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ABSTRACT

The main goal of this thesis is to study the perfor

mance tradeoffs between parallelism and increased con

currency control overhead during simultaneous user updates

of a database. During such updates, a database management

system must guarantee that the multiple users do not

interfere with each other.

The potential advantages of parallelism in accessing

a database include the better utilization of computer

resources and better response times for users. Those

advantages, however, may be offset by the increased use of

system resources to insure that there is no interference

between the multiple users. Simulation models are used to

study these two conflicting aspects of concurrency control



for both centralized and a distributed databases.

One of the most important design decisions involves

locking granularity. Locking granularity refers to the

size and hence the number of locks maintained by the data

base management system. The centralized database simula

tion results indicated that in many cases, in particular

if data access is primarily sequential, coarse granularity

such as file, relation or record type locking is prefer

able. However, if all of the updates are small and ran

domly access the database, finer granularity, such as page

or record locking becomes necessary. If the sizes and

access patterns of updates vary considerably, the simula

tion results indicated that a lock hierarchy with dif

ferent sized locks is beneficial.

In a distributed database, the data is stored on dif

ferent computer sites connected through some type of net

work. In such a system, some of the database activities

are local in that they only involve data at one site.

Other database activities are distributed in that they

involve data at several of the computer sites. In a dis

tributed database, increased parallelism is possible dur

ing simultaneous database activities. However, the con

currency control overhead may also increase. The simula

tions modeled a variety of concurrency control algorithms

to study the additional tradeoffs in a distributed data-



base.

In particular, primary site control and decentralized

control algorithms were simulated. In the primary site

control algorithms, one site performs the concurrency con

trol functions for all of the other sites. In the decen

tralized control algorithms, the concurrency functions are

distributed to each of the sites and special provisions

must be used to prevent or detect deadlock.

The simulation results indicated that with a high

speed network and mostly local database activities, either

concurrency control approach is acceptable. As the net

work becomes slower, the decentralized control algorithms

are preferable. If most of the database activities are

distributed, however, the primary site approach can take

advantage of its "global" knowledge to better schedule the

processing of transactions and thus provide better perfor

mance than the decentralized algorithms.

These results can provide insights into the' design

and implementation of the concurrency control mechanisms

for a wide variety of centralized and distributed database

management systems.
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CHAPTER 1

INTRODUCTION

1- DATABASE CONCURRENCY CONTROL

One of the major features of a database management

system is to allow multiple users access to shared data.

During such multiple user access (and update), the

"integrity" of the database must be guaranteed. The

mechanism which guarantees that "integrity" is commonly

referred to as the concurrency control subsystem of a

database management system.

Two conflicting aspects of the concurrency control

mechanism affect the performance of a database management

system. On the one hand, the concurrency control can

increase the parallelism allowed in accessing the data

base. On the other hand, the advantages of such increased

parallelism may be offset by the amount of' system

resources, or overhead, that are used to insure database

integrity.

The main goal of this thesis is to study the perfor

mance trade-offs between increased parallelism and

increased concurrency control overhead in order to provide

insights for concurrency control implementations in



database management systems.

In the remainder of this chapter, some of the prob

lems in database concurrency control are discussed and the

previous research results on the performance evaluation of

concurrency control mechanisms are reviewed.

2. CONCURRENCY CONTROL PROBLEMS

2.K Database Consistency

The database concurrency control subsystem is respon

sible for the integrity and consistency of the database

during multiple user updates. The following example

illustrates the type of inconsistencies which can arise

without concurrency controls.

One user is producing a summary report of the total

salaries, taxes and benefits that are paid for a given pay

period. At the same time some other user is updating

individual payroll records for the "next" payroll.

Without some type of concurrency control, the summary

report may include some data from the "previous" payroll,

and some from the "next" payroll. Thus, the results of

that report would not accurately reflect either the previ

ous or next payroll periods.

Furthermore, the report may not accurately reflect an

individual's payroll record for either pay period. Sup-



pose, for example, that employee x's payroll record was

being updated. The summary report might contain the new

salary but the old tax and benefit values.

The concept of "database consistency" refers to the

permissible states of a database. The states which are

permissible may require certain relationships between

various elements in.the database. For example, one such

requirement may be that a department salary total must

equal the sum of all of the individual salaries in the

department. Such constraints are application dependent

and thus difficult to define for a general database

management system.

In [ESWA76], the concepts of transactions and serial

schedules are introduced. A "transaction" is a set of

related atomic actions involving a database which, if run

alone on a database, preserves database consistency. A

"schedule" for processing transactions is a sequence of

atomic actions from the transactions. A "serial schedule"

is one in which all the atomic actions from one transac

tion are scheduled first, followed by all of the atomic

actions from a second transaction, etc. In other words,

the transactions are run one at a time against the data

base.

A transaction schedule is "seri-alizable" if the

effects of the atomic actions in the scheduled order are



equivalent to running the transactions in some serial

schedule. If each transaction preserves the consistency

of the database, it is clear that a serial schedule, and

thus a serializable schedule, must also preserve the con

sistency of the database.

Two protocols for transaction behavior are defined in

[ESWA76] which are used to insure the serializability of

any schedule. A transaction is said to be "well-formed"

if all transactions acquire a lock (read or write [DIJK68,

C0UR71]) before touching (reading or writing) an object of

the database. A transaction is said to be "two-phased" if

it acquires all of its locks before releasing any locks.

If all transactions are two-phased and well-formed,

[ESWA76] shows that any schedule of atomic actions that

does not violate the required locking protocols is serial

izable and thus preserves the consistency of the database.

Some database management systems support weaker forms

of consistency where the applications may allow for cer

tain violations of the well-formed and two-phased proto

cols [GRAY76]. It has also been shown [BERN78] that seri

alization (or effective serialization) of transactions is

sometimes unnecessary. Throughout this study, however, it

is assumed that the concurrency control subsystems require

that transactions are well-formed and two-phased.

3
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2.2. Deadlock and Rollback

Those two protocols do provide solutions to some of the

concurrency control problems. However, other problems

which the concurrency control subsystem must still solve

include deadlock resolution and the problem of cascading

rollback of transactions.

A simple example can be used to illustrate the

deadlock problems. Suppose one transaction locks and

writes object A and another transaction similarly locks

and writes object B. Then, the first transaction requests

a lock on B while the second transaction requests a lock

on A. The four conditions for deadlock [C0FF71] are met

since neither transaction can release its existing locks

without violating the two-phased locking protocol. Thus,

a concurrency control scheme must solve deadlock problems

by either prevention or detection and resolution.

If deadlock detection and resolution is used it may

be necessary to roll back or undo the effects of a tran

saction. Note that if locking is not two-phased, some

other transaction may read the effects of a transaction

which has been rolled back. In this case the other tran

saction must also be rolled back. (Otherwise, the updates

of the rolled back transaction might still appear in other

parts of the database).



This condition is called "cascading" rollback and can

be generated even if two phased locking is enforced. A

transaction may also be rolled back because of a change in

a user's mind, or because of a hardware problem. If that

transaction had released some of its write locks, other

transactions might also have to be rolled back. To

prevent this cascading rollback, many database systems

hold all locks until the end of the transaction. In fact,

all of the concurrency control subsystems considered in

this study will require that locks be held until the end

of a transaction.

2.3. Database versus Operating System Concurrency

The concurrency control requirements for databases

are different than the concurrency control requirements

for operating systems. One difference is that an operat

ing system controls simultaneous access to fixed objects;

such as line printers, tape drives, specific addresses in

core, etc. A database system, on the other hand, controls

access to objects whose names and addresses can change.

Another difference is that more objects need to be

locked in a database management system. The database may

contain millions of objects, such as records, field

values, etc., which have to be locked. The number of dif

ferent objects that can be locked in an operating system



is generally much smaller.

3- PREVIOUS PERFORMANCE RESULTS

The results of the above problems and consistency

requirements have resulted in a wide variety of different

concurrency control mechanisms. The goal of this thesis,

however, is not to develop new concurrency control algo

rithms, but to study the affects of various concurrency

control strategies on the overall performance of the data

base management system by means of simulation models.

Previous work in this area can be divided into centralized

databases, where the entire database is maintained by one

computer; and distributed databases, where the database is

distributed across several computers connected by some

type of network.

!•!• Centralized Databases

In [NAKA75] a simulation model is used to study the

performance of a database system. A database system model

and synthetic user application models were run to estimate

system utilizations and average response times. One

result observed was that the system bottlenecked due to

the delays caused by concurrent updates. When the con

current updates were administratively removed from the



application model (to presumably be run at night), the

average response time decreased by a factor of seven.

Since not all applications allow for administrative con

currency control, it is clear that concurrency control

mechanisms can significantly affect the overall perfor

mance of the database management system.

Several other simulation studies have also explored

the effects of concurrency control on database system per

formance. In [SPIT76] the effect of scheduling the lock

requests and releases for the System 2000 database manage

ment system was examined. In that study, the difference

between locking the database for the entire period of a

transaction, as opposed to locking and unlocking the data

base for each atomic update was surprisingly small. The

additional parallelism possible with the short locks was

offset by the additional time spent by the transactions

waiting for that lock.

In [MUN77] several parameters and concurrency control

alternatives were explored by means of a simulation model.

In that simulation, alternate methods for choosing a vic

tim in deadlock resolution were explored. The results of

the simulation showed that three methods for selecting a

victim were superior: 1) the victim should be the process

which accessed the least amount of data, 2) the victim

should be the process which held the fewest number of



locks; or 3) the victim should be the process >which had

used the least amount of computer resources.

In addition to deadlock resolution, the [MUN77] simu

lation was used to study the optimum number and size of

the lockable data units in the database. The authors con

cluded that the units of locking should be very small.

However, that conclusion was not based on a fixed applica

tion environment. Instead, the sizes of the transaction

were made smaller as the sizes of the locks were reduced.

Thus whether the observed increase in parallelism was due

to the smaller transactions or the smaller locks is

unclear. Two other problems with that study were that

only the CPU utilization was considered and that the CPU

resources of their model were effectively considered

infinite.

In Chapter 2, a simulation model is used to further

study locking granularity, optimum lock duration and a

variety of other factors.

3.2. Distributed Databases

Recently, considerable attention has been devoted to

the development and use of distributed databases [LBL76,

LBL77, LBL781. In such an environment, the data is dis

tributed across a network of computer systems. The poten-
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tial benefits of such distribution include sharing of data

across different computer sites, increased parallelism in

accessing the database, locating data closer to users and

increased reliability.

However, one of the major problems with a distributed

database is the development of a concurrency control

scheme to insure database consistency during multiple user

updates [STON77]. Concurrency control schemes for a cen

tralized database do not always extend to a distributed

database.

For example, in a centralized database, a transaction

can request all of its locks at the beginning of its pro

cessing and release them at the end [CHAM74], In this

scenario, the locks are acquired in one atomic action. If

one lock is denied, all locks are denied and the entire

lock acquisition step is repeated. Note that in this

scenario, deadlock is impossible.

In a distributed database, however, locks may have to

be obtained at distinct computer sites. Even though the

lock acquisition at each site is atomic, deadlock can

still occur because one processing unit does not access

the entire database. Concurrency control considerations

require that the different processing units communicate

with each other. The communication must be used either to

centralize the concurrency control functions or to prevent
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or detect a decentralized deadlock.

Several solutions to the concurrency control problems

for distributed databases have been proposed [BERN77,

ROSE77, GRAY78, MENA78 and STON78]. To evaluate the per

formance of the different proposals, the number of mes

sages which must be sent for concurrency control are

counted. In [BERN771 it is shown that if the transactions

are known in advance (i.e. only certain known types of

transactions access the database), different types of con

currency control can be used for different types of tran

sactions and thereby further reduce the network con

currency control traffic.

Unfortunately, a count of overhead message traffic

does not, by itself, determine the effects of the con

currency control on the overall performance of the distri

buted database system. Other factors such as overall sys

tem load., the amount of non-local processing, and the

scheduling of transactions must also be considered.

In Chapter 3, a simulation model is used to examine

the effects of these factors as well as the -effects of the

message traffic.

In a distributed database, the same data may be

stored at several computer sites. These multiple copies

create additional concurrency control problems in that the

copies must be kept mutually consistent during multiple
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updates. (The simulations in chapter 3 do not- explicitly

model the multiple copy update scenarios. However, some

of the results of the study can be applied to the multiple

copy update problems.)

Other studies do directly model the multiple copy

update problems but do not address the internal database

consistency issues. In [GRAP76], different algorithms for

multiple copy consistency are analysed in terms of the

performance of a distributed database management system.

In [GARC78], a simulation model is used to compare the

effects of two algorithms [ALSB76, THOM78] on the overall

performance of the distributed database system. Both stu

dies show that under a wide variety of assumptions a "pri

mary copy model" is better for maintaining multiple copy

consistency. The primary site model basically implies

that the control of updates to the different copies is

channelled through a single or primary copy of the data

base.

4. OVERVIEW

This thesis will analyze the effects of concurrency

control on the performance of both centralized and distri

buted databases. In both cases, simulation models are

used to study the tradeoffs between increased parallelism

and increased locking overhead.
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One parameter of primary interest is the locking

granularity. Locking granularity refers to the size of a

lockable unit or granule which covers a portion of the

database. Locking granularity can be extremely fine (i.e.

one lock is associated with each sector of a disk). Or,

locking granularity could be extremely coarse (i.e. one

lock is associated with each disk drive).

In Chapter 2, an extensive simulation model is

presented which explores a large class of concurrency con

trol alternatives. The model is parameterized to provide

insights into the locking parameters for a wide variety of

database systems. The simulation experiments study lock

ing granularity, the overhead costs of locking, the tran

saction types and sizes, a locking hierarchy, and the

times when locks are acquired. Most of these results have

been published previously [RIES77, RIES79].

In Chapter 3, the simulation models are extended to

distributed database systems. These experiments study the

effects on performance of locking granularity, four dis

tributed concurrency control algorithms, the transaction

types and sizes, and various network related parameters.

In Chapter 4, the major results these studies are

summarized and several directions for future research are

suggested.



CHAPTER 2

CENTRALIZED DATABASE SYSTEMS

U INTRODUCTION

In order to insure the consistency conditions dis

cussed in chapter 1, a variety of concurrency control

mechanisms [CHAM74, C0DA71, ESWA76, GRAY75, GRAY76,

MACR76, STEA76, STON74] have been proposed and implemented

in single machine database management systems. In this

chapter the performance issues of these types of mechan

isms are examined.

Clearly there are advantages to increasing the paral

lelism in processing transactions. Unfortunately, the

price of this increased parallelism is the increased over

head which must be expended to achieve it. The goal of

this chapter is to study the tradeoff between these con

flicting performance considerations on a single machine

database management system.

In section 2, a simulation model is developed to

study that tradeoff. In section 3, the results of experi

ments with that simulation model are reported. In addi

tion, two extensions to that model are used to study

14
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alternate concurrency control mechanisms. Finally, the

major conclusions are summarized in section 4. In the

remainder of this section, the performance issues and

approaches of centralized concurrency control are

reviewed.

!•!• Performance Issues

An evaluation of concurrency control must include an

analysis of the tradeoffs between the overhead spent on

locking versus the advantages of allowing more parallel

access to the database. The advantages of increased

parallelisms are in terms of better user response time and

increased machine utilization.

The amount of overhead spent on locking is dependent

on several parameters of the concurrency control mechan

ism. These parameters include the size of a lockable

unit, the costs of setting and releasing locks, the pro

portion of resources required for locking and the length

of time for which the locks are held. Each of these

parameters is considered in turn.
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I'l-l* Locking Granularity

All of the concurrency control mechanisms involve the

locking of some physical or logical portion of the data

base. The smallest portion of the database which can be

locked is referred to as a "granule". The size of a

granule varies in different database management systems.

In some systems (CODASYL [CODA733, System R [ASTR76],

DMS-1100 [GRAY75]) the granule may be as small as one

record. Other systems (System 2000 [SPIT76], IMAGE

[HEWL77]) support one granule covering the entire data

base. Still other systems (DBMS-11 [DEC77], LSL [LIPS76])

support intermediate sized granules such as files or

areas.

There is a clear tradeoff between locking overhead

and parallelism based on the locking granularity. Fine

granularity allows a higher degree of parallelism at

greater cost in managing locks. For example, assume that

a granule corresponds to a record in a database. Then the

transactions may run in parallel without conflict as long

as they access distinct records. However, the database

system must be prepared to handle as many locks as there

are records in the database.

Coarse granularity, on the other hand, inhibits

parallelism but minimizes management of locks. If the
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granule is considered the entire database, no transactions

will run in parallel. The database system keeps track of

only one lock.

Different sized granules can be supported in a lock

hierarchy [GRAY76]. In a lock hierarchy, a tree structure

of locks is supported. A transaction can either expli

citly hold locks on lower branches of the tree, or impli

citly hold those locks by explicitly locking an ancestor

node common to all of the lower branches.

With such a hierarchy, the costs of locking for large

transactions may be greatly reduced since it is cheaper to

set one large lock than to set many small locks. However,

the locking costs for the transactions using small locks

may increase. Those transactions would have to set all

the locks in the path from the leaves to the root of the

tree. Again a tradeoff is observed between the parallel

ism allowed and the locking overhead.

For example, consider a two-level hierarchy where one

lock at the top level controls access to the entire data

base and many (more than one) locks at the lower level

control access to individual "parts" of the database. A

transaction which accesses the entire database can

exclusively lock the one top level lock. Without a lock

hierarchy and just the small locks, it would be much more

expensive for that transaction to lock all of the small
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locks.

The above lock hierarchy, however, increases the

locking overhead for the transaction which just access one

"part" of the database. That transaction must set the

higher-level lock in an "intention" mode [GRAY76] (imply

ing that explicit locking is required at the lower level)

and still lock the individual part of the database. Thus,

that transaction sets two locks. Without a lock hierarchy

and just the small lock, that transaction would set only
one lock.

l#l-2. Locking Overhead

Concurrency control overhead refers to the amount of

computer resources utilized by the locking mechanism.

This "overhead" can be thought of as the difference

between the resources required by a transaction in a

multi-user system and the resources that would be required

if the transaction could be run as the only user of the

database. The locking mechanisms must compete with the

transactions for memory, CPU cycles, and I/O channels.

Thus, as a locking mechanism increases in complexity and

requires more resources, it will start to interfere with

the running of the transactions.
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The ratio of resources spent for locking to resources

spent for processing transactions is critical. For exam

ple, a ratio of one implies that it is as expensive to

lock a granule as it is to process the data in that

granule. In this case, two transactions could have been

run without locking in the time it takes a transaction to

set its locks, process the data, and release the locks. A

less expensive concurrency control which only allowed half

of the parallelism might provide the same throughput.

