the operating sys-

tem into the database system buffers.

In the simulation, three types of distributions for
transaction sizes are used. The size of a transaction
refers to the number of entities, NE, touched or accessed
by a given transaction. The number of entities "touched"
or accessed by a given transaction completely determines
the amount of I1I/0, CPU and lock resources required by that
transaction. In the simplest case, the sizes of the tran-
sactions are uniformly distributed by the RAD parameter.

th

The number of entities touched by the i transaction 1is

given by:

NEizi*RAD,forizl,...,NTRAN
This distribution reflects a workload with a uniform mix

of different sized transactions.

The secord distribution of transaction sizes is
exporential. The average transaction size is determined

by the AMEAN parameter; In this case,

NEiz-AMEAN*log(rnd)
where rnd is a uniformly distributed random number between
zero and one. This distribution reflects a workload where
most of the transactions are small a very few transactions

are large.

29

The final distribution used is hyper-exponertial with
three parameters, AMEAN, BMEAN, and ALPH. 1In this distri-
bution, some (ALPH x 100 percent) of the transactions have
sizes which are exponentially distributed with a mean of
BMEAN. The other transactions have sizes which are

exponentially distributed with mean AMEAN. In this case,

NEiz-BMEAN*log(rnd1)
if rnd2 < ALPH or

NEiz-AMEAN*log(rnd1)
if rnd2 >= ALPH

where rnd1, and rnd2 are independent random variables
similar to rnd. This distribution is used to model
scenarios where, for instance, most of the transactions
are extremely small and only touch a few records or pages
of a database, while a few transactions must access a very
large number of records. Note that the exponential dis-
tribution is just a special case of the hyper-exponential

distributior with an ALPH of zero,

The lock placement parameter, LKPLMT, determines the
number of locks that a given transaction requires. Three
different assumptionrs regarding lock placement are $imu-

lated.

30

With "well placed" locks (LKPLMT = 1), the number of
locks required by a given transaction is exactly propor-
tioral to the percentage of the database touched or
accessed by the transaction. For transaction i, the

number of locks, NL, is

NLi:CEILING(NEi*NGRAN/DBSIZE)

where NGRAN is the total number of 1locks available.
Hence, a transaction which touched half of the entities in
the database would require half of the possible database
locks. Note that this amounts to assuming that the
granules are "well placed", i.e. that the entities needed
by the transactions are packed into as few 'lockable'
granules as possible. This assumption is reasonable for
transactiornrs which access the database sequentially.
Although sequential processing in database applications
has been observed [RODR76], actual transactions may
‘require a combination of sequential and ragdom accesses to

the database.

Under a "worst case placement" assumptior (LKPLMT =
2), each transactiorn requires the maximum number- of

granules possible. 1In this case

NL.=MIN(NE. NGRAN).
i i,

31

If the total number of entities touched by a given tran-
sactior, NE, is greater than the number of locks covering
the entire database, NGRAN, thern in the worst case, all of
the locks might have to be acﬁuired in order to access the
needed entities. If NE is less than NGRAN, the number of
locks that have to be set is bounded by the number of
entities, NE. Thus, the number of locks required is the
minimum of the number of locks for the entire database and
the number of entities touched by the transaction. This
assumption simulates an "uncooperative" transaction, i.e.
one whose access pattern is the worst possible from the
lock mechanism point of view. This scenario is the oppo-

site extreme of the "well placed" assumption.

Under " a "random access placemeﬁt" assumption, a
mean-valued formula 1is used td estimate the number of
locks required for each transaction. The number of locks
required’ under this assumption is analogous to the number
of blocks accessed when randomly selecting records- from a
blocked file. The formula for this number and its deriva-
tion are given in [YAO77]. This model accurately reflects
random processing where the probability of accessing any
entity is the same and independent of any previous enti-
ties accessed.. Let DBSIZE be the number of entities in
the database, NGRAN be the total number of locks, and p be

the number of entities per lock (=DBSIZE/NGRAN). Then a

32

transaction which accesses NE entities requires

r DBSIZE-p)
NGRAN % 11 - NE____
| cDBSIZE i
L NE 4
locks. The expressions CEESIZF'D and CEESIZE represent

the number of different ways NE entities can be selected
from DBSIZE-p and DBSIZE entities respectively. The
derivation of this formula is identical to the derivation‘

in [YAO77]) and is not repeated here.

2.2.2. System Parameters

The system parameters are listed in Table 2-2. The
number of granules, NGRAN, into which the database is
divided is varied from one to the number of entities in
the database, DBSIZE. A granule 1is the unit which is
locked by a transaction. Each granule is assumed to be
the same size. Hence, if NGRAN = 1, a granule is the
entire database of DBSIZE entities. If NGRAN = 2, a
granule 1s DBSIZE/2 entities. If NGRAN = DBSIZE, each

granule is 1 entity.

The CPU costs for processing a transaction are deter-
mined by the CPURATE parameter. The CPURATE refers to the
CPU resources required for processing one entity of the

database where CPU resources are in time units of the

33

Table 2-2 System Parameters

Parameter Description

NGRAN " number of lockable granules
CPURATE - CPU time to process ore entity
IORATE ' I/0 time to process ore entity
LCPURATE CPU rate to process one lock
LIORATE I/0 rate to process one lock
IoovVLP number of simultaneous I/O

operations permitted
simulation. Note that these are the resources for pro-
cessing the transactions and do not include any costs for

processing the locks.

Similarly, the I/0 costs for procéssing a transaction
are determined by the IORATE parameter. Note that the
CPURATE and IORATE could have also been considered as
workload parameters because in many cases they are appli-

cation dependent [HAWT79].

The lock CPU parameter, LCPURATE, refers to the CPU
.resources required to request (and set/release) a lock for

one granule.

Similarly, LIORATE determines the I/0 overhead for
setting one lock. For some DBMS systems, lock tables are
kept- entirely in main memory. These systems are modeled
by a LIORATE of zero. On the other hand, a database sys-
tem which has as many locks as pages in tﬁe database, may

have to keep 1lock tables or secondary storage devices.

34

Such systems would have a nonrn-zero LIORATE parameter.

The 1/0 overlap, IOOVLP, indicates how many simul-
taneous 1I/0 operations are possible. This parameter is a
surrogate for the number of independent paths used between
main memory and secondary storage (and hence for how much

I/0 activity can go orn in parallel).

2.2.3. 0OQutput Parameters

The performance measurements shown in Table 2-3 are
generated by each simulation run. The total CPU time,
TCPU, refers to the number of time units in which the CPU

is busy. During TMAX - TCPU time units the CPU is idle.

The total 1/0 units, TIO, is the number of time units
in which the I/0 resources are busy. The total I/0O units

utilized can become larger than TMAX if the 1I/0 overlap

Table 2-3 Output Parameters

Parameter Description

TCPU Total time CPU active

TIO Total time I/0 active

LOCKCPU CPU overhead for locking

LOCKIO I1/0 overhead for locking
USEFULCPU CPU time for transactions
USEFULIO I/0 time for transactiors
TRANCOH number of transactions completed

AVERRES average responrse time

35

parameter is greater than 1. 1In fact TIO is bounded above.

by TMAX * IOOVLP.

The CPU units used for lock management are recorded

in LOCKCPU while ¢the I/0 wunits used for locking are
recorded in LOCKIO.

The useful computer utilization, USEFULCPU and USEFU-
LIO, refer to the net resources used for transaction pro-
cessing. These measurements reflect the transaction pro-
cessing time without the concurrency control overhead.

Note that
TCPU=LOCKCPU+USEFULCPU

TIO=LOCKIO+LOCKCPU.

The total number of transactions completed at the end

of a simulation run, TRANCOM, and the average response
time, AVERRES, are also recorded. The time when éaoh
transaction 1is first placed orn the pending queue is con-
sidered an arrival time for that transaction. The differ-
ence between that time and the time when that transaction
releases its locks is called the response time. Some
transactions may have started but ﬁot finished at the com-

pletion of the simulation run. These transactions are not

36

included in the computation of TRANCOM or AVERRES.

V)
w

Resource Allocation and Usage

The above parameters completely determine the
resources required by each transaction. These resources

are summarized in Table 2-4,.

The CPUTIME represents the total rumber of time units
that a transaction would be on the CPU queue if it were
running by itself. However,'if there are N transactions
on the CPU queue, the CPU is multiplexed among those N
transactions. For example, if there are always 2 transac-
tions on the CPU queue, a transaction with a CPUTIME = 50,

would remain on the CPU queue for 100 time intervals.

The IOTIME is similar, except for the effect of the
IOOVLP parameter. If there are N transactions on the I/0

queue, each transaction progresses min(1,I00VLP/N) time

Table 2-4 A Transaction
RESOURCE FORMULA

NE = functiorn(RAD)
or function(AMEAN,BMEAN,ALPH)

NL = function(NE, LKPLMT, DBSIZE)
CPUTIME = NE *¥ CPURATE

IOTIME = NE ¥ IORATE

LOCKIOTIME = NL ¥ LIORATE

LOCKCPUTIME = NL ¥ LCPURATE

37

units. The progress is bounded above by 1 to simulate one
transaction having orly one outstanding I/O request af a

time.

The locking mechanisms are given a higher priority
for the I/0 and CPU resources than the active transac-
tions. Also note that these costs are repeated each time
a transaction requests its locks. For example, suppose a
transaction requests locks, they are denied, and the tran-
saction 1is placed on the blocked queue. Later that tran-
saction is removed from the blocked queue, the 1locks are
requested again, and this time they are granted. The
total lock overhead associated with this transactior is

twice NE times the lock rates.

Two approaches are used to simulate the competition
for the available granules. Under both approaches, the
decision. to grant or deny a 1lock request 1is based on

another uniformly distributed random variable, rrnd3.

Under one approach, the granules for each transaction
are considered to be completely uncorrelated. Let CRL be
the number of locks currently held by the active transac-
tions. Then a transactiorn needing NL locks, has those

locks granted if

38

NGRAN=-CRL
NL
NGRAN
CnL

The above expressior is simply the number of ways of

C
rnd3 >

choosing NL 1locks from those that are already still
unclaimed divided by the number of ways of chosen the NL

locks from all of the locks.

Under the well-placed lock assumption, the above for-
mula actually penalizes finer granularity. For example,'
doubling the number of locks, (2 ¥ NGRAN), could result in
also doubling NL and CRL. The number of locks for a tran-
saction, NL, would be doubled if a trahsaction touched all
"of the entities covered by a given lock. But then, the
probability of a successful 1lock request 1is actually

smaller due to the finer granularity because

C2*NGRAN-2*CRL CNGRAN-CRL

2%NE N NE
CZKNGRAN CNGRAN
2%NE NE

The right hand side is the probability of obtaining NL
locks with the original granularity while the left hand
term is the same probability if the number of 1locks were

doubled.

To avoid this bias under the well-placed lock assump-
tion, a secord approach to computing lock corflicts is
used. With this approach it is assumed that the first

requested granule is uncorrelated with any of the granules

39

which are already 1locked. Furthermore, the additioral
requested granules are assumed to be distinct from the
already locked granules. Under this assumptior, the locks

are granted if

CRL
(NGRAN-NE+1) °

rnd3 >

Under either approach, if the locks are granted, CRL
is incremented by NL. If the locks are denied, one of the
active transactions is picked as the blocking transaction.
The probability that a transaction, say Tj is the blocking
transaction is NLj/CRL; i.e. is directly proportioral to

the number of locks held by the blocking transaction.

3. RESULTS and DISCUSSION

In this section the results of rurining the simulation
under a wide variety of parameter settings are reported.
First, the results of some initial runs of the simulation
are explained. Next the effects of varying the workload
and system parameters are reported. Finally, the effects
of two changes to the basic 'simulation model are

described.

K3

40

3.1. Ar Iritial Scerario

The simulation is iritially run with the workload
parameters shown in Table 2«5 for 10,000 (TMAX) time
units. The system parameters for the first run are shown

in Table 2-6.

In this scenario, teﬂ transactions were submitted to
a database of 5000 entities. The transactions required
from 50 to 500 entities each (initially the sizes were
uniformly distributed). (The simulatior was also run with
up to 20 transactions with no appreciable effect other

than scale on the output parameters.)

Table 2-5 Sample Workload Parameters

Parameter Value

NTRAN 10

DBSIZE . 5000

LKPLMT Well-Placed
RAD 50

Table 2-6 Sample System Parameters

Parameter Value
NGRAN 1 to 5000
CPURATE .05
IORATE .20
LCPURATE .01
LIORATE .20

IOOVLP 1

41

The locks were assumed to be "well-placed"” with
respect to the accessing transactions and thus the tran-
sactions required the smallest number of granules that

were required to "cover" the touched entities.

The I/0 overlap paramefer was set to one which
results in only one transaction processing an I/0 opera-
tion at one time. Note that for this run the I/0 rate is
four times the CPU so that this simulates an "I/O bound"
application. The CPU cost of a lock was 1/5 éhat required
to process an entity. Lastly, the I/0 cost of a lock was
equal to the I/0 cost of an entity. Hence, this initial
run simulated a 1lock table being kept on secondary

storasge.

Intuitively, these input parameters could be inter-

preted as followes:

DBSIZE is 5 million bytes (one entity is 1024 bytes)
Average transaction accesses 250,000 bytes of data.
IORATE of 30 msecs per entity (one disk accesses).
CPURATE of 7.5 msec per entity.

LIORATE of 30 msecs per lock.

LCPURATE of 1.5 msecs per lock.

In this interpretation one time unit corresponds to 150

milliseconds.

42

For these simulation runs, the value TMAX = 10000 was
chosen after rurning simulatiors for various smaller
values ircluding TMAX = 2500. In all cases, nro change
(except for scaling) was observed in the output parameters
between TMAX = 2500 and TMAX = 10000. For some of the
experiments discussed later, other values of TMAX were
required to guarantee convergence. Keeping the other
parameters fixed, tﬁe number of granules was varied
between 1 and 5000. The output from the simulations is

presented in Tables 2-7 and 2-8.

Note that the utilizatior of I/O resources for tran-
saction processing, USEFULIO, peaked at 40 granules.
Within 1% of this value was reached with onrly 10 locks.
The useful I/0 remained relatively constant until the lock
I1/0 costs start to be a significant fraction of I/0 time.
For a small number of granules, high lock 1I/0 cost
resulted from lock cqnflicts which generated still more
lock 1I/0. (In an actual implementation of a locking
scheme, a small number of locks could easily -be maintained
in primary memory. This alternative is explored subse-
quently.) Similarly, the useful CPU time peaked at 30
granules, and again this value was almost reached (within
1%) with as few as 10 granules. These results are por-

trayed graphically in figure 2-2. The lock CPU costs were

'IIIOX

=10000 -

Computer utilization

43

Peak

- —Useful I/0

8 000 - within 1%
of peak

6000 - within 5%
of peak

4 000 A

2 000 ~

O T T T 1
| 10 100 1000 5000

No. of granules (log scale)

Figure 2-2 Computer utilization versus no.
of granules.)
Initial scenario, Well-placed locks

nt

uy

Table 2-7
CPY and I/0 Utilization
Inipial Scerario

?O*of_GRANULE"!USEFULIO IUSEFULCPU !LOCKIO 'LOCKCPU 5
L S e e e e e e e R e e e e e e e e e e - e - m s e e == i
i 11 7041.957% 1759.906} 1282.000} 12.820}
| 21 8376.933) 2091.914} 970.000! 9.700}
H 31 9002.256} 2237.415} 777.000}% 7.770}
i 4} 9030.253F 2258.925} 671.000} 6.710
i 51 9273.915F 2304.927} 604 .000! 6.040]
d 7V 9438.514! 2309.940} 474,000} 4,740}
i 91 9449.0871 2337..442} 428,000} 4,280
] 107 9476.180F 2324.941 437.000}% 4.370%
| 151 9425.585) 2358.445] 403.000]} 5.210}
| 200 9437.9871 2354.943) 396.000 5.280}
i 30} 9534.303} 2377.449} 371.000} 6.720}
! 404 9572.718} 2354.949} 360.000! 7.900}
i 50 9504.0731 2339.9501 360.000} 8.7901
d 751 94u8.u4357 2332.452) 454,000 13.290}
' 100F 9378.2771 2324.951} 482.000! 15.430}
| 125! 9351.744!' 2316.457! 547.000! 20.890}
i 150! 9304.128) 2279.960] 6518.000} 23.700}
i 200} 9159.688} 2259.959} 753.000, 30.000}
| 250} 9110.531) 2249.964) 806.000} 36.740
i 300}, 8768.228! 2177.465}) 1015.000} 43,470}
] 500! 8517.211! 2097.466! 1390.000} 69.499}
d 750% T7820.611% 1919.974} 1950.000; 94,439}
! 1000} 7359.828! 1814.976! 2462.000! 123.099}
! 2500) 4764.175) 1189.989) 4824.000} 241.199}
5 5000} 3408.635} 824.992) 6120.000} 305.998 1
]

minimized with 10 granules. With fewer granules, . the
request failure rate caused enough re-reqdests for locks
that the overall CPU costs for 1locking increased. With
more than 10 granules, the reductior in lock request
failures did not offset the costs of setting the addi-

tioral locks required for each transaction.

45

Table 2-8
Transaction throusghput measurements
Initial Scenario

. AVERAGE
NO of GRANULES| RESPONSE |COMPLETED]
E | TIME ' g
[e e e e e e e R e i
] 14 751.914} 128 |
! 21 557.232) 168 |
H 31 534.399, 178 H
d Ty 523.082} 182 |
| 51 490,297 195 |
: 71 506.667! 189 t
! 91 515.117 | 188 d
i 10} 472.330} 203 |
! 15! ugy, 214} 196 g
: 20! 462.678! 208 :
| 301} 472.732} 205 |
| 40! 454,189 212 |
' 50 | uy1,5371 218 :
i 751 430.543) 223 i
! 100! 420,416 231 :
] 125! 463.255} 208 |
] 150} 460.429! 210 '
i 200} 435,748} 222 i
! 250} 504.021! 192 |
| 300! 4y7.065! 215 |
' 500 | 472.088! 204 !
E |
i !
| |
] !
| '

The average response time and the total number of
transactiors completed at time TMAX reached extremums at
100 granules. With this number of granules, the smaller
transactiors requiring less resources were able to run to
completior. Thus, a 'shortest job first' property was
observed. Moreover, with finer granularity (>200
granules) locking overhead actually increased the average

resporse time. In these cases the higher I/0 locking

ac

46

overhead (753 to over 6000 time units) delayed the normal

processing of transactiors.

In summary, under the initial scenario parameter set-
tings, the wuseful computer utilizatiorn increased as the
rumber of granules increased then leveled ‘off and fell.
Moreover, the maximum wutilization occurred with a rela-
tively small number of granules and that wutilization was
within 1% of that optimum for 10 granules. The conclusion.
can be drawn that crude locking schemes with coarse granu-
larity were nearly optimal. Since a crude locking system
may be easier to implement than a éophisticated fingr

granularity scheme, it may be preferred.

For this case, response time, and throughput were all
better with a small number of granules. Hence, a large
number of granules (such as would be required to lock disk

sectors or individual records) may be inappropriate.

However, changes in the parameters and simulation
model do alter these observations. In the next section,
the effects of alterrate workload parameters are reported.
In sectiorn 3.3, the systems parameters are varied. In
section 3.4, the effects of two extensions to the model

are reported.

b7

3.2. Effects of Workload Parameters

Changes in the workload parameters would reflect
changes in the characteristics of the applications which
were running or the system. It has been noted already
that the number of transactions had little effect on the
observed output parameters. Other workload parameters did
make some difference on the optimum granularity. The
major difference was due to the 1lock placement assump-
tions. Other workload parameters tested included changes
in transaction sizes, changes in database sizes and the

addition of an idle time period for the transactions.

3.2.1. Placement of Locks

In the previous experiments the locks were assumed to
be well-placed. The other two placement assumptions were
also tested. In the worst case assumption, each transac-
tion required the maximum rumber of granules possible. In
the random placement assumption, the probability of
accessing any entity was identical and independent of any

previous entities accessed.

Which model is chosen affects the previous observa-
tions. If the "worst case" is chosen, the following

intuitive analysis applies. In figure 2-3 it is assumed

i)

e

-

48

that all transactions touch the same number of entities,
NE. The machine utilization measures would decrease as
thé number of locks for the entire database increased from
ore to NE. The decrease is because each transaction would
require more 1locks thus increasing the locking overhead.
However, there would be no additional parallelism because

each transactior locked the entire database.

The utilization‘ would increase, however, as the
number of locks increased from NE to the total number of
entities in the database. 1In this case, the cost of the
locking overhead would remain constant while the allowed
concurrency increased. The locking overhead would remain
constant since each transaction could never set more than

NE locks.

Consequently, the optimum number of locks would be
very dependent on the transactior sizes in the worst case
placement lock assumption. Moreover, it would always
occur at 1 granule or the maximum number of granules
(corresponding to one lock per entity) if all the transac-
tions were the same size. The effects of having varying

transaction sizes will be discussed below.

The simulatior model was run for each of the three
placement assumptions wunder a wide variety of parameter

settings. Figures 2-4 and 2-5 diagram some of the

utilization

Computer

49

All transactions u's'e
NE entities

NL=NE NL= Database
Number of Granules |

Figure 2-3: Expected Computer Utilization
under the Worst Case Lock Place-
ment

-

50

results. In figure 2-4, the transaction sizes were deter-
mined by an exponertial distribution with a mean value of
500 entities (10% of the database). In figure 2-5, the
transaction sizes were also determined by an exponential
distributior but with a mean value of 5 entities (0.1% of
the database). For these runs, the locks were assumed to
be in main memory (no lock I/0 required) and the I/0 and
CPU time required by the transactions were equal. These
conditions were chosen as the ones most favorable to finer
granularity. The other parameters were jdentical to those
described in the initial scenario, with one major excep-
tion. In figures'2-4 and 2-5, the random 1lock conflict
assumption is assumed for all three placement conditions.
Under the random lock conflict assumption, the grénules
associated with each transaction are considered to be com-
pletely uncorrelated. This modification is made primarily
for validity checking. With the same lock conflict assump-
tions, the end points (1 and 5000 granﬁles) should and did
result in identical simulation runs under the three lock

placement assumptionrs.

The top curves in both figure 2-4 and 2-5 were con-
sistent with the results of the irnitial scenario. The
bottom two curves represent the worst case and random

access assumptions.

utilization

Computer

20 000
16 000
% Well-placed
12 000 Random
placement
8 000
- Worst-case
placement
4 000
I ! 1 i
| 10 100 | 000 5000

No. of granules (Log scale)

Figure 2~-4: Computer utilization as a function of

no. of granules. .
Large transactions and Different Lock
Placement Assumptions

51

c?

52

For large transactiors requiring about 10% of the
database (see figure 2-4) a smaller number of granules was
still to be prefered to a lock for each entity. For small
transactions. requiring about 0.1% of the database (see
figure 2-5) one lock per entity produced the greatest
machine utilization under the worst case and random place-
ment assumptiors. However, even with small transactions,
the degree of imphovement was small as the granularity
increased beyond a certain limit. For example, 90% of the

maximum machine utilization was reached with 200 locks.

Next, the simulation was run with mixed size transac-
tions (AMEAN = 250, BMEAN = 5, ALPHY = .1) using the best
case, the worst case and random access assumptions.
Intuitively, this simulates a few large transactions and
many small ores. As previously stated, under the well-
placed assumption a small number of granules is best. A
relatively flat curve relating machine utilization and the
number of locks is observed for the worst case and random
access assumptions. Thus, in these two cases, the gfanu-
larity of 1locks, whether coarse or fine, did not greatly
effect the useful machine utilization. In fact, 98% of
the maximum utilization was achieved with both 10 and 2500
granules. The basic problem with fine granularity was
that the expense of runring just a few larsge transactionrs

seemed to outweigh the gain due to the increased con-

utilizations

Computer

53

20 000 -
| Well-placed
16 000
] lacement =
P <— Worst—-case
12 000+ placement
T
8 000
4000
1 | L]
| 10 100 | 000 5000

No. of granules (Log scale)

Figure 2-5: Computer Utilization as a function of
no. of granules.
Small Transaction and Different Lock

Placement Assumptions

54

currency experienced by the small trransactions.

3.2.2. Transaction Size

Under a uniform distribution of transaction sizes,
the number of enﬁities required by a transaction was
determined by the RAD parameter. ‘The simulation was run
under the well-placed lock assumptions with RAD values of
1, 25, 50, 100, 250 and 500 on a data base cortaining 5000
granules. The first case results in an initial average
transaction size of 1/1000 th (1*NTRAN/2)of the database.
The 1last case on the other hand, results in an average
transaction size requiring one half (500%¥NTRAN/2) of the

entities in the database.

As the needs of the transactions increased, maximum
machine utilization and throughput were obtained with
fewer and fewer granules. Minimum response time behaved
similarly. The optimum 1% and 5% intervals of usetful 1/0
are presented in figure 2-6. Note that even for very
small transactiors, 95% of the optimum was-ﬁeached with as

few as 10 granules.

The two other distributions of the transaction sizes
were also tested in order to model different transaction

environments. With an exponential distribution, with the

Average transaction size
=~ 0.1% of data base

[{ w1\ 1
L \ N J
Average transaction size
~ 25% of data base
[v
%]
Average transaction size
~ |0% of data base
[(VAN
L \ AN AR
Average transaction size
&~ 50% of data base
I'J,,e]
L\ Il
No. of granules
M % & 1 20 so | 200 500 | 2500 |
| 10 100 1000 5000
X - peak

)-within 1% of peak -
[-]-within 5% of peak

Transaction size versus no. of granules

Figure 2-6

56

same mean value as the uniform distribution
(AMEAN=RAD¥NTRAN/2), the results were very similar. For
a small AMEAN, say 5 entities, 500 granules were optimal.
Again, however, 10 granules produced useful machine utili-
zation within 5% of the utilization realized with the 500
granules. With an exponential‘distribution and an AMEAN
value of 250 entities, on the other hand, 40 granules was
again optimal. 1In that case, the 1larger transactions
realized too much locking overhead with the less coarse

granularity.

However, with a hyper-exponential distribution, the
"large" transactions (those determined by the BMEAN param-
eter) dominated the processing. Thué coarse granularity
was again favored. For example, with AMEAN, BMEAN, énd
ALPH values of 5, 250 and 0.1 respectively, an NGRAN of S0
still produced the maximum useful computer utilization.
In this case, the average transaction size was about 30
entities. But 10 percent of the transactions accessed on
the average 250 entities and these transactions dictated

coarse granularity.

The simulatior was also run under the random lock
placement assumptions varying the grarularity and transac-
tion sizes. For these experiments, the IORATE and CPURATE
were again equal and the LIORATE was set to zero. The

other parameters were identical to those descrihed in the

57

initial scenario. With an average transaction size of
less than 25 entities, the finest granularity was again
optimal. When the average transaction size was between 25
and 50 entities, the useful cbmputer utilizations at 1 and
5000 granules were approximately equal. With an average
transaction size greater than 50 entitieé (1% of the data-

base), one granule was optimal.

3.2.3.

Database Size

Simulation experiments were also run with varioﬁs
granularities on a database of 50000 entities. The aver-
age transaction size was fixed at 250 entities and the
simulation was run for 15000 time units. The effects of
increasing the database size was similar to the effects of
decreasing the transaction size. With well-placed locks,
the optimal granularity occurred at 500 granules. In this
case, five percent of the maximum utilization was realized
with 20 to 2500 granules. With random lock placement, the
finest granularity was again optimal.

3.2.4. Idle Time

For some applicatiors, locks can be held while a user
or application program pauses for some duration (often

thought of as "head scratching"). The simulatior was

58

modified to reflect this effect by holding all locks for
an idle period of 100 time units (say, for example, about
25 seconds in the interpretatiorn mentioned at the begin-
ning of this section). The simulatiorn was then run with
the parameter settings of the initial scenarios shown in

Tables 2-5 and 256.

The results were remarkably similar to those in Table
2-2. The useful I/0 curve had slightly more variation
than the curve in figure 2-2 with a peak occuring at 50
granules. Ten granules still produced useful I/0 and CPU
times within 5% of the optimum. Hence a small number of
granules was still best even with substantial pauses in

the transactior processing.

3.2.5. Workload Parameter Summary

The lock placement assumptions clearly had the most
dramatic impact on the machine utilization as a function
of locking granularity. The second most important parame-

ter was the size of the transactions accessing the data-

base.

Fine granularity may be best if the following two
conditions were meet: 1) almost all of the transactions

are small and 2) access patterns are random with no

59

-sequentiality. Under these conditionrs, the greater the
number of locks. the greater the machire utilization.
However, the rate of increase dropped dramatically after a
certain level of granularity was obtaired (about 200
granules in our simulation). Hence "medium" granularity
did almost as well as fine granularity; coarse granularity

was unacceptable in these cases.

If too many of the transactions access a 1large por-
tion of the database, fine granularity produces too much
locking overhead and coarse granularity was again to be

preferred.

Regardless of the transaction sizes, if the data
access patterns were primarily sequential, coarse granu-

larity was still the most effective.

3.3. Effects of the System Parameters

The locking granularity, determined by NGRAN, has
been the majdr system barameter studied so far. This
parameter is clearly the one over which the system imple-
mentors have the most control. The effects of the other
system parameters on the system throughput and utilization
are presented below. In particular, the IORATE and IOOVLP
parameters were varied in order to "balance" the I/0 and

CPU requirements of the transactiors. Also, the LIORATE

1o

60

and LCPURATE parameters were varied to control the locking

overhead. In addition, for each parameter, its interac-

A

tior with the locking granularity is also discussed.

3.3.1. I/0 versus CPl Balance

The effects of the ratio of the required I/0 time to
the required CPU time per entity was investigated. The
CPU rate (CPURATE) per entity for a transaction was held
fixed at .05 wunits/entity. The simulation was run with
I1/0 rates (IORATE) per entity set at .01, .05, .1, .2, and
.3. For each setting of the 1I/0 rate, the number of
granules (NGRAN) was varied from 1 to 5000. The lock I/0
rate per granule was set equal to the I/0 rate per entity
in order to reflect the locks being on ihe same speed dev-
ice as the data. Each simulatior ran for 5000 time units.
The other input parameters had the values indicated in

Tables 2-5 and 2-6.

Under the well-placed lock assumptior, the useful I/0
curves for each setting of IORATE were bell shaped and
heavily skewed towards a small number of granules. As
such they were similar to the curves in figure 2-2 and are
not repeated here. The peak of these curves occurred with
somewhat finer granularity as the IORATE came closer to

the CPURATE. With a system balanced between I/0 and CPU

61

requirements the maximum utilization of both CPU and I/0
resources was possible. However, even with balanced tran-
sactions, 100 granules were sufficiert to achieve the max-
imum machine utilization. With CPU bound transactions
(CPURATE >IORATE) within 5% of the peaks was reached with
as few as 10 granules. Varying the IORATE had 1little
effect on the throughput measurements (average response
time, and number of transactions completed) as a function
of the number of granules allowed. The useful CPU time,
as a function of granule size, showed a similar distribu-~
tion as the useful I/0. The costs associated with lockiné

were again minimized with 100 granules.

Under the random and worst case placement assumptions
and small transactions, the finest granularity was optimal

regardless of the I/0 to CPU balance.

3.3.2. Multiple I/O Paths

One method of "balancing" a system that is I/b bound
is to increase the number of I/0 channels to main memory.
In the previous runs, the IOOVLP value was. one. These
experiments thus simulated a system with ore I/0 path
between main memory and secondary storage. In the next
series of runs,.this parameter was set to three and six to
simulate, for example, a database environment with three

and six disk drives respectively. Other input parameters

“N

62

were the same as in Tables 2-5 and 2-6.

Except for greatly increased magritude, the output
parameters‘ had a similar distribution as those ir Table
2-7. The useful 1/0 time (USEEULIO) versus ;he granular-
ity, for simulation runs under the well-placed 1lock
assumptions, are shown in figure 2-T. Note, with 10 to
100 granules, the wuseful 1I/0 increased by a factor of
about 2.5 for three I/0 paths as compared to the wuseful
I/0 with one I/0 path. (The hest results possible would
be iﬁcreased useful I/0 by a factor of 3.) Moreover, as
the number of granules increased three drives became less
and less effective. For 2500 granules, for example, only
a 1.5 factor increase 1in useful I/0 was realized. The
results for six I/0 paths were similar. Ten to one hundred
granules tripled the increase in useful I/0. With 2500
granules, the increase in useful I/0 was slightly 1less

than doubled.

In the random and worst case lock placement -experi-
ments, the finest granularity was again favored as addi-

tional parallelism was made possible.

3.3.3. Lock I/QO Costs

In the previous experiments, the 1lock I/0 rate

(LIORATE) was equal to the transaction I/0 rate (IORATE).

s,ooo—ﬁ'—\\
4

6 170 paths

3 170 paths

1 I/0 path

T T |
| 10 100 1000 5000

No. of granules (log scale)

EFFECTS OF MULTIPLE I/0 PATHS
Well-placed lock assumption.
Figure 2-7

63

3

64

In the next series of simulation runs, only the 1lock I/O
rate and the granularity were varied. The simulatior was
run with other parameters as in Tables'2-5 and 2-6. The
useful 1/0 ‘times (USEFULIO) for the well-placed lock

assumptions are shown in figure 2-8.

As the lock I/0 rate decreased, a 1larger number of
granules could be afforded before the advantages of more
parallelism were outweighed by the locking overhead. Ofl
particular interest is the situation where the LIORATE was
zero. This case is analogous to keeping all locks in
main memory. Evenv with no lock I/b costs, there was a
very flat extremum for USEFULIO between 10 and 200
granules. Having a granule correspond to fewer than 25
database entities (number of granules > 200) resulted in
noticeably poorer performance. If the interpretation of
an entity is a 512 byte page (or a 4096 byte sector) a
database hanagement system should thus not ‘protect' less

than 13,000 (or 100,000) bytes of data with one lock.

3.3.4. Lock CPU Costs

The CPU costs for setting one lock were dependent on
the lock management algorithms. To investigate the
effects of varying the CPU rate for locking on the desired

granularity, the simulation was run with CPU 1lock

1/0 time

Useful

65

Locks in core

Lock I1/0 rate =
/o 1/0 rate

Lock I/0 rate=
I1/0 rate

| | '
| 10 100 1000 5000

No. of granules (log scale)

EFFECTS OF LOCK I/0 RATE

Productive I/0 Utilization versus no. of granules

FIGURE 2-8

66

(LCPURATE) costs per lock of .005, .01, .025, .05 , .075,
and .1. For this series of experiments, the LIORATE was
set to zero to simulate the effects of maintaining all
locks in main memory. Other parameters were as in Tables

2-5 and 2-6.

Under the well-placed lock assumption and a small
number of granules, the CPU lock costs (LOCKCPU) were
approximately linearly proportional to the CPU rate per
lock (LCPURATE). 1In these cases, there were enough unused
CPU resources available for locking. For a large number
of granules, hpwever, the CPU 1lock costs increased
slightly less than linearly with LCPURATE. In these
cases, the locking CPU utilization interfered with normal
transactior processing. For all CPU lock costs tested,
however, the minimum locking costs occurred at 10

granules.

Under the well-placed lock assumption the maximum
amount of useful CPU and I/0 occurred with 10 to 100
granules and was about the same regardless of the lock CPU

rate. With 1lock CPU rates of less than 1 millisecond

(LCPURATE

i]

.005), the peak occurred at 100 granules;
within 1% of that peak occurred with 10 to 1000 granules.
With lock CPU rates between 1 and 5 milliseconds (LCPURATE

= .005 to .03) the peak was at 50; but the useful I/0 and

67

CPy dropped off sharply with more than 200 granules. With
higher 1lock CPU rates, 10 granules were optimal and at
most 100 granules for the locking granularity were afford-

able.

Simulation experiments were also run varying the lock
CPU costs under the random lock placement assumption. In

these experiments all transactiors were small (AMEAN = 5,

ALPH = 0) and the LIORATE was again set to zero. The CPU.

and 1/0 rates for transaction processing were both about
30 milliseconds per entity (IORATE = CPURATE = .2). 1In
these experiments, an increase in lock CPU rates greatly
affected the computer utilization at the finest granulari-
ties. With a 5 millisecond lock cost (LCPURATE = .03),
the useful computer utilization was 5% of the utilization
observed with a 2.5 millisecond lock overhead cost
(LCPURATE = .015). However, the finest granularity was
still optimal until a 15 millisecond per 1lockK overhead

cost (LCPURATE = .1) was incurred.

3.3.5. System Parameter Summary

Some of the system parameters did suggest somewhat
finer granularity under the well-placed lock assumptions.
In particular, two factors had some effect on the optimum

granularity. Whenr the resources expendéd for locking were

-

68

reduced, finer granularity was affordable. With lock I1/0
costs of zero and the lowest setting of lock CPU costs,
100 locks was optimal. Even in these cases, though, too

fine a lock granularity was not acceptable.

The second factor which had an effect on the optimum
granularity was the balance between the CPU and I/0
resource needs of the transactiors. Under a balanced sys-
tem load and the well-placed lock assumptionr 50 to 100

locks were again optimal.

Under the random and worst case lock placement
assumptiors, in most cases, the 1lock cost parémeters
(LCPURATE, LIORATE) did not change the optimal granular-
ity. The other system parameters had no affect on the

optimum granularity under these placement assumptions.

3.4, System Extensions

In the previous experiments all granules were assumed
to be the same size and 511 of the locks were acquired at
the beginning of a transaction. In this section two
modifications to the model are introduced to study alter-
nate assumptiors. In the first extensior a lock hierarchy
is simulated. In a lock hierarchy, transactions of dif—
ferent sizes lock different sized granules. In the second

extension, a "claim as needed" locking strategy is simu-

69

iated. In that strategy, transactionrs acquire locks as

they need the corresponding entities.

3.4.1. Lock Hierarchy

In many of the previous experiments it is nbted that
the expense of 1locking a large number of granules by a
large transaction offsets any increase in parallelism
realized by fine granularity. One way a large transaction
can avoid the expense of locking many small granules might
be to have the 1large transactions lock large granules
while the small transactions continue to use the small

locks [GRAYT761].

3.4.1.1. The Model Extension

In the simulation extensiorn a two level hierarchy was
implemented. A transaction, depending or its size, either
requested a set of small locks or ore global 1lock which

covered the entire database.

With this extension, we explored the interactions
between any two levels of a more general hierarchy. A
more general hierarchy could be any tree-like graph struc-
ture. A transaction could lock the root of a subtree and
thus control access to the parts of thg database covered

by any locks in that subtree. Alternately, the

70

transactiors could mark the root of the subtree to indi-
cate that 1lockirg is taking place at a lower level. The
transaction would then treat each offspring of the root as

its own subtree.

In the extended model, the choice between the global
locks and the small locks simulates the choice between the
root of ore subtree and its direct descendents. The per-
formance tradeoffs between increased parallelism and.
increased locking overhead of a more general hierarchy
occur similarly at each node. Thus, the results of this
extensior can be applied to the more general hierarchy and

a more complex tree structure need rot be simulated.

The simulatior was modified by adding 'pending' and
'blocked' queues for the global lock. If a transaction
was "small", it set the global lock in shared mode and was
placed on the original pending queue. From that queue the
"small" trénsactions competed for the small 1locks as in
the original model. If the transaction was "large", the
global lock was set for exclusive access and the transac-
tion waits for all active transactiors to finish. With
the global lock set for exclusive use, new transactions,
regardless of size would also wait in the blocked queue.
Once the large transaction was allowed to proceed, it went
directly to the 1/0 queue bypassing the small lock con-
trol.

71

The simulation was used to study the effects of cer-
tain parameters of such a hierarchy on the desired granu-
larity. One of the main areas of interest was the cri-
teria for deciding whether‘the small locks or the global
lock should be used. An input parameter was added to the
simulation which specified the threshold percenﬁage, TP,
of the database which must be touched by a transaction
before it was declared "large". If a transaction used
less than TP percent of the database, the 'small 1locks
would be wused. Otherwise, onrly the global lock would be

set.

3.4.1.2. The Simulation Results

The simulation was run with threshold percentages of
0.1%, 0.2%, 0.5%, 1%, 2%, 5%, 25%, 50% and 100% for each
of a large number of other parameter settings in order to
find the value of TP which maximized useful machine utili-
zation. The optimum threshold observed was dependent on
the number of small locks, the assumptions corcerning the
placement of those locks, the number of entities touched

by the transactiors, and the size of the database.

Figure 2-9 shows the.effects of the threshold percen-
tages on machine wutilizatior in two instances with dif-
ferent numbers of small locks. For both of those cases

mixed sized transactions were used and well-placed locks

Computer utilization

1 1] 1 1 1
\
X
l

12000

10000

8 000

6 000

72

o -
-

——— Number of locks =10
— ——= Number of locks = 1000

Figure 2-9:

T T 1 1
0.5 I.O 5 10 50 100
Threshold percentage
Computer Utilization versus

Threshold Percentage in a
Lock Hierarchy.

13

Wwere assumed. With ten small locks, the maximum machine
utilizatiorn was reached with thresholds of 50 and 100 per-
cent. A threshold‘of 100% resulted in ali transactions
using the sﬁall locks, 1i.e. as if no hierarchy were
present. However, with 1000 small locks, for example, a
threshold of 5 percent was optimal. Changing the assump-
tion about the placement of the locks also made a dramatic

difference.

Figures 2-10 and 2-11 further explore the effects of
the number of small locks on the threshold percentages.
The results in Figure 2-10 reflect the "well-placed"
assumptior. Random access to the database was assumed for

the simulation results shown in figure 2-11.

Each of the graphs is divided into three areas based
on machine utilization. The "optimum" line represents the
threshold value, TP, at which the maximum I/0 and CPU
utilization was observed for a given number of small
locks. With threshold values in area B, the hierarchical
locking produced results within 2% of that maximum utili-
zation. In area A, the utilization was less than in area
B. In this case, too few transactiors used the global
lock, i.e. the threshold, TP, was too high. In area C,
the machine utilization was also less than in area B. ‘In
this case, however, too many transactions used the global

lock, i.e. the threshold, TP, was too low.