1'1*3. Lock Duration

Another factor which affects the degree of parallel

ism and the cost of concurrency control is the time period

for which the locks are held. Two simple procedures which

insure that a transaction is two-phased (See Chapter 1)

are:

1) set all locks at the beginning of a transaction or

2) hold all the locks until the end of a transaction.

If the second option is chosen, the locks can still

be preclaimed as in option 1 or requested and granted as

needed by the transaction.

A performance tradeoff is again possible. By not

locking resources until they are required, additional
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parallelism is possible. However, the locking overhead

costs are increased by two factors. First, the con

currency control mechanism must check for deadlock

[COFF713. Second, if deadlock is detected, a transaction

may have to be restarted. The resources already used by a

restarted transaction should also be included as overhead

costs since they would not have been used if the transac

tion was run by itself.

In summary, the important performance parameters are

locking granularity, locking overhead, and lock duration.

K2. Locking Mechanisms

Two general options have been proposed for single

machine concurrency control — physical locks and predi

cate locks.

1*2.1_« Physical Locks

Physical locks are placed on records, pages, seg

ments, files, areas or the entire database. In this case,

a "granule" refers to a physical portion of the database.

With physical locks, a data manipulation command can

not proceed if a granule it needs is locked by someone

else. Various strategies for requesting and releasing
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locks have been suggested [CHAM74, GRAY76, STEA76,

MACR76]. Some of these strategies require the detection

resolution of deadlock.

The basic idea behind physical locking is straight

forward. If a transaction needs to read a portion of the

database but not write it, a read or shared lock must

first be obtained on a granule which physically covers

that portion of the database. Other transactions which

also read that portion or a portion covered by the same

granule can share that lock.

If all or a portion of the granule is to be updated,

an exclusive lock must be obtained which cannot be shared

by other running transactions. The two-phase requirement

insists that no locks can be released until the transac

tion has acquired all of the locks that it needs.

.1'2.2. Predicate Locks

A predicate lock can be set on the exact portion of

the database which is to be accessed. The portion of the

database which is locked is determined by predicates or

qualifications associated with the transaction. The

predicate (i.e. "all records with date field values in

June, 1976") restricts the transaction to a logical subset
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of the database. Such locks do not necessarily correspond

to any physical portion of the database. This approach is

explored in [FLOR74, STON74, ESWA76].

In predicate locking, a predicate corresponding to a

selection criteria of a transaction is submitted to the

locking mechanism. If the locking mechanism can "prove"

that a transaction does not conflict with any running

transactions, the locks are granted. Otherwise, the

requesting transaction must wait. A propositional logic

"theorem prover" can be used to prove that two transac

tions do not conflict. The sophistication of the theorem

prover can be varied depending on the tradeoff between

increased parallelism and CPU recourses used for locking.

The granularity in predicate locking also varies.

For example, a predicate such as "employee_no=1234" might

restrict the transaction to one record. On the other

hand, a predicate such as "department=engineering" might

represent hundreds of records. Notice that predicate

locks, like physical locks, can be acquired throughout the

duration of a transaction.

Predicate locking has two obvious advantages. One is

that a predicate lock can accurately describe the exact

logical portion of the database that is to be accessed by

a transaction. The second is that the cost of setting
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such a lock depends on the number of simultaneous transac

tions actually submitted and not on the amount of data

that is actually accessed.

However, the predicate locking mechanism may need

lessly keep a transaction from running. Suppose the

predicate "AGE>29" has been granted a lock for a running

transaction and that another transaction issues the

request "AGE<31". If no one with AGE=30 were in the data

base, both transactions could be allowed to run. But the

predicate locking mechanism would require that the second

transaction waits.

Thus, predicate locking may reduce concurrency con

trol overhead at the expense of allowing less parallelism

in accessing the database.

2. MODEL DESCRIPTION

A simulation model is used to investigate the tra

deoffs between concurrency control overhead and increased

parallelism. The model is described by first explaining

the flow of transactions around a closed-loop model. Next

the model input and output parameters are discussed.

Finally, the allocation and competition for resources in

the model are described.
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2*1* Transaction Flow

The running of transactions against a database is

simulated by assuming there are a fixed number of transac

tions which are cycled continuously for TMAX time units

around the model shown in figure 2-1. A transaction goes

through the following steps:

1) Arrive on the pending queue

2) Acquire locks

3) Process I/O requests

4) Process CPU requests

5) Release locks

6) Generate a new transaction and return to step 1

These steps are explained in more detail below.

Initially, the transactions arrive one time unit

apart and are placed on the pending queue. The transac

tion is removed from the PENDING queue and 'all required

locks are requested. If the locks are granted, the tran

saction is placed on the bottom of the I/O queue. If the

locks are denied, the transaction is placed on the bottom

of a BLOCKED queue. The blocking transaction is recorded.

(The description of which locks are required by a
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transaction is given in section 2.3.) Note that no locks

are held while on the blocked queue so deadlock is impos

sible.

After completing the I/O required, the transaction is

placed on the bottom of the CPU queue.

After completing the CPU required, the transaction

releases its locks. At this point a new transaction is

added to the end of the PENDING queue. (Note that each

transaction goes through one I/O phase and one CPU phase.

Although they are sequential in the model, the result

would be the sam-e if each transaction were to go through

many I/O - CPU phases in a single cycle.) All transactions

that were blocked by the completed transaction are placed

on the front of the PENDING queue.

2*2• Model Parameters

The input parameters can be divided into those that

characterize the workload, and those that characterize the

system. Workload parameters describe the database and the

transactions that are run against that database. System

parameters describe the computer system and/or the data

base management system characteristics. The output param

eters characterize the throughput, overhead and utiliza

tion of the system. These parameters are all described in
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more detail below.

Z'?.'l' Workload Parameters

The workload input parameters are summarized in Table

2-1. The number of transactions, NTRAN, in the system is

fixed. The closed loop model could have two interpreta

tions. As each transaction completes, the user submits

another transaction. Alternately, the transactions could

be viewed as application programs. When one of these com

pletes, another application program enters the system to

take its place.

The database size, DBSIZE, refers to the number of

entities in the database. In this model, the database is

an abstract collection of entities. An entity can be

Table 2-1 Workload Parameters

Parameter Description

NTRAN number of transactions

DBSIZE number of entities in the database

RAD a transaction size parameter.
AMEAN mean for exponential distribution

of transaction size.

BMEAN another mean for exponential distribution
of transaction size. Used with AMEAN for

hyper-exponential distribution
of transaction sizes.

ALPH cut of proportion between AMEAN
and BMEAN.

LKPLMT lock placement assumption (see below)
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thought of as the unit of data moved by the operating sys

tem into the database system buffers. ,

In the simulation, three types of distributions for

transaction sizes are used. The size of a transaction

refers to the number of entities, NE, touched or accessed

by a given transaction. The number of entities "touched"

or accessed by a given transaction completely determines

the amount of I/O, CPU and lock resources required by that

transaction. In the simplest case, the sizes of the tran

sactions are uniformly distributed by the RAD parameter.
J. U

The number of entities touched by the i transaction is

given by:

NEi=i*RAD,fori=1,...,NTRAN

This distribution reflects a workload with a uniform mix

of different sized transactions.

The second distribution of transaction sizes is

exponential. The average transaction size is determined

by the AMEAN parameter. In this case,

NE.=-AMEAN*log(rnd)

where rnd is a uniformly distributed random number between

zero and one. This distribution reflects a workload where

most of the transactions are small a very few transactions

are large.
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The final distribution used is hyper-exponential with

three parameters, AMEAN, BMEAN, and ALPH. In this distri

bution, some#(ALPH x 100 percent) of the transactions have

sizes which are exponentially distributed with a mean of

BMEAN. The other transactions have sizes which are

exponentially distributed with mean AMEAN. In this case,

NEi=-BMEAN*log(rnd1)

if rnd2 < ALPH or

NEjL =-AMEAN*log(rnd1)

if rnd2 >= ALPH

where rndl, and rnd2 are independent random variables

similar to rnd. This distribution is used to model

scenarios where, for instance, most of the transactions

are extremely small and only touch a few records or pages

of a database, while a few transactions must access a very

large number of records. Note that the exponential dis

tribution is just a special case of the hyper-exponential

distribution with an ALPH of zero.

The lock placement parameter, LKPLMT, determines the

number of locks that a given transaction requires. Three

different assumptions regarding lock placement are simu

lated.



30

With "well placed" locks (LKPLMT = 1), the number of

locks required by a given transaction is exactly propor

tional to the percentage of the database touched or

accessed by the transaction. For transaction i, the

number of locks, NL, is

NL.=CEILING(NE.*NGRAN/DBSIZE)

where NGRAN is the total number of locks available.

Hence, a transaction which touched half of the entities in

the database would require half of the possible database

locks. Note that this amounts to assuming that the

granules are "well placed", i.e. that the entities needed

by the transactions are packed into as few 'lockable1

granules as possible. This assumption is reasonable for

transactions which access the database sequentially.

Although sequential processing in database applications

has been observed [RODR76], actual transactions may

require a combination of sequential and random accesses to

the database.

Under a "worst case placement" assumption (LKPLMT =

2), each transaction requires the maximum number of

granules possible. In this case

NL.=MIN(NE. NGRAN).
i 1?



31

If the total number of entities touched by a given tran

saction, NE, is greater than the number of locks covering

the entire database, NGRAN, then in the worst case, all of

the locks might have to be acquired in order to access the

needed entities. If NE is less than NGRAN, the number of

locks that have to be set is bounded by the number of

entities, NE. Thus, the number of locks required is the

minimum of the number of locks for the entire database and

the number of entities touched by the transaction. This

assumption simulates an "uncooperative" transaction, i.e.

one whose access pattern is the worst possible from the

lock mechanism point of view. This scenario is the oppo

site extreme of the "well placed" assumption.

Under' a "random access placement" assumption, a

mean-valued formula is used to estimate the number of

locks required for each transaction. The number of locks

required under this assumption is analogous to the number

of blocks accessed when randomly selecting records-from a

blocked file. The formula for this number and its deriva

tion are given in [YA0773. This model accurately reflects

random processing where the probability of accessing any

entity is the same and independent of any previous enti

ties accessed.. Let DBSIZE be the number of entities in

the database, NGRAN be the total number of locks, and p be

the number of entities per lock (=DBSIZE/NGRAN) . Then a



transaction which accesses NE entities requires

r rDBSIZE-p ~j
NE !

C

NGRAN * |1 - - DBSIZE
NE

locks. The expressions C^SIZE"P and C^SIZE represent
the number of different ways NE entities can be selected

from DBSIZE-p and DBSIZE entities respectively. The

derivation of this formula is identical to the derivation

in [YA077] and is not repeated here.

L LNE J

32

2.2.2. System Parameters

The system parameters are listed in Table 2-2. The

number of granules, NGRAN, into which the database is

divided is varied from one to the number of entities in

the database, DBSIZE. A granule is the unit which is

locked by a transaction. Each granule is assumed to be

the same size. Hence, if NGRAN = 1, a granule is the

entire database of DBSIZE entities. If NGRAN = 2, a

granule is D3SIZE/2 entities. If NGRAN = DBSIZE, each

granule is 1 entity.

The CPU costs for processing a transaction are deter

mined by the CPURATE parameter. The CPURATE refers to the

CPU resources required for processing one entity of the

database where CPU resources are in time units of the
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Table 2-2 System Parameters

Parameter Description

NGRAN number of lockable granules
CPURATE CPU time to process one entity
IORATE I/O time to process one entity
LCPURATE CPU rate to process one lock
LIORATE I/O rate to process one lock
IOOVLP number of simultaneous I/O

operations permitted

simulation. Note that these are the resources for pro

cessing the transactions and do not include any costs for

processing the locks.

Similarly, the I/O costs for processing a transaction

are determined by the IORATE parameter. Note that the

CPURATE and IORATE could have also been considered as

workload parameters because in many cases they are appli

cation dependent [HAWT791.

The lock CPU parameter, LCPURATE, refers to the CPU

resources required to request (and set/release) a lock for

one granule.

Similarly, LIORATE determines the I/O overhead for

setting one lock. For some DBMS systems, lock tables are

kept-entirely in main memory. Threse systems are modeled

by a LIORATE of zero. On the other hand, a database sys

tem which has as many locks as pages in the database, may

have to keep lock tables on secondary storage devices.
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Such systems would have a non-zero LIORATE parameter.

The I/O overlap, IOOVLP, indicates how many simul

taneous I/O operations are possible. This parameter is a

surrogate for the number of independent paths used between

main memory and secondary storage (and hence for how much

I/O activity can go on in parallel).

2.2.3. Output Parameters

The performance measurements shown in Table 2-3 are

generated by each simulation run. The total CPU time,

TCPU, refers to the number of time units in which the CPU

is busy. During TMAX - TCPU time units the CPU is idle.

The total I/O units, TIO, is the number of time units

in which the I/O resources are busy. The total I/O units

utilized can become larger than TMAX if the I/O overlap

Table 2-3 Output Parameters

Parameter Description

TCPU Total time CPU active

TIO Total time I/O active
LOCKCPU CPU overhead for locking
LOCKIO I/O overhead for locking
USEFULCPU CPU time for transactions
USEFULIO I/O time for transactions
TRANCOM number of transactions completed
AVERRES average response time
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parameter is greater than 1. In fact TIO is bounded above

by TMAX * IOOVLP.

The CPU units used for lock management are recorded

in LOCKCPU while the I/O units used for locking are

recorded in LOCKIO.

The useful computer utilization, USEFULCPU and USEFU-

LIO, refer to the net resources used for transaction pro

cessing. These measurements reflect the transaction pro

cessing time without the concurrency control overhead.

Note that

TCPU=LOCKCPU+USEFULCPU

TIO=LOCKIO+LOCKCPU.

The total number of transactions completed at the end

of a simulation run, TRANCOM, and the average response

time, AVERRES, are also recorded. The time when each

transaction is first placed on the pending queue is con

sidered an arrival time for that transaction. The differ

ence between that time and the time when that transaction

releases its locks is called the response time. Some

transactions may have started but not finished at the com

pletion of the simulation run. These transactions are not
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included in the computation of TRANCOM or AVERRES.

2.3. Resource Allocation and Usage

The above parameters completely determine the

resources required by each transaction. These resources

are summarized in Table 2-M.

The CPUTIME represents the total number of time units

that a transaction would be on the CPU queue if it were

running by itself. However,' if there are N transactions

on the CPU queue, the CPU is multiplexed among those N

transactions. For example, if there are always 2 transac

tions on the CPU queue, a transaction with a CPUTIME = 50,

would remain on the CPU queue for 100 time intervals.

The IOTIME is similar, except for the effect of the

IOOVLP parameter. If there are N transactions on the I/O

queue, each transaction progresses min(1,I00VLP/N) time

Table 2-4 A Transaction

RESOURCE FORMULA

NE = function(RAD)
or function(AMEAN,BMEAN,ALPH)

NL = function(NE, LKPLMT, DBSIZE)
CPUTIME = NE * CPURATE
IOTIME = NE * IORATE
LOCKIOTIME = NL * LIORATE
LOCKCPUTIME = NL * LCPURATE
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units. The progress is bounded above by 1 to simulate one

transaction having only one outstanding I/O request at a

time.

The locking mechanisms are given a higher priority

for the I/O and CPU resources than the active transac

tions. Also note that these costs are repeated each time

a transaction requests its locks. For example, suppose a

transaction requests locks, they are denied, and the tran

saction is placed on the blocked queue. Later that tran

saction is removed from the blocked queue, the locks are

requested again, and this time they are granted. The

total lock overhead associated with this transaction is

twice NE times the lock rates.

Two approaches are used to simulate the competition

for the available granules. Under both approaches, the

decision, to grant or deny a lock request is based on

another uniformly distributed random variable, rnd3.

Under one approach, the granules for each transaction

are considered to be completely uncorrelated. Let CRL be

the number of locks currently held by the active transac

tions. Then a transaction needing NL locks, has those

locks granted i.f
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NGRAN-CRL

rNGRAN
LNL

The above expression is simply the number of ways of

choosing NL locks from those that are already still

unclaimed divided by the number of ways of chosen the NL

locks from all of the locks.

Under the well-placed lock assumption, the above for

mula actually penalizes finer granularity. For example,

doubling the number of locks, (2 * NGRAN), could result in

also doubling NL and CRL. The number of locks for a tran

saction, NL, would be doubled if a transaction touched all

of the entities covered by a given lock. But then, the

probability of a successful lock request is actually

smaller due to the finer granularity because

r2*NGRAN-2*CRL rNGRAN-CRL
2*NE NE

~2*NGRAN > TNGRAN *
U2*NE UNE

The right hand side is the probability of obtaining NL

locks with the original granularity while the left hand

term is the same probability if the number of locks were

doubled.

To avoid this bias under the well-placed lock assump

tion, a second approach to computing lock conflicts is

used. With this approach it is assumed that the first

requested granule is uncorrelated with any of the granules
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which are already locked. Furthermore, the additional

requested granules are assumed to be distinct from the

already locked granules. Under this assumption, the locks

are granted if

rnQ5 ? (NGRAN-NE+1T*

Under either approach, if the locks are granted, CRL

is incremented by NL. If the locks are denied, one of the

active transactions is picked as the blocking transaction.

The probability that a transaction, say T. is the blocking
•j

transaction is NL./CRL; i.e. is directly proportional to

the number of locks held by the blocking transaction.

i- RESULTS and DISCUSSION

In this section the results of running the simulation

under a wide variety of parameter settings are reported.

First, the results of some initial runs of the simulation

are explained. Next the effects of varying the workload

and system parameters are reported. Finally, the effects

of two changes to the basic simulation model are

described.
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3-1* Ali Initial Scenario

The simulation is initially run with the workload

parameters shown in Table 2-5 for 10,000 (TMAX) time

units. The system parameters for the first run are shown

in Table 2-6.

In this scenario, ten transactions were submitted to

a database of 5000 entities. The transactions required

from 50 to 500 entities each (initially the sizes were

uniformly distributed). (The simulation was also run with

up to 20 transactions with no appreciable effect other

than scale on the output parameters.)

Table 2-5 Sample Workload Parameters

Parameter Value

NTRAN 10
DBSIZE • 5000
LKPLMT Well-Placed
RAD 50

Table 2-6 Sample System Parameters

Parameter Value

NGRAN

CPURATE

IORATE

LCPURATE

LIORATE

IOOVLP

1 to 5000

.05

.20

.01

.20

1



The locks were assumed to be "well-placed" with

respect to the accessing transactions and thus the tran

sactions required the smallest number of granules that

were required to "cover" the touched entities.

The I/O overlap parameter was set to one which

results in only one transaction processing an I/O opera

tion at one time. Note that for this run the I/O rate is

four times the CPU so that this simulates an "I/O bound"

application. The CPU cost of a lock was 1/5 that required

to process an entity. Lastly, the I/O cost of a lock was

equal to the I/O cost of an entity. Hence, this initial

run simulated a lock table being kept on secondary

storage.

Intuitively, these input parameters could be inter

preted as followes:

DBSIZE .is 5 million bytes (one entity is 1024 bytes)

Average transaction accesses 250,000 bytes of data.

IORATE of 30 msecs per entity (one disk accesses).

CPURATE of 7.5 msec per entity.

LIORATE of 30 msecs per lock.

LCPURATE of 1.5 msecs per lock.

In this interpretation one time unit corresponds to 150

milliseconds.
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For these simulation runs, the value TMAX = 10000 was

chosen after running simulations for various smaller

values including TMAX = 2500. In all cases, no change

(except for scaling) was observed in the output parameters

between TMAX = 2500 and TMAX = 10000. For some of the

experiments discussed later, other values of TMAX were

required to guarantee convergence. Keeping the other

parameters fixed, the number of granules was varied

between 1 and 5000. The output from the simulations is

presented in Tables 2-7 and 2-8.

Note that the utilization of I/O resources for tran

saction processing, USEFULI0, peaked at 40 granules.

Within 1% of this value was reached with only 10 locks.

The useful I/O remained relatively constant until the lock

1/0 costs start to be a significant fraction of I/O time.

For a small number of granules, high lock I/O cost

resulted from lock conflicts which generated still more

lock I/O. (In an actual implementation of a locking

scheme, a small number of locks could easilybe maintained

in primary memory. This alternative is explored subse

quently.) Similarly, the useful CPU time peaked at 30

granules, and again this value was almost reached (within

1%) with as few as 10 granules. These .results are por

trayed graphically in figure 2-2. The lock CPU costs were
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T able 2-7
CPU and I/O Utiliza tion

Initial Scenario

NO_of_GRANULES USEFULIO USEFULCPU LOCKIO LOCKCPU

1 1 7041.957 1759.906 1282.000 12.820

I 2 8376.933 2091.914 970.000 9.700

I 3 9002.256 2237.415 777.000 7.770

I 4 9030.253 2258.925 671.000 6.710

I 5 9273.915 2304.927 604.000 6.040

! 7 9438.514 2309.940 474.000 4.740

I 9 9449.087 2337.442 428.000 4.280

! 10 9476.180 2324.941 437.000 4.370

I 15 9425.585 2358.445 403.000 5.210

I 20 9437.987 2354.943 396.000 5.280

I 30 9534.303 2377.449 371.000 6.720
S 40 9572.718 2354.949 360.000 7.900

I 50 9504.073 2339.950 360.000 8.790

I 75 9448.435 2332.452 454.000 13.290

I 100 9378.277 2324.951 482.000 15.430

I 125 9351.744 2316.457 547.000 20.890

I 150 9304.128 2279.960 618.000 23.700

I 200 9159.688 2259.959 753.000 30.000

! 250 9110.531 2249.964 806.000 36.740
I 300 8768.228 2177.465 1015.000 43.470

I 500 8517.211 2097.466 1390.000 69.499
I 750 7820.611 1919.974 1950.000 94.439
I 1000 7359.828 1814.976 2462.000 123.099
! 2500 4764.175 1189.989 4824.000 241.199

', 5000 3408.635 824.992 6120.000 305.998

minimized with 10 granules. With fewer granules, the

request failure rate caused enough re-requests for locks

that the overall CPU costs for locking increased. With

more than 10 granules, the reduction in lock request

failures did not offset the costs of setting the addi

tional locks required for each transaction.



Table 2-8
Transaction throughput measurements

Initial Scenario

AVERAGE

N0__of_GRANULES RESPONSE COMPLETED

TIME

1 751.914 ! 128
2 557.232 168

3 534.399 ! 178
4 523.082 182

5 490.297 ! 195
7 506.667 ! 189
9 ! 515.117 ! 188

10 472.330 203
15 484.214 196
20 462.678 ! 208
30 472.732 205
40 454.189 212

50 441.537 218
75 430.543 223
100 420.416 231
125 463.255 208
150 460.429 210

200 435.748 222

250 504.021 192
300 447.065 215
500 472.088 204

750 570.089 168
1000 546.023 175
2500 | 815.784 115
5000 | 1054.988 86
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The average response time and the total number of

transactions completed at time TMAX reached extremums at

100 granules. With this number of granules, the smaller

transactions requiring less resources were able to run to

completion. Thus, a 'shortest job first* property was

observed. Moreover, with finer granularity (>200

granules) locking overhead actually increased the average

response time. In these cases the higher I/O locking
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overhead (753 to over 6000 time units) delayed the normal

processing of transactions.

In summary, under the initial scenario parameter set

tings, the useful computer utilization increased as the

number of granules increased then leveled off and fell.

Moreover, the maximum utilization occurred with a rela

tively small number of granules and that utilization was

within 1% of that optimum for 10 granules. The conclusion

can be drawn that crude locking schemes with coarse granu

larity were nearly optimal. Since a crude locking system

may be easier to implement than a sophisticated finer

granularity scheme, it may be preferred.

For this case, response time, and throughput were all

better with a small number of granules. Hence, a large

number of granules (such as would be required to lock disk

sectors or individual records) may be inappropriate.

However, changes in the parameters and simulation

model do alter these observations. In the next section,

the effects of alternate workload parameters are reported.

In section 3.3, the systems parameters are varied. In

section 3.4, the effects of two extensions to the model

are reported.
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3-2. Effects of Workload Parameters

Changes in the workload parameters would reflect

changes in the characteristics of the applications which

were running on the system. It has been noted already

that the number of transactions had little effect on the

observed output parameters. Other workload parameters did

make some difference on the optimum granularity. The

major difference was due to the lock placement assump

tions. Other workload parameters tested included changes

in transaction sizes, changes in database sizes and the

addition of an idle time period for the transactions.

3.2.1^. Placement of Locks

In the previous experiments the locks were assumed to

be well-placed. The other two placement assumptions were

also tested. In the worst case assumption, each transac

tion required the maximum number of granules possible. In

the random placement assumption, the probability of

accessing any entity was identical and independent of any

previous entities accessed.

Which model is chosen affects the previous observa

tions. If the "worst case" is chosen, the following

intuitive analysis applies. In figure 2-3 it is assumed



48

that all transactions touch the same number of entities,

NE. The machine utilization measures would decrease as

the number of locks for the entire database increased from

one to NE. The decrease is because each transaction would

require more locks thus increasing the locking overhead.

However, there would be no additional parallelism because

each transaction locked the entire database.

The utilization would increase, however, as the

number of locks increased from NE to the total number of

entities in the database. In this case, the cost of the

locking overhead would remain constant while the allowed

concurrency increased. The locking overhead would remain

constant since each transaction could never set more than

NE locks.

Consequently, the optimum number of locks would be

very dependent on the transaction sizes in the worst case

placement lock assumption. Moreover, it would always

occur at 1 granule or the maximum number of granules

(corresponding to one lock per entity) if all the transac

tions were the same size. The effects of having varying

transaction sizes will be discussed below.

The simulation model was run for each of the three

placement assumptions under a wide variety of parameter

settings. Figures 2-4 and 2-5 diagram some of the
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results. In figure 2-4, the transaction sizes were deter

mined by an exponential distribution with a mean value of

500 entities '(10% of the database). In figure 2-5, the

transaction sizes were also determined by an exponential

distribution but with a mean value of 5 entities (0.1% of

the database). For these runs, the locks were assumed to

be in main memory (no lock I/O required) and the 1/0 and

CPU time required by the transactions were equal. These

conditions were chosen as the ones most favorable to finer

granularity. The other parameters were identical to those

described in the initial scenario, with one major excep

tion. In figures'2-4 and 2-5, the random lock conflict

assumption is assumed for all three placement conditions.

Under the random lock conflict assumption, the granules

associated with each transaction are considered to be com

pletely uncorrelated. This modification is made primarily

for validity checking. With the same lock conflict assump

tions, the end points (1 and 5000 granules) should and did

result in identical simulation runs under the three lock

placement assumptions.

The top curves in both figure 2-4 and 2-5 were con

sistent with the results of the initial scenario. The

bottom two curves represent the worst case and random

access assumptions.
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For large transactions requiring about 10% of the

database (see figure 2-4) a smaller number of granules was

still to be prefered to a lock for each entity. For small

transactions requiring about 0.1% of the database (see

figure 2-5) one lock per entity produced the greatest

machine utilization under the worst case and random place

ment assumptions. However, even with small transactions,

the degree of improvement was small as the granularity

increased beyond a certain limit. For example, 90% of the

maximum machine utilization was reached with 200 locks.

Next, the simulation was run with mixed size transac

tions (AMEAN = 250, BMEAN = 5, ALPH = .1) using the best

case, the worst case and random access assumptions.

Intuitively, this simulates a few large transactions and

many small ones. As previously stated, under the well-

placed assumption a small number of granules is best. A

relatively flat curve relating machine utilization and the

number of locks is observed for the worst case and random

access assumptions. Thus, in these two cases, the granu

larity of locks, whether coarse or fine, did not greatly

effect the useful machine utilization. In fact, 98% of

the maximum utilization was achieved with both 10 and 2500

granules. The basic problem with fine granularity was

that the expense of running just a few large transactions

seemed to outweigh the gain due to the increased con-
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currency experienced by the small transactions.

3.2.2. Transaction Size

Under a uniform distribution of transaction sizes,

the number of entities required by a transaction was

determined by the RAD parameter. The simulation was run

under the well-placed lock assumptions with RAD values of

1, 25, 50, 100, 250 and 500 on a data base containing 5000

granules. The first case results in an initial average

transaction size of 1/1000 th (1*NTRAN/2)of the database.

The last case on the other hand, results in an average

transaction size requiring one half (500*NTRAN/2) of the

entities in the database.

As the needs of the transactions increased, maximum

machine utilization and throughput were obtained with

fewer and fewer granules. Minimum response time behaved

similarly. The optimum 1% and 5% intervals of useful I/O

are presented in figure 2-6. Note that even for very

small transactions, 95% of the optimum was reached with as

few as 10 granules.

The two other distributions of the transaction sizes

were also tested in order to model different transaction

environments. With an exponential distribution, with the
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same mean value as the uniform distribution

(AMEAN=RAD*NTRAN/2 ), the results were very similar. For

a small AMEAN, say 5 entities, 500 granules were optimal.

Again, however, 10 granules produced useful machine utili

zation within 5% of the utilization realized with the 500

granules. With an exponential distribution and an AMEAN

value of 250 entities, on the other hand, 40 granules was

again optimal. In that case, the larger transactions

realized too much locking overhead with the less coarse

granularity.

However, with a hyper-exponential distribution, the

"large" transactions (those determined by the BMEAN param

eter) dominated the processing. Thus coarse granularity

was again favored. For example, with AMEAN, BMEAN, and

ALPH values of 5, 250 and 0.1 respectively, an NGRAN of 50

still produced the maximum useful computer utilization.

In this case, the average transaction size was about 30

entities. But 10 percent of the transactions accessed on

the average 250 entities and these transactions dictated

coarse granularity.

The simulation was also run under the random lock

placement assumptions varying the granularity and transac

tion sizes. For these experiments, the IORATE and CPURATE

were again equal and the LIORATE was set to zero. The

other parameters were identical to those described in the
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initial scenario. With an average transaction size of

less than 25 entities, the finest granularity was again

optimal. When the average transaction size was between 25

and 50 entities, the useful computer utilizations at 1 and

5000 granules were approximately equal. With an average

transaction size greater than 50 entities (1% of the data

base), one granule was optimal.

3«2.3. Database Size

Simulation experiments were also run with various

granularities on a database of 50000 entities. The aver

age transaction size was fixed at 250 entities and the

simulation was run for 15000 time units. The effects of

increasing the database size was similar to the effects of

decreasing the transaction size. With well-placed locks,

the optimal granularity occurred at 500 granules. In this

case, five percent of the maximum utilization was realized

with 20 to 2500 granules. With random lock placement, the

finest granularity was again optimal.

3.2.4. Idle Time

For some applications, locks can be held while a user

or application program pauses for some duration (often

thought of as "head scratching"). The simulation was
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modified to reflect this effect by holding all locks for

an idle period of 100 time units (say, for example, about

25 seconds in the interpretation mentioned at the begin

ning of this section). The simulation was then run with

the parameter settings of the initial scenarios shown in

Tables 2-5 and 2-6.

The results were remarkably similar to those in Table

2-2. The useful I/O curve had slightly more variation

than the curve in figure 2-2 with a peak occuring at 50

granules. Ten granules still produced useful I/O and CPU

times within 5% of the optimum. Hence a small number of

granules was still best even with substantial pauses in

the transaction processing.

3-2.5. Workload Parameter Summary

The lock placement assumptions clearly had the most

dramatic impact on the machine utilization as a function

of locking granularity. The second most important parame

ter was the size of the transactions accessing the data

base .

Fine granularity may be best if the following two

conditions were meet: 1) almost all of the transactions

are small and 2) access patterns are random with no
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sequentially. Under these conditions, the greater the

number of locks, the greater the machine utilization.

However, the rate of increase dropped dramatically after a

certain level of granularity was obtained (about 200

granules in our simulation). Hence "medium" granularity

did almost as well as fine granularity; coarse granularity

was unacceptable in these cases.

If too many of the transactions access a large por

tion of the database, fine granularity produces too much

locking overhead and coarse granularity was again to be

preferred.

Regardless of the transaction sizes, if the data

access patterns were primarily sequential, coarse granu

larity was still the most effective.

3.3. Effects of the System Parameters

The locking granularity, determined by NGRAN, has

been the major system parameter studied so far. This

parameter is clearly the one over which the system imple-

mentors have the most control. The effects of the other

system parameters on the system throughput and utilization

are presented below. In particular, the IORATE and IOOVLP

parameters were varied in order to "balance" the I/O and

CPU requirements of the transactions. Also, the LIORATE
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and LCPURATE parameters were varied to control the locking

overhead. In addition, for each parameter, its interac-

tion with the locking granularity is also discussed.

3.3-1. I/O versus CPU Balance

The effects of the ratio of the required I/O time to

the required CPU time per entity was investigated. The

CPU rate (CPURATE) per entity for a transaction was held

fixed at .05 units/entity. The simulation was run with

I/O rates (IORATE) per entity set at .01, .05, .1, .2, and

.3. For each setting of the I/O rate, the number of

granules (NGRAN) was varied from 1 to 5000. The lock 1/0

rate per granule was set equal to the I/O rate per entity

in order to reflect the locks being on the same speed dev

ice as the data. Each simulation ran for 5000 time units.

The other input parameters had the values indicated in

Tables 2-5 and 2-6.

Under the well-placed lock assumption, the useful 1/0

curves for each setting of IORATE were bell shaped and

heavily skewed towards a small number of granules. As

such they were similar to the curves in figure 2-2 and are

not repeated here. The peak of these curves occurred with

somewhat finer granularity as the IORATE came closer to

the CPURATE. With a system balanced between I/O and CPU
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requirements the maximum utilization of both CPU and I/O

resources was possible. However, even with balanced tran

sactions, 100 granules were sufficient to achieve the max

imum machine utilization. With CPU bound transactions

(CPURATE >I0RATE) within 5% of the peaks was reached with

as few as 10 granules. Varying the IORATE had little

effect on the throughput measurements (average response

time, and number of transactions completed) as a function

of the number of granules allowed. The useful CPU time,

as a function of granule size, showed a similar distribu

tion as the useful I/O. The costs associated with locking

were again minimized with 100 granules.

Under the random and worst case placement assumptions

and small transactions, the finest granularity was optimal

regardless of the I/O to CPU balance.

3-3.2. Multiple I/O Paths

One method of "balancing" a system that is I/O bound

is to increase the number of I/O channels to main memory.

In the previous runs, the IOOVLP value was one. These

experiments thus simulated a system with one I/O path

between main memory and secondary storage. In the next

series of runs, this parameter was set to three and six to

simulate, for example, a database environment with three

and six disk drives respectively. Other input parameters
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w ere the same as in Tables 2-5 and 2-6.

Except for greatly increased magnitude, the output

parameters had a similar distribution as those in Table

2-7. The useful I/O time (USEFULIO) versus the granular

ity, for simulation runs under the well-placed lock

assumptions, are shown in figure 2-7. Note, with 10 to

100 granules, the useful I/O increased by a factor of

about 2.5 for three I/O paths as compared to the useful

I/O with one I/O path. (The best results possible would

be increased useful I/O by a factor of 3.) Moreover, as

the number of granules increased three drives became less

and less effective. For 2500 granules, for example, only

a 1.5 factor increase in useful I/O was realized. The

results for six I/O paths were similar. Ten to one hundred

granules tripled the increase in useful I/O. With 2500

granules, the increase in useful I/O was slightly less

than doubled.

In the random and worst case lock placement •experi

ments, the finest granularity was again favored as addi

tional parallelism was made possible.

3-3.3. Lock I/O Costs

In the previous experiments, the lock I/O rate

(LIORATE) was equal to the transaction I/O rate (IORATE).
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In the next series of simulation runs, only the lock I/O

rate and the granularity were varied. The simulation was

run with other parameters as in Tables 2-5 and 2-6. The

useful I/O 'times (USEFULIO) for the well-placed lock

assumptions are shown in figure 2-8.

As the lock I/O rate decreased, a larger number of

granules could be afforded before the advantages of more

parallelism were outweighed by the locking overhead. Of

particular interest is the situation where the LIORATE was

zero. This case is analogous to keeping all locks in

main memory. Even with no lock I/O costs, there was a

very flat extremum for USEFULIO between 10 and 200

granules. Having a granule correspond to fewer than 25

database entities (number of granules > 200) resulted in

noticeably poorer performance. If the interpretation of

an entity is a 512 byte page (or a U096 byte sector) a

database management system should thus not 'protect' less

than 13,000 (or 100,000) bytes of data with one lock.

3-3-1- Lock CPU Costs

The CPU costs for setting one lock were dependent on

the lock management algorithms. To investigate the

effects of varying the CPU rate for locking on the desired

granularity, the simulation was run with CPU lock
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(LCPURATE) costs per lock of .005, .01, .025, .05 , .075,
and .1. For this series of experiments, the LIORATE was

set to zero to simulate the effects of maintaining all

locks in main memory. Other parameters were as in Tables

2-5 and 2-6.

Under the well-placed lock assumption and a small

number of granules, the CPU lock costs (LOCKCPU) were

approximately linearly proportional to the CPU rate per

lock (LCPURATE). In these cases, there were enough unused

CPU resources available for locking. For a large number

of granules, however, the CPU lock costs increased

slightly less than linearly with LCPURATE. In these

cases, the locking CPU utilization interfered with normal

transaction processing. For all CPU lock costs tested,

however, the minimum locking costs occurred at 10

granules.