T4

For example, consider figure 2-10 with 1000 small
locks. The machine utilization increased as the threshold
percertage was increased from 0.1% to'S%, but decreased as
the threshold increased from 5% to 100%. However, simula-
tion runs with threshold percentages between 1% and 25%
produced within 2% of the machine utilization observed

with the optimum threshold.

In figure 2-10,~"we11-p1aced" granules were assumed.
With more than 1000 small locks the optimum value of TP
was between 1% and 5%. With the number of 1locks between
10 and 100, TP values of 50% to 100% were optimal. In
this gqranularity interval, the 2% area included the case
where all transactiors used only the small locks. The
overall maximum machine utilizatior occurred in figure 2-
10 with 10 locks and TP values greater than 50%. In these
cases, almost all of the transactions used the small
locks. Hence, the value of a lock hierarchy under the

well-placed locks assumption was very small.

However, in figure 2-11, random lock placement. was
assumed. With coarse granularity, the optimum threshold
occured at 0.5%. With a higher threshold, more of the
smaller transactions would use the small locks, and corse-
quently would lock a large portior of the database. As a
result, these transactiors would expend more resources for

locking than if the global lock were used without signifi-

75

Overall
optimum

Optimum with

respect to tp

10 100 | 000 5000

No. of granules (Log scale)

Area A: tp too high
Area B: Highest Machine Utilization
Area C: tp too low

® 10 -
o
o
=
> S 1
O
S
(43
Qa.
o
o | 4
=
[
L+ })
} .
< 0.5 1
'_
0.l
I
Figure 2-10

The Effects on Computer Utilization of
the Number of Granules on the Optimal
Threshold Percentage with Well-placed
Locks in a Lock Hierarchy

76

cantly increasing the conrcurrency allowed.

In figure 2-11, the differences in computer utiliza-
tion between areas A, B, and C was small for coarse granu-
larity. For 10 granules, for example, no matter what
value of TP was used, the coﬁputer utilization was within
3% of the maximum observed for that granularity. Simi-
larly, for 100 granules, the computer utilization was
within 15% of the maximum observed for any value of TP.
Thus even with random lock placement, a hiefarchy with a
small rumber of small locks, at best, provided slight

improvement over a single level locking system.

Under the random access assumptions, the overall max-
imum machine utilization occurred with 5000 granules and a
TP of 1%. The cross-hatched area in figure 2-11
represents those combinations of TP ard number of small
locks which resulted in machine utilization within 2% of
the overall maximum. Hence, fine granularity was pre-
ferred. The lock hierarchy effectively prevented exces-
sive locking overhead for large transactions. The coarse
granularity, or the other hand, resulted irn poorer useful
machine utilization regardless of the TP setting. With 10
granules, for example, the USEFULIO was onrly 3/4 of the
maximum USEFUQIO observed with 5000 granules and a TP of
1%.

Threshold percentage

100 -

50

\

o
1

(&)
1

™

Q

X
o
X

A
5
h
W%

o

X
50
K
#%é@
20

(A
G
0
o
o
o

)
\

9%
Q

o//

with respect to tp

s

.4’/“

P

o
3y

O

0.1 |
I | 0

100

| 000

l
5000

Area A:
Area B:
Area C:

No. of granules (Log scale)

tp too high
Highest Machine Utilization
tp too low

Figure 2-11 The Effects on Computer Utilization of
the Number of Granules on the.Optimal
Threshold Percentage

77

Overall

optimum

78

For fine granularity, the B areas in figures 2-10 and
2-11 had considerable overlap. For example, in figure 2-
10, with 2500 small locks, the 29 of optimum interval
occured with a TP between 0.5% and 10%. In figure 2-11,
with the same number of small locks, the interval occurred
with TP values between 0.5% and 5%. Thus, at this granu-
larity, a TP between 0.5% and 5% could safely be chosen

regardless of the randomness of the data access patterns.

In other simulation runs, as the average transaction
size decreased, the range of acceptable TP values (area B)
also decreased. With fine granularity, regardless of the
transaction sizes, a threshold between 1% and 2% always

produced machine utilization within 2% of the maximum.

With coarse granularity, however, changes in the size
of the transactions, created non-overlapped intervals of
acceptable TP values. In other words, no one value of TP
could be chosen that would be correct for vastly different
sized transactions. Thus much greater care must be
applied to a hierarchy with coarse granularity. Further-
more, a stable transaction size envirorment must be

assumed.

The size of the database was also varied. For exam-
ple, the simulatior was run with a database conrsistinrg of
only 16 entities. 1In this scenario, the possible interac-

tion of a page/record hierarchy was examined. An entity

79

corresponded to one of 16.records in a page. The simula-
tior was then wused to model the effects of locking the
whole page by the global 1lock, or 1locking individual
records by the small 1locks. Some increase in machine
utilization was observed with a threshold of 50%; but the
increase over using no hierarchy at all was less than 4%.
Again it appeared that a lock hierarchy covering only a

small number of smaller locks was not worth implementing.

The simulation was also run with databases of up to
100,000 entities. The results were similar to the results
produced with a database of 5,000 entities. For example,
experiments were run where the average transaction size of
most of the transactions was just 0.05% of a 100,000
entity database and the average size Qf a few large tran-
sactions is 1% of the database. In these cases, with the
finest granularity (100,000 small locks), a threshold of

1% was still optimal.

Other simulation experiments used the worst case data
access assumption and produced results very similar to

those in figure 2-11.

3.4.2. Claim As Needed Lockirg

There is "~ another difference between the original

model and some database concurrency control implementa-

80

tiors. 1In the original model, a vpreclaim" strategy was
assumed where all of the locks were acquired before any
transaction processing took place. In some database sySs-
tems, a lock 1is not acqui%ed until the related entities
were actually needed Dby a transaction. These .“claim as
needed" schemes are used either to reduce the total time
locks are held and/or because the 1locks to Dbe acquired
depend on data values of entities already accessed. In
these cases, some locks may have to be held while other
locks were requested, and deadlock can occur [COFFT71]. In
this section the effects of a claim as needed scheme are

examined.

3.4.2.1. The Model Extension

The simulation was modified by cycling each transac-
tion through the I/0 and CPU queues (see figure 2-1) once
for each lock required. The total I/0 and CPU times
required for a transaction were the same as in the origi-
ral model and were equally distributed among each of a

transaction's cycles.

Between each cycle, a transactior requested one lock.
If the 1lock was granted, the transaction went on the
active queues. When a transactior completed its last
cycle on the active queues, all its locks were released as

in the original model.

81

If the lock was denied, the requesting trarsaction
was placed on the blocked queue. The lock could be denied

due to locks held by either another active transaction, or

by a blocked transaction. 1In the latter case, the block-

ing transaction was or the blocked queue, and a deadlock
condition could exist. If deadlock occurred, a victim was

picked for backout. The locks held by the victim were

released, any blocked transactions were freed, and any

time spent on the active queues by the victim was added to

a "lost time" total.

3.4.2.2. The Simulation Results

The modified simulation was run varying the sizes of
the transactions, changing the lock placement assumptiors,
and with and without a 1lock hierarchy. Again it was
assumed that there was no I/0 cost associated with locking
and that the transactions required equal amounts of CPU

and I/0 resources.

The results of these simulatior runs were very simi-
lar to the results from the preclaim strategy. In all
cases, a claim as needed strategy did rot change the

granularity required for maximum machine utilization.

For example, figure 2-12, shows the results of run-

ning the simulatior with no hierarchy, well placed

»

Machine utilization

82

'Lost time due

to dead lock
resolution

16 000 -
12 000:
8 000: Useful CPU utilizatién X __Lock cost
4 000:-
|] | k| L)
I 10 100 1000 5000

No. of granules (Log scale)

" ‘Figure 2-12 Computer Utilization as a function
of No. of Granules with "Claim as
Needed" Locking and Well-placed Locks.

83

granules and transactior sizes determired by a hyper-
exporertial distributior. The lost time area included the
machire utilizatior by trarsactiors that had to be res-
tarted due to deadlock. The useful computing included
orly the CPU resources used by successfully completed

transactiors.

In the simulatiorn experiments, the 1locking cost
observed in the preclaim model was greater than the lock=-
ing cost observed in the claim as nreeded locking model.
In the vpreclaim model, in the case of a lock request
failure, all of the locks had to be requested again. In
the claim as needed model, in the case of a lock request
failure only the deried lock had to be rerequested. How-
ever, any decrease in lock costs in the claim as needed
model was more than offset by the lost time due to res-
tarting transactions. Thus, the useful machine utiliza-
tior was greater under the preclaim model than under the
claim aé reeded strategy. Many other cases with different
transaction sizes and lock placement assumptiors Qere also

tested and produced similar results.

For example, figure 2-13 compares the useful machire
utilizatior betweer the two models under the assumntiors
that all trarsactiors were small and that each trarnsaction
had random data access patterrs. Ir both of these runs,

the averafge transaction size was 0.1% of the database.

utilization

Machine

20 000+
16 000
| Precfaim
12 000 l
8 0004 T
Claim as needed
4 000+
1 1 1 1
| 10 100 1000 5000
No. of granules (Log scale)
Figure 2-13 '"Preclaim" versus '"Claim as Needed"

with Random Placement of Locks

84

85

Note that, with the possibility of Aeadlock, the machinre
utilization curve did rot flatter out as the granularity
increased. Thus, the firest granularity is slightly more
beneficial with the claim as needed model than with a pre-
claim model. Note, however, that the claim as reeded
scheme agair produced less qsefqi I/0 and CPU wutilization

than the preclaim model.

However, as the average transaction size became even
smaller, the last observatior did rot hold. With an aver-
age transactior size of less than 0.05% of the database,
random data access patterns, ard the finest granularity,
the claim as needed scheme resulted 1in greater useful
machine utilization. Under these conditions, the claim as
needed strategy allowed the greatest corcurrency since
iocks were heid for a shorter period of Lime. In contrast
to other runs, very few transactiors had to be backed out
and the cost of rerunring such small transactions was

insignificant.

The modified simulatior was also rur with a lockK
hierarchy ard various threshold percentage values. A
similarity ir the shaves of the curves between the opre-
claim and claim as reeded strategies was also observed.
Under the random access assumpticrs, for example, the max-
imum machine utilizatior was again reached with the finest

granularity and a threshold value of 1 to 2 percent.

24

i

4]

(A

s

86

3.4.3., Summary

A lockine hierarchy should be implemented when the
small locks are of a fire granularity; a low threshold was
used to separate the large and small transactiors; and
random data access patterns were anticipated. Under these
assumptiors the increase ir machine utilizatior over a
single level lockirg scheme was sigrificant. Furthermore,
a threshold of about one percent produced the best results
independent of the granule placement or transaction size

assumptiors.

With coarse granularity, on the other hand, a locking
hierarchy was not beneficial. The benefits of such a
hierarchy were not signrificant and were orly realized ir
certain cases. Another problem with the coarse
granularity/locking hierarchy model was that the optimum
value for the threshold percentage was extremely sensitive
to the placement of the locks with respect to the transac-

tiors.

The acquisitior of locks throughout the processihg of
a trarsactior did rot siarificantly change the other con-
clusiors. However, several observatiors were made.
Deadlcck detectior ard resolutior appeared to be generally
more expensive thar the release ard rerequest used ir the

preclaim straterny. Thus, when 1locks were Knrown at the

87

start of a tranrsactior. a preclaim algorithm is suggested.

4. CONCLUSTONS

The activity and effects of a locking mecharism were
simulated to study the tradeoffs between increased paral-
lelism of corncurrently running transactions and increased
overhead caused by sophisticated and complex locking
mechanisms. The corclusions of the study are first
applied to physical granules. The applicatior of these

results to predicate locking is then discussed.

4.1. Physical Locking

Under the assumptionrs mentioned in the descriptior of
the model, in many cases a small number of granules is
sufficient to allow enough parallelism for efficient
machine utilization. Furthermore, a large number of
granules, correspording to locking a 'page or record is

/

often extremely costly.

These basic conclusiors are due to the following
observatiors. For 1large transactionrs, fine grarularity
becomes too expersive. A transactior which accesses half
of the database, for example, would spenrnd ccrsiderable
resources lockirg each pamse. Yet little gair ir parallel-

ism would be realized since other transactiors would have

88

a strorrs probability of conflictirg with the large tran-
sactior.. A small trarsactior which accesses only ore
page, or the other hand, must lcck a much larger granule.
The resultart loss in parallelism is mirimized because the
small trarsactior would orly hold the 1lock for a short
period of time. The probability of conflict and the
length of ary waiting period would not be 1large due to

that short period of time that the lock is held.

However, there are conditiors where these observa-
tiors do not hold. Details of which corditionrs support

which level of granularity are presented below.

If equal sized lockable granules are assumed, a small
number of granules (10 to 100) are sufficient under any of

the following corditions:

1) The locks are well placed with respect to the running

transactions.

2) The number of entities required by transactions vary
ir size anrd include at least some trarsactiors that

require access to a large nrumber of entities.

3) Some portior of the locking scheme involves extra I/0

for locking proportiocral to the rumber of locks.

what

1)

2)

3)

4)

89

However., each of the followirg factors supports some-

firer granularity:

A1l of the transactions are extremely small and

access less than 1% of the database.

The length of time that locks are held is extremely
lorg ard not proportioral to the size of the transac-
tion, as was the case with the M"idle time" experi-

ments.

The locking costs are reduced, for example, by keepn-

ing all locks in core.

A balance exists between the I/0 resources and CPU

resources required for processing a transactior.

If all of the following conditions are met, the

finest granularity should be used:

1)

2)

3)

A1l of the transactiors are small.

The locking costs are reduced by, for example, keep-

ing all locks in core.

Random access patterrs (or worse) are exhibited by

the trarsactiors.

90

However, if ccrditicr. 1 is violated, a lock hierarchy
must be wused if the fire agrarularity is still to be sun-

ported.

The overall corclusior is thus that the optimum lock-
ing granularity 1is somewhat applicatior dependent. In
many cases, coarse granularity, such as file or relatiorn
locking, with a preclaim strategy is to be preferred. 1In
other cases, somewhat finer granularity, such as area or
extent 1locking is best. In still other cases, the finest

granularity such as page or record locking is required.

4.2. Predicate Lockirg

Four results from the simulatiorn support the poten-
tial viability of predicate locking. Firstly, with predi-
cate locking only a small number of locks must be main-
tained and can probably be maintained in main memory. The
number of locks is proportional to the number of active

transactiors and not to the size of the database.

Secondly, while oredicate lockirg may require more
CPU time per grarule thanr physical lockinrg, the simulatior
results indicate that, for coarse grarularity, some
increases in locking overhead are affordable ard do rnot

sigrificantly interfere with transactior processing.

91

Thirdly, the parameter which had corsiderable effect
or: the desired rumber of grarules was the number of enti-
ties 'touched' by the trarsacticrs. As the trarnrsactionr
size decreased, the desired rumber of granules ircreased.
Note, ir predicate lockirg schemes, the portior of the
database 1locked is determired by the trarsactior, and rot
a presvecified granularity, effectively mimickirg the

above variable granularity.

Finally, the results of the lock hierarchy simulation
might indicate that a simple predicate lockinrg scheme
might be sufficient. 1In one such scheme, two types of
locks could be supovorted. First an entire relatiorn,
record type or file could be locked. The small 1locks
would be based or a simple unique key-value pair. The
predicate locking scheme could easily check whether a
key-value pair conflicted with either an entire relation
lock or other key-value pairs. The lock hierarchy simula-
tiorn results indicate that onrly a small rnumber of key -
value pairs would have to be maintained before the 1larger
style lock should be applied. Furthermore, the simulation
results indicated that subsettirg the trarsactions by less
dense attributes (ores with orly a handful of different
values) would not be bereficial ir a 1lock hierarchy.
Thus, in these <cases, keepirg the predicate 1locking

mechanisim quite simple would be justified.

w

92

However. such a simrle predicate locking mecharism 1is
not very differert from a sitple physical leck hierarchy.
For example, lockinrg a lcaical relatioh may in some imple-
mentatiors be idertical to locking a physical file or
area. At the finest grarularity, a predicate 1lock of a
unique key-value pair idertifies ore record. A physical
lock, on the other hand, would uniquely identify the same
record by a physical address. Thus, in terms of parallel-
ism and operatior, a simplified predicate locking scheme
is identical to a physical locking scheme. The physical
locking scheme, however, may be easier to implement.
Moreover, the physical address for a record might take up
less space in a lock table than a predicate lock for the

same record.

Another problem exists with predicate 1locking. Ir
some applicatiors, a secordary key or index is used to
access a given record type. Under the simple predicate
locking hierarchy described above either all access via a
primary key would have to wait for the seconrdary index
applicatior to complete; or the record would have to be
read, the key value obtaired, ard ther a 1lock requested.
Wher the 1lock is granted the record would have to be
reread. With physical locks, or. the other hard, the phy-

sical record address would be unique.

93

In summarysy ther, while predicate lockirg may be
viable, it does not seem to be worth phe extra implementa-
tionrn and lockiné overhead, because it car orly be applied
when specific sets of the database need to be locking.
Furthermore, those cases can be handled adequately by

similar physical locking schemes.

CHAPTER 3

DISTRIBUTED DATABASE SYSTEMS

1. INTRODUCTION

In the previous chapter, simulatior models were used
to investigate the performance issues of corcurrency con-
trol in a centralized database. In this chapter, those
simulation models are extended to study the performance

issues of concurrency control in a distributed database.

1.1. Distributed Databases

In a distributed database, the data is stored at mul-
tiple computer sites connected by some type of computer
network. In this envirorment, a ﬁransaction qriginates at
one of the computer sites and potentiaily accesses data at
other (or remote) sites as well as at the origirating

site.

The benefits of a distributed database include the
ability to share and access geographically distant data,
to exercise some local cortrcl over subsets of the data-
base, to provide mcdular growth ard resilierncy toc the

database, ard to increase the potertial parallelism

94

95

allowed in accessing the database.

1.2.

Distributed Database Concurrency Control

The distributed concurrency control mechanism must
guarantee the same type of consistency which was_needed in
the centralized database. However, the performance issues
in a distributed database are different than in a central-
ized database. This difference is due to the following

factors:

1) More parallelism is possible because multiple sites
can simultaneously orocess transactions. In the cen-
tralized model, at most two servers, the I/0 and CPU
processors, could be kept busy. In an N site system,
there are 2*N servers which can 'be simultaneously

processing transactions.

2) The'dverhead associated with distributed concurrency
control will be higher than the overhead required in
a centralized database. The additionral overhead is
due to the costs required to set locks at remote
sites and/or the costs which may be required to
resolve deadlock between trarsactiors at different
sites. The remote locking cverhead 1is due to the
network delays involved with serdirg and receivirg

lock messages. The deadlock resolutior overhead

IR

96

includes the computer resources required to detect

deadlock and to roll back certain transactions.

The simulation model for the centralized database
concurrency control was extended to investigate the
trade-offs between the increased parallelism and increased
overheads of a distributed database. The major areas of
study include the effects of varying the locking granular-
ity, varying the percentage of transactions requiring
non-local or remote resources and varying the throughput

and bandwidth of the network.

In the next section, the extensions of the simulation
model which apply to all distributed concurrency control
algorithms are discussed. In section 3, four different
concurrency control algorithms and their associated simu-
lation extensions are discussed. 1In section 4, the simu-
lation results for each of the four algorithms are
reported. In the final sectior, the major conclusions are

stated.

2. MODEL EXTENSIONS

In this sectior the model extersiors are described.
First, the network model is reviewed. lNext the actiors at
each of the nodes or retwork sites is discussed. Firally,

the input and output parameters of the model are dis-

97

cussed. Throughout this section, orly the processing . of
transactions will be considered. In the next section,

four concurrency control algorithms will be integrated

into the model.

2.1. Network Model

The network is eonsidered to be a collection of com~
puter sites called nodes, all connected by a "Jogical net-
work manager" as shown in figure 3-1. This manager could
represent a specific star like network, or a more general
node to node network like the ARPAMET [KLEI76]. 1In either
case it is assumed that the time to send a message between

any pair of nodes is the same.

Each Node contains a message-in and a message-out
queue. Messages are taken from the message-out queue and
given to the Network Manager together with a destination
and a message length. When a message has received the
needed amount of network service, it is placed on the des-

tinatior messafge-in queue.

Both a speed and a bandwidth are associated with the
Network Manager. The retwork speed is represented by the
minimum time a message of any type must sperd in the net-
work where time is measured in the time units of the simu-

latior. The bandwidth is represented Dby the maximum

iy

98

Network manager
|
QUEUE SERVER
>
\
v \
MESSAGE MESSAGE MESSAGE MESSAGE
ouT IN o o o ouT IN
QUEUE QUEUE QUEUE QUEUE
NODE o NODE N

Figure 3-1:

Network Model

99

number of messages which can be serviced in one of those

time units.