Under the well-placed lock assumption the maximum

amount of useful CPU and I/O occurred with 10 to 100

granules and was about the same regardless of the lock CPU

rate. With lock CPU rates of less than 1 millisecond

(LCPURATE = .005), the peak occurred at 100 granules;

within 1% of that peak occurred with 10 to 1000 granules.

With lock CPU rates between 1 and 5 milliseconds (LCPURATE

= .005 to .03) the peak was at 50; but the useful 1/0 and
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CPU dropped off sharply with more than 200 granules. With

higher lock CPU rates, 10 granules were optimal and at

most 100 granules for the locking granularity were afford

able.

Simulation experiments were also run varying the lock

CPU costs under the random lock placement assumption. In

these experiments all transactions were small (AMEAN = 5,

ALPH = 0) and the LIORATE was again set to zero. The CPU

and I/O rates for transaction processing were both about

30 milliseconds per entity (IORATE = CPURATE = .2). In

these experiments, an increase in lock CPU rates greatly

affected the computer utilization at the finest granulari

ties. With a 5 millisecond lock cost (LCPURATE = .03),

the useful computer utilization was 5% of the utilization

observed with a 2.5 millisecond lock overhead cost

(LCPURATE = .015). However, the finest granularity was

still optimal until a 15 millisecond per lock overhead

cost (LCPURATE = .1) was incurred.

3.3.5. System Parameter Summary

Some of the system parameters did suggest somewhat

finer granularity under the well-placed lock assumptions.

In particular, two factors had some effect on the optimum

granularity. When the resources expended for locking were

. v>
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reduced, finer granularity was affordable. With lock I/O
costs of zero and the lowest setting of lock CPU costs,

100 locks was optimal. Even in these cases, though, too

fine a lock granularity was not acceptable.

The second factor which had an effect on the optimum

granularity was the balance between the CPU and I/O
resource needs of the transactions. Under a balanced sys

tem load and the well-placed lock assumption 50 to 100

locks were again optimal.

Under the random and worst case lock placement

assumptions, in most cases, the lock cost parameters

(LCPURATE, LIORATE) did not change the optimal granular

ity. The other system parameters had no affect on the

optimum granularity under these placement assumptions.

3-ii- System Extensions

In the previous experiments all granules were assumed

to be the same size and all of the locks were acquired at

the beginning of a transaction. In this section two

modifications to the model are introduced to study alter

nate assumptions. In the first extension a lock hierarchy

is simulated. In a lock hierarchy, transactions of dif

ferent sizes lock different sized granules. In the second

extension, a "claim as needed" locking strategy is simu-
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iated. In that strategy, transactions acquire locks as

they need the corresponding entities.

3-1-i* Lock Hierarchy

In many of the previous experiments it is noted that

the expense of locking a large number of granules by a

large transaction offsets any increase in parallelism

realized by fine granularity. One way a large transaction

can avoid the expense of locking many small granules might

be to have the large transactions lock large granules

while the small transactions continue to use the small

locks [GRAY76].

3-1-1-1- 1M ^Qdgl Extension

In the simulation extension a two level hierarchy was

implemented. A transaction, depending on its size, either

requested a set of small locks or one global lock which

covered the entire database.

With this extension, we explored the interactions

between any two levels of a more general hierarchy. A

more general hierarchy could be any tree-like graph struc

ture. A transaction could lock the root of a subtree and

thus control access to the parts of the database covered

by any locks in that subtree. Alternately, the
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transactions could mark the root of the subtree to indi

cate that locking is taking place at a lower level. The

transaction would then treat each offspring of the root as

its own subtree.

In the extended model, the choice between the global

locks and the small locks simulates the choice between the

root of one subtree and its direct descendents. The per

formance tradeoffs between increased parallelism and

increased locking overhead of a more general hierarchy

occur similarly at each node. Thus, the results of this

extension can be applied to the more general hierarchy and

a more complex tree structure need not be simulated.

The simulation was modified by adding 'pending' and

'blocked' queues for the global lock. If a transaction

was "small", it set the global lock in shared mode and was

placed on the original pending queue. From that queue the

"small" transactions competed for the small locks as in

the original model. If the transaction was "large", the

global lock was set for exclusive access and the transac

tion waits for all active transactions to finish. With

the global lock set for exclusive use, new transactions,

regardless of size would also wait in the blocked queue.

Once the large transaction was allowed to proceed, it went

directly to the I/O queue bypassing the small lock con

trol .
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The simulation was used to study the effects of cer

tain parameters of such a hierarchy on the desired granu

larity. One of the main areas of interest was the cri

teria for deciding whether the small locks or the global

lock should be used. An input parameter was added to the

simulation which specified the threshold percentage, TP,

of the database which must be touched by a transaction

before it was declared "large". If a transaction used

less than TP percent of the database, the small locks

would be used. Otherwise, only the global lock would be

set.

3.M.1.2. The Simulation Results

The simulation was run with threshold percentages of

0.1%, 0.2%, 0.5%, 1%, 2%, 5%, 25%, 50% and 100% for each

of a large number of other parameter settings in order to

find the value of TP which maximized useful machine utili

zation. The optimum threshold observed was dependent on

the number of small locks, the assumptions concerning the

placement of those locks, the number of entities touched

by the transactions, and the size of the database.

Figure 2-9 shows the effects of the threshold percen

tages on machine utilization in two instances with dif

ferent numbers of small locks. For both of those cases

mixed sized transactions were used and well-placed locks
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were assumed. With ten small locks, the maximum machine

utilization was reached with thresholds of 50 and 100 per

cent. A threshold of 100% resulted in all transactions

using the small locks, i.e. as if no hierarchy were

present. However, with 1000 small locks, for example, a

threshold of 5 percent was optimal. Changing the assump

tion about the placement of the locks also made a dramatic

difference.

Figures 2-10 and 2-11 further explore the effects of

the number of small locks on the threshold percentages.

The results in Figure 2-10 reflect the "well-placed"

assumption. Random access to the database was assumed for

the simulation results shown in figure 2-11.

Each of the graphs is divided into three areas based

on machine utilization. The "optimum" line represents the

threshold value, TP, at which the maximum I/O and CPU

utilization was observed for a given number of small

locks. With threshold values in area B, the hierarchical

locking produced results within 2% of that maximum utili

zation. In area A, the utilization was less than in area

B. In this case, too few transactions used the global

lock, i.e. the threshold, TP, was too high. In area C,

the machine utilization was also less than in area B. In

this case, however, too many transactions used the global

lock, i.e. the threshold, TP, was too low.
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For example, consider figure 2-10 with 1000 small

locks. The machine utilization increased as the threshold

percentage was increased from 0.1% to 5%, but decreased as

the threshold increased from 5% to 100%. However, simula

tion runs with threshold percentages between 1% and 25%

produced within 2% of the machine utilization observed

with the optimum threshold.

In figure 2-10, "well-placed" granules were assumed.

With more than 1000 small locks the optimum value of TP

was between 1% and 5%. With the number of locks between

10 and 100, TP values of 50% to 100% were optimal. In

this granularity interval, the 2% area included the case

where all transactions used only the small locks. The

overall maximum machine utilization occurred in figure 2-

10 with 10 locks and TP values greater than 50%. In these

cases, almost all of the transactions used the small

locks. Hence, the value of a lock hierarchy under the

well-placed locks assumption was very small.

However, in figure 2-11, random lock placement was

assumed. With coarse granularity, the optimum threshold

occured at 0.5%. With a higher threshold, more of the

smaller transactions would use the small locks, and conse

quently v/ould lock a large portion of the database. As a

result, these transactions would exoend more resources for

locking than if the global lock were used without signifi-
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cantly increasing the concurrency allowed.

In figure 2-11, the differences in computer utiliza

tion between areas A, B, and C was small for coarse granu

larity. For 10 granules, for example, no matter what

value of TP was used, the computer utilization was within

3% of the maximum observed for that granularity. Simi

larly, for 100 granules, the computer utilization was

within 15% of the maximum observed for any value of TP.

Thus even with random lock placement, a hierarchy with a

small number of small locks, at best, provided slight

improvement over a single level locking system.

Under the random access assumptions, the overall max

imum machine utilization occurred with 5000 granules and a

TP of 1%. The cross-hatched area in figure 2-11

represents those combinations of TP and number of small

locks which resulted in machine utilization within 2% of

the overall maximum. Hence, fine granularity was pre

ferred. The lock hierarchy effectively prevented exces

sive locking overhead for large transactions. The coarse

granularity, on the other hand, resulted in.poorer useful

machine utilization regardless of the TP setting. With 10

granules, for example, the USEFULIO was only 3/4 of the

maximum USEFULIO observed with 5000 granules and a TP of

1%.
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For fine granularity, the B areas in figures 2-10 and

2-11 had considerable overlap. For example, in figure 2-

10, with 2500 small locks, the 2% of optimum interval
occured with a TP between 0.5% and 10%. In figure 2-11,

with the same number of small locks, the interval occurred

with TP values between 0.5% and 5%. Thus, at this granu

larity, a TP between 0.5% and 5% could safely be chosen

regardless of the randomness of the data access patterns.

In other simulation runs, as the average transaction

size decreased, the range of acceptable TP values (area B)
also decreased. With fine granularity, regardless of the

transaction sizes, a threshold between 1% and 2% always

produced machine utilization within 2% of the maximum.

With coarse granularity, however, changes in the size

of the transactions, created non-overlapped intervals of

acceptable TP values. In other words, no one value of TP

could be chosen that would be correct for vastly different

sized transactions. Thus much greater care must be

applied to a hierarchy with coarse granularity. Further

more, a stable transaction size environment must be

assumed.

The size of the database was also varied. For exam

ple, the simulation was run with a database consisting of

only 16 entities. In this scenario, the possible interac

tion of a page/record hierarchy was examined. An entity
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corresponded to one of 16 records in a page. The simula

tion was then used to model the effects of locking the

whole page by the global lock, or locking individual

records by the small locks. Some increase in machine

utilization was observed with a threshold of 50%; but the

increase over using no hierarchy at all was less than 4%.

Again it appeared that a lock hierarchy covering only a

small number of smaller locks was not worth implementing.

The simulation was also run with databases of up to

100,000 entities. The results were similar to the results

produced with a database of 5,000 entities. For example,

experiments were run where the average transaction size of

most of the transactions was just 0.05% of a 100,000

entity database and the average size of a few large tran

sactions is 1% of the database. In these cases, with the

finest granularity (100,000 small locks), a threshold of

1% was still optimal.

Other simulation experiments used the worst case data

access assumption and produced results very similar to

those in figure 2-11.

1*1*2. Claim As Needed Locking

There is * another difference between the original

model and some database concurrency control implementa-
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tior.s. in the original model, a "preclaim" strategy was

assumed where all of the locks were acquired before any

transaction processing took place. In some database sys

tems, a lock is not acquired until the related entities
were actually needed by a transaction. These "claim as

needed" schemes are used either to reduce the total time

locks are held and/or because the locks to be acquired
depend on data values of entities already accessed. In
these cases, some locks may have to be held while other

locks were requested, and deadlock can occur [C0FF71]. In
this section the effects of a claim as needed scheme are

examined.

3-i*2-i- Hie Model Extension

The simulation was modified by cycling each transac

tion through the I/O and CPU queues (see figure 2-1) once

for each lock required. The total I/O and CPU times

required for a transaction were the same as in the origi
nal model and were equally distributed among each of a

transaction's cycles.

Between each cycle, a transaction requested one lock.

If the lock was granted, the transaction went on the

active queues.. When a transaction completed its last

cycle on the active queues, all its locks were released as

in the original model.
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If the lock was denied, the requesting transaction

was placed on the blocked queue. The lock could be denied

due to locks held by either another active transaction, or

by a blocked transaction. In the latter case, the block

ing transaction was on the blocked queue, and a deadlock

condition could exist. If deadlock occurred, a victim was

picked for backout. The locks held by the victim were

released, any blocked transactions were freed, and any

time spent on the active queues by the victim was added to

a "lost time" total.

2*iL*£*2. The Simulation Results

The modified simulation was run varying the sizes of

the transactions, changing the lock placement assumptions,

and with and without a lock hierarchy. Again it was

assumed that there was no I/O cost associated with locking

and that the transactions required equal amounts of CPU

and I/O resources.

The results of these simulation runs were very simi

lar to the results from the preclaim strategy. In all

cases, a claim as needed strategy did not change the

granularity required for maximum machine utilization.

For example, figure 2-12, shows the results of run

ning the simulation with no hierarchy, well placed
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granules and transaction sizes determined by a hyper-

expor.ential distribution. The lost time area included the

machine utilization by transactions that had to be res

tarted due to deadlock. The useful computing included

only the CPU resources used by successfully completed

transactions.

In the simulation experiments, the locking cost

observed in the preclaim model was greater than the lock

ing cost observed in the claim as needed locking model.

In the Dreclaim model, in the case of a lock request

failure, all of the locks had to be requested again. In

the claim as needed model, in the case of a lock request

failure only the denied lock had to be rerequested. How

ever, any decrease in lock costs in the claim as needed

model was more than offset by the lost time due to res

tarting transactions. Thus, the useful machine utiliza

tion was greater under the preclaim model than under the

claim as needed strategy. Many other cases with different

transaction sizes and lock placement assumptions were also

tested and produced similar results.

For example, figure 2-13 compares the useful machine

utilization between the two models under the assumotions

that all transactions were small and that each transaction

had random data access patterns. In both of these runs,

the average transaction size was 0.1% of the database.
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Note that, with the possibility of deadlock,, the machine

utilization curve did not flatter: out as the granularity

increased. Thus, the finest granularity is slightly more

beneficial with the claim as needed model than with a pre

claim model. Note, however, that the claim as needed

scheme again produced less useful I/O and CPU utilization

than the preclaim model.

However, as the average transaction size became even

smaller, the last observation did not hold. With an aver

age transaction size of less than 0.05% of the database,

random data access patterns, and the finest granularity,

the claim as needed scheme resulted in greater useful

machine utilization. Under these conditions, the claim as

needed strategy allowed the greatest concurrency since

locks were held for a shorter Deriod of time. In contrast

to other runs, very few transactions had to be backed out

and the cost of rerunning such small transactions was

insignificant.

The modified simulation was also run with a lock

hierarchy and various threshold percentage values. A

similarity in the shanes of the curves between the pre

claim and claim as needed strategies was also observed.

Under the random access assumptions, for example, the max

imum machine utilization was again reached with the finest

granularity and a threshold value of 1 to 2 percent.



86

3 .*4. 3 . Summary

A locking hierarchy should he implemented when the

small locks are of a fine granularity; a low threshold was

used to separate the large and small transactions; and

random data access patterns were anticipated. Under these

assumptions the increase in machine utilization over a

single level locking scheme was significant. Furthermore,

a threshold of about one percent produced the best results

independent of the granule placement or transaction size

assumptions.

With coarse granularity, on the other hand, a locking

hierarchy was not beneficial. The benefits of such a

hierarchy were not significant and were only realized in

certain cases. Another problem with the coarse

granularity/locking hierarchy model was that the optimum

value for the threshold percentage was extremely sensitive

to the placement of the locks with respect to the transac

tions .

The acquisition of locks throughout the processing of

a transaction did not significantly change the other con

clusions. However, several observations were made.

Deadlock detectior. and resolution aopeared to be generally

more expensive than the release and rerequest used in the

preclaim strategy. Thus, when locks were known at the
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start of a transactior: n preclaim algorithm is suggested.

H- CONCLUSIONS

The activity and effects of a locking mechanism were

simulated to study the tradeoffs between increased paral

lelism of concurrently running transactions and increased

overhead caused by sophisticated and complex locking

mechanisms. The conclusions of the study are first

applied to physical granules. The application of these

results to predicate locking is then discussed.

1 •I• Physical Lock^ing

Under the assumptions mentioned in the description of

the model, in many cases a small number of granules is

sufficient to allow enough parallelism for efficient

machine utilization. Furthermore, a large number of

granules, corresponding to locking a page or record is

often extremely costly.

These basic conclusions are due to the following

observations. For large transactions, fine granularity

becomes too expensive. A transactior which accesses half

of the database, for example, would spend considerable

resources locking each page. Yet little gain in parallel

ism would be realized since other transactions would have
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a strong probability of conflicting with the large tran

saction. A small transaction which accesses only one

page, or the other hand, must lock a much larger granule.

The resultant loss in parallelism is minimized because the

small transaction would only hold the lock for a short

period of time. The probability of conflict and the

length of any waiting period would not be large due to

that short period of time that the lock is held.

However, there are conditions where these observa

tions do not hold. Details of which conditions suDport

which level of granularity are presented below.

If equal sized lockable granules are assumed, a small

number of granules (10 to 100) are sufficient under any of

the following conditions:

1) The locks are well placed with respect to the running

transactions.

2) The number of entities required by transactions vary

in size and include at least some transactions that

require access to a large number of entities.

3) Some portion of the locking scheme involves extra I/O

for locking proportional to the number of locks.
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However-, each of the following factors supports some

what finer granularity:

1) All of the transactions are extremely small and

access less than 1% of the database.

2) The length of time that locks are held is extremely

long and not proportional to the size of the transac

tion, as was the case with the "idle time" experi

ments .

3) The locking costs are reduced, for example, by keep

ing all locks in core.

4) A balance exists between the I/O resources and CPU

resources required for processing a transaction.

If all of the following conditions are met, the

finest granularity should be used:

1) All of the transactions are small.

2) The locking costs are reduced by, for example, keep

ing all locks in core.

3) Random access patterns (or worse) are exhibited by

the transactions.
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However, if condition 1 is violated, a lock hierarchy

must be used if the fine granularity is still to be sup

ported .

The overall conclusion is thus that the optimum lock

ing granularity is somewhat application dependent. In

many cases, coarse granularity, such as file or relation

locking, with a preclaim strategy is to be preferred. In

other cases, somewhat finer granularity, such as area or

extent locking is best. In still other cases, the finest

granularity such as page or record locking is required.

1*2* Predicate Locking

Four results from the simulation, support the poten

tial viability of predicate locking. Firstly, with predi

cate locking only a small number of locks must be main

tained and can probably be maintained in main memory. The

number of locks is proportional to the number of active

transactions and not to the size of the database.

Secondly, while oredicate locking may require more

CPU time per granule than physical locking, the simulation

results indicate that, for coarse granularity, some

increases in locking overhead are affordable and do not

significantly interfere with transactior. processing.
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Thirdly, the parameter which had considerable effect

on the desired number of granules was the number of enti

ties 'touched' by the transactior.s. As the transactior.

size decreased, the desired number of granules increased.

Note, in predicate locking schemes, the portion of the

database locked is determined by the transaction, and not

a presoecified granularity, effectively mimicking the

above variable granularity.