The flow of a message in the Network Manager can be

described as follows:

1) When a message enters the network manager, the time
remaining for that message is initialized to the mes-
sage length in the time units of the simulation. The
message length can vary depending on whether or not
data is being sent but is at 1least equal to the
minimum length mentioned above. More details on this

length are in section 2.3.

2) If MESSBDWH is the bandwidth of the Network Manager,
the times remaining of the first MESSBDWH messages in

the Network queue are reduced by onre time unit.

3) If the time remaining for any message is zero, it 1is
delivered to the message-in queue of the destination

node.

In several of the corcurrency control schemes, a site
can send messages to itself. 1In these cases, no retwork
resources are corsumed or retwork delay realized, sirce
the message is taker directly off of the message-out queue

and placed or the message-ir queue. However, local mes-

100

sage costs (CPU time spent by a node handling messages)

are included for these self-directed messages.

2.2. Site Model

Each site or rode in the model is very similar to the
centralized model presented in Chapter 2. However,
several new queues and procedures were added to process
distributed transactions. The.new model is shown in fig-
ure 3-2. Again transactions are cycled around a closed
loop model and initially arrive onre time unit apart on the

pending queue.

There are tﬁree possible types of transactions in'the
model. First, there are 1local . transactions which are
identical to the transactions in Chapter 2. Secondly,
there are MASTER transactions which require access to
parts of the database at randomly selected 6ther rodes.
The MASTER transactions initiate a fixed number of SLAVE

transactions at those other nrodes via messages.

The transactions go through the following steps: 1) 1leave
the pending queue, 2) 1/0 processing, 3) CPU processirg,
4) data transmission, 5) local processirg completior.,, and

6) distributed prccessinrg syrchrorizatior.

1) When a transaction leaves the pending queue it is

placed on the I/0 queue. If the transaction is a

f

¢

ME SSAGE MESSAGE
oOuT IN
QUEUE N 4 QUEUE
\'\ /!

\'\ /!

\ N /|
N ya—

N \ 7 /

VN /" !
N\ |-
\ ,j:jiﬁ 1/0
\ — QUEUE
\ <7
~—
\ ~ |
PENDING \ N
QUEUE \ l
\
T
-1 cru
1 — | QuEUE
—
N TS
‘ ~
i l
NETWORK DATA
DONE TRANSM.
QUEUE QUE UE

Figure 3-2:

Node or Site Model

101

2)

3)

4)

5)

102

MASTER, it' sends SLAVE create messages to the

appropriate nodes.

The I/0.server is multiplexed among the transactions
on the I/0 queue. When a transactior has received
its share of I/0 resources, it is placed on the CPU

queue.

The CPU server iS multiplexed among the transactions
in the CPU queue. When a transaction has received
its share of CPU resources, its next actiorn depends

on whether or not the transaction is local.

Local transactions are considered complete at this
point and recycled to the pending queue. Non-local
transactions (both SLAVES and MASTERS) are placed on
the data transmission queues. If any data is to be
transmitted, a data transmission message 1is sent.
This transmissior message is in fact addressed back
to the sendirng transactior. Thus the data transmis-
sion 1is complete when this message is delivered back

to the origiratirg site.

When the data trarsmissior message has been received
(or if ro data was to be transmitted), the ror-local
transactior proceeds to the Network dore queue. At

this time, SLAVE transactiors sernd a SLAVE complete

6)

103

message back to the MASTER transaction.

Depending or the concurrency control strategy, a
SLAVE either waits on the Network dore queue or is
simply released. The release of a slave is discussed
in more detail in sectior 3. The MASTER transaction
waits on the Network dore queue until it has received
"slave complete" messages from all its slaves. At
that point, the transaction is recycled back to the

pending queue.

Three types of messages are common to all of the con-

currency control algorithms. The actions caused by these

messages are described below.

1)

2)

3)

When a "SLAVE create" message is received, a transac-
tion jdentical to the MASTER transaction, only

flagged as a SLAVE is added to the pending queue.

When a "data transmissior done" message is received,

the waitirg MASTER or SLAVE transactior is notified.

When a "SLAVE complete" message 1is received, the
correspordinrg MASTER transactiors or the Network dore
queue is rotified. If the “ASTER transactior is nrot
completed, the message is returred to the message-in

queue until the MASTER trarsactior completes.

PE

104

Several simplifying assumptions should be noted about
the model. First, all of the SLAVEs are identical to the
originating MASTER in terms of the proportion of database
accessed and whether or not data is to be transferred. In
distributed database applications, the actual characteris-
tics of the SLAVEs could be quite different from the MAS-
TER and from each other. Second, the only synchronization
between the SLAVEs and their MASTER transaction occurs at:
the beginning and end of the transaction. Some applica-
tions would require additioral synchrorizations on the

data being transmitted [WONG77, EPSTT78].

Also note thét a transaction is on each of the 1/0,
CPU and data transmission queues once in the indicated
serial order. The total processing required is the same
as if the transaction cyclically accessed the I1/0, CPU and

data transmission queues.

2.3. Model Parameters

The input parameters can be divided into the parame-
ters that characterize the workload, the svstem parameters
that characterize the irndividual rodes, and the parameters
that characterize the network. The workload parameters
determine the database and the tranrsactiors that are run

agairst that database. As in Chapter 2, the system param-

EY

105

eters determine the computer and database management sys-
temv characteristics. The retwork parameters include the
minimum time required for messages, the network bandwidth
and the CPU and I/0 resources required for processing mes-

sages at each site.

The output measurements include the overall CPU and
1/0 resource utilizations for transactions, messages and

concurrency control as well as network measurements.

These parameters, in most cases, have the same
interpretation as in Chapter 2. All of the parameters are

described in detail below.

2.3.1. Workload Parameters

The workload parameters describe the transactiors and
the portion of the database at each node. Table 3-1 sum-

marizes the workload parameters.

The first five parameters are identical to the param-
eters discussed in Chapter 2. For almost all of the
experiments reported irn this chapter orly a few settings
of those parameters are used. The effects of varying
those parameters would be similar to the effects repcrted

ir Chapter 2.

In particular, NTRAN was set to 10 simulatirg 10

transactions rurnring at each node. The DBSIZE at each

106

Table 3-1
Workload Parameters

Parameter Description
Local Parameters

NTRAN Number of transactions running at each node
DBSIZE Size of the portion of a database at a given node
AMEAN Low-mean of exponential distribution

for transaction size
BMEAN High-mean of exponential distribution

for transaction size
ALPH Cut point for Hyper-exponential distribution

for transaction size
LKPLMT Lock Placement assumptior

Distributed Parameters
PREDIST Percentage of transactions which are non-local
PRETRAN Percentage of distributed transactions
which transfer data
PREDATT Percentage of data transferred by
those distributed transactions
NSLAVES Number of SLAVES for a distributed
transaction
node was set to 10,000, resulting in a total database size

of 10,000 times the number of nodes in the network.

Two classes of transactions are modeled. With class
one transactiors, the transaction sizes vary considerably
and the locks are assumed to be well-placed with respect
to the accessing transactiors. For these tranrsactiors
AMEAN is 5, BMEAN is 250 and the ALPH parameter was set to
.1. This class of transactiors simulates a workload where
most (90%) of the transactiors are small (they access 0.05
percent of the database) and a few of the trarnsactiors are

large.

107

With class two transactiorns, all transactions are
small and the placement of the locks is assumed to be ran-

dom with respect to the accessing transactions.

The remaining parameters deal with the non-local
transactions and are the ones of most interest in this
chapter. The proportior of transactions which are MAS-
TERs, the PREDIST parameter, determines the number of
transactions at each node which require processing at some
other site. Experiments were run with PREDIST settings of

0, 10, 25, 50, 75 and 100 percent.

The number of SLAVES required by a MASTER are deter-
mined by the NSLAVES parameter. The original number of
database entities required by the MASTER is evenly distri-
buted among the SLAVEs and the MASTER. Thus, if the MAS-
TER originally requires E of the database entities, at
each site where the transaction was active,

E/(NSLAVES + 1), entities are actually accessed.

The amount of data to be transferred is determined by
£he PRETRAN and PREDATT parameters. The PRETRAN parameter
determires the number of distributed transactiors which
transfer any data at all. The PREDATT parameter deter-
mines how mary of a transaction's entities will have to be
transferred. The number of entities transferred detér-
mines the lergth of a data transfer message and hence

determines how 1lorg a transactior spends or the Network

108

wait queue.

In summary, the database consists of a collection of
entities at each node. Each transactionrn "touches" or
accesses a certain number of those entities. Some of
those transactions require access to entities at remote
nodes. Furthermore, some of those transactiors will have

to transfer data between nodes.

2.3.2. System Parameters

The system parameters describe the computer sy;tem or
database system at each node and are very similar to the
system parameters of the centralized database model
described in Chapter 2. The system barameters are summar-

ized in Table 3-2.

The NGRAN parameter 1is the number of lockable
granules at each node of the distributed database and is

identical to the NGRAN parameter of Chapter 2. The param-

Table 3-2 System Parameters

Parameter Description

NGRAN number of lockable urits of ore node
of the database

CPURATE CPU time to process cre enrtity

IORATE I/0 time to nrocess ore ertity

LCPURATE CPU time to process ore lock

LIORATE I/0 time to process or.e lcck

109

eter was varied from 1, representing one lock at each
node, up to DBSIZE, representing ore lock per entity in

the database.

The CPURATE and IORATE determine the cost to process
one entity in the database and are also identical to the
parameter in the centralized database model. For these
experiments, the CPURATE and IORATE were both equal to 1
time unit. This scenario simulates a system with a bal-
anced 1load between the CPU and I/O requirements. Also
under this scenario, one time unit of the simulation §an
be thought of as the time required for one I1/0 operation,

i.e., about 30 milliseconds.

The LCPURATE and LIORATE parameters, the costs to set
and release one lock, are also identical to the parameters
in the centralized database model. For these experiments,
the lock CPU rate was one tenth the entity CPU rate, i.e.,
0.1. Under the scenario mentioned above, this might
represeﬁt 3 milliseconds to set and release a lock. The
LIORATE was zero, simulating a system where all locks are

kept in mainrn memory.

Note that NGRAN, LCPURATE, LIORATE ard LKPLMT (from
the previous section) are locking parameters used by all
of the corcurrercy cortrol algorithms. Additioral parame-
ters relevant.to the irdividual corcurrercy cortrol algo-

rithms are introduced ir the sectior describing those

110

algorithms.

2.3.3. Network Parameters

The network parameters determine the throughput and
bandwidth of the network as well as the CPU resources
required at each site to send and receive a message. The

network parameters are summarized in Table 3-3.

The number of nodes in the network, set by the NNODES

parameter was varied from two to eight.

The message rate parameter, MESRATE, is the length of
time it takes to send a simple message (i.e. a non-data
transfer message) from one node to another. Typical
values for this parameter ranged from 1 through 10. A
value of 3, for example, would represent a high speed net-
work, where, under the interpretatior mentioned in the
previous sectior, it would take about 90 millisecords to

Table 3-3 Network Parameters

Parameter Description
NNODES The number of nodes or sites in the network
MESRATE The time units a message must stay or the
network .
DATARATE The time urits to trarsfer an entity
MESBDWT The number of simultareous messages or
bardwidth ¢f the Network Manager
MESIORATE The I/0 time required by a3 rode to serd or
receive a message
MESCPURATE The CPU time required by a node to serd or receive

a Mmessage.,

111

deliver a message. A value of 10 implies it would take
about 300 milliseconds to send a message, about the time

required on the ARPANET [KLEIT76].

The DATARATE, together with the MESRATE parameter,
determines how long a data transmissiorn message will take.
If E is the number of entities to be transmitted, then the

data transmission message would take
MESRATE + E * DATARATE

time units to be delivered. If an entity is a. 512 byte
page, and an ARPANET like file transfer at 50,000 bits per
second is assumed, it would take about 0.1 seconds to
transfer 1 entity. On the other hand, on a three
megahertz speed network, it would only take about .0015
seconds. Many of the simulation experiments used and
"optimistic" DATARATE of .05 time units. Other simulation
experiments used DATARATES of .1, .25, arnd .5. The MES-
RATE tefm is included in the above time to represent the
initialization message which often must precede a network

data transmission.

The MESBDWT parameter determires the barndwidth of the
networ¥ manrager. As explaired ir sectior 2.2, at most
MESBDWT messages in the retwork queue are serviced each
time unit. Fdr lightly loaded retworks, it is reasorable

to assume that the bandwidth is urbourded [XLEI76] and

112

that assumptiorn is ir fact made ir most of the simulation
experimenrts. The results of varyirg that parameter are

also presenrted.

The MES&ORATE and MESCPURATE parameters represent the
resources required at each rnode to send or receive a mes-
sage. For these simulatior results, the MESIORATE was
zero, simulating that the processing of all messages is
hanrdled in the main memory; and the MESCPURATE has a value
ranging from .01 to .3 time units; or in the canonrical
interpretatior from .3 to 9 milliseconrds. For the most
part, the lower bound or: MESCPURATE was used, simulating a

very low (and opntimistic) overhead message processor.

2.3.4. Output Parameters

The quartities to be measured or the output parame-
ters are summarized in Table 3-U4. These measurements
include all of the measurements included in the certral-
ized database simulatior and some other parameters unique

to the distributed model.

The first eight output parameters are idertical to
the output rarameters discussed ir. Chapter 2. The TCPU
ard TIO parameters refer to the rumber cf simulaticor time
ur:its durirqg which the C?J ard I/0 servers for all of the

retwerk nodes were kent busy, The LOCKCPU ard LOCKIO

Table B-h Output Parameters

Parameter

TCPU

TIO
LOCKCPU
LOCKIO
TRANCOM
AVERRES
USEFULCPU
USEFULIO

MESCPU
MESIO
TMESS
LMESS

Descriptiorn
Local

Total time the CPU server was active
Total time the I/0 server was active
CPU overhead for locking

I/0 overhead for locking

Number of trarsactions comnleted
Average response time

CPU time for processirg transactionrs
I/0 time for processing transactions

Distributed
CPU overhead for network messages

I/0 overhead for network messages
The total number of messages sent

113

The number of Lock related messages sent

parameters refer to the number of time units the respec-

tive servers were busy managing locks.
eter is the total number of transactions completed at

end of a simulation run.
\

tion, regardless of the number of corresponding

tranrsactiors,
parameter measures the average number of time wunits
takes for
trarsactiors,
erce Dbetween
perdirg queue

dore gqueue.

The
USEFULIO,

is counted as onre transactior.

when

cemputer utilizatiors, USEFULCPU

The TRANCOM param-
the
Note that a distributed transac-
SLAVE

The AVERRES

it

transactior to complete. For distributed
the resporse time refers to the time differ-
a MASTER transacticr first enters the

ard wher that trarsaction leaves the retwork

and

to the resources wused for trarsactior

114

processing. These measurements were not wused for con-

currency control or for message processing. Note that

TCPU=USEFULCPU+LOCKCPU+MESCPU

TIO=USEFULIO+LOCKIO+MESIO.

The MESIO and MESCPU parameters refer to the time
required by the I/0 servers and CPU servers at the various
nodes to process messages. Note that a message must both
be sent and received, so that the I/0 and CPU costs to
send n messages are n*2¥MESIORATE and n¥2*MESCPURATE
respectively. This cost is also independent of the mes-
sage length. Thus, for a data transfer message, this cost
represents 1initial set up costs to actually transfer data
to the network. No additioral local costs for the data
transfer are incurred. In some systems considerably more

overhead would be incurred for data transfer.

The TMESS parameter renresenrts the total number of

D

messages sent over the network. The LMESS parameter is
the number of those messages which were sernt only for con-
currency conrtrol reasors. The messages, called 'Lock'
messages, are discussed wher the concurrercy cortrol algo-

rithms are irtroduced.

115

2.4, Typical Scenarios

The simulations were run with the parameter settings
shown in Table 3-5. The local parameters are jdentical to
the parameters in the centralized database simulatiors and
for the most part were not varied. The initial settings
of the distributed parameters are designed to study the
concurrency control algorithms under a baéically free and
unlimited network. Later alternate parameter settings are
used to study the effects of network limitatiors on the
different concurrency control algorithms. The results of

those experiments are reported in section 4,

In the next section, the four concurrency control
algorithms simulated are described and additional parame-

ters required for those algorithms are introduced.

3. DISTRIBUTED CONCURRENCY CONTROL

The distributed database conrcurrency control algo-
rithms can be divided irto two general classes: primary
site corcurrency cortrol [ALSB76, MENAT8] and decentral-

ized corcurrency cortrol [STON78, ELLITT, GRAY78, ROSETT].

In the primary site corcurrercy cortrol schemes for a
distributed database, ore site is choser to ernforce a pro-

cessing schedule equivalent to a global serializatior of

116

Table 3-5 Typical Parameter Settings

Parameter

NTRAN
DBSIZE

AMEAN
BMEAN
ALPH

LKPLMT

CPURATE
JORATE
LCPURATE
LIORATE

PREDIST
PRETRAN
PREDATT

NSLAVES

NNODES
MESRATE
DATARATE
MESBDWT
MESTIORATE
MESCPURATE

all of ‘the

straightforward
are presented ir

primary site

Settirg Irternretation
Local
10 10 trans at each node
10,000 10,000 database entities
at each node
5 0.05% of DBSIZE
250 2.5% of DBSIZE
10% of trans are large
0 All trans are small
1 Well-placed locks
(used with ALPH = .1)
2 Randomly placed locks
(used with ALPH = 0)
1 30 msecs
1 30 msecs
A 3 msecs
0 Locks in main memory
Distributed
o 10% of the transactions
are distributed
.40 40% of those require data
transfer
.25 25% of entities touched
by the transactiors are
in fact transferred
5 A distributed transaction
runs at all nrodes
6 Six nodes ir the network
3 High speed retwork
05 fast data trarsfer HNeatwork
0 Lightly loaded retwork
0 Messages handled ir core
.01 .3 msecs (very optinmistic)

trarsactiors

harndles all

rurnirg at all
implemertaticrs of

sectiors 3.1 ard 3.2.

sites. Two
a primary site model

Basically, if a

cercurrercy cortrol, the same

algorithm used for a centralized database can be used for

M7

the distributed database.

In the decentralized concurrency cortrol schemes,
each site maintains its owr locks for that site's portion
of the database. However, a deadlock condition [COFFT71]
can exist in the network even though no deadlock cycle
exists at any given node. For example Transaction 1 can
be blocked at node i by Transaction 2. At node j, how-
ever, Transactiorn 2 can be Dblocked by Transactiorn 1.
Although no deadlock exists at either node i or j, neither
Transactior 1 nror Transactior 2 can be completed. Two
mechanisms and their simulatior implementatiors for deal-
ing with thié deadlock problem are presented in sections

3.3 and 3.4.

3.1. Primary Site Model 1

The concurrency control mechanisms in both the pri-
mary site models require the following charges to the node

model shown in figure 3-2:

1) Wher ary trarsactior (local or MASTER) leaves the
perding queue, a global lock request is sernt to the
rode selected as the "PRIMARY" site. The trarsactior
then waips or a rew queue, the slcbal perdirg queue,

until all of its locks are grarted.

118

2) When a global lock grart is received, the transaction
can proceed to the I/0, CPU and data transmission
queues as before. At this time, a MASTER transactiorn

starts its corresponding SLAVE éransactions.

3) Upor receipt of a "SLAVE create" message, a new tran-
saction identical to the MASTER transaction is placed

directly onr the I/0 queue.

4) As in section 2.2, a MASTER transaction waits on the
Network dore queue until it has received "SLAVE com-
plete" messages from each of ité SLAVEs. At this
point, a MASTER transactior sends a "global lock
release" message to the PRIMARY site and is recycled

back to the pending queue.

5) In the PRIMARY site model, a SLAVE transaction need
rot wait on the Network dore queue; it can simply
send its "SLAVE complete”" message and leave the sys-

tem,

Note that the "global 1lock request", "global 1lock
grart", and "global 1lock release" messages are all
included in the lock message court. Also rote that the
"global lock request" ircludes the lock requests for all

of the SLAVEs.

119

In the primary site model, the nodes are considered
to be numbered =zero through NNODES - 1. For each node,
there is a "blocked" queue and a "locks held" queue as

shown in fighre 3-3.

When a "global lock request" is received, the PRIMARY

site lock controller goes through the following steps:

1) Determine which nodes will be used by the requesting

transaction.

2) For each node, i = 0,...,NNODES -~ 1, see if this
transaction requires 1locks; if not, proceed to the
next node. If so, request the locks (identical to a

lock request in Chapter 2) required at this node.

3) If the locks are granted, record this fact on the
"locks held" 1list for node i and repeat step 2 for

nodei+1.

4) If the locks are denied, place the transaction or the
blocked queue for node i, recording the blocking
transactior which is onr the "locks held" queue for

this rode.

5) Wher the locks at all of the required nrodes are
granted, a "global locks granted".message is sent to

the origiratirg site.

NEW REQUEST 120

<
d

BLOCKED
|
NODE
0
L R DENIED NODE o
LOCKS
HELD
GRANTED
i)
M
" BLOCKED
A
: NODE i
N%DE LOCKS
L R DENIED HELD
GRANTED ¥
v
: ——
BLOCKED |
i, LOCKS
NO
NNODES-!I HELD
L R DENIED
GRANTED T

!

ALL LOCKS GRANTED

Figure 3-3: Primary Site Model

121

When a "global lock release" is received, the PRIMARY
site lock controller removes the corresponding transaction
from each of the ™lock held" queues. Ary transaction
which was blocked at node i by this transaction is res-

tarted at step 2 for node i, in the above algorithm.

The following observatiors should be noted. First,
deadlock is impossible, since the locks at the different
sites are always acquired in a fixed order. Second, LOCAL
transactions will only be involved with locks at their
originating sites. Third, note that a non-local transac-
tion can wait for locks at ore node while holding locks at

a lower numbered node.

All of the locking costs are absorbed by the primary
site which also has a normal load of transaction process-
ing. The use of the CPU and I/0 servers by the primary
site cortrol mechanism has a preemptive priority over
transac;ion processing requests. In other words, if there
are global 1lock releases or requests, the PRIMARY site
first has to serve those requests before it can. process
any transactiors. If serving those requests takes more
than onre simulatiorn time urit, no transactior processing

takes place during that time unit.

122

3.2. Primary Site Model 2

The activities at each site of the distributed data-
base are identical under this model and the previous pri-
mary site model described above. The only difference in
the two models occurs in the Primary site lock control.
In this model, there is only one blocked queue, although

there is a 'locks held' queue for each node.

When a "global lock request" is received, the PRIMARY

site lock controller goes through the following steps:
1)-3)Same as in previous primary site model.

4) If the locks are denied, release all of the locks
held for 1lower number nodes, record the blocking
transaction and place this transaction on the sirgle

blocked queue.
5) Same as in the previous primary site model.

When a "global lock release" is received, the PRIMARY
site cortroller again releases the locks held at each
node. Any trarsactior which was blocked, is restarted at

step 1 of the above algorithm.

This model differs from the previous mcdel 1irn two

ways. The mair differerce is that 1o trarsactior car hold

123

locks at onre node while waiting for 1locks from another
node. This difference means that transactions requiring a
fewer numbef of nodes, (i.e., local transactions) have an
implicit priority over transactions requiring locks at

more nodes.

3.3. Wound-Wait Model

As previously mentioned, decentralized concurrency
control requires a mechanism for resolving deadlock. In
this section an extension of a ‘“"wound-wait" . scheme
[ROSE77] for resolving deadlock is discussed. First the
original algorithm in [ROSE77] is presented, followed by
two extensions. Finally, additidnal changes in parame-

ters, relevant to the "wound-wait" algorithm are reviewed.

3.3.1. Original Wourd-Wait Algorithm

In [ROSE77), the transactiorn model is slightly dif-
ferent than the ore presented in this chapter. A trahsac-
tiorn is viewed as a process which is iritiated at ore nrode
and moves from rode to rode in the course of its process-
ing. At any irstarce the process is cornsidered active at
ore node ard iractive at all other rodes that it has

visited.

124

Under the wound-wait algorithm, a unique number}
assigsred to each process or tranrsaction, is obtained by
concatenating a starting time with the node number at
which the process is initiated. (The algorithm does not
require that the clocks which generate the time stamps be
perfectly synchrorized. However, some close correspon-
dence with the '"real" time would be desirable. In
[LAMP77], a sufficient algorithm for keeping clocks at

nodes in a network reasorable synchrorized is presented.)

Suppose Transactior 1 requests locks held by Transac-
tion 2 and that timestamp 1 and timestamp 2 are the unique
numbers associated with the two transactiors. Then the

following steps are taken:

1) If timestamp 1 < timestamp 2, then Transactiorn 1 1is
"older" thar Transactior 2. In this case, Transaction

2 is wounded and Trarsactionrn 1 waits.

2) If timestamp 2 < timestamp 1, then Transaction 2 is
"older"™ thar Tranrsactior 1. Ir this case, Transac-

tior 1 simply waits.

If Trarnsactior 2 is wourded, a message is sert to all
sites visited by Trarsactior 2. 1If termiratior of Tran-
sactior 2 has already bezur, the wourd is 1igrored, sirce

Trarsactior 2 will soor release its locks ard Transactior

125

1-can proceed. ‘If Transaction 2 has not begun the termi-
nation process, it is aborted (or killed) and restarted.
Again, the locks held by Transaction 2 are released and
Transaction 1 can proceed. 'Note that in order to prevent
cascading abortions of transactions, all locks for a given

transaction are held until that transaction terminates.

A natural modificatior to this algorithm is suggested
in [ROSE77], where Transaction 2 is not aborted and res-

tarted unless it is actually in or enters a wéiting state.

This algorithm provides a consistent concurrency con-
trol for which every transactior terminates. Consistency
is maintained because a transactior holds all locks until
it has completed. Thus, two-phased locking is insured.
To see that every transaction terminates, note that at any
given time, due to the uniqueness of the timestamp, there
is exactly onre "oldest" transactiorn. That transaction can
never be wounded and thus must termirate. At that point,
there is a new "oldest" transaction which also must ter-
minate. A tranrsactionr retains its origiral timestamp even

if it is restarted.

3.3.2. Simulatior Implemertatior

To apply the above algorithm tc the distributed tran-

sactior processirg discussed ir this chapter, it must

*

126

first be noted that a wounded transactior can be active at
more than ore site. Thus, the decisionvto abort and res-
tart a transaction might be iritiated at several sites. A
wound or kili message for an already killed transaction 1is
simply igrnored. When a transaction is restarted a ‘'cycle
number' is incremented. The cycle number, initially zero,
is included ir the message addresses so that the restarted
transactior does not erroneously receive an old wound or

kill message.

A second simple modification to the [ROSE77] algo-
rithm was also made. A transaction receiving a wound mes-
sage is not restarted unless that transactiorn is Dblocked
by or becomes blocked by a transaction that the original
transaction cannot wound. In other words, a wounded tran-
sactior must be restarted if and only if it is blocked by
an older transactior. Note +that this algorithm still
resolves any potential deadlock and all transactions must

eventually termirate.

Theorem: This modified wound-wait system still preserves

corsistercy ard every process termirates.
Proof: The database corsistercy is preserved sinrce the
lockirg is still two-ohased.

Every process will termirste, since 2 deadlock cycle

carrot exist ir the wait-for graph. The wait-for graph is

127

a directed graph where the rodes represert transactiors in
the system. Arn arc from ore node to arother implies that
the first node represents a transactiorn that is blocked by

the transactior represented by the secord node.

Suppose a deadlock cycle existed in the graph between

nodes T T (i.e., T T, is blocked

1,'.‘,n
T

1 is blocked by T2, >

by T is blocked by Tn , and Tn is blocked by

3,90., n-1

T1). Without loss of generality, assume T.I is the oldest

transactionrn. Then T1 must wound T2.

If T2 can wound T3, it does. If rot, T2 is aborted and

the deadlock no longer exists.

Similarly, if any Ti cannot wound T it must be

i+1?
aborted.

If all of the T, (i =2,...,n) are wounded, so is T .

But Tn is blocked by T1 and carnot wound T1 because of our

assumptiors.

Thus, T must be aborted ard restarted anrd the deadlock

cycle is broker.

To implemert the abcve algorithm, several med
tiors to the simulaticr were made. First, the arrival
time of each trarsactior was guararteed to be unigue by

insurirg that all trarsactiors arrived at least ore time

128

unit apart. Thée arrival time, corcatenated with a node
number, in the 1least significant bits, 1is the unique
timestamp associated with the transactior. In additior, a
cycle number is added to each transactior in order to
insure that a restarted transaction is not wounded or
killed by a message intended for an earlier incarnation.
When a transaction (SLAVEs excepted) is first placed on
the pending queue, the cycle number is initialized to
zero. Messages are only delivered to transactions with
the correct cycle numbers. Messages destined for earlier
cycles are simply discarded. A SLAVE transactior takes on
the timestamp and cycle number of its corresponding MAS-
TER. The following steps are now followed by a transac-

tion.

1) A transaction leaves the pendirg queue. If the tran-
saction 1is a MASTER and this is the first time this
incarnation has 1left the pending queue, "SLAVE

create" messages are sent to the appropriate nodes.

2) After leavirg the penrndirg queue, . a transactiorn
requests the locks reeded at that site. If the locks
are granted the trarsactior. proceeds to the I/0, CPU
and dat; trarsmissicr queues. If the 1locks are
denied, the trarsacticr. is placed onr the blocked

queue for this node. Let T1 be the requesting tran-

3)

4)

5)

6)

129

saction and T2 be the Dblocking transaction- respec-
tively. If bhoth T1 and T2 are distributed transac-
tiors (SLAVES or MASTERS) and T1 is older than T2,
transaction T2 is "woﬁnded". If T1 is younger than

T2 and has been previously wounded, T1 is killed.

Once the locks are granted, the transactions proceed
on the 1I/0, CPU and data transmissior queues as

before.

A SLAVE transaction sends a "SLAVE complete" message
to its MASTER and waits on the Network done queue for
a release locks message. A MASTER transactior waits
on the Network dore queue until all of its SLAVEs

have completed.

When all of the SLAVEs have completed, the MASTER
sends a "release locks" message to all of its SLAVEs,
releases its locks, and becomes a new transaction on
the pending queue. At this point the transéction is
corsidered dore. When a SLAVE receives the '"release
locks" message, it releases its locké ard leaves the

system.

When any tranrsactior releases its locks, the
correspording blocked trarsactiors (if any) are

placed at the front of the perding queue.

130

When a transaction is wounded, "wound" messages are
sent to the MASTER and all SLAVEs. When a transaction
receives a wound, it is flagged as wounded. If the tran-
saction is already blocked by a distributed transaction
with an older timestamp, the wounded ¢transaction is

immediately "killed".

When a transaction is killed, "kill" messages are
sent to the MASTER and all SLAVEs. Both types of transac-
tions release their locks and blocked transactions are
placed on the front of the pending queue as in step 6
above. Any time spent or the I/0 or CPU queues is counted
in a "lost time" total. At this point SLAVE transactions
leave the system. A MASTER transactior increments its
cycle number and is placed on the back of the pending

queue for a reincarnation.

A few observations should be made. First, in step 2,
only if both transactions are non-local, does a potential
wound have to take place. If the 5locking transactior 1is
local, it is guaranteed to firish since it has preclaimed
all of its loecks. If the blocked trarsactior is local, it

can hold ro locks at other sites and thus no deadlock can

occur.

Secord, wher a trarsactior is restarted, it is placed
on the perdirg queue behird ary trarsactiors that it

blocked. In particular, it 1is placed behind the

131

transaction that caused the original wound. Thus, the

same wound will rot occur again.

Note that the extra "release lock" messages to the
SLAVEs are not present in the primary concurrency control
models. They are not needed in those models because all

locks are held (and thus released) at the primary site.

3.3.3. Additional Parameters

Four additional output parameters were recorded in
the simulationr model for the "wound-wait" concurrency con-
trol. 1In addition, new types of messages are classified

as lock messages.

The four output parameters are for the number of
transactions wounded (NTRWOUND), the number of transac-
tions killed (NTRKILL), and the lost time attributed to
killed transactiors (DLOSTIO and DLOSTCPU). The count of
the number of transactions wourded, NTRWOUND, is made orly
when a cycle of a given MASTER receives its first wound.
Thus, even though the SLAVEs all receive wgund messages,
the wounding of a distributed trarsactior ir orly cocunrted

orce.

Similarly, the court of the rumber of transactiors
killed, NTRKILL, is made orly wher. a MASTER receives its
first kill.

132

The DLOSTIO and DLOSTCPU parameters record the number
of time wunits of I/0 and CPU service respectively that a
killed transactior has received. How much time 1is actu-
ally 1lost depends on both the queue the transaction is on
and the processing completed at that queue. Note that the
definition of the total I/0 utilization, TIO and the total

CPU utilization, TCPU also changes:
TIO = USEFULIO + MESIO + LOCKIO + DLOSTIO

TCPU = USEFULCPU + MESCPU + LOCKCPU + DLOSTCPU.

In the "wound-wait" concurrency control algorithm for
a decentralized database, "WOUND", "KILL", and "lock
release" messages are all counted as 1lock 'related mes-
sages. The lock related messages used in the primary site

models are no longer relevant.

3.4. SNOOP Model

A second decentralized concurrency control algorithm
uses a 'SNOOP' ([STONT78] or a global deadlock detector
[GRAY78] was also simulated. One problem with the
"wound-wait" algorithm is that transactiors may be killed
and restarted nreedlessly. While the algorithm is suffi-
cient to prevent deadlock, it may bg too corservative.

Transaction 1 could be blocked by the younger Transaction

133

2. Transaction” 2 could be blocked by the older Transac-
tion 3, which can in fact complete. Even though no
deadlock is present, Transactiorn 2 would still be res-

tarted.

In this section, an algorithm is described which res-
tarts transactions orly when an actual deadlock occurs.
In section 3.4.2, the implementation of that algorithm in
the simulatiorn model 1is presented. In section 3.4.3

changes in the simulation parameters are discussed.

3.4.1. SNOOP Algorithm

In [STONT78] a decentralized algorithm for concurrency
control is presented. Each node or site in the distri-
buted database is responsible for local concurrency con-
trol for the portior of the database at that site. If two
transactions conflict, the local concurrency control sends
a message about this conflict to a designated site called

'*The SNOOP'.

The SNOOP then detects deadlock by an analysis of the
"wait-for" graoh generated by all such messages. If a
deadlock corditior is detected, a victim is picked to be
killed ard restarted (a reircarratior). Note that wher a
transactior has completed, the SNOOP must also be notified

so that the appropriate entries in tﬁe "wait-for" graph

134

can be cleared.

The same basic idea was also suggested in [GRAY78]
with several modifications. One modification is that a
conflict message is only sent to the SNOOP if the blocking
transaction is directly waiting on a response from another
node or is blocked (directly or indirectly) by some other
transactior that 1is waiting on a response from another

node.

Another suggested modification is to only send such
conflict messages and check for deadlock periodically. In
this manner the §ystem overhead for both handling lock
messages and checking for deadlock can be reduced at the

cost of delaying the detection of an existing deadlock.

3.4.2. Simulatior Implementation

The ‘'SNOOP' simulatior model is very similar to the
wound-wait model. The following steps are taken in the

'SNOOP' model.

1) Same as "wourd-wait" model

r

2) Same as "wourd-wait" if the locks are granted. Sup-
pose the 1locks are deried and T1 is the requesting
transactior and T2 is the blocking trarsactior. If

both T1 and T2 are distributed trarsactions (SLAVES

135

or MASTERS), a conflict message is sent to one of the

sites designated as the SNOOP.
3,4) Same as "wound-wait" model.

5) Same as "wound-wait" except that when a MASTER tran-
saction 1is done, a "clear snoop" message is sent to

the SNOOP.
6) Same as "wound-wait" model.

The SNOOP maintains a global "wait-for" directed
graph. Each node represents a blocked or blocking tran-
saction. An arc from node 1 to node 2 implies that the
transaction represented by node 1 is blocked by the tran-
saction represented by node 2. When a.conflict message 1is
received, a node for each transaction (if one doesn't
already exist) is added to the graph along with the
appropriate arc. At that point, the graph is searched for
a cycle beginning at the node for the blocked transaction.
If deadlock 1is detected, the yourngest (determined by the
unique timestamp) of the two trarsactiors ~involved with
this conflict 1is declared a victim and killed. The fact
that a giver cycle of the victim was killed is remembered

by the SNOOP.

[

136

The killing of a transactior is identical to the kil-
ling of a ‘transaction in the wound-wait algorithm. The
SNOOP sends a message to the MASTER and its SLAVES. Both
types of transactions release locks and record lost time.
A MASTER transaction is reincarrated as in the wound-wait

model .

Note that it is necessary that the SNOOP remembers
both killed and completed transactions for a given period
of time. It is possible that the SNOOP could be notified
of a conflict involving a killed, or completed transac-
tion. In these cases, the conflict occurred before a node
received the 'kill' or 'release locks' message. In the
case of a killed transaction, a false deadlock could be
detected. In the case of a completed transaction, an
extra node would simply clutter the wait-for graph. 1If a
killed or completed transactior is involved in a conflict

message, the message is simply igrored at the SNOOP site.

The cycle rumber is needed by the SNOOP to distin-
guish between messages meant for different irncarrationrs of
a transactior. If a corflict message arrives with a
higher cycle number thar the cycle rumber of a killed
rode, the killed ncde is remcved ard a rew node irserted
ir the graph. If a corflict message arrives with a lower
cycle rumber than the correspcrdirg rode irn the graph, the

message is simply discarded. Such messages are obsclete.

137

Also note that in the case of deadlock, the victim is
chosen from amorg the two rodes involved in this corflict.
This choice is guaranteed to break any deadlocks since the
graph is assumed to be deadlock free before the latest arc
was added. This victim may not be the optimum victim for
backout. However, if a different victim were chosen, the
other‘parts of the graph would still have to be searched

for other deadlock cycles.

Finally note that all conflicts between non-local
transactions are sent immediately to the SNOOP. As previ-
ously mentiored, it is suggested that the confliét mes-
sages should nét be sent unless the blocking transaction
actually enters a "node wait" state. However, in this
model, both MASTER and SLAVE transactions will eventually
wait for messages from other nodes before they release
their 1locks. Since that 'rode-wait' state is inevitable,

the conflict messages are sent immediately.

3.4.3. SNOOP Parameters

As with the "wound-wait" algorithm, several nrew
parameters are intrcduced and the defiritior of lock mes-

sages 1is charged.

The cost to check for deadlock 1is very expenrsive;

ofter this cost is much greater than the cost to set a

L)

"

138

simple lock [GRAY78]. A new network input parameter,
SNOOPRATE, was added to the simulation to model that addi-
tional cost. Every time a conflict message is received by
the SNOOP, SNOOPRATE time units are added to the locking
costs at the SNOOP node. Note that conflicts involving
killed or completed transactions are not included. In
most of the expefiments, a SNOOPRATE of .5 1is used. In
the canonical interpretationr this value rebresents about

15 milliseconds or about 5 times the cost to set a lock.

The NTRKILL, DLOSTIO, and DLOSTCPU parameters from
the wound-wait model are also included in the SNOOP simu-
lation. However, rather than the NTRWOUND parameter, the
SNOOP model records the NUMCONFLCT parameter, the number
of actual conflict messages received. Again, conflict
messages for already killed or completed transactions are

not included in this count.

The lock messages in the SNOOP model are the ‘'con-
flict' messages, the 'kill' messages, the 'release locks'

messages and the 'clear SNOOP' messages.

139

4, RESULTS AND DISCUSSION

The results for the distributed database simulations
are presented in this sectior. 1In the first section we
present the results for the parameter settings for the
canonical scenarios. Subsequent sectionrs review the
effects of varying the number of SLAVES for each distri-
buted transactiorn (NSLAVES), the number of nodes in the
“network (NNODES), and the percent of distributed transac;

tions (PREDIST).

In section 4.5, the results of varying the network
parameters are repeatéd. These parameters are the message
rate (MESRATE), the network bandwidth (MESBDWT), the CPU
rate for processing messages (MESCPURATE) and the percen-
tage of data transferred (PRETRAN and PREDATT). Finally,
the canonical cases are revisited in section 4.6 with a

different network environment.

The results are reported for each of the four con-
currency control algorithms simulated and the two dif-
ferent classes of transaction sizes. The first primary
site model, where locks for one site are held while wait-
ing for locks at another site, is denoted "PS1". The
.second primary site model is denoted "PS2". The notation
"WW" refers to the wound-wait algorithm, while "SNOOP"

refers to the algorithm with the singie global deadlock

140

detector.

Transactions ih class 1 refer to transactiors whose
sizes are generated by a hyperexponential distribution and
well-placed locks are assumed. Transactions in class 2
refer to transactions whose sizes are mainly small (gen-
erated by an exponential distribution). In this case,

random lock placement is assumed.

In the first three sections, an unlimited network 1is
assumed in order to study the effects of the different
concurrency control algorithms on the processing at each
of the nodes. Beginning in section 4.4, network limita-
tiors are introduced to study the effects of the con-

currency control algorithm onr the network resources.

4.1. The Canonical Scenarios

The canonical scenarios refer to'the cases where the
input parameters have the settings shown in Table 3-5.
For these experiments, as in Chapter 2, the number of
locks (NGRAN), was varied from 1 up to DBSIZE and reflects
the number of locks at each node. One lock implies that
at each node, only one transactior can be active at one
time. With 10,000 locks, there 1is one 1lock for each
entity at each node and transactions can proceed if the

entities they require are not being accessed by any other

141

transactiorn.

Table 3-6 shows the expected number of each type of
message under the canonical parameter settings. Each
non-local transaction sends é (NSLAVE) slave create mes-
sages and receives 5 slave completed messages. In addi-
tion, 40% (PRETRAN) of the non-local transactions send 6
(NSLAVES +1) data transfer messages. These non-local mes-
sages are the same for all four concurrency éontrol algo-

rithms.