Finally, the results of the lock hierarchy simulation

might indicate that a simple predicate locking scheme

might be sufficient. In one such scheme, two types of

locks could be supported. First an entire relation,

record type or file could be locked. The small locks

would be based on a simple unique key-value pair. The

predicate locking scheme could easily check whether a

key-value pair conflicted with either an entire relation

lock or other key-value pairs. The lock hierarchy simula

tion results indicate that only a small number of key -

value pairs would have to be maintained before the larger

style lock should be applied-. Furthermore, the simulation

results indicated that subsetting the transactions by less

dense attributes (ones with only a handful of different

values) would not be beneficial in a lock hierarchy.

Thus, in these cases, keeping the predicate locking

mechanism quite simple would be justified.
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However, such a simple predicate locking mechanism is

not very different from a si'-iple physical lock hierarchy.

For example, locking a logical relation may in some imple

mentations be identical to locking a physical file or

area. At the finest granularity, a predicate lock of a

unique key-value pair identifies one record. A physical

lock, on the other hand, would uniquely identify the same

record by a physical address. Thus, in terms of parallel

ism and operation, a simplified predicate locking scheme

is identical to a physical locking scheme. The physical

locking scheme, however, may be easier to implement.

Moreover, the physical address for a record might take up

less space in a lock table than a predicate lock for the

same record.

Another problem exists with predicate locking. In

some applications, a secondary key or index is used to

access a given record type. Under the simple predicate

locking hierarchy described above either all access via a

primary key would have to wait for the secondary index

application to complete; or the record would have to be

read, the key value obtained, and then a lock requested.

When the lock is granted the record would have to be

reread. With physical locks, on the other hand, the phy

sical record address would be unique.
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In summary-,- then, while predicate locking may be

viable, it does not seem to be worth the extra implementa

tion and locking overhead, because it can only be applied

when specific sets of the database need to be locking.

Furthermore, those cases can be handled adequately by

similar physical locking schemes.



CHAPTER 3

DISTRIBUTED DATABASE SYSTEMS

1* INTRODUCTION

In the previous chapter, simulation models were used

to investigate the performance issues of concurrency con

trol in a centralized database. In this chapter, those

simulation models are extended to study the performance

issues of concurrency control in a distributed database.

1*1* Distributed Databases

In a distributed database, the data is stored at mul

tiple computer sites connected by some type of computer

network. In this environment, a transaction originates at

one of the computer sites and potentially accesses data at

other (or remote) sites as well as at the originating

site.

The benefits of a distributed database include the

ability to share and access geographically distant data,

to exercise some local control over subsets of the data

base, to provide modular growth and resiliency to the

database, and to increase the potential parallelism

94
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allowed in accessing the database.

1.2. Distributed Da_tabase Concurrency Control

The distributed concurrency control mechanism must

guarantee the same type of consistency which was needed in

the centralized database. However, the performance issues

in a distributed database are different than in a central

ized database. This difference is due to the following

factors:

1) More parallelism is possible because multiple sites

can simultaneously process transactions. In the cen

tralized model, at most two servers, the I/O and CPU

processors, could be kept busy. In an N site system,

there are 2*N servers which can be simultaneously

processing transactions.

2) The overhead associated with distributed concurrency

control will be higher than the overhead required in

a centralized database. The additional overhead is

due to the costs required to set locks at remote

sites and/or the costs which may be required to

resolve deadlock between transactions at different

sites. The remote locking overhead is due to the

network delays involved with sending and receiving

lock messages. The deadlock resolution overhead
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includes the computer resources required to detect

deadlock and to roll back certain transactions.

The simulation model for the centralized database

concurrency control was extended to investigate the

trade-offs between the increased parallelism and increased

overheads of a distributed database. The major areas of

study include the effects of varying the locking granular

ity, varying the percentage of transactions requiring

non-local or remote resources and varying the throughput

and bandwidth of the network.

In the next section, the extensions of the simulation

model which apply to all distributed concurrency control

algorithms are discussed. In section 3, four different

concurrency control algorithms and their associated simu

lation extensions are discussed. In section 4, the simu

lation results for each of the four algorithms are

reported. In the final section, the major conclusions are

stated.

2. MODEL EXTENSIONS

In this section the model extensions are described.

First, the network model is reviewed. Next the actions at

each of the nodes or network sites is discussed. Finally,

the input and output parameters of the model are dis-
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cussed. Throughout this section, only the processing of

transactions will be considered. In the next section,

four concurrency control algorithms will be integrated

into the model.

2.K Network Model

The network is considered to be a collection of com

puter sites called nodes, all connected by a "logical net

work manager" as shown in figure 3-1. This manager could

represent a specific star like network, or a more general

node to node network like the ARPANET [KLEI76]. In either

case it is assumed that the time to send a message between

any pair of nodes is the same.

Each Node contains a message-in and a message-out

queue. Messages are taken from the message-out queue and

given to the Network Manager together with a destination

and a message length. When a message has received the

needed amount of network service, it is placed on the des

tination message-in queue.

Both a speed and a bandwidth are associated with the

Network Manager. The network speed is represented by the

minimum time a message of any type must spend in the net

work where time is measured in the time units of the simu

lation. The bandwidth is represented by the maximum
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number of messages which can be serviced in one of those

time units.

The flow of a message in the Network Manager can be

described as follows:

1) When a message enters the network manager, the time

remaining for that message is initialized to the mes

sage length in the time units of the simulation. The

message length can vary depending on whether or not

data is being sent but is at least equal to the

minimum length mentioned above. More details on this

length are in section 2.3.

2) If MESSBDWH is the bandwidth of the Network Manager,

the times remaining of the first MESSBDWH messages in

the Network queue are reduced by one time unit.

3) If the time remaining for any message is zero, it is

delivered to the message-in queue of the destination

node.

In several of the concurrency control schemes, a site

can send messages to itself. In these cases, no network

resources are consumed or network delay realized, since

the message is taken directly off of the message-out queue

and placed on the message-in queue. However, local mes-
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sage costs (CPU time spent by a node handling messages)

are included for these self-directed messages.

2.2. Site Model

Each site or node in the model is very similar to the

centralized model presented in Chapter 2. However,

several new queues and procedures were added to process

distributed transactions. The new model is shown in fig

ure 3-2. Again transactions are cycled around a closed

loop model and initially arrive one time unit apart on the

pending queue.

There are three possible types of transactions in the

model. First, there are local transactions which are

identical to the transactions in Chapter 2. Secondly,

there are MASTER transactions which require access to

parts of the database at randomly selected other nodes.

The MASTER transactions initiate a fixed number of SLAVE

transactions at those other nodes via messages.

The transactions go through the following steps: 1) leave

the pending queue, 2) I/O processing, 3) CPU processing,

4) data transmission, 5) local processing completion, and

6) distributed processing synchronization.

1) When a transaction leaves the pending queue it is

placed on the I/O queue. If the transaction is a
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MASTER, it sends SLAVE create messages to the

appropriate nodes.

2) The I/O.server is multiplexed among the transactions

on the I/O queue. When a transaction has received

its share of I/O resources, it is placed on the CPU

queue.

3) The CPU server is multiplexed among the transactions

in the CPU queue. When a transaction has received

its share of CPU resources, its next action depends

on whether or not the transaction is local.

4) Local transactions are considered complete at this

point and recycled to the pending queue. Non-local

transactions (both SLAVES and MASTERS) are placed on

the data transmission queues. If any data is to be

transmitted, a data transmission message is sent.

This transmission message is in fact addressed back

to the sending transaction. Thus the data transmis

sion is complete when this message is delivered back

to the originating site.

5) When the data transmission message has been received

(or if no data was to be transmitted) , the non-local

transaction proceeds to the Network done queue. At

this time, SLAVE transactions send a SLAVE complete
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message back to the MASTER transaction.

6) Depending on the concurrency control strategy, a

SLAVE either waits on the Network done queue or is

simply released. The release of a slave is discussed

in more detail in section 3. The MASTER transaction

waits on the Network done queue until it has received

"slave complete" messages from all its slaves. At

that point, the transaction is recycled back to the

pending queue.

Three types of messages are common to all of the con

currency control algorithms. The actions caused by these

messages are described below.

1) When a "SLAVE create" message is received, a transac

tion identical to the MASTER transaction, only

flagged as a SLAVE is added to the pending queue.

2) When a "data transmission done" message is received,

the waiting MASTER or SLAVE transaction is notified.

3) When a "SLAVE complete" message is received, the

corresponding MASTER transactions or. the Network done

queue is notified. If the MASTER transactior. is not

completed, the message is returned to the message-in

queue until the MASTER tran sactior.-completes .
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Several simplifying assumptions should be noted about

the model. First, all of the SLAVEs are identical to the

originating MASTER in terms of the proportion of database

accessed and whether or not data is to be transferred. In

distributed database applications, the actual characteris

tics of the SLAVEs could be quite different from the MAS

TER and from each other. Second, the only synchronization

between the SLAVEs and their MASTER transaction occurs at

the beginning and end of the transaction. Some applica

tions would require additional synchronizations on the

data being transmitted [W0NG77, EPST78].

Also note that a transaction is on each of the I/O,

CPU and data transmission queues once in the indicated

serial order. The total processing required is the same

as if the transaction cyclically accessed the I/O, CPU and

data transmission queues.

2.3. Model Parameters

The input parameters can be divided into the parame

ters that characterize the workload, the system parameters

that characterize the individual nodes, and the parameters

that characterize the network. The workload parameters

determine the database and the transactions that are run

against that database. As in Chapter 2, the system param-
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eters determine the computer and database management sys

tem characteristics. The network parameters include the

minimum time required for messages, the network bandwidth

and the CPU and I/O resources required for processing mes

sages at each site.

The output measurements include the overall CPU and

I/O resource utilizations for transactions, messages and

concurrency control as well as network measurements.

These parameters, in most cases, have the same

interpretation as in Chapter 2. All of the parameters are

described in detail below.

£•!•!• Workload Parameters

The workload parameters describe the transactions and

the portion of the database at each node. Table 3-1 sum

marizes the workload parameters.

The first five parameters are identical to the param

eters discussed in Chapter 2. For almost all of the

experiments reported in this chapter only a few settings

of those parameters are used. The effects of varying

those parameters would be similar to the effects reported

in Chapter 2.

In particular, NTRAN was set to 10 simulating 10

transactions running at each node. The DBSIZE at each
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Table 3-1
Workload Parameters

Parameter Description

Local Parameters

NTRAN Number of transactions running at each node
DBSIZE Size of the portion of a database at a given node
AMEAN Low-mean of exponential distribution

for transaction size
BMEAN High-mean of exponential distribution

for transaction size
ALPH Cut point for Hyper-exponential distribution

for transaction size
LKPLMT Lock Placement assumption

Distributed Parameters

PREDIST Percentage of transactions which are non-local
PRETRAN Percentage of distributed transactions

which transfer data
PREDATT Percentage of data transferred by

those distributed transactions
NSLAVES Number of SLAVES for a distributed

transaction

node was set to 10,000, resulting in a total database size

of 10,000 times the number of nodes in the network.

Two classes of transactions are modeled. With class

one transactions, the transaction sizes vary considerably

and the locks are assumed to be well-placed with respect

to the accessing transactions. For these transactions

AMEAN is 5, BMEAN is 250 and the ALPH parameter was set to

.1. This class of transactions simulates a workload where

most (90%) of the transactions are small (they access 0.05

percent of the database) and a few of the transactions are

large.
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With class .two transactions, all transactions are

small and the placement of the locks is assumed to be ran

dom with respect to the accessing transactions.

The remaining parameters deal with the non-local

transactions and are the ones of most interest in this

chapter. The proportion of transactions which are MAS

TERS, the PREDIST parameter, determines the number of

transactions at each node which require processing at some

other site. Experiments were run with PREDIST settings of

0, 10, 25, 50, 75 and 100 percent.

The number of SLAVES required by a MASTER are deter

mined by the NSLAVES parameter. The original number of

database entities required by the MASTER is evenly distri

buted among the SLAVEs and the MASTER. Thus, if the MAS

TER originally requires E of the database entities, at

each site where the transaction was active,

E/(NSLAVES +1), entities are actually accessed.

The amount of data to be transferred is determined by

the PRETRAN and PREDATT parameters. The PRETRAN parameter

determines the number of distributed transactions which

transfer any data at all. The PREDATT parameter deter

mines how many of a transaction's entities will have to be

transferred. The number of entities transferred deter

mines the length of a data transfer message and hence

determines how long a transaction spends on the Network
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wait queue.

In summary, the database consists of a collection of

entities at each node. Each transaction "touches" or

accesses a certain number of those entities. Some of

those transactions require access to entities at remote

nodes. Furthermore, some of those transactions will have

to transfer data between nodes.

2-3«2. System Parameters

The system parameters describe the computer system or

database system at each node and are very similar to the

system parameters of the centralized database model

described in Chapter 2. The system parameters are summar

ized in Table 3-2.

The NGRAN parameter is the number of lockable

granules at each node of the distributed database and is

identical to the NGRAN parameter of Chapter 2. The param-

Table 3-2 System Parameters

Parameter Description

NGRAN number of lockable units of one node
of the database

CPURATE CPU time to process ere entity
IORATE I/O time to process one entity
LCPURATE CPU time to process one lock
LIORATE I/O time to process one lock
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eter was varied from 1, representing one lock at each

node, up to DBSIZE, representing one lock per entity in

the database.

The CPURATE and IORATE determine the cost to process

one entity in the database and are also identical to the

parameter in the centralized database model. For these

experiments, the CPURATE and IORATE were both equal to 1

time unit. This scenario simulates a system with a bal

anced load between the CPU and I/O requirements. Also

under this scenario, one time unit of the simulation can

be thought of as the time required for one I/O operation,

i.e., about 30 milliseconds.

The LCPURATE and LIORATE parameters, the costs to set

and release one lock, are also identical to the parameters

in the centralized database model. For these experiments,

the lock CPU rate was one tenth the entity CPU rate, i.e.,

0.1. Under the scenario mentioned above, this might

represent 3 milliseconds to set and release a lock. The

LIORATE was zero, simulating a system where all locks are

kept in main memory.

Note that NGRAN, LCPURATE, LIORATE and LKPLMT (from

the previous section) are locking parameters used by all

of the concurrency control algorithms. Additional parame

ters relevant to the individual concurrency control algo

rithms are introduced in the section describing those
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algorithms.

2.3.3. Network Parameters

The network parameters determine the throughput and

bandwidth of the network as well as the CPU resources

required at each site to send and receive a message. The

network parameters are summarized in Table 3-3.

The number of nodes in the network, set by the NNODES

parameter was varied from two to eight.

The message rate parameter, MESRATE, is the length of

time it takes to send a simple message (i.e. a non-data

transfer message) from one node to another. Typical

values for this parameter ranged from 1 through 10. A

value of 3, for example, would represent a high speed net

work, where, under the interpretation mentioned in the

previous section, it would take about 90 milliseconds to

Table 3-3 Network Parameters

Parameter Description

NNODES The number of nodes or sites in the network
MESRATE The time units a message must stay on the

network

DATARATE The time units to transfer an entity
MESBDWT The number of simultaneous messages or

bandwidth of the Network Manager
MESIORATE The I/O time required by a node to send or

receive a message
MESCPURATE The CPU time required by a node to send or receive

a message.
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deliver a message. A value of 10 implies it would take

about 300 milliseconds to send a message, about the time

required on the ARPANET [KLEI76].

The DATARATE, together with the MESRATE parameter,

determines how long a data transmission message will take.

If E is the number of entities to be transmitted, then the

data transmission message would take

MESRATE + E * DATARATE

time units to be delivered. If an entity is a 512 byte

page, and an ARPANET like file transfer at 50,000 bits per

second is assumed, it would take about 0.1 seconds to

transfer 1 entity. On the other hand, on a three

megahertz speed network, it would only take about .0015

seconds. Many of the simulation experiments used and

"optimistic" DATARATE of .05 time units. Other simulation

experiments used DATARATES of .1, .25, and .5. The MES

RATE term is included in the above time to represent the

initialization message which often must precede a network

data transmission.

The MESBDWT parameter determines the bandwidth of the

network manager. As explained in section 2.2, at most

MESBDVT messages in the network queue are serviced each

time unit. For lightly loaded networks, it is reasonable

to assume that the bandwidth is unbounded [KLEI76] and
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that assumption is in fact made in most of the simulation

experiments. The results of varying that parameter are

also presented.

The MESIORATE and MESCPURATE parameters represent the

resources required at each node to send or receive a mes

sage. For these simulation results, the MESIORATE was

zero, simulating that the processing of all messages is

handled in the main memory; and the MESCPURATE has a value

ranging from .01 to .3 time units; or in the canonical

interpretation from .3 to 9 milliseconds. For the most

part, the lower bound on MESCPURATE was used, simulating a

very low (and optimistic) overhead message processor.

2.3.^. Output Parameters

The quantities to be measured on the output parame

ters are summarized in Table 3-^. These measurements

include all of the measurements included in the central

ized database simulation and some other parameters unique

to the distributed model.

The first eight output parameters are identical to

the output parameters discussed in Chapter 2. The TCPU

and TIG parameters refer to the number of simulation time

units during which the CPU ana I/O servers for all of the

network nodes were kept busy. The LOCKCPU and L0CKI0
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Table 3-4 Output Parameters

Parameter Description

Local

TCPU Total time the CPU server was active
TIO Total time the I/O server was active
LOCKCPU CPU overhead for locking
LOCKIO I/O overhead for locking
TRANCOM Number of transactions completed
AVERRES Average response time
USEFULCPU CPU time for processing transactions
USEFULIO I/O time for processing transactions

Distributed

MESCPU CPU overhead for network messages
MESIO I/O overhead for network messages
TMESS The total number of messages sent
LMESS The number of Lock related messages sent

parameters refer to the number of time units the respec

tive servers were busy managing locks. The TRANCOM param

eter is the total number of transactions completed at the

end of a simulation run. Note that a distributed transac-

tion, regardless of the number of corresponding SLAVE

transactions, is counted as one transaction. The AVERRES

parameter measures the average number of time units it

takes for a transaction to complete. For distributed

transactions, the response time refers to the time differ

ence between when a MASTER transaction first enters the

pending queue and when that transactior. leaves the network

done queue.

The useful computer utilizations, USEFULCPU and

USEFULIO, refer to the resources used for transaction
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processing. These measurements were not used for con

currency control or for message processing. Note that

TCPU=USEFULCPU+LOCKCPU+MESCPU

TIO=USEFULIO+LOCKIO+MESIO.

The MESIO and MESCPU parameters refer to the time

required by the I/O servers and CPU servers at the various

nodes to process messages. Note that a message must both

be sent and received, so that the I/O and CPU costs to

send n messages are n*2*MESI0RATE and n*2*MESCPURATE

respectively. This cost is also independent of the mes

sage length. Thus, for a data transfer message, this cost

represents initial set up costs to actually transfer data

to the network. No additional local costs for the data

transfer are incurred. In some systems considerably more

overhead would be incurred for data transfer.