However, the four algorithms send different numbers
of 1lock messages. In the primary site models, transac-
tions at 5 of the 6 rodes (all nodes other than the pri-
mary site) have three 1lock messages: "request locks",
"grant locks", and "release locks". In the decentralized
models, only the non-local transactions send lock mes-
sages. Those messages include the 5 (NSLAVE) release lock

messages plus some messages for wounding transactions,

Table 3-6
Expected Messages per Transaction
PS1-PS2 WoW-SNOOP

Local Non-local Loéal Non-local
Non-lock 0 10+(.4)6 0 10+(.4)6
Messages
Lock 3(5/6) 3(5/6) 0 5+?7 (WW)
Messages 5+(5/6)+?

(SNOOP)

142

killing transactiors and/or notifying the SNOOP of cor-
flicts. In addition, in the SNOOP model, a non-local
transaction at other than the SNOOP site must _send a

"eclear SNOOP" message when it has completed.

The results for the canonical scenarios are presented
for class 1 and class 2 transactions. Figures 3-4 and 3-5
show the effects of varying the number of 1locks at each
node on the USEFULIO for each of the four concurrency con-
trol algorithms. The horizontal axis represents the
number of locks in a logarithmic scale. The vertical axis
is the USEFULIO, or I/0 resources used in completing tran-
sactions, in 1000 time units of the simulation. Note that
for six nodes, at most 120,000 time units (NNODES¥*TMAX) of
I/0 resources are available. The curves for the USEFULCPU

measurements were very similar and are not shown.

4.1.1. Class 1 Transactions

Figure 3-4 shows the results for class 1 transac-
tiors. For all four concurrency control algorithms, the
maximum USEFULIO occurred with 500 to 1000 granules. For
the primary site 2 (PS2) and the global deadlock detector
(SNOOP) models, the peak occurred at 500 granules. For
the primary site 1 (PS1) and wound-wait (ww> models, 1,000

granules were optimal. In either case,. with 1% of the

UsefulIO (xk time units)

143

100
PS2 pg‘ PS1 peak
h SNOOP Peg_‘i_ <z g_gr/ww peak
_ =$5555353 PS2
PSI
60—
|
4 0
—12
20—
0 T I 1]
| 10 102 10° 104
No. of locks (log scale)
Figure 3-4: Productive Computer Utilization under

Different Algorithms and Class 1 Trans-
actions.

144

maximum USEFULIO was reached with 500 or 1090 granules.

Several observations about figure 3-4 should be
noted. First, the primary site two model (PS2) achieved
98% of the &aximum USEFULIO with 100 granules and 90% of
that maximum with as few as 50 granules. Each of the
other three models required at least 250 granules to reach
within 10 percent of its respective maximum. Thus, more
coarse granularity was acceptable in the primary site two
model. In that model, no transactionrs held locks at ore
node while waiting for locks at another node. In each of

the other models this condition was not true.

Second, the differences in useful computer utiliza-
tions were very small at the optimum granularities,
although the primary site two model (PS2) did show a
slight advantage. At 1lower granularities, the primary
site models produced sigrificantly more useful computer
utilization since transactions did not have to be res-
tarted. Similarly, at lower granularities, the SNOOP
model out-performed the wound-wait model, since it éaused

even fewer transactions to be restarted.

The average response time curves (rot shown) for the
transactions in class 1, did not corsistently favor any of
the four algorithms. However, at or near the optimum
granularity (1000 1locks at each node), the decentralized

algorithms had a better average response time than the

145

primary site 1 model. This result is expected, since

local transactions can be run without network delay.

Surprisingly, however, the average response time was
even less for the primary site 2 model. 1In this case, any
gains observed by the local transactiors in the decentral-
ized models were more than offset by the extra delay
experienced and caused by distributed transactions holding

locks at one node while waiting for locks at another node!

The exact values of the output parameters observed
with 500 1locks at each node for class 1 transactions are

reported in Table 3-7.

Several observations should be noted. At the primary

site 2 model, the number of transactions completed, TRAN-

Table 3-7
Output Measurements for Class 1 Type Transactions

Measurement PS1 PS2 WW SNOOP
TRANCOM 2,688 3,307 3,094 3,029
AVERRES 392 350 368 362
USEFULIO 86,056 87,648 87,518 87,556
USEFULCPU 86,065 86,335 87,522 87,563
LOCKCPU 843 1,048 952 962
MESSCPU 207 265 108 103
TMESS 9,697 12,437 5,408 5,178
LMESS 6,799 8,329 1,545 1,664
NWOUNDED - - 6 -

- NCONFLICTS - - - 68
NRESTARTED - - 1 0
DLOSTIO - - 392 0.0
DLOSTCPU - - 392 0.0

146

COM, was 10% greater than with the two distributed control
models and about 18% greater than with the primary site 1
model. However, the differences in USEFULIO and USEFULCPU
were not significantly different for the four concurrency
control models. Thus, the large TRANCOM value was due
primarily to the fact that the PS2 model favored smaller
transactions and 90% of the workload included those small

transactions.

With the other models, larger distributed transac-
tions could block both large and small transactions at
several nodes while waiting for 1locks at another node.
With the PS2 model, however, the larger distributed tran-
sactions (which have the greatest probability of con-

flict), would release the locks at lower numbered nodes.

The LOCKCPU, MESSCPU, TMESS and LMESS parameters were
also greater for the primary site 2 model, since more

transacpions had been completed.

As expected, message CPU overhead was lowest for the
decentralized concurrency control algorithms. Also note
that the ratio of the total number of lock . messages sent
to the total number of meséages sent (LMESS/TMESS) is
about for the primary site models versus .3 for the decen-
tralized conprol models. In other words, two-thirds of
the network traffic was due to concurrency control in the

primary site models. Less than one-third of the messages

147

~in the decentralized models were for corcurrency control..

The expected number of messages shown in Table 3-6
can be applied to the number of observed messages shown in
Table 3-7 to determine the exact number of lock messages
sent by local transactions. In the primary site 2 model,
for example, 4,108 non-lock messages (TMESS-LMESS) had
been sent. Since the expected number of non-lock messages
is 12.4, 311 of the ‘3,307 transactions were non-local.
(Note that this number is consistent with 3,307 total
transactions and a PREDIST value of 10%.) Thus 2,996 tran-
sactions were entirely local and yet were responsible for

7,490 lock messages.

Notice that a very small number of transactions were
wounded. In the canonical scenario only 10% of the tran-
sactiohs were distrbuted and only conflicts between dis-
tributed transactions could cause wounds. Furthermore,
all locks are requested at the beginning of a transaction
and were generally granted. Thus, a transaction is much
more likely to be blocked by an older transaction, in
which case no wound 1is sent.‘ Note that many more con-
flicts than wounds were sent. However, no deadlock was
detected, so no transactions were restarted in the SNOOP

model.

148

The number -of conflicts in the SNOOP model was always
greater or equal to the number of transactiors wounded in
the wound-wait model, since all conflicts between distri-
buted transactions were sent to the SNOOP. However, the
number of killed or restarted transactiors in the SNOOP
model was always less than or equal to the number res-
tarted in the wound-wait model, since only actual
deadlocks could cause a restart. In fact, in the simula-
tion results repbrted in Table 3-7, no transactions were

restarted in the SNOOP model.

4.1.2.

Class 2 Transactions

The USEFULIO computer utilization for each of the
four concurrency control algorithms for class 2 transac-
tions are shown in Figure 3-5. Under the randomly placed
locks with onrly small transactions, the finest granular-
ity, 10,000 locks in this case, was again optimal. With
this optimal granularity, as with class 1 transactions,
only slight differences in computer utilizations were due

to the corcurrency control algorithms.

However, the wound-wait and global deadlock detector
algorithms did consistently produce 'somewhat better
results than the primary site algorithms over a wide
variety of granularities. 1In fact, only with fewer than

50 locks at each node, were the primary site models

.

(xk time units)

UsefullO

100

80 —

149

ww
@,7 ~<= SNOOP
m=pPS| PS2

!

10
No. of locks (log scale)

Figure 3-5:

] .
102 10° 10%

Productive computer utilization with
four algorithms and Class 2 Transactions.

150

advantageous.

No difference in computer wutilization was observed
between the two primary site models once the granularity
became fine enough. This result was true for class 2
transactions, since the probability of success on a lock
request was extremely high. Thus, very few of these tran-
sactions waited for locks at one node, while holding locks

at another node.

Similarly, once the granularity was 1less coarse
(about 50 granules), little difference in computer utili-
zation is realized between the two 'decentralized algo-
rithms. This result was also realized because of the high

probability of success on a lock request.

Figure 3-6 shows the average response time versus the
number of locks at each node for class 2 transactions.
The respornse time is given in terms of time units of the
simulation; In the canonical interpretation of the time
parameter, a response time of 61 would represent about 1.8
seconds. The dichotomy between the primary site algo-
rithms and decentralized algorithms was again realized in
these curves. As expected, the decentralized algorithms
produced lower averafge response times, since 1local tran-

sactions did not need to communicate with any other nodes.

The exact values of the output - measurements for

10,000 1locks at each node are reported in Table 3-8 for

(time units of simulation)

response time

Average

151

500—
w
400
w
300 \ ,
I
200 2
i
2
100 |
§§§\\‘~\\%-—==._‘ PSI,pS2
_ WW, SNOOP
Y I I l -,
| 10 102 103 10

No. of locks (log scale)

Figure 3-6: Average Response time for four
algorithms and Class 2 Transactions.

152

class 2 transactions.

Note that the network parameters observed the same
ratios of total messages to lock messages as with the
class 1 transactions. However, the differences 1in the
number of lock messages between the primary site models
and the decentralized models was over 40,000 messages with
class 2 transactions. With that number of messages it is
no longer realistic to assume that the network is ‘'lightly
loaded' 1i.e., that the message bandwidth parameter is
infinite. Restricting the message bandwidth can only
jnerease the differences between the primary site control

and decentralized control models as will be shown in sec-

tion 4.5.
Table 3-8
Output Measurements for Class 2 Type Transactions

Measurement P31 PS2 Eﬂ. SNOOP
TRANCOM 18,455 18,461 19,259 19,097
AVERRES oM . 64 61 62
USEFULIO 93,956 93,280 97,135 96,193
USEFULCPU 93,996 93,319 97,145 92,204
MESSCPU 1,519 1,529 670 700
TMESS 73,977 74,292 33,520 34,852
LMESS 51,594 51,234 9,635 11,093
NWOUNDED - - - -
NCONFLICTS 0 - - 5
NRESTARTED - - 0 0
DLOSTIO - - 0 0
DLOSTCPU - - 0 0

153

The relatively small differences in average response
times between the primary site and decentralized control
models, was at first surprising. However, most of the
delay for the transactionrs was due to competition for the
CPU and I/0 resources. The network delay time of 2 * MES-
RATE time units was not a relevant factor. For example,
with ten transactionrs at each node, a local transaction
was active at a site with 9 other transactions. For class
2 transactions, the average transaction size was 5. Thus
a transaction waited for the I/0 and CPU resources for
about 45 time units (9 trans X 5 time units/trans). In
addition, the average transaction would spend 5 time units

using the I/0 and CPU resources.

Thus 55 time units of the average response time 1is
accounted for without cornsidering lock conflicts or net-
work delays. If either fewer transactions were running,
the transaction sizes were smaller, or the network were
slower,‘the 2 ¥ MESRATE delay would further increase the
response time difference between the primary site and

decentralized models.

The expected number of messages shown -in Table 3-6
can also be used in analyzing the number of messages shown
in Table 3-8. In this éase, 1,859 transactions were non-
local in the primary site 2 model. Thus, the 16,602 local

transactions. accounted for 41,505 of the lock messages.

154

Note, however, that the number of lock messages in
both primary site models 1is higher than the expected
number of messages according to Tablé 3-6. For 18,461
transactions completed, 46,153 (TRANCOM * 3(5/6)) lock
messages should have been sent. This difference was due
to a slight bottleneck at the primary site. In computing
the expected value it was assumed that 5 out of every 6
transactionrs completed would be initiated at other Sites
and thus require the lock messages. However, due to the
bottleneck at the primary site, 9 out of every 10 transac-

tions were initiated at other sites.

In the next sections, the effects of variation in the

input parameters on the above observations are reported.

4.2. Slave Transactions

In a distributed database, not all of the distributed
.transactipns require access to data at all of the nodes as
assumed in the above results. 1In this Set of experiments,
the number of SLAVES required by each MASTER transaction,
NSLAVE, was set to 1, 3 and 5. With these settings of
NSLAVES, a distributed transaction thus accessed data at
2, 4 and 6 nodes, respectively. The results of these
parameter settings for class 1 and class 2 type transac-

tions for the four concurrency algorithms follow.

155

4.2.1. Class 1-.Transactiors

The effects of varying the number of SLAVES were
similar wunder any of the four concurrency control algo-
rithms. The maximum useful computer wutilization again
occurred with 500 or 1000 granules regardless of the
number of SLAVES used by a diétributed transaction. In
addition, all four concurrency control algorithms resulted
in similar shifts in the utilization curves as the number
of nodes per distributed transaction varied. The shifts

are shown for the SNOOP algorithm in Figure 3-T.

As expected; as the number of SLAVES decreased, the
useful computer utilization increased. Although the
optimal granularity did not change, the number of granules
required to achieve wutilization close to the maximum
decreased as the number of SLAVES decreased. If each MAS-
TER transaction had 1 SLAVE, 50 locks resulted in 96% of
the computer utilization realized with 500 locks. With 3
SLAVES, 914 of the maximum utilization was realized with
50 locks, while only 63% was realized if there were 5
SLAVES for each MASTER transactior. Thus, as the number
of remote nodes decreased, the acceptable granularity
results resembled those observed in Chapter 2 for the cen-

tralized database.

UsefullO (xk time units)

156

100
80
60- ~~—[—/— | slave
B —— 3 slaves
5 slaves
404
20
0 I 7 1 \
0 10 102 103 104

Number of locks (log scale).

Figure 3-7: Productive computer utilization with
different number of slaves and Class 1
Transactions. -

157

As pféviousl& stated,vthe other three models behaved
similarly.A In general, varying the number of SLAVES for
distributed transactions did not have a large impact on
the processing at the nodes. However, the utilization of
the network as a function of the number of remote nodes
doés depend on the concurrency control algorithm used.
Table 3-9 shows the percentage of "useful" messages (non-
lock related) for eaéh of the four algorithms. With the
primary site models, the number of lock messages stayed
constant, -but the number of non-lock messages depended on
the number of SLAVES for each MASTER ‘transaction. With
the decentralized algorithms, of course, the number of

lock messages decreased as the number of slaves decreased.

4.2.2. Class 2 Transactions

The number of SLAVES for a distributed transaction
also had 1little effect on the choice of concurrency con-
trol algorithm or granularity for class 2 transactions.
As in the canonical scenario, the finest granularity was
again optimal. In the primary site models, the computer

Table 3-9 Useful Network Traffic
(Non-lock Messages)

No. of SLAVES PS1 PsS2 WW SNOOP
1 9% 1% T1% . 66%
3 21% 21% T1% - 66%
5 30% 33% 71% 68%

158

utilizatior and -average response time as a function of the
number of locks were almost identical for one, three and
five SLAVES for each MASTER transaction. For the decen-
tralized concurrency control models, those three curves
were nearly identical with more than 50 granules. With
fewer granules, more SLAVES resulted in more transactions
being restarted. In these cases, the computer utilizatior
was decreased. However, even with only one slave per dis-
tributed transaction, performance of the system with class
2 transactions was still extremely bad with coarse granu-

larity.

The observations on the network utilization for class
1 transactions also hold for transactions in class 2. In
fact, while the number of total and lock messages changed,
the percentages of useful messages were approximately the

same.

4.3. Number of Network Nodes

The number of sites in a distributed database can
vary. The simulation models were run with 2, 4, 6 and 8
sites for a variety of granularities. In order to keep
the other factors constant, the canonical scenarios were
changed. Irn all of these experiments, it was assumed that
each distributed transaction required only ore slave run-

ning at another site.

o

159

4.3.1. Class 1-Trarsactiors

With mixed transaction sizes and' well-placed locks,
there was practically no difference between the four con-
currency control algorithms as the number of nodes in the
network varied. Moreover, neither the optimum granulari-
ties nor the shapes of the wuseful wutilization versus
granularity curves -changed as the number of nodes in thg
network varied. The curves all resembled those shown in

figure 3-4.

The orly changes in the computer utilizations were in
magnitude, and those changes were linear with respect to
the number of nodes. Note, however, that it is also
assumed that the network resources also increase as the
number of nodes increase. Under the wound-wait simula-
tion, for example, with 2 nodes the maximum useful utili-
zation was 30,119 time units; with 4 nodes, 59,705 time
units, with 6 nodes, 90,472 time wunits, while with 8
nodes, 120,327 time units were used in processing transac-

tions.

The average response time, on the other hand, did not

vary as the number of nodes changed.

160

4.3.2. Class 2 Trarsactiors

Linearity in computer utilization as a function of
the number of nodes was also observed for class 2 type
transaction;. The USEFULIO's, USEFULCPU's and average
resporse time for the decentralized corcurrency control
algorithms were slightly better than those measurements
for the primary site with 2, 4, 6 or 8 nodes in the com-

puter network.

The cost of locking with the many small transactions
and the random placement of 1locks assumption, is, of
course, much greater than with the eclass 1 transactions.
This cost also increased linearly with the number of nodes
and was practically the same for all four algorithms at
the optimum granularity. The lock costs for the primary

site 1 model are shown in Table 3-10:

The time units per node remained relatively constant.
However, for the decentralized concurrency control algo-
rithms, the time units used for locking were distributed

among all of the nodes. In the primary site models all of

Table 3~10: Time Units Spent Locking

No. of Nodes Total Time Units Time Units per Node
2 3608 1704
y 6763 1691
g 10010 ' 1673

13300 1663

161

the time units were used for locking at one node. Thus,
at the primary site with 8 nodes in the network, 13,300

out of 20,000 available time units were used for locking.

This increasing overhead for locking at one node has
two implications. First, transactions which use the pri-
mary site for data access will receive much poorer service
thar the other nodes. In fact, it may be necessary to
reduce the transactién processing load at the primary site
node. Second, the primary site can become saturated just
managing locks. With class 2 transactions and the locking
overhead rate assumed in these experiments, an extrapola-
tion shows that the primary site will saturate if there
are 12 nodes in the network. Note that the primary site
also has to handle a disproportionate share of the mes-
sages. The time wunits used for handling lock messages
(MESCPU) at the primary site should also be included in
looking at primary site saturation. An extrapolation of
the total overhead (LOCKCPU + MESCPU) shows that the pri-
mary site would saturate with only 11 nodes in the‘net-

work.

For the class 1 transactiors, or the other hand, each
transaction required much less locking overhead due to the
well-placed lock assumption. Under those assumptions, ihe
primary site would not bottleneck until 83 nodes were in

the network.

162

4.4, Percent of Distributed Transactiors

In the previous simulation runs, ten percent of the
transactions were assumed to Dbe distributed, while the
other transactions required processing at the local nodes.
In this section, the effects of varying that percentage on
the optimum granularity and choice of concurrency control
algorithms are examined. Experiments were run with values
of 0, 10, 25, 50, 75, and 100 for the percentage of dis-
tributed transactions parameter (PREDIST). The results

are presented for both class 1 and class 2 transactions.

4.4,1., Class 1 Transactions

Changes in the percentage of distributed class 1
transactions affected the optimum granularities dif-
ferently for the different concurrency control algorithms.
In addition, as that percentage increased, the chéice of a

'best' algorithm for class 1 transactions became clearer.

The results of the simulation experiments, varying
the PREDIST parameter, are broken into the following four
parts. First the effects of the locking granularities on
the four models are discussed. Next the four models are
compared, choosing the optimal granularity for each model
for each setting of the PREDIST parameter. Third, the

four models are compared under alternate network

163

‘assumptions. Iin the final set of -experiments, some mes-
sages useful in terms of crash recovery were added to the

primary site model.

Effects of Locking Granularity

With any of the four conéurrency control algorithms,
if 0% of the transactions were distributed (all transac-
tions are local), the maximum useful computer utilization
occurred with from 50 to 500 lockable granules. These
results were similar to the centralized database case in

Chapter 2.

The optimum locking granularity for three of the four
concurrency algorithms changed as the percentage of dis-
tributed transactions increased. With the primary site 2
model, however, the maximum useful computer utilization

occurred at or near 500 granules.'

For example, in figure 3-8, the shapes of the useful
I/0 curves versus the .number of locks are very similar
when either 10% or 75% of the transactions are distri-
buted. For the other three models, 75% distributed tran-
saction curves were skewed to the right when compared to

the 10% curves.

The difference between the models is that in the pri-

mary site 2 model, no transactions hold locks at one node

UsefullO

UsefullO

164

100 - ‘ 100 -
10% distributed 1 10% distributed
80 - 80 -
60 - 75 % 60
distributed ~—— 75% distributed
10 102 103 10% 10 102 103 104
Number of locks Number of locks
PS | PS 2
100 IOOT
| 10% distributed - 10% distributed
80 Q 80- Q
60- 75% 60- ~75%
distributed distributed
10 102 103 04 10 102 103 10
Number of locks Number of locks
W-W SNOOP

Figure 3-8: Effects on Productive Computer Utilization of

. Locking Granularity and

Percent Distributed

165

while waiting for locks at another rode. As the percentage
6f distributed transactions increased, there was an
increase in the number of transactioné which held locks at
the other nodes 1in the other models. Lower granularity
increased the rumber of incidences of this condition and
hence adversely affected the performance of those algo-

rithms.

The effects of vérying the granularity and the per-
centage of distributed transactions on the decentralized
algorithms was even more dramatic. For these algorithms,
a granularity from 1000 up to 5000 locks at each node was
required to oroduce the maximum computer utilization as
the percentage of distributed transactions increased

beyond 50%.

The need for finer granularity in these cases was
caused by two effects. First, as already mentioned, tran-
sactions hold locks at one node while waiting for locks at
a second node. The second factor affecting the granular-
ity in these models was that with coarse granularity and a
high percentage of distributed transactions, more transac-

tions had to be restarted.

166

4.4.1.2. Model Comparisons

Figure 3-9 shows the effects on the wuseful I/0 and
the average response time of the percent of distributed
transactions for each of the four concurrency control
algorithms. (For each percentage, and for eachvalgorithm,
the best useful I/0 and average responseé time regardless

of granularity was plotted.)

The 'dish' shaped curves for USEFULIO were surpris-
ing. As the percentage of distributed transactions was
increased up to 50%, all four models showed decreases in
useful computer utilization due to the additional overhead
(message handling and locking) required to run distributed
transactions. However, as the percentage increased beyond
75%, the useful computer utilizaﬁion significantly

increased.

That increase was due to two factors. First, the
number ‘transactions running at each node was greatly
jncreased. For example, when all of the transactions were
distributed, NNODES * NTRAN (60 in the §imulation runs)
parts of transactions were active at each ﬁode. Segond,
the average transaction size at each node was smaller as

more and more transactions were distributed.

The simulation parameters were modified to keep the

number and sizes of active transactions at each node con-

Useful IO

Average response time

100- 167
1) PSSNZOOP
. 2 WW
80 \u\ - 2///'%71951
- l-h__“‘“———-__|/”””’
60—
7 T | 1
0 25 50 75 100
Percent of distributed fransactions
(a)
6007
500 \L: ‘f’
W% RN
400 l/ T
l%s
300 | I T 1

0] 25 50 75 100
Percent of distributed transactions
(b)

Figure 3-9: Class 1 Transactions
Infinite Bandwidth

168

stant as the -percentage of distributed transactions
increased. Only when both parameters were held fixed did
the 'dish' shaped curves disappear. When only one of the
parameters (NTRAN or AMEAN-BMEAN) were held constant, hav-
ing all transactions distributed produced more useful 1/0
(and CPU) than when only 50% of the transactions were dis-

tributed.

The average response time curves also demonstrated
dish shaped curves. In almost all cases, the second pri-
mary site model (PS2), produced the best average responsé
time of the four models. The holding of locks at dne node
while waiting fof locks at another was quite detrimental
to the throughput of the system and occurred with increas-
ing frequency in the other three models as the percentage

of distributed transactions increased.

When fewer than half of the transactions were non-
local the SNOOP and PS2 models produced about equal useful
1/0 and average response times and were slightly better
than the other two models. However, when more than half
of the transactions were non-local,. the'*primary site 2
model produced significantly better results than the other

three models.

169

4.4,1.3. Limited Bandwidth

The above observations change if a ldwer network
bandwidth was assumed. All four concurrency control simu-
lations were rerun, varying the percentage of distributed
transactions with a message bandwidth of 6. This simu-
lates an environment where only six messages can be active
in the Network one at a time. The tests included locking
granularities of 500, 1000, 2500 and 5000 1locks at each
node. Additional values for the PERDIST parameter were
also tested and included 30, 35, 40 and 45 percent. The

results are shown in Figure 3-10.

With fewer than 40% of the transactions being non-
local, the global deadlock detector algorithm produced
more useful I/0 utilizatiorn than the other algorithms.
When 45% or more of the transactions were distributed, the
primary site 2 model again produced better results. In
these nases, the extra two messages for locking were not
that significant; a distributed transaction required at

least 2 ¥ NSLAVES messages anyway.

Note also that the 'dish' shape curves. for USEFULIO
have practically disappeared with a limited bandwidth net-
work. 1In these cases the extra network delay overhead
caused by an increased PREDIST parameter more than offset

the increases in transaction parallelism.

(xk time units)

Useful IO

170

IOO—‘
3 W—
"2§§§s
N
T BN
A >é= s SNOOP
\ \
|
o \WQPSI
_ WWwW
40
20
0 e e St AL A L
0 20 40 60 80 100

Percent of non-local transactions

Figure 3-10: Class 1 Transactions
Limited Bandwidth

171

4.4.1.4. Alterrate Primary Site Model

Those differences between the SNOOP and PS2 models
would be even less, if the primary site models required
the 'release lock' messages to be sent to the SLAVES. In
many database management systems, transactions might be
backed out due to system crashés, changes in a user's mind
and a variety of other reasons. For these reasons, it may
be desirable to have SLAVES wait until the transaction has
completed at all nodes before 'committing' any updates.
In these types of database management systems, 'all done'
messages similar- to the 'release locks' messages must be
sent to the SLAVES even with the primary site concurrency

control.

The primary site 2 model was modified to actﬁally
send "all done" messages at the end of each distributed
transaction. With that modificétion and tﬁe limited
bandwidth network, the primary site é model actually pro-
duced slightly less useful computer utilization than the
SNOOP model, regardless of the percentage of distributed

transactions.

4.4.2. Class 2 Transactions

With class 2 transactions, the finest granularity was

optimal, regardless of the percentage of distributed

"

172

transactions, Furthermore, the performance of the con-
currency control algorithms also changed consistently as

the percentage of distributed transactions increased.

Figure 3-11(a) shows the USEFULIO for the four algo-
rithms as that percentage increased. The utilization with
the decentralized algorithms was affected very 1little by
the increase in non-local transactions. Again, a slight
increase in useful computer utilization was realized due

to the increased distribution of transaction processing.

In the primary site algorithms, on the other hand,
the overall computer utilization decreased as the percen-
tage of non-local transactions increased. The decrease

was most dramatic between 25 and 75 percent.

The same advantage for the decentralized algorithms
over the primary site algorithm appeared in the average
response time, as shown in figure 3-11(b). For all four
algorithms the response times increase as the pergentage
of distributed transactions increased. However, the
increase was much less for the decentralizeq concurrency
control algorithms than for the primary site concurrency

control algorithms.

Two factors'caused the dramatic difference between
the primary site and decentralized models for class 2

transactions: the transactions were all small and the

primary site created a bottleneck.

Usefull0 (xk time units)

Average response time

173

100 SNOOP
-¥%====*y %’ g&:::-—-——-—====§? M/M/O
-i'z_l'z-%é\ v

80 — \é\

PSI
] . 3
60 | ' | ' 1 J T]
0 20 40 60 80 100
Percent of non-local transactions
(a)
. PS?2
/PSI

120 /?

i / SNOOP, WW

8()“ §F=============

Z/I'\g?/
o=
v,

40 —

0 T T T T T T I T B
0] 20 40 60 80 100

Percent of non-local transactions

Figure 3-11:

(b)

Class 2 Transactions
Infinite bandwidth

/)

174

The transactions of class 2 were all small and the
results in Figure 3-11 were for the finest granularity.
Under those conditions, the probability of success on a
lock request was extremely high, which considerably
reduced the advantage that the primary site 2 model exhi-

bited for class 1 type transactions.

The second factor which affected the performance of
the concurrency control algorithms was the bottleneck at
the primary site. Over 7,000 time units out of a possible
20,000 were used for locking at the primary site when all
of the transactions were non-local. Moreover, all tran-
sactions required some database processing at that pfimary
site and were thus all delayed by thg locking overhéad.
This bottleneck became increasingly worse as the percen-

tage of distributed transactions increased.

One solution to the bottleneck probiem would be to
offload the primary site concurrency control to a separate
processor. The primary site 2 simulation was modified to

test this strategy.

Two sets of experiments were run. Iﬁ'the first set,
the workload and network parameters remained the saﬁe and
the concurrency control was off-loaded to a ‘'seventh!'
node. In these experiments, the primary site model pro-
duced USEFULIO and average response times very similar to

the decentralized control algorithm results shown in

175

figure 3-11. Iﬁ fact, the primary site models produced
slightly better results than the decentralized models when

the PREDIST parameter was greater than 50%.

In the second set of experiments, the 6-node data-
base, granules and transactions were distributed on a 5-
node network with a sixth node being used only for the
concurrency control. The results were again similar to
those in figure 3-11 for the decentralized models. How-
ever, in these experiments the modified primary site
models produced slightly worse results than the decentral-

ized models.

These two results suggest that a proper database
design which 1lowered the load at the primary site could

perform equally as well as the decentralized algorithms.

The PREDIST simulation experiments for class 2 tran-
sactions were repeated with a limitgd bandwidth network.
In these experiments, the primary site models were best if
more than 50% of the transactions were distributed. 1In
those cases, the primary site models actuaily sent fewer

locking messages than the decentralized algorithms.

4.5. Network Parameters

In this section, the results of varying five network

input parameters are reported. In the previous runs the

176

MESRATE, or the length of time it takes to send a message,
was fixed at 3 simulation time units. The MESBDWT, or
number of simultaneously active messages, was effectively

set to o, by setting the MESBDWT parameter to 1000.

The data transfer parameters, PRETRAN and PREDATT,
were also fixed in all of the previous simulation experi-
ments. In those experiments 40% (PRETRAN) of the distri-
buted transactions sent 25% (PREDATT) of their entities to
other nodes. The DATARATE parameter was set to .05, which
determined how 1long it took to send data entities across

the network.

One other network parameter, the MESSCPURATE, while
not affecting the network directly, did affect the message
or network overhead required at each node. For all of the
previous experiments, a message CPU rate of .01 (300

microseconds) was assumed.

Simulations were run with MESRATES of 1 (30 msecs), 3
(90 msecs) and 10 (360 msecs, similar to the ARPANET).
The simulations were also run with.MESBDWT of 100, 50, 10
and 6. The DATARATE experiments included, 0.05, 0.1, 0.25
and 0.5. The message CPU rate parameter was set to .01
(300 microseconds), 0.05 (1.5 msecs), 0.1 (3 msecs) and

0.3 (9 msecs).

Class 2 transactions required much greater use of the

network resources than class 1 transactions. Thus

177

variations in the network parameters had a much greater

effect on class 2 transactions.

4.5.1. Class 1 Transactions

The significant effects of lowering the bandwidth and
varying the percentage of distributed transactions have
already been reported in section 4.5. Varying the MES-
RATE, MESBDWT and MESCPURATE parameters had little effect

on the other observations reported.

The effects of varying the message rate parameter
were slight. The results with message rates of 1 and 3
were almost identical for all four concurrency control
algorithms. A MESRATE of 10 resulted in about a 5%
decrease in useful computer utilization for the primary
site models and almost no change in the useful utilization

for the distributed concurrency control models.

MESBDWT settings of 100 and 50 produced wuseful com-
puter wutilizations and average response time identical to
the infinite setting 1000 previously used. -Slight drops
in the useful I/0 and CPU utilizations were realized with
message bandwidths of 10 and 6. The drops with a messége
bandwidth of 10, however, were less than 1% and not con-

sidered significant.

178

A héssage.bandwidth of 6 did produce more noticeable
reductions in the wuseful I/0 and CPU utilizations. The
drops in useful utilization were only about 2-3% with the
primary site and SNOOP models. The wound-wait model, on
the other hand, realized a drop of almost 7%. Although
the primary site models sent more‘lock messages, they were
mainly sent one message at a time. A wound or kill, how-
ever, resulted in NSLAVE messages being sent, or broadcast
over the network. These "bursts" of messages were
effected more by the 1lower bandwidth than the greater
number of individual messages in the primary site models.
In the SNOOP model, on the other hand, a conflict only
required 1 message. A kill still required NSLAVE mes-

sages, but occurred very rarely.

The change of the DATARATE parameter had 1little
effect on class 2 transactions. When the DATARATE was .5
and all of a distribute transaction's entities were sent
across the network, a decrease in the computer utilization

of only about 7% was realized.

With an extremely fast DATARATE parameter (.05 as in
the canonical scenarios), changes in the number of tran-
sactions which transferred data, or the amount of data
they transferred produced curves almost identical to those
shown in figures 3-4, 3-5 and 3-6, and. are not repeated

here. A slight drop in wuseful 1I/0 and CPU time was

179

observed as the émount of data transferred increased for
both classes of transactions and for each of the con-
currency control algorithms. However, even if all of the
distributed transactions transfer all of their data, the

decrease was less than 3%.

Note that these results do not imply that data
transferred is not an important parameter in a distributed
database. In the models considered here, data transfer
resulted in a waiting time for that transfer to complete.
Under these assumptions, no additional 1I/0 or CPU
resources were used in transferring data; it was assumed
that use of these resources is already included in tran-
saction processing. Furthermore, with the fast DATARATE
assumed, even a transaction accessing 500 entities would

wait on the transaction wait queue for only 25 time units.

When the DATARATE was increased from .05 to .5, and
the PRETRAN and PREDATT parameters were varied, a larger
drpp in useful CPU and I/0 utilization was observed. At
the optimum granularity, a drop of almost 7% in computer
utilization was realized. In these caseé; the 1larger
transactions might wait on the CPU qucues for 250 time

units, a significant portion of their lifetimes.

Changes in the MESCPURATE parameter had the greatest
effeect on the useful.computer utilization output parame-

ters. In the primary site models, a decrease of almost 9%

180

was realized Qhen the message rate was increased to .3
(almost 9 msecs). With that same message rate, the useful
computer wutilization only dropped by about U4% in the

decentralized models.

In class 1 transactions, the critical resources ar
the I/0 and CPU resources at the nodes and not the network
resources. Thus the heavy message traffic of the primary
site models is impacted much more by the message CPU rate

than the other network parameters.

4.5.2. Class 2 Transactions

The MESRATE, MESCPURATE, MESBDWT, and DATARATE param-
eters were also varied for class 2 transactions. Changes
in the first three parameters affected the performance of
all four concurrency control élgorithms. The DATARATE
parameter had practically no effect on the. processing of

class 2 transactions.

The USEFULIC and the average response time (in
parenthesis) 1is given in Table 3-11 for each of the four
concurrency control algorithms. In the first set, the
MESRATE parameter was varied while the MESCPURATE and
MESBDWT were fixed at .01 and 1OQ0 respectively. As the
message rate increases, the gap between the primary site

and decentralized control models widened.

Table 3-11:
PS1
MESRATE
1 94994 (63)
3 93996 (64)
10 87998 (67)
MESCPURATE
.01 93996 (64)
.05 88953(67)
.1 83273(72)
.3 58676(102)
MESOULP
1000-50 93996 (64)
10 82804(72)
6 55200(108)

PS2

94720(63)
93319(64)
88078(67)

93319(64)
88767(68)
83086(73)
58372(102)

93319(64)
83234(72)
55692(108)

WW

96839(61)
97134(61)
96037(63)

97145(65)
95048(63)
92394(65)
83313(72)

97145(61)
96827(62)
95948(63)

Effects of Network Parameters

SNOOP

97037(62)
96204(62)
96875(62)

96204(62)
9u710(64)
91860(65)
82690(73)

96204 (62)
96979(62)
962u42(62)

181

A more dramatic change occurred when the message CPU

rate was varied. During these experiments, the MESRATE

and MESBDWT were fixed at 3 and 1000 respectively. With a

3 millisecond cost (MESCPURATE = .1) for sending a mes-

of the

sage, the primary site models produced only 89%

useful computer utilization that was realized with the

decentralized concurrency control algorithms. With a 9

msec message rate (MESCPURATE = .3) this percentage drops

to 72%.

Similarly, a dramatic change in USEFULIO and response

time for the primary site models was realized as the mes-

sage bandwidth was restricted. For these experiments, the

message rate and message CPU rate paramecters were fixed at

3 and .01 respectively. Note that while the performance

182

of thei'primar} site models was heavily affected by the
restricted bandwidth, the decentralized models were hardly
affected at all. This result is due to the fact that with
the primary site models, almost 40,000 more messages were

sent than with the decentralized algorithms.

Variations in the DATARATE, PRETRAN and PREDATT
parameters had 1little or no effect on the performance of
the four concurrency control algorithms. Class 2 transac;
tions were all small. Thus any wait on the data transmis-
sion queue was also small even if all of the distributed

transactions transferred all of their data.

As expected, the performance of a primary site con-
currency control algorithm deteriorated as restrictions
were placed on the network. The effect of the restric-
tions on the wound-wait and SNOOP algorithms was much

smaller.

4.6. Canonical Scenario Revisited

In section 4.1, the effects of the different con-
currency control algorithms on computer utilization and
average response times with two different classes of tran-
sactions were presented. In those experiments a very

fast, low overhead and high bandwidth network was assumed.

183

Subsets of those cases were rerun under alternate
network assumptions. For the results presented in Figure
3-12, the MESRATE was assumed to be 10 simulation time
units or about .3 seconds. The MESBDWT parameter was set
to 6, while the MESCPURATE was set to .1, simulating a
cost of about 3 msecs to handle a message at a node.
These settings roughly resemble the ARPANET parameters.
Note that the simulations were not run for all of the

granularities.

In section 4.1 for class 1 transactions with finer
granularities, no one concurrency control algorithm seemed
dominant. Figure 3-12 shows, on the other hand, that the
decentralized algorithms, the wound-wait or SNOOP, produce
significantly better machine utilization than the primary
site models. The drop of about 9% realized with the pri-
mary site models, when compared to the decentralized
models, is <consistent with the drop observed in section

4.6, when only one of the network parameters was varied.

The advantage of the decentralized algorithms for
class 1 type transactions shown in section M;1 became cven
more apparent when a slower network was assumed. Note,
however, that under the given network parameter the useful
computer utilizations for even the decentralized algo-
rithms were much lower than with the original network

parameters. Thus, regardless of the concurrency control

time units)

(xk

UsefulIO

class 2

class

IOO—W

| W

SW S8N\ww
80) /5}‘é><2 SNOOP
o— —2

_ BT
60 /s

| g,/w

- WW
40 Wswoop

i G
0 ' 2 '3 T,

| 10 10° 10°- 10

No. of locks (log scale)

Figure 3-12:

Canonical Scenario
Limited Bandwidth

184

185

algorithm, a ’‘distributed database where all transactions
are very small is perhaps not suitable for a slow computer

network.

5. CONCLUSIONS

As with the centralized database concurrency control,
the algorithms and parameters of the concurrency control
for a distributed database are also application and system
dependent. In this section the major conclusions on the
locking granularity, the algorithms for class 1 and class

2 type transactions are reviewed.

5.1. Locking Granularity

In general, a finer granularity is required for lock-
ing in a distributed database than in a.centralized data-
base. - However, if the locks are well-placed with respect
to the accessing transactions, the finest granularity is

still not worth the additional concurrency produced.

The need for finer granularity in a distributed data-
base was caused by one major factor: transactions held

locks at one node while waiting for locks at another node.

186

When that condition was avoided with the PS2 model, much

coarser granularity was acceptable.

Even that model, however, required slightly leés
coarse granularity than was required for a centralized
database under the same assumptions. In the centralized
database, 10 to 100 granules produced the maximum useful
computer utilization under the well-placed 1lock assump-
tions. In the PS2 distributed database, 100 to.1000
granules are required. In the PS2 model and very coarse
granularity, many distributed transactions have to release
and rerequest locks at a low number nodes. The additional

locking cverhead makes coarse granularity unacceptable.

2.2, Class 1 Transactions

If the number of distributed transactions is 1low
(<10%) and the network is considered lightly loaded, the
performance of all four concurrency control algorithms was

very similar for class 1 transactions.

As the percentage of distributed transactions
increase, the primary site 2 model produces better com-
puter utilization and average response times than either
of the decentralized models. 1In these cases, the extra
two messages required in the primary site model represent

a lower percentage of overhead since the transactions will

187
be sending at least 2 ¥ NSLAVE messages anyway. Moreover,

this overhead is more than offset by the ability to avoid

inactive nodes.

When the bandwidth of the network is lowered and the
number of distributed transactions is low, however, the
decentralized concurrency control models produce better
computer wutilization and response time than the primary
site models. 1In these cases, the primary site 1lock més-
sage overhead interferes with the normal transaction pro-

cessing.

The above two conclusions come into conflict as the
percentage of distributed transactions increases and a low
bandwidth network is assumed. The simulation results
indicate that with a low bandwidth network, the SNOOP dis-
tributed concurrency control algorithm is best when 1less
than U45% of the transactions are distributed. When more
than 45% of the transactions are dist}ibuted, the primary

site 2 model is preferredQ

When the percentage of distributed transactions is
less than 10%, the SNOOP and wound-wait algorithms perform
eqhally well. However, as that percentage increases, the
SNOOP mocdel results in better performanée than the wound-
wait model. As expected in these cases, the percentage of
conflicts increases and has a more adverse effect on the

wound-wait algorithm.