The TMESS parameter represents the total number of

messages sent over the network. The LMESS parameter is

the number of those messages which were sent only for con

currency control reasons. The messages, called 'Lock1

messages, are discussed when the concurrency control algo

rithms are introduced.
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2.4. Typical Scenarios

The simulations were run with the parameter settings

shown in Table 3-5. The local parameters are identical to

the parameters in the centralized database simulations and

for the most part were not varied. The initial settings

of the distributed parameters are designed to study the

concurrency control algorithms under a basically free and

unlimited network. Later alternate parameter settings are

used to study the effects of network limitations on the

different concurrency control algorithms. The results of

those experiments are reported in section 4.

In the next section, the four concurrency control

algorithms simulated are described and additional parame

ters required for those algorithms are introduced.

3. DISTRIBUTED CONCURRENCY CONTROL

The distributed database concurrency control algo

rithms can be divided into two general classes: primary

site concurrency control [ALSB76, MENA78] and decentral

ized concurrency control [STON78, ELLI77, GRAY78, ROSE77J.

In the primary site concurrency control schemes for a

distributed database, one site is chosen to enforce a pro

cessing schedule equivalent to a global serialization of
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Table 3-5 Typical Parameter Settings

Parameter Settirg Interpretation

NTRAN

DBSIZE

AMEAN

BMEAN

ALPH

LKPLMT

CPURATE

IORATE

LCPURATE

LIORATE

PREDIST

PRETRAN

PREDATT

NSLAVES

NNODES

MESRATE

DATARATE

MESBDWT

MESIORATE

MESCPURATE

10

10,000

5

250

.1

0

1

. 1

.40

.25

6

3
.05
oo

0

.01

Local

10 trans at each node

10,000 database entities
at each node

0.05% of DBSIZE

2.5% of DBSIZE

10% of trans are large
All trans are small

Well-placed locks

(used with ALPH = .1)
Randomly placed locks
(used with ALPH = 0)
30 msecs

30 msecs

3 msecs
Locks in main memory

Distributed

10% of the transactions
are distributed

40% of those require data
transfer

25% of entities touched

by the transactions are
in fact transferred

A distributed transaction

runs at all nodes

Six nodes in the network

High speed network
fast data transfer Network

Lightly loaded network
Messages handled in core
.3 msecs (very optimistic)

all of the transactions running at all sites. Two

straightforward implementations of a primary site model

are presented in sections 3.1 and 3.2. Basically, if a

primary site handles all concurrency control, the same

algorithm used for a centralized database can be used for
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the distributed database.

In the decentralized concurrency control schemes,

each site maintains its own locks for that site's portion

of the database. However, a deadlock condition [C0FF71]

can exist in the network even though no deadlock cycle

exists at any given node. For example Transaction 1 can

be blocked at node i by Transaction 2. At node j, how

ever, Transaction 2 can be blocked by Transaction 1.

Although no deadlock exists at either node i or j, neither

Transaction 1 nor Transaction 2 can be completed. Two

mechanisms and their simulation implementations for deal

ing with this deadlock problem are presented in sections

3.3 and 3.4.

3.J_. Primary Site Model J_

The concurrency control mechanisms in both the pri

mary site models require the following changes to the node

model shown in figure 3-2:

1) When any transactior. (local or MASTER) leaves the

pending queue, 3 global lock request is sent to the

node selected as the "PRIMARY" site. The transactior.

then waits on a new queue, the global pending queue,

until all of its locks are granted.
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2) When a global lock grant is received, the transaction

can proceed to the I/O, CPU and data transmission

queues as before. At this time, a MASTER transaction

starts its corresponding SLAVE transactions.

3) Upon receipt of a "SLAVE create" message, a new tran

saction identical to the MASTER transaction is placed

directly on the I/O queue.

4) As in section 2.2, a MASTER transaction waits on the

Network done queue until it has received "SLAVE com

plete" messages from each of its SLAVEs. At this

point, a MASTER transaction sends a "global lock

release" message to the PRIMARY site and is recycled

back to the pending queue.

5) In the PRIMARY site model, a SLAVE transaction need

not wait on the Network done queue; it can simply

send its "SLAVE complete" message and leave the sys

tem.

Note that the "global lock request", "global lock

grant", and "global lock release" messages are all

included in the lock message count. Also note that the

"global lock request" includes the lock requests for all

of the SLAVES.
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In the primary site model, the nodes are considered

to be numbered zero through NNODES - 1. For each node,

there is a "blocked" queue and a "locks held" queue as

shown in figure 3-3.

When a "global lock request" is received, the PRIMARY

site lock controller goes through the following steps:

1) Determine which nodes will be used by the requesting

transaction.

2) For each node, i = 0,...,NNODES - 1, see if this

transaction requires locks; if not, proceed to the

next node. If so, request the locks (identical to a

lock request in Chapter 2) required at this node.

3) If the locks are granted, record this fact on the

"locks held" list for node i and repeat step 2 for

nodei+1.

4) If the locks are denied, place the transaction on the

blocked queue for node i, recording the blocking

transaction which is on the "locks held" queue for

this node.

5) When the locks at all of the required nodes are

granted, a "global locks granted".message is sent to

the originating site.
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When a "global lock release" is received, the PRIMARY

site lock controller removes the corresponding transaction

from each of the "lock held" queues. Any transaction

which was blocked at node i by this transaction is res

tarted at step 2 for node i, in the above algorithm.

The following observations should be noted. First,

deadlock is impossible, since the locks at the different

sites are always acquired in a fixed order. Second, LOCAL

transactions will only be involved with locks at their

originating sites. Third, note that a non-local transac

tion can wait for locks at one node while holding locks at

a lower numbered node.

All of the locking costs are absorbed by the primary

site which also has a normal load of transaction process

ing. The use of the CPU and I/O servers by the primary

site control mechanism has a preemptive priority over

transaction processing requests. In other words, if there

are global lock releases or requests, the PRIMARY site

first has to serve those requests before it can process

any transactions. If serving those requests takes more

than one simulation time unit, no transaction processing

takes place during that time unit.

a
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3.2. Primary Site Model 2

The activities at each site of the distributed data

base are id-entical under this model and the previous pri

mary site model described above. The only difference in

the two models occurs in the Primary site lock control.

In this model, there is only one blocked queue, although

there is a 'locks held' queue for each node.

When a "global lock request" is received, the PRIMARY

site lock controller goes through the following steps:

1)-3)Same as in previous primary site model.

*0 If the locks are denied, release all of the locks

held for lower number nodes, record the blocking

transaction and place this transaction on the single

blocked queue.

5) Same as in the previous primary site model.

When a "global lock release" is received, the PRIMARY

site controller again releases the locks held at each

node. Any transaction, which was blocked, is restarted at

step 1 of the above algorithm.

This model differs from the previous model in two

ways. The main difference is that r.o transaction car. hold
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locks at one node while waiting for locks from another

node. This difference means that transactions requiring a

fewer number of nodes, (i.e., local transactions) have an

implicit priority over transactions requiring locks at

more nodes.

3.3.. Wound-Wait Model

As previously mentioned, decentralized concurrency

control requires a mechanism for resolving deadlock. In

this section an extension of a "wound-wait" . scheme

[ROSE771 for resolving deadlock is discussed. First the

original algorithm in [ROSE771 is presented, followed by

two extensions. Finally, additional changes in parame

ters, relevant to the "wound-wait" algorithm are reviewed.

3.3.1. Original Wound-Wait Algorithm

In [ROSE77], the transaction model is slightly dif

ferent than the one presented in this chapter. A transac

tion is viewed as a process which is initiated at one node

and moves from node to node in the course of its process

ing. At any instance the process is considered active at

one node and inactive at all other nodes that it has

visited.
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Under the wound-wait algorithm, a unique number,

assigned to each process or transaction, is obtained by

concatenating a starting time with the node number at

which the process is initiated. (The algorithm does not

require that the clocks which generate the time stamps be

perfectly synchronized. However, some close correspon

dence with the "real" time would be desirable. In

[LAMP773, a sufficient algorithm for keeping clocks at

nodes in a network reasonable synchronized is presented.)

Suppose Transaction 1 requests locks held by Transac

tion 2 and that timestamp 1 and timestamp 2 are the unique

numbers associated with the two transactions. Then the

following steps are taken:

1) If timestamp 1 < timestamp 2, then Transaction 1 is

"older" than Transaction 2. In this case, Transaction

2 is wounded and Transaction 1 waits.

2) If timestamp 2 < timestamp 1, then Transaction 2 is

"older" than Transaction 1. In this case, Transac

tion 1 simply waits.

If Transaction 2 is wour.ded, a message is sent to all

sites visited by Transaction 2. If termination of Tran

saction. 2 has already begun, the wound is ignored, since

Transaction 2 will soon release its locks and Transaction
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1'can proceed. -If Transaction 2 has not begun the termi

nation process, it is aborted (or killed) and restarted.

Again, the locks held by Transaction 2 are released and

Transaction 1 can proceed. Note that in order to prevent

cascading abortions of transactions, all locks for a given

transaction are held until that transaction terminates.

A natural modification to this algorithm is suggested

in [ROSE77], where Transaction 2 is not aborted and res

tarted unless it is actually in or enters a waiting state.

This algorithm provides a consistent concurrency con

trol for which every transaction terminates. Consistency

is maintained because a transaction holds all locks until

it has completed. Thus, two-phased locking is insured.

To see that every transaction terminates, note that at any

given time, due to the uniqueness of the timestamp, there

is exactly one "oldest" transaction. That transaction can

never be wounded and thus must terminate. At that point,

there is a new "oldest" transaction which also must ter

minate. A transaction retains its original timestamp even

if it is restarted.

3.3.2. Simulation Implementation

To apply the above algorithm tc the distributed tran

saction, processing discussed in this chapter, it must
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first be noted that a wounded transaction can be active at

more than one site. Thus, the decision to abort and res

tart a transaction might be initiated at several sites. A

wound or kill message for an already killed transaction is

simply ignored. When a transaction is restarted a 'cycle

number' is incremented. The cycle number, initially zero,

is included in the message addresses so that the restarted

transaction does not erroneously receive an old wound or

kill message.

A second simple modification to the [ROSE773 algo

rithm was also made. A transaction receiving a wound mes

sage is not restarted unless that transaction is blocked

by or becomes blocked by a transaction that the original

transaction cannot wound. In other words, a wounded tran

saction must be restarted if and only if it is blocked by

an older transaction. Note that this algorithm still

resolves any potential deadlock and all transactions must

eventually terminate.

Theorem: This modified wound-wait system still preserves

consistency and every process terminates.

Proof: The database consistency is preserved since the

locking is still two-ohased.

Every process will terminate, since a deadlock cycle

cannot exist in the wait-for graph. The wait-for graph is
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a directed graph- where the nodes represent transactions in

the system. An arc from one node to another implies that

the first node represents a transaction that is blocked by

the transaction represented by the second node.

Suppose a deadlock cycle existed in the graph between

nodes Tlf...,T (i.e., T1 is blocked by T2, T2 is blocked

by T~ ,..., T 1 is blocked by Tn , and Tn is blocked by

T- ). Without loss of generality, assume T1 is the oldest

transaction. Then T- must wound Tp.

If T2 can wound T3, it does. If not, T2 is aborted and

the deadlock no longer exists.

Similarly, if any T. cannot wound Ti+1, it must be

aborted.

If all of the Ti (i = 2,...,n) are wounded, so is Tp.

But T is blocked by T- and cannot wound T- because of our
n i i

assumptions.

Thus, T must be aborted and restarted and the deadlock
' n

cycle is broken.

Q.E.D.

To implement the above algorithm, several modifica

tions to the simulation were ^?.ie. First, the arrival

time of each transaction was guaranteed to be unique by

insuring that all transactions arrived at least one time
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unit apart. The arrival time, concatenated with a node

number, in the least significant bits, is the unique

timestamp associated with the transaction. In addition, a

cycle number is added to each transaction in order to

insure that a restarted transaction is not wounded or

killed by a message intended for an earlier incarnation.

When a transaction (SLAVEs excepted) is first placed on

the pending queue, the cycle number is initialized to

zero. Messages are only delivered to transactions with

the correct cycle numbers. Messages destined for earlier

cycles are simply discarded. A SLAVE transaction takes on

the timestamp and cycle number of its corresponding MAS

TER. The following steps are now followed by a transac

tion .

1) A transaction leaves the pending queue. If the tran

saction is a MASTER and this is the first time this

incarnation has left the pending queue, "SLAVE

create" messages are sent to the appropriate nodes.

2) After leaving the pending queue, .a transaction

requests the locks needed at that site. If the locks

are granted the transaction proceeds to the I/O, CPU

and data transmission queues. If the locks are

denied, the transaction is placed on the blocked

queue for this node. Let T1 be the requesting tran-
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saction andT2 be the blocking transaction respec

tively. If both T1 and T2 are distributed transac

tions (SLAVES or MASTERS) and T1 is older than T2,

transaction T2 is "wounded". If T1 is younger than

T2 and has been previously wounded, T1 is killed.

3) Once the locks are granted, the transactions proceed

on the I/O, CPU and data transmission queues as

before.

M) A SLAVE transaction sends a "SLAVE complete" message

to its MASTER and waits on the Network done queue for

a release locks message. A MASTER transaction waits

on the Network done queue until all of its SLAVEs

have completed.

5) When all of the SLAVEs have completed, the MASTER

sends a "release locks" message to all of its SLAVEs,

releases its locks, and becomes a new transaction on

the pending queue. At this point the transaction is

considered done. When a SLAVE receives the "release

locks" message, it releases its locks and leaves the

system.

6) When any transaction releases its locks, the

corresponding blocked transactions (if any) are

placed at the front of the pending queue.
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When a transaction is wounded, "wound" messages are

sent to the MASTER and all SLAVEs.. When a transaction

receives a wound, it is flagged as wounded. If the tran

saction is already blocked by a distributed transaction

with an older timestamp, the wounded transaction is

immediately "killed".

When a transaction is killed, "kill" messages are

sent to the MASTER and all SLAVEs. Both types of transac

tions release their locks and blocked transactions are

placed on the front of the pending queue as in step 6

above. Any time spent on the I/O or CPU queues is counted

in a "lost time" total. At this point SLAVE transactions

leave the system. A MASTER transaction increments its

cycle number and is placed on the back of the pending

queue for a reincarnation.

A few observations should be made. First, in step 2,

only if both transactions are non-local, does a potential

wound have to take place. If the blocking transaction is

local, it is guaranteed to finish since it has preclaimed

all of its locks. If the blocked transaction is local, it

can hold no locks at other sites and thus no deadlock can

occur .

Second, when a transaction is restarted, it is placed

on the pending queue behind any transactions that it

blocked. In particular, it is placed behind the
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transaction that caused the original wound. Thus, the

same wound will not occur again.

Note that the extra "release lock" messages to the

SLAVEs are not present in the primary concurrency control

models. They are not needed in those models because all

locks are held (and thus released) at the primary site.

l-l'l' Additional Parameters

Four additional output parameters were recorded in

the simulation model for the "wound-wait" concurrency con

trol. In addition, new types of messages are classified

as lock messages.

The four output parameters are for the number of

transactions wounded (NTRWOUND), the number of transac

tions killed (NTRKILL), and the lost time attributed to

killed transactions (DLOSTIO and DLOSTCPU). The count of

the number of transactions wounded, NTRWOUND, is made only

when a cycle of a given MASTER receives its first wound.

Thus, even though the SLAVEs all receive wound messages,

the wounding of a distributed transaction in only counted

once.

Similarly, the count of the number of transactions

killed, NTRKILL, is made only when a MASTER receives its

first kill.
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The DLOSTIO' and DLOSTCPU parameters record the number

of time units of I/O and CPU service respectively that a

killed transaction has received. How much time is actu

ally lost depends on both the queue the transaction is on

and the processing completed at that queue. Note that the

definition of the total I/O utilization, TIO and the total

CPU utilization, TCPU also changes:

TIO = USEFULIO + MESIO + LOCKIO + DLOSTIO

TCPU = USEFULCPU + MESCPU + LOCKCPU + DLOSTCPU.

In the "wound-wait" concurrency control algorithm for

a decentralized database, "WOUND", "KILL", and "lock

release" messages are all counted as lock related mes

sages. The lock related messages used in the primary site

models are no longer relevant.

2-1- SNOOP Model

A second decentralized concurrency control algorithm

uses a 'SNOOP1 [STON78] or a global deadlock detector

[GRAY78] was also simulated. One problem with the

"wound-wait" algorithm is that transactions may be killed

and restarted nee'dlessly. While the algorithm is suffi

cient to prevent deadlock, it may be too conservative.

Transaction 1 could be blocked by the younger Transaction
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2. Transaction' 2 could be blocked by the older Transac

tion 3, which can in fact complete. Even though no

deadlock is present, Transaction 2 would still be res

tarted.

In this section, an algorithm is described which res

tarts transactions only when an actual deadlock occurs.

In section 3.4.2, the implementation of that algorithm in

the simulation model is presented. In section 3-^.3

changes in the simulation parameters are discussed.

3-i-i- SNOOP Algorithm

In [STON78] a decentralized algorithm for concurrency

control is presented. Each node or site in the distri

buted database is responsible for local concurrency con

trol for the portion of the database at that site. If two

transactions conflict, the local concurrency control sends

a message about this conflict to a designated site called

'The SNOOP'.

The SNOOP then detects deadlock by an analysis of the

"wait-for" graph generated by all such messages. If a

deadlock condition is detected, a victim is picked to be

killed and restarted (a reincarnation). Note that when a

transaction has completed, the SNOOP must also be notified

so that the appropriate entries in the "wait-for" graph



13M

can be cleared. •

The same basic idea was also suggested in [GRAY78]

with several modifications. One modification is that a

conflict message is only sent to the SNOOP if the blocking

transaction is directly waiting on a response from another

node or is blocked (directly or indirectly) by some other

transaction that is waiting on a response from another

node.

Another suggested modification is to only send such

conflict messages and check for deadlock periodically. In

this manner the system overhead for both handling lock

messages and checking for deadlock can be reduced at the

cost of delaying the detection of an existing deadlock.

3.M.2. Simulation Implementation

The 'SNOOP' simulation model is very similar to the

wound-wait model. The following steps are taken in the

'SNOOP' model.

1) Same as "wound-wait" model

2) Same as "wound-wait" if the locks are granted. Sup

pose the locks are denied and T1 is the requesting

transaction and T2 is the blocking transaction. If

both T1 and T2 are distributed transactions (SLAVES
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or MASTERS), a conflict message is sent to one of the

sites designated as the SNOOP.

3,4) Same as "wound-wait" model.

5) Same as "wound-wait" except that when a MASTER tran

saction is done, a "clear snoop" message is sent to

the SNOOP.

6) Same as "wound-wait" model.