188

5.3. Class 2 Transactions

Under the class 2 transéction assumption, all of the
transactions are small and randomly access entities in the
database. In these cases, the decentralized concurrency
control models consistently produce better response times
and useful I/0 and CPU utilization than the primary site
models. With extremely small transactions, the extra mes-
sages in the primary site models represent a significant
delay factor. Furthermore, the small transactions make
the probability of conflict and restart very low with the

dectralized concurrency control algorithms.

Also, with only small transactions and random lock
placement assumptions, the locking overhead is a signifi-
cant factor. When all of this overhead is concentrated at
one site, that site can bottleneck as either the number of
sites .in the network or the percentage of distributed

transactions increase.

The above observations for class 2 transactions hold
even under optimistic network conditions. As the network
parameters become restrictive, the advantages of the

decentralized concurrency control become even more evi-

dent.

The wound-wait and SNOOP concurrency control models

produced extremely similar results for class 2 transac-

189

tions. This s&milarity was due to two factors. First,
the small transactions are involved in very few conflicts
and thus the probability of a transaction blocking and
being blocked by an older distributed transaction is
extremely small. The second factor is that a transaction
is much more likely to be blocked by an older transaction
(in which case, no wound or kill takes place) since éhe

individual sites operate with a preclaim locking strategy.

)

CHAPTER 4

CONCLUSIONS

The major goal of this. thesis was to examine the
effects of concurrency control on the performances of
database management systems. The effects of concurrency
control on pefformance are dependent on two conflicting
factors. On the other hand, the database system perfor-
mance can be enhanced by allowing concurrent users simul-
taneous access to the database. Both the useful computer
utilization and the average response time can be improved

by supporting a multiple user environment.

On the other hand, the database system performance
might be degraded due to extensive concurrency control
overhead. The concurrency control overhead is due to the
computer resources wutilized in some type of "locking".
The "locking" is used to prevent one user of the. database

from interfering with the processing of another user.

In the first section of this chapter, the major con-
clusions from Chapters 2 and 3 are reviewed. 1In the next
section the applications of these conclusions to other
concurrency control implementations are projected and

several areas of further research are suggested.

190

191

1. SUMMARY QE'PREVIOUS CONCLUSIONS

Simulation models were used to study the performance
effects of concurrency control in both centralized and

distributed databases.

1.1. CENTRALIZED DATABASES

In a centralized database, all database activity,
including concurrency control, are processed on a single
computer system. A simulation model was used to determine
the optimum granularity for 1locking, the effects of a
variety of workload and system ‘characteristics, the
effects of a 1lock hierarchy, and the effects of a “"pre-

claim" versus a "claim as needed" locking strategy.

The overall conclusions on locking granularity are

application dependent as shown in Table 4-1.

Table 4-1 Locking Granularity

small large mixed sized
Transactions Transactions Transactions
Well-placed Coarse gran. Coarse gran. Coarse gran.
Random Fine gran. Coarse gran. Lock Hierarchy

placement with Fine gran.

192

In many céses coarse granularity, such as file or
relation 1locking, 1is preferred. Howevér, if random lock
blacement is assumed and all of the transactions are
small, the coarse granularity is unacceptable and fine

granularity locking must be implemented.

If random lock placement is assumed and a variety of
different sized transactions are present in the workload,
a lock hierarchy should be used. In such a hierarchy,
some large transactions can 1lock large granules, while
other small transactions lock much finer granules. If a
transaction were to set more than 1% of the smaller locks
under any one large lock, it would be more effiéient for

that transaction to simply set the one large lock.

In a preclaim 1locking strategy, a transaction
acquires all of its locks at the beginning of the transac-
tion. In a claim as needed locking strategy, the 1locks
are acquired as the respective parts of the database need
to be accessed. With a few exceptions, the preclaim stra-
tegy produced better machine utilization than the claim as
needed model. However, the above conclusiSns on locking
granularity and a 1lock hierarchy hold, regardless of

whether a preclaim or claim as needed strategy is used.

193

1.2 Distributéd Databases

In a distributed database, the database activity,
including .the concurrency control, are processed on
several computer systems connected by a network. Four
concurrency control algorithms were simulated in order to
study their performance effects under a variety of work-

load and network conditions.

Two of the algorithms simulated involved a central-
ized concurrency control where 1locking for the entire
database was controlled at one primary site in the net-
work. In the "primary site 1" model, transactions acquire
the locks needed at each node or site in some fixed order.
If the locks for one node are denied, the "blocked" tran-
saction waits for those locks while holding locks on lower

ordered nodes.

In the alternate centralized control model, the "pri-
mary site 2" model, the 1locks needed at each node are
again acquired in some fixed order. However, 1in this
case, 1if the locks for one node are denied, the 'blocked'
transaction releases all currently held locks while wait-

ing for access to the locked granules.

The other two algerithms simulated involved a decen-
tralized concurrency control where locking for the portion

of the database at each node was controlled at that node.

194

In the "wound;wait" model, deadlock 1is prevented by
"wounding" any "young" transaction that dares to block an
"older" transaction. The wound 1is transferred to all
sites where the wounded transaction 1is active. If a
wounded transaction is blocked at any site by an "older"
transaction, the wounded transaction releases its locks at

each site and is then restarted.

In the other decentralized control algorithm,
deadlocks are resolved by a global deadlock detector, or
"SNOOP". If a deadlock exists, a transaction 1is- picked
which also releases its locks at each site and is then

restarted.

Which model is-best in terms of its effect on the
distributed database system performance is also applica-
tion dependent as shown in Table 4-2. lClass 1 transac-
tions refer to a workload environment where the locks are
assumed to be well-placed with respecé to the accessing
transactions and that those transactions are of mixed
sizes. Class 2 transactions refer to workloads where all
of the ‘transactions are small and random placement of

locks is assumed.

In some cases, it appears that the concurrency con-
trol mechanism is not a significant factor in the database

system pérformance. For class 2 transactions, additional

195

Table 4-2: Concurrency Control Models

Class1 Class?

Transactions Transactions
Fast Net. Primary Site or Primary Site or
Most trans. Decentralized Decentralized
local
Slow Net. SNOOP Decentralized
Most trans.
local
Fast Net. Primary Site 2 Decentralized
Most trans.
non-local
Slow Net. Primary Site 2 Primary Site

Most trans.
non-local

simulation runs showed that the preference for decentral-
ized concurrency control could be-offset by reducing the
database load at the primary site. Thus in these cases,
the choice of concurrency control algorithm may again not

be significant.

For class 1 transactions, when most of the transac-
tions only required local processing and a slower, lower
bandwidth network is assumed, the SNOOP algorithm is pre-
ferred. 1In this case, the SNOOP model was favored because

of the lower number of messages required.

Also for class 1 Lransactions, if most of the tran-
sactions are non-local or distributed, the primary site 2
model is preferred. The advantage of the primary site 2

model is that only in that model does a transaction

196

release locks at all other nodes while waiting for 1locks
at one node. In the other three models, it is possible
for a transaction to hold locks at one node while waiting

for locks at another node.

Another factor which favors the primary site 2 model
over the decentralized models when most transactions are
distributed, is that in those cases, the primary site

model no longer produces heavier message traffic.

The distributed database simulations indicated that
some of the coarse granularity conclusions for ‘the cen-
tralized database do not hold for the distributed data-
base. However, under the well-placed lock assumptions,
the finest granularity is still worse than.a medium granu-

larity concurrency control.

2. FUTURE DIRECTIONS

The results of the simulation studies suggest several
areas for future study. Two such areas would be to extend
the lock hierarchy and the claim as needed locking models
to a distributed database. Another study would be to
investigate the multiple copy problem in the distributed
database model. The results of the simulations in this
study do, however, provide some insights in each of these

areas.

197

For the centralized database, the conclusion was
reached that if the locks are well-placed, coarse granu-
larity is preferred and a lock hierarchy is thus not bene-
ficial. In those cases, it was more efficient to just use
one level of coarse locking (10 to 100 1locks). In the
distributed database cases, finer granularity (500 to 1000
locks) is required even iwaell-placed locks are assumed.
A lock hierarchy in that granularity range was beneficial.
Thus a lock hierarchy at each node for a distributed data-
Base might be more useful than in a centralized database.
This projection could be verified by simple extensions to
the distributed-database simulations similar to the exten-

sion in chapter 2.

A claim as needed locking strategy may be required if
the entities to be accessed, and hence the granules to be
locked, are dependent upon the values of entities previ-
ously accessed. With a claim as needed locking strategy
in a distributed database, the primary site models might
require two messages for every lock set. In addition,
with claim as needed 1locking, the primary site models
would also have to prevent or detect deadlock and thus
lose one of their advantages over the decentralized
models. Therefore, for claim as nceded locking, the pri-

mary site models would probably not be acceptable.

198

The comparison of the two decentralized concurrency
control algorithms might be affected by a claim as needed
locking strategy. With the preclaim locking strategy and
the wound-wait model, relatively few transactions were
wounded since there was a high probability that a blocking
transaction was older than the blocked transaction. With
a claim as needed locking strategy, however, a transaction
would request locks at several different instances during
its lifetime. Thus, the probability of being blocked by a
younger transaction would increase. Consequently, the
global deadlock detecter or SNOOP algorithm would probably
be better than the wound-wait algorithm in a claim as
needed locking environment. Simple simulation extensions

could also be used to test that hypothesis.

The multiple copy concurrency problem was discussed
in Chapter 1. 1In a distributed database, it is sometimes
advantageous to replicate parts of the database at several
of the nodes in the network. The multiple copy con-
currency problem is to ensure that the replicated copies
are kept mutually consistent or identiéél during simul-

taneous user updates.

The four distributed database concurrency control
simulations could be applied to the multiple copy problem
as follows. Assume that the entire database is replicated

at each node. Some transactions are 'rcad-only' transac-

199

tions énd just‘need to access the data at one node. These
transactions can be considered the local transactions in
the simulations. The 'write' transaction, on the other
hand, must cause activity at each node and thus may be

considered the distributed transactions.

In this interpretation, the PREDIST parameter would
represent the percentage of update transactions. Under
the above interpretation, the conclusion summarized in
Table 4-2 can be applied to the multiple copy problem. If
the database is dominated by updates (i.e. most transac-
tions non-local) and the updates aré relatively large and
sequential in nature (i.e. Class 1 transactions), a pri-
mary site concurrency control is suggested. Thus all
transactions would first acquire locks at a 'primary copy’

of the data.

However, if all of the updates are small and random
in nature (i.e. AClass 2 transactions) or most of the
transactions are 'read-only' with respect to this database
portion (i.e. 1local transactions) then a decentralized
concurrency control is suggested (or is at 1least accept-
able). In a decentralized concurrency control, the
updates would request locks at cach node and proceed with
the wupdates. However, the wupdates would have to be
prepared to be rolled back due to conflicts .with other

updates.

»

200

Howevér, the above analysis is an over simplification
of the multiple copy problem in a distributed database.
One over simplification is that other concurrency control
solutions exist to the multiple copy problems which are
not directly extendible to the internal database con-
sistency problems. These algorithms must also be compared

with the simulated algorithms.

More importantly, the above analysis assumes a fixed
distribution of the copies in the distributed database.
In other words, the database is fully replicated and then
the number of updates and the network paraméters'are
varied. But thé optimum replication of the data actually
depends on the proportion of updates and the network
parameters. In fact the optimum replication of the data
may be influenced by the multiple copy concurrency con=

trol.

These analysis deficiencies cannot be over come by
straightforward extensions to the existing simulation
_ models. Instead a more complete model should be developed
to jointly study the database consistency andvmultiple

copy problems.

In summary, this dissertation provides insights into
the effects of concurrency control on database system per-
formance under a wide variety of conditions. The results

of the dissertation can be wused to guide concurrency

201

““eontrol -implementations and parameterizations in. database
management systems.

[ty

~

ALSB76

ASTRT76

BERNT77

CHAMTY

CODAT1

202

REFERENCES

Alsberg, P.A., Belford, G.G., Day, J.D.
and Grapa, E., "Multi-copy Resiliency
Techniques", CAC Doc.202, Center for
Advanced Computatior, University of Illi-

nois at Urbana-Champaign, May 1976.

Astrahan, M. et.al, "System-R: Relational
Approach to Database Management," ACM
Transactions orn Data Base Systems, Vol.1,

No.2, June 1976. pp. 96-137

Bernstein, P.A., Shipman, D.W., Rothnie,
J.B., and Goodman, N., "The Concurrency
Control Mechanism of SDD-1: A System for
Distributed Databases", Technical Report

CCA-7T7-09, December 1977.

Chamberlin, D. et. al, "A Deadlock-Free
Scheme for Resource Locking in a Data Base
Envirorment" ,IBM Research Report, San

Jose, Ca., June, 1974.

Data Base Task Group of the CODASYL Pro-

gramming Language Committee, April, 1971.

CODAT3

COFFT1

COURT1

DECTT

DIJK69

ELLIT7

203

CODASYL Programming Language Committee.
CODASYL COBOL Data Base Facility Proposal,

March 1973.

Coffman, Jr. E.G., Elphick, M.Jd.,
Shoshani, A., "System Deadlocks" Computing

Surveys, Vol.3 No.2, June 1971 pp 67-78.

Courtois, P.J., Heymans, F., and Parnass,'

D.L., "Corcurrent cortrol with readers and
writers", Communications of the ACM, Vol.

14 No.10, October 1971, pp.667-668.

Digital Equipment Corporation, "DBMS-11
Data Base Administrator's Guide", DEC-11-

ODABA-A-D, 1976.

Di jkstra, E.W., "Cooperating sequential
processes", In Programming Languages. F.
Genuys, ed., Academic Press, New York,

1968, pp.ld43-112.

Ellis, C.A., "A Robust Algorithm for
Updating Duplicate Databases", Proceedings
of the Secord Berkeley Workshop onr Distri-
buted Data Management and Computer Net-

works, May, 1977, Berkeley, Californria,

EPSTT78

ESWATO

FLORTHY

GARCT78

204

‘pp. 146-158.

Epstein, R., Storebraker, M., and Wonrg,
E., "Distributed Query Processing 1in a
Relationral Data Base System", ACM SIGMOD
International Conference on Management of

Data, Austin, Texas, pp. 169-180.

Eswaran, K. P., Gray, J. N., Lorie, R. A.,
Traiger, L. I., "On the Notions of Con-
sistency and Predicate 1locks 1in a data
base System ", Communications of the ACM,
Vol.19, Wo.11, November, 1976. pp. 624-
633.

Florentin, J.J., "Consistency Auditing of
Data Bases", The Computer Jourral, Vol.17,

No.1, February, 1974, pp. 52-58.

Garcia-Molira, H., "Performance Compafison
of Two Updates Algorithms for Distributed
Databases", Proceedings of the Third
Berkeley Workshop on Distributed Data
Management and Computer Networks, August
1978, San Franciéco, Califorria, pp. 108-
119. '

" GRAPTH

GRAYTS

GRAYT76

GRAY78 .

HAWTT9

205

Grapa, E., "Characterization of a Distri-
buted Database System", Ph.D. Thesis,

University of Illirois, October, 1976.

Gray, J.N.,Lorie, R.A., and Putzolu, G.R.
"Granularity of Locks in a Shared Data
Base", Proc. 1975 VLDB Conference, Fram-

ingham, Mass., Sept., 1975. pp. 428-451.

Gray, J. N., Lorie, R. A., Putzolu, G. R.
and Traiger, I. L., "Granularity of Locks
and Degrees of Consistency in a Shared
Data Base." Proc. IFIP Working Conference
on Modelling of Data Base Management Sys-

tems, Freudenstadt, Germany, January 1976.

pp. 695-723.
Gray, J., "Notes on Data Base Operating
Systems", IBM Research Report, RJ 2188,

San Jose, California, 1978.

Hawthornrne, P. and Stonebraker, M., "The
Use of Technolonical Advances to Enhance

Database Manazement System Performance,

 University of Californria, Electronics

Research Laboratory, ERL Memo M79/3, Janu-

ary, 1979.

N

HEWLT77

KLEI76

LAMP78

LBL76

LBL77

LBL78

206

Hewlett-Packard Corporation, "IMAGE Refer-

ence Manual", 1977.

Kleinrock, L., "Queuing Systems", Vol.2,

John Wiley and Sors, Publisher, 1976.

Lamport, L., "Time, Clocks, and the Order-
ing of Events in a Distributed System",
Communicationrs of the ACM, Vol.21, No.7,

July, 1978, pp.558-565.

Proceedings of the First Berkeley Workshop
orr Distributed Data Management and Com-
puter Networks, May, 1976, Berkeley, Cali-

fornia.

Proceedings of the Second Berkeley
Workshop or Distributed Data Management
and Computer Networks, May, 1977, Berke-

ley, Califorria.

Proceedings of the Third Berkeley Workshop
or Distributed Data Management and Com-
puter Networks, August, 1978, San Fran-

cisco, Califorria.

LIPST76

MACRT6

MENATS8

MUNZT7

NAKATS

207

Lipson, W. and Lapezak, "LSL User's
Manual", Computer Systems Research Group,
University of Toronto, Technical Note

No.9, August, 1976.

Macri, P., "Deadlock Detection and Resolu-
tion in a CODASYL Based Data Management
System," Proc. 1976 ACM-SIGMOD Conference
on Management of data, Washington, D. C.,

June, 1976 pp. U5-50.

Measce, D.A. and Muntz, R.R., "Locking and
Deadlock Detection in Distributed Data-
bases", Proceedings of the Third Berkeley
Workshop on Distributed Data Management
and Computer Networks, August, 1978, San

Francisco, California, pp. 215-232.

Munz, R., Krenz G., "Corcurrency in Data-
base Systems - A Simulation Study", Proc.
ACM SIGMOD Internatioral Conference on
Management of Data, Toronto, Canada,

August, 1977. opp. 111-120.

Nakamura, Yoshida, I. and Hidefumi, K., "A
Simulatior model for a database system

performance evaluation", AFIPS Corference

‘B

RIEST7

RIEST9

RODRT6

ROSETTY

208

Proceedinnrs 1975 Natioral Computer Confer-
ence, Vol.44, May, 1975, Anaheim, Califor-

nia, pp.U459-466.

Ries, D. R., Stonebraker, M. "Effects of
Locking Granularity in a Database Manage-
ment System!, ACM Transactiorns on Database

Systems, Vol.2, No.3, September, 1977 pp.

233-246.
Ries, D.R., * Stonebraker, M., "Locking
Granularity Revisited", ACM Transactions

on Database Systems, Vol.3, HNo.2, June,

1979.

Rodriquez-Rosell, J., "Empirical Data
Reference Behavior in Data Base Systems™
Computer, Vol.9, No.11, November 1976 pp
9-13.

Rqsenkrantz, D.J., Teams, R.E., and Lewis,

P.M., "A system Level Concurrency Control
for Distributed Database Systems",
Proceedings of the Second Berkeley

. Workshop or Distributed Data Management

and Computer Hetworks, May, 1977, Berke-

ley, Califorria, pp. 132-145.

SPITT76

STEAT6

STONTUY

STONT7

STONT8

209

Spitzer, J. F., "Performance Prototyping
of Data Management Applicationrs", Proc.
ACM'706 Arnual Conference, Houstor, Texas,

October 1976. pp. 287-297.

Stearrs, R. E. et al, "Concurrency Cortrol
for Data Base Systems", Proc 1976 IEEE
Symposium on Fourdationr of Computer Sci-

ence, October 1976. pp. 19-32.

Stonebraker, M., "High Level Integrity
Assurance in Relatiohal Data Base Sys-
tems", University of California, Electron-
ics Research Laboratory, Memo ERL-MUT73,
August, 1974,

Storebraker, M. and Neuhold, E., "A Dis-
tributed Database Version of INGRES",
Proceedings of the Second Berkeley
Workshop on Distributed Data Managément
and Computer Networks, May, 1977, Berke-

ley, Califorria, pp. 19-36.

Storebraker, M., "Concurrency Control of
Multiple Copies of Data in Distributed
INGRES™, Procéedinqs of -the Third Berkeley

Workshop or Distributed Data Management

THOMT78

WONGTT7

YAOTT

210

and Computer Networks, August, 1978, San

Francisco, Califorria, pp. 235-258.

Thomas, R.A., "A Solutiorn to the Update
Problem for Multiple Copy Databases which
uses Distributed Control", BBN Report

3340, July 1978.

Wong, E., "Retrieving Dispersed Data from
SDD1: A System for Distributed Data-
bases"™, Proceedings of the Second Berkeley
Workshop on Distributed Data Management
and Computer Networks, May, 1977, Berke-

ley, California. pp. 217-275.

Yao S. B., "Approximating Block Accesses
in Database Organizations", Communications
of the ACM, Vol. 20, No. 4, April 1977, pp
260-261.

	Copyright notice 1970
	ERL-79-20 (1 of 3)
	ERL-79-20 (2 of 3)
	ERL-79-20 (3 of 3)