The SNOOP maintains a global "wait-for" directed

graph. Each node represents a blocked or blocking tran

saction. An arc from node 1 to node 2 implies that the

transaction represented by node 1 is blocked by the tran

saction represented by node 2. When a conflict message is

received, a node for each transaction (if one doesn't

already exist) is added to the graph along with the

appropriate arc. At that point, the graph is searched for

a cycle beginning at the node for the blocked transaction.

If deadlock is detected, the youngest (determined by the

unique timestamp) of the two transactions " involved with

this conflict is declared a victim and killed. The fact

that a given cycle of the victim was killed is remembered

by the SNOOP.
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The killing of a transaction is identical to the kil

ling of a transaction in the wound-wait algorithm. The

SNOOP sends a message to the MASTER and its SLAVES. Both

types of transactions release locks and record lost time.

A MASTER transaction is reincarnated as in the wound-wait

model.

Note that it is necessary that the SNOOP remembers

both killed and completed transactions for a given period

of time. It is possible that the SNOOP could be notified

of a conflict involving a killed, or completed transac

tion. In these cases, the conflict occurred before a node

received the 'kill' or 'release locks' message. In the

case of a killed transaction, a false deadlock could be

detected. In the case of a completed transaction, an

extra node would simply clutter the wait-for graph. If a

killed or completed transaction is involved in a conflict

message, the message is simply ignored at the SNOOP site.

The cycle number is needed by the SNOOP to distin

guish between messages meant for different incarnations of

a transaction. If a conflict message arrives with a

higher cycle number than the cycle number of a killed

node, the killed node is removed and a new node inserted

in the graph. If a conflict message arrives with a lower

cycle number than the correspor.d ing node in the graph, the

message is simply discarded. Such messages are obsolete.
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Also note that in the case of deadlock, the victim is

chosen from among the two nodes involved in this conflict.

This choice is guaranteed to break any deadlocks since the

graph is assumed to be deadlock free before the latest arc

was added. This victim may not be the optimum victim for

backout. However, if a different victim were chosen, the

other parts of the graph would still have to be searched

for other deadlock cycles.

Finally note that all conflicts between non-local

transactions are sent immediately to the SNOOP. As previ

ously mentioned, it is suggested that the conflict mes

sages should not be sent unless the blocking transaction

actually enters a "node wait" state. However, in this

model, both MASTER and SLAVE transactions will eventually

wait for messages from other nodes before they release

their locks. Since that 'node-wait' state is inevitable,

the conflict messages are sent immediately.

I'l-l' SNOOP Parameters

As with the "wound-wait" algorithm, several new

parameters are introduced and the definition of lock mes

sages is changed.

The cost to check for deadlock is very expensive;

often this cost is much greater than the cost to set a



138

simple lock [GRAY7*]. A new network input parameter,
SNOOPRATE, was added to the simulation to model that addi

tional cost. Every time a conflict message is received by

the SNOOP, SNOOPRATE time units are added to the locking

costs at the SNOOP node. Note that conflicts involving

killed or completed transactions are not included. In

most of the experiments, a SNOOPRATE of .5 is used. In

the canonical interpretation this value represents about

15 milliseconds or about 5 times the cost to set a lock.

The NTRKILL, DLOSTIO, and DLOSTCPU parameters from

the wound-wait model are also included in the SNOOP simu

lation. However, rather than the NTRWOUND parameter, the

SNOOP model records the NUMCONFLCT parameter, the number

of actual conflict messages received. Again, conflict

messages for already killed or completed transactions are

not included in this count.

The lock messages in the SNOOP model are the 'con

flict' messages, the 'kill' messages, the 'release locks'

messages and the 'clear SNOOP' messages.



139

!• RESULTS AND,DISCUSSION

The results for the distributed database simulations

are presented in this section. In the first section we

present the results for the parameter settings for the

canonical scenarios. Subsequent sections review the

effects of varying the number of SLAVES for each distri

buted transaction (NSLAVES), the number of nodes in the

network (NNODES), and the percent of distributed transac

tions (PREDIST).

In section 4.5, the results of varying the network

parameters are repeated. These parameters are the message

rate (MESRATE), the network bandwidth (MESBDWT), the CPU

rate for processing messages (MESCPURATE) and the percen

tage of data transferred (PRETRAN and PREDATT). Finally,

the canonical cases are revisited in section 4.6 with a

different network environment.

The results are reported for each of the four con

currency control algorithms simulated and the two dif

ferent classes of transaction sizes. The first primary

site model, where locks for one site are held while wait

ing for locks at another site, is denoted "PS1". The

second primary site model is denoted "PS2". The notation

"WW" refers to the wound-wait algorithm, while "SNOOP"

refers to the algorithm with the single global deadlock



140

detector.

Transactions in class 1 refer to transactions whose

sizes are generated by a hyperexponential distribution and

well-placed locks are assumed. Transactions in class 2

refer to transactions whose sizes are mainly small (gen

erated by an exponential distribution). In this case,

random lock placement is assumed.

In the first three sections, an unlimited network is

assumed in order to study the effects of the different

concurrency control algorithms on the processing at each

of the nodes. Beginning in section 4.4, network limita

tions are introduced to study the effects of the con

currency control algorithm on the network resources.

4.1. The Canonical Scenarios

The canonical scenarios refer to.the cases where the

input parameters have the settings shown in Table 3-5.

For these experiments, as in Chapter 2, the number of

locks (NGRAN), was varied from 1 up to DBSIZE and reflects

the number of locks at each node. One lock implies that

at each node, only one transaction can be active at one

time. With 10,000 locks, there is one lock for each

entity at each node and transactions can proceed if the

entities they require are not being accessed by any other
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transaction.

Table 3-6 shows the expected number of each type of

message under the canonical parameter settings. Each

non-local transaction sends 5 (NSLAVE) slave create mes

sages and receives 5 slave completed messages. In addi

tion, 40% (PRETRAN) of the non-local transactions send 6

(NSLAVES +1) data transfer messages. These non-local mes

sages are the same for all four concurrency control algo

rithms.

However, the four algorithms send different numbers

of lock messages. In the primary site models, transac

tions at 5 of the 6 nodes (all nodes other than the pri

mary site) have three lock messages: "request locks",

"grant locks", and "release locks". In the decentralized

models, only the non-local transactions send lock mes

sages. Those messages include the 5 (NSLAVE) release lock

messages plus some messages for wounding transactions,

Table 3-6
Expected Messages per Transaction

PS1-PS2 WoW-SNOOP

Local Non-local Local Non-local

Non-lock 0 10+(.4)6 0 10+(.4)6
Messages

Lock 3(5/6) 3(5/6) 0 5+? (WW)
Messages 5+(5/6)+?

(SNOOP)
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killing transactions and/or notifying the SNOOP of con

flicts. In addition, in the SNOOP model, a non-local

transaction at other than the SNOOP site must send a

"clear SNOOP'" message when it has completed.

The results for the canonical scenarios are presented

for class 1 and class 2 transactions. Figures 3-4 and 3-5

show the effects of varying the number of locks at each

node on the USEFULIO for each of the four concurrency con

trol algorithms. The horizontal axis represents the

number of locks in a logarithmic scale. The vertical axis

is the USEFULIO, or I/O resources used in completing tran

sactions, in 1000 time units of the simulation. Note that

for six nodes, at most 120,000 time units (NNODES*TMAX) of

I/O resources are available. The curves for the USEFULCPU

measurements were very similar and are not shown.

4.J_.j_. Class 2 Transactions

Figure 3-4 shows the results for class 1 transac

tions. For all four concurrency control algorithms, the

maximum USEFULIO occurred with 500 to 1000 granules. For

the primary site 2 (PS2) and the global deadlock detector

(SNOOP) models, the peak occurred at 500 granules. For

the primary site 1 (PS1) and wound-wait (WW) models, 1,000

granules were optimal. In either case, with 1% of the
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Figure 3-4: Productive Computer Utilization under
Different Algorithms and Class 1 Trans
actions.
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maximum USEFULIO was reached with 500 or 1000 granules.

Several observations about figure 3-4 should be

noted. First, the primary site two model (PS2) achieved

9S% of the maximum USEFULIO with 100 granules and 90% of

that maximum with as few as 50 granules. Each of the

other three models required at least 250 granules to reach

within 10 percent of its respective maximum. Thus, more

coarse granularity was acceptable in the primary site two

model. In that model, no transactions held locks at one

node while waiting for locks at another node. In each of

the other models this condition was not true.

Second, the differences in useful computer utiliza

tions were very small at the optimum granularities,

although the primary site two model (PS2) did show a

slight advantage. At lower granularities, the primary

site models produced significantly more useful computer

utilization since transactions did not have to be res

tarted. Similarly, at lower granularities, the SNOOP

model out-performed the wound-wait model, since it caused

even fewer transactions to be restarted.

The average response time curves (not shown) for the

transactions in class 1, did not consistently favor any of

the four algorithms. However, at or near the optimum

granularity (1000 locks at each node), the decentralized

algorithms had a better average response time than the
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primary site 1 model. This result is expected, since

local transactions can be run without network delay.

Surprisingly, however, the average response time was

even less for the primary site 2 model. In this case, any

gains observed by the local transactions in the decentral

ized models were more than offset by the extra delay

experienced and caused by distributed transactions holding

locks at one node while waiting for locks at another node!

The exact values of the output parameters observed

with 500 locks at each node for class 1 transactions are

reported in Table 3-7.

Several observations should be noted. At the primary

site 2 model, the number of transactions completed, TRAN-

Table 3-7
Output Measurements for Class 1 Type Transactions

Measurement PS1 PS2 WW SNOOP

TRANCOM 2,688 3,307 3,094 3,029
AVERRES 392 350 368 362
USEFULIO 86,056 87,648 87,518 87,556
USEFULCPU 86,065 86,335 87,522 87,563
LOCKCPU 843 1,048 952 962

MESSCPU

TMESS

LMESS

NWOUNDED

NCONFLICTS

NRESTARTED

DLOSTIO

DLOSTCPU

207
9,697
6,799

265
12,437
8,329

5

1

108
,408
,545

103
5,178
1,664

- -

6

1

392
392

68
0

0.0

0.0
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COM, was 10% greater than with the two distributed control

models and about 18% greater than with the primary site 1

model. However, the differences in USEFULIO and USEFULCPU

were not significantly different for the four concurrency

control models. Thus, the large TRANCOM value was due

primarily to the fact that the PS2 model favored smaller

transactions and 90% of the workload included those small

transactions.

With the other models, larger distributed transac

tions could block both large and small transactions at

several nodes while waiting for locks at another node.

With the PS2 model, however, the larger distributed tran

sactions (which have the greatest probability of con

flict), would release the locks at lower numbered nodes.

The LOCKCPU, MESSCPU, TMESS and LMESS parameters were

also greater for the primary site 2 model, since more

transactions had been completed.

As expected, message CPU overhead was lowest for the

decentralized concurrency control algorithms. Also note

that the ratio of the total number of lock .messages sent

to the total number of messages sent (LMESS/TMESS) is

about for the primary site models versus .3 for the decen

tralized control models. In other words, two-thirds of

the network traffic was due to concurrency control in the

primary site models. Less than one-third of the messages
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in the decentralized models were for concurrency control..

The expected number of messages.shown in Table 3-6

can be applied to the number of observed messages shown in

Table 3-7 to determine the exact number of lock messages

sent by local transactions. In the primary site 2 model,

for example, 4,108 non-lock messages (TMESS-LMESS) had

been sent. Since the expected number of non-lock messages

is 12.4, 311 of the 3,307 transactions were non-local.

(Note that this number is consistent with 3,307 total

transactions and a PREDIST value of 10%.) Thus 2,996 tran

sactions were entirely local and yet were responsible for

7,490 lock messages.

Notice that a very small number of transactions were

wounded. In the canonical scenario only 10% of the tran

sactions were distrbuted and only conflicts between dis

tributed transactions could cause wounds. Furthermore,

all locks are requested at the beginning of a transaction

and were generally granted. Thus, a transaction is much

more likely to be blocked by an older transaction, in

which case no wound is sent. Note that many more con

flicts than wounds were sent. However, no deadlock was

detected, so no transactions were restarted in the SNOOP

model.
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The number-of conflicts in the SNOOP model was always

greater or equal to the number of transactions wounded in

the wound-wait model, since all conflicts between distri

buted transactions were sent to the SNOOP. However, the

number of killed or restarted transactions in the SNOOP

model was always less than or equal to the number res

tarted in the wound-wait model, since only actual

deadlocks could cause a restart. In fact, in the simula

tion results reported in Table 3-7, no transactions were

restarted in the SNOOP model.

i«l*2. Class 2 Transactions

The USEFULIO computer utilization for each of the

four concurrency control algorithms for class 2 transac

tions are shown in Figure 3-5. Under the randomly placed

locks with only small transactions, the finest granular

ity, 10,000 locks in this case, was again optimal. With

this optimal granularity, as with class 1 transactions,

only slight differences in computer utilizations were due

to the concurrency control algorithms.

However, the wound-wait and global deadlock detector

algorithms did consistently produce somewhat better

results than the primary site algorithms over a wide

variety of granularities. In fact, only with fewer than

50 locks at each node, were the primary site models



lOO-i

to

1 80
CD

E

O

CD
in

60-

40-

149

WW
SNOOP

PSI,PS2

20-2

0

10 10' I0J 10

No. of locks (log scale)

Figure 3-5: Productive computer utilization with
four algorithms and Class 2 Transactions



150

advantageous.

No difference in computer utilization was observed

between the two primary site models once the granularity

became fine enough. This result was true for class 2

transactions, since the probability of success on a lock

request was extremely high. Thus, very few of these tran

sactions waited for locks at one node, while holding locks

at another node.

Similarly, once the granularity was less coarse

(about 50 granules), little difference in computer utili

zation is realized between the two decentralized algo

rithms. This result was also realized because of the high

probability of success on a lock request.

Figure 3-6 shows the average response time versus the

number of locks at each node for class 2 transactions.

The response time is given in terms of time units of the

simulation. In the canonical interpretation of the time

parameter, a response time of 61 would represent about 1.8

seconds. The dichotomy between the primary site algo

rithms and decentralized algorithms was again realized in

these curves. As expected, the decentralized algorithms

produced lower average response times, since local tran

sactions did not need to communicate with any other nodes.

The exact values of the output • measurements for

10,000 locks at each node are reported in Table 3-8 for
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class 2 transactions.

Note that the network parameters observed the same

ratios of total messages to lock messages as with the

lass 1 transactions. However, the differences in the

number of lock messages between the primary site models

and the decentralized models was over MO,000 messages with

class 2 transactions. With that number of messages it is

no longer realistic to assume that the network is 'lightly

loaded' i.e., that the message bandwidth parameter is

infinite. Restricting the message bandwidth can only

increase the differences between the primary site control

and decentralized control models as will be shown in sec

tion 4.5.

Table 3-8
Output Measurements for Class 2 Type Transactions

Measurement PSl PS2 WW SNOOP

TRANCOM 18,455 18,461 19,259 19,097
AVERRES 64 64 61 62
USEFULIO 93,956 93,280 97,135 96,193
USEFULCPU 93,996 93,319 97,145 92,204

MESSCPU 1,519 1,529 670 700
TMESS 73,977 74,292 33,520 34,852
LMESS 51,594 51,234 9,635 11,093

c

NWOUNDED "

NCONFLICTS 0 - . - .5

I I 0 0
0 0

NRESTARTED

DLOSTIO

DLOSTCPU
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The relatively small differences in average response

times between the primary site and decentralized control

models, was at first surprising. However, most of the

delay for the transactions was due to competition for the

CPU and I/O resources. The network delay time of 2 * MES-

RATE time units was not a relevant factor. For example,

with ten transactions at each node, a local transaction

was active at a site with 9 other transactions. For class

2 transactions, the average transaction size was 5. Thus

a transaction waited for the I/O and CPU resources for

about 45 time units (9 trans X 5 time units/trans). In

addition, the average transaction would spend 5 time units

using the I/O and CPU resources.

Thus 55 time units of the average response time is

accounted for without considering lock conflicts or net

work delays. If either fewer transactions were running,

the transaction sizes were smaller, or the network were

slower,'the 2 * MESRATE delay would further increase the
response time difference between the primary'site and

decentralized models.

The expected number of messages shown in Table 3-6

can also be used in analyzing the number of messages shown

in Table 3-8. In this case, 1,859 transactions were non

local in the primary site 2 model. Thus, the 16,602 local

transactions, accounted for 41,505 of the lock messages.
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Note, however, that the number of lock messages in

both primary site models is higher than the expected

number of messages according to Table 3-6. For 18,461

transactions' completed, 46,153 (TRANCOM * 3(5/6)) lock

messages should have been sent. This difference was due

to a slight bottleneck at the primary site. In computing

the expected value it was assumed that 5 out of every 6

transactions completed would be initiated at other sites

and thus require the lock messages. However, due to the

bottleneck at the primary site, 9 out of every 10 transac

tions were initiated at other sites.

In the next sections, the effects of variation in the

input parameters on the above observations are reported.

iL'E* Slave Transactions

In a distributed database, not all of the distributed

transactions require access to data at all of the nodes as

assumed in the above results. In this set of experiments,

the number of SLAVES required by each MASTER transaction,

NSLAVE, was set to 1, 3 and 5. With these settings of

NSLAVES, a distributed transaction thus accessed data at

2, 4 and 6 nodes, respectively. The results of these

parameter settings for class 1 and class 2 type transac

tions for the four concurrency algorithms follow.
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^'?.'!' Class 1 -Transactions

The effects of varying the number of SLAVES were

similar under any of the four concurrency control algo

rithms. The maximum useful computer utilization again

occurred with 500 or 1000 granules regardless of the

number of SLAVES used by a distributed transaction. In

addition, all four concurrency control algorithms resulted

in similar shifts in the utilization curves as the number

of nodes per distributed transaction varied. The shifts

are shown for the SNOOP algorithm in Figure 3-7.

As expected; as the number of SLAVES decreased, the

useful computer utilization increased. Although the

optimal granularity did not change, the number of granules

required to achieve utilization close to the maximum

decreased as the number of SLAVES decreased. If each MAS

TER transaction had 1 SLAVE, 50 locks resulted in 96% of

the computer utilization realized with 500 locks. With 3

SLAVES, 91% of the maximum utilization was realized with

50 locks, while only 63% was realized if there were 5

SLAVES for each MASTER transaction. Thus, as the number

of remote nodes decreased, the acceptable granularity

results resembled those observed in Chapter 2 for the cen

tralized database.
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As previously stated, the other three models behaved

similarly. In general, varying the number of SLAVES for

distributed transactions did not have a large impact on

the processing at the nodes. Hov/ever, the utilization of

the network as a function of the number of remote nodes

does depend on the concurrency control algorithm used.

Table 3-9 shows the percentage of "useful" messages (non-

lock related) for each of the four algorithms. With the

primary site models, the number of lock messages stayed

constant, but the number of non-lock messages depended on

the number of SLAVES for each MASTER transaction. With

the decentralized algorithms, of course, the number of

lock messages decreased as the number of slaves decreased.

4.2.2. Class 2 Transactions

The number of SLAVES for a distributed transaction

also had little effect on the choice of concurrency con

trol algorithm or granularity for class 2 transactions.

As in the canonical scenario, the finest granularity was

again optimal. In the primary site models, the computer

Table 3-9 Useful Network Traffic
(Non-lock Messages)

No. of SLAVES PS1 PS2 WW SNOOP

1

3
5

9% 11% 71% 66%

21% 21% 71% • 66%

30% 33% 71% 68%
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utilization and -average response time as a function of the

number of locks were almost identical for one, three and

five SLAVES for each MASTER transaction. For the decen

tralized concurrency control models, those three curves

were nearly identical with more than 50 granules. With

fewer granules, more SLAVES resulted in more transactions

being restarted. In these cases, the computer utilization

was decreased. However, even with only one slave per dis

tributed transaction, performance of the system with class

2 transactions was still extremely bad with coarse granu

larity.

The observations on the network utilization for class

1 transactions also hold for transactions in class 2. In

fact, while the number of total and lock messages changed,

the percentages of useful messages were approximately the

same.

4.3. Number of Network Nodes

The number of sites in a distributed database can

vary. The simulation models were run with 2, 4, 6 and 8

sites for a variety of granularities. In order to keep

the other factors constant, the canonical scenarios were

changed. In all of these experiments, it was assumed that

each distributed transaction required only one slave run

ning at another site.
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f£. 3.. !_• Class 1-Transactions

With mixed transaction sizes and well-placed locks,

there was practically no difference between the four con

currency control algorithms as the number of nodes in the

network varied. Moreover, neither the optimum granulari

ties nor the shapes of the useful utilization versus

granularity curves changed as the number of nodes in the

network varied. The curves all resembled those shown in

figure 3-4.

The only changes in the computer.utilizations were in

magnitude, and those changes were linear with respect to

the number of nodes. Note, however, that it is also

assumed that the network resources also increase as the

number of nodes increase. Under the wound-wait simula

tion, for example, with 2 nodes the maximum useful utili

zation was 30,119 time units; with 4 nodes, 59,705 time

units, with 6 nodes, 90,472 time units, while with 8

nodes, 120,327 time units were used in processing transac

tions .

The average response time, on the other hand, did not

vary as the number of nodes changed.
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i-2-2* Class 2 Transactions

Linearity in computer utilization as a function of

the number of nodes was also observed for class 2 type

transactions. The USEFULIO's, USEFULCPU's and average

response time for the decentralized concurrency control

algorithms were slightly better than those measurements

for the primary site with 2, 4, 6 or 8 nodes in the com

puter network.

The cost of locking with the many small transactions

and the random placement of locks assumption, is, of

course, much greater than with the class 1 transactions.

This cost also increased linearly with the number of nodes

and was practically the same for all four algorithms at

the optimum granularity. The lock costs for the primary

site 1 model are shown in Table 3-10:

The time units per node remained relatively constant.

However, for the decentralized concurrency control algo

rithms, the time units used for locking were distributed

among all of the nodes. In the primary site models all of

No

Table 3-10: Time Units Spent Locking

of Nodes

2

4

6

8

Total Time Units

36"08
6763
10010

13300

Time Units per Node
1704

1691
1673
1663
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the time units were used for locking at one node. Thus,

at the primary site with 8 nodes in the network, 13,300

out of 20,000 available time units were used for locking.

This increasing overhead for locking at one node has

two implications. First, transactions which use the pri

mary site for data access will receive much poorer service

than the other nodes. In fact, it may be necessary to

reduce the transaction processing load at the primary site

node. Second, the primary site can become saturated just

managing locks. With class 2 transactions and the locking

overhead rate assumed in these experiments, an extrapola

tion shows that the primary site will saturate if there

are 12 nodes in the network. Note that the primary site

also has to handle a disproportionate share of the mes

sages. The time units used for handling lock messages

(MESCPU) at the primary site should also be included in

looking at primary site saturation. An extrapolation of

the total overhead (L0CKCPU + MESCPU) shows that the pri

mary site would saturate with only 11 nodes in the net

work.

For the class 1 transactions, on the other hand, each

transaction required much less locking overhead due to the

well-placed lock assumDtion. Under those assumptions, the

primary site would not bottleneck until 83 nodes were in

the network.
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U.4. Percent of' Distributed Transaetions

In the previous simulation runs, ten percent of the

transactions were assumed to be distributed, while the

other transactions required processing at the local nodes.

In this section, the effects of varying that percentage on

the optimum granularity and choice of concurrency control

algorithms are examined. Experiments were run with values

of 0, 10, 25, 50, 75, and 100 for. the percentage of dis^

tributed transactions parameter (PREDIST). The results

are presented for both class 1 and class 2 transactions.

^•iL-1* Class J[ Transactions

Changes in the percentage of distributed class 1

transactions affected the optimum granularities dif

ferently for the different concurrency control algorithms.

In addition, as that percentage increased, the choice of a

'best' algorithm for class 1 transactions became clearer.

The results of the simulation experiments, varying

the PREDIST parameter, are broken into the following four

parts. First the effects of the locking granularities on

the four models are discussed. Next the four models are

compared, choosing the optimal granularity for each model

for each setting of the PREDIST parameter. Third, the

four models are compared under alternate network
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assumptions. In the final set of experiments, some mes

sages useful in terms of crash recovery were added to the

primary site model.

ii-i-1-1- Effects of Locking Granularity

With any of the four concurrency control algorithms,

if 0% of the transactions were distributed (all transac

tions are local), the maximum useful computer utilization

occurred with from 50 to 500 lockable granules. These

results were similar to the centralized database case in

Chapter 2.

The optimum locking granularity for three of the four

concurrency algorithms changed as the percentage of dis

tributed transactions increased. With the primary site 2

model, however, the maximum useful computer utilization

occurred at or near 500 granules.

For example, in figure 3-8, the shapes of the useful

I/O curves versus the number of locks are very similar

when either 10% or 75% of the transactions are distri

buted. For the other three models, 75% distributed tran

saction curves were skewed to the right when compared to

the 10% curves.

The difference between the models is that in the pri

mary site 2 model, no transactions hold locks at one node
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while waiting for locks at another node. As the percentage

of distributed transactions increased, there was an

increase in the number of transactions which held locks at

the other nodes in the other models. Lower granularity

increased the number of incidences of this condition and

hence adversely affected the performance of those algo

rithms.

The effects of varying the granularity and the per

centage of distributed transactions on the decentralized

algorithms was even more dramatic. For these algorithms,

a granularity from 1000 up to 5000 locks at each node was

required to produce the maximum computer utilization as

the percentage of distributed transactions increased

beyond 50%.

The need for finer granularity in these cases was

caused by two effects. First, as already mentioned, tran

sactions hold locks at one node while waiting for locks at

a second node. The second factor affecting the granular

ity in these models was that with coarse granularity and a

high percentage of distributed transactions, more transac

tions had to be restarted.
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iL-1!-!-^. Model Comparisons

Figure 3-9 shows the effects on the useful I/O and

the average response time of the percent of distributed

transactions for each of the four concurrency control

algorithms. (For each percentage, and for each algorithm,

the best useful I/O and average response time regardless

of granularity was plotted.)

The 'dish' shaped curves for USEFULIO were surpris

ing. As the percentage of distributed transactions was

increased up to 50%, all four models showed decreases in

useful computer utilization due to the additional overhead

(message handling and locking) required to run distributed

transactions. However, as the percentage increased beyond

75%, the useful computer utilization significantly

increased.

That increase was due to two factors. First, the

number transactions running at each node was greatly

increased. For example, when all of the transactions were

distributed, NNODES * NTRAN (60 in the simulation runs)

parts of transactions were active at each node. Second,

the average transaction size at each node was smaller as

more and more transactions were distributed.

The simulation parameters were modified to keep the

number and sizes of active transactions at each node con-
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stant as the -percentage of distributed transactions

increased. Only when both parameters were held fixed did

the 'dish' shaped curves disappear. When only one of the

parameters (NTRAN or AMEAN-BMEAN) were held constant, hav

ing all transactions distributed produced more useful I/O

(and CPU) than when only 50% of the transactions were dis

tributed .

The average response time curves also demonstrated

dish shaped curves. In almost all cases, the second pri

mary site model (PS2), produced the best average response

time of the four models. The holding of locks at one node

while waiting for locks at another was quite detrimental

to the throughput of the system and occurred with increas

ing frequency in the other three models as the percentage

of distributed transactions increased.

When fewer than half of the transactions were non

local the SNOOP and PS2 models produced about equal useful

I/O and average response times and were slightly better

than the other two models. However, when more than half

of the transactions were non-local, the •" primary site 2

model produced significantly better results than the other

three models.
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l'i'1'3- Limited Bandwidth

The above observations change if a lower network

bandwidth was assumed. All four concurrency control simu

lations were rerun, varying the percentage of distributed

transactions with a message bandwidth of 6. This simu

lates an environment where only six messages can be active

in the Network one at a time. The tests included locking

granularities of 500, 1000, 2500 and 5000 locks at each

node. Additional values for the PERDIST parameter were

also tested and included 30, 35, M0 and 45 percent. The

results are shown in Figure 3-10.

With fewer than 40% of the transactions being non

local, the global deadlock detector algorithm produced

more useful 1/0 utilization than the other algorithms.

When 45% or more of the transactions were distributed, the

primary site 2 model again produced better results. In

these cases, the extra two messages for locking were not

that significant; a distributed transaction required at

least 2 * NSLAVES messages anyway.

Note also that the 'dish' shape curves for USEFULIO

have practically disappeared with a limited bandwidth net

work. In these cases the extra network delay overhead

caused by an increased PREDIST parameter more than offset

the increases in transaction parallelism.
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ii'ii'l'i' Alternate Primary Site Model

Those differences between the SNOOP and PS2 models

would be even less, if the primary site models required

the 'release lock' messages to be sent to the SLAVES. In

many database management systems, transactions might be

backed out due to system crashes, changes in a user's mind

and a variety of other reasons. For these reasons, it may

be desirable to have SLAVES wait until the transaction has

completed at all nodes before 'committing' any updates.

In these types of database management systems, 'all done'

messages similar- to the 'release locks' messages must be

sent to the SLAVES even with the primary site concurrency

control.

The primary site 2 model was modified to actually

send "all done" messages at the end of each distributed

transaction. With that modification and the limited

bandwidth network, the primary site 2 model actually pro

duced slightly less useful computer utilization than the

SNOOP model, regardless of the percentage of distributed

transactions.

4.4.2. Class 2 Transactions

With class 2 transactions, the finest granularity was

optimal, regardless of the percentage of distributed
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transactions. Furthermore, the performance of the con

currency control algorithms also changed consistently as

the percentage of distributed transactions increased.

Figure 3-11(a) shows the USEFULIO for the four algo

rithms as that percentage increased. The utilization with

the decentralized algorithms was affected very little by

the increase in non-local transactions. Again, a slight

increase in useful computer utilization was realized due

to the increased distribution of transaction processing.

In the primary site algorithms, on the other hand,

the overall computer utilization decreased as the percen

tage of non-local transactions increased. The decrease

was most dramatic between 25 and 75 percent.

The same advantage for the decentralized algorithms

over the primary site algorithm appeared in the average

response time, as shown in figure 3-11(b). For all four

algorithms the response times increase as the percentage

of distributed transactions increased. However, the

increase was much less for the decentralized concurrency

control algorithms than for the primary site concurrency

control algorithms.

Two factors caused the dramatic difference between

the primary site and decentralized models for class 2

transactions: the transactions were all small and the

primary site created a bottleneck.
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The transactions of class 2 were all small and the

results in Figure 3-11 were for the finest granularity.

Under those conditions, the probability of success on a

lock request was extremely high, which considerably

reduced the advantage that the primary site 2 model exhi

bited for class 1 type transactions.

The second factor which affected the performance of

the concurrency control algorithms was the bottleneck at

the primary site. Over 7,000 time units out of a possible

20,000 were used for locking at the primary site when all

of the transactions were non-local. Moreover, all tran

sactions required some database processing at that primary

site and were thus all delayed by the locking overhead.

This bottleneck became increasingly worse as the percen

tage of distributed transactions increased.

One solution to the bottleneck problem would be to

offload the primary site concurrency control to a separate

processor. The primary site 2 simulation was modified to

test this strategy.

Two sets of experiments were run. In the first set,

the workload and network parameters remained the same and

the concurrency control was off-loaded to a »seventh1

node. In these experiments, the primary site model pro

duced USEFULIO and average response times very similar to

the decentralized control algorithm results shown in
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figure 3-11. In fact, the primary site models produced

slightly better results than the decentralized models when

the PREDIST parameter was greater than 50%.

In the second set of experiments, the 6-node data

base, granules and transactions were distributed on a 5-

node network with a sixth node being used only for the

concurrency control. The results were again similar to

those in figure 3-11 for the decentralized models. How

ever, in these experiments the modified primary site

models produced slightly worse results than the decentral

ized models.

These two results suggest that a proper database

design which lowered the load at the primary site could

perform equally as well as the decentralized algorithms.

The PREDIST simulation experiments for class 2 tran

sactions were repeated with a limited bandwidth network.

In these experiments, the primary site models were best if

more than 50% of the transactions were distributed. In

those cases, the primary site models actually sent fewer

locking messages than the decentralized algorithms.

4. .J?. Network Parameters

In this section, the results of varying five network

input parameters are reported. In the previous runs the
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MESRATE, or the length of time it takes to send a message,

was fixed at 3 simulation time units. The MESBDWT, or

number of simultaneously active messages, was effectively

set to oo, by setting the MESBDWT parameter to 1000.

The data transfer parameters, PRETRAN and PREDATT,

were also fixed in all of the previous simulation experi

ments. In those experiments 40% (PRETRAN) of the distri

buted transactions sent 25% (PREDATT) of their entities to

other nodes. The DATARATE parameter was set to .05, which

determined how long it took to send data entities across

the network.

One other network parameter, the MESSCPURATE, while

not affecting the network directly, did affect the message

or network overhead required at each node. For all of the

previous experiments, a message CPU rate of .01 (300

microseconds) was assumed.

Simulations were run with MESRATES of 1 (30 msecs), 3

(90 msecs) and 10 (300 msecs, similar to the ARPANET).

The simulations were also run with MESBDWT of 100, 50, 10

and 6. The DATARATE experiments included, 0.05, 0.1, 0.25

and 0.5. The message CPU rate parameter was set to .01

(300 microseconds), 0.05 (1.5 msecs), 0.1 (3 msecs) and

0.3 (9 msecs).

Class 2 transactions required much greater use of the

network resources than class 1 transactions. Thus
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variations in the network parameters had a much greater

effect on class 2 transactions.

Jt-5-JL* Class 2 Transactions

The significant effects of lowering the bandwidth and

varying the percentage of distributed transactions have

already been reported in section 4.5. Varying the MES

RATE, MESBDWT and MESCPURATE parameters had little effect

on the other observations reported.

The effects of varying the message rate parameter

were slight. The results with message rates of 1 and 3

were almost identical for all four concurrency control

algorithms. A MESRATE of 10 resulted in about a 5%

decrease in useful computer utilization for the primary

site models and almost no change in the useful utilization

for the distributed concurrency control models.

MESBDWT settings of 100 and 50 produced useful com

puter utilizations and average response time identical to

the infinite setting 1000 previously used. Slight drops

in the useful I/O and CPU utilizations were realized with

message bandwidths of 10 and 6. The drops with a message

bandwidth of 10, however, were less than 1% and not con

sidered significant.
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A message bandwidth of 6 did produce more noticeable

reductions in the useful I/O and CPU utilizations. The

drops in useful utilization were only about 2-3% with the

primary site and SNOOP models. The wound-wait model, on

the other hand, realized a drop of almost 7%. Although

the primary site models sent more lock messages, they were

mainly sent one message at a time. A wound or kill, how

ever, resulted in NSLAVE messages being sent, or broadcast

over the network. These "bursts" of messages were

effected more by the lower bandwidth than the greater

number of individual messages in the primary site models.

In the SNOOP model, on the other hand, a conflict only

required 1 message. A kill still required NSLAVE mes

sages, but occurred very rarely.

The change of the DATARATE parameter had little

effect on class 2 transactions. When the DATARATE was .5

and all of a distribute transaction's entities were sent

across the network, a decrease in the computer utilization

of only about 7% was realized.

With an extremely fast DATARATE parameter (.05 as in

the canonical scenarios), changes in the number of tran

sactions which transferred data, or the amount of data

they transferred produced curves almost identical to those

shown in figures 3-4, 3-5 and 3-6, and. are not repeated

here. A slight drop in useful I/O and CPU time was
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observed as the amount of data transferred increased for

both classes of transactions and for each of the con

currency control algorithms. However, even if all of the

distributed transactions transfer all of their data, the

decrease was less than 3%.

Note that these results do not imply that data

transferred is not an important parameter in a distributed

database. In the models considered here, data transfer

resulted in a waiting time for that transfer to complete.

Under these assumptions, no additional I/O or CPU

resources were used in transferring data; it was assumed

that use of these resources is already included in tran

saction processing. Furthermore, with the fast DATARATE

assumed, even a transaction accessing 500 entities would

wait on the transaction wait queue for only 25 time units.

When the DATARATE was increased from .05 to .5, and

the PRETRAN and PREDATT parameters were varied, a larger

drop in useful CPU and I/O utilization was observed. At

the optimum granularity, a drop of almost 7% in computer

utilization was realized. In these cases, the larger

transactions might wait on the CPU queues for 250 time

units, a significant portion of their lifetimes.

Changes in'the MESCPURATE parameter had the greatest

effect on the useful.computer utilization output parame

ters. In the primary site models, a decrease of almost 9%

/>

i*
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was realized when the message rate was increased to .3

(almost 9 msecs). With that same message rate, the useful

computer utilization only dropped by about 4% in the

decentralized models.

In class 1 transactions, the critical resources ar

the I/O and CPU resources at the nodes and not the network

resources. Thus the heavy message traffic of the primary

site models is impacted much more by the message CPU rate

than the other network parameters.

£•5.2. Class 2 Transactions

The MESRATE, MESCPURATE, MESBDWT, and DATARATE param

eters were also varied for class 2 transactions. Changes

in the first three parameters affected the performance of

all four concurrency control algorithms. The DATARATE

parameter had practically no effect on the processing of

class 2 transactions.

The USEFULIO and the average response time (in

parenthesis) is given in Table 3-11 for each of the four

concurrency control algorithms. In the first set, the

MESRATE parameter was varied while the MESCPURATE and

MESBDWT were fixed at .01 and 1000 respectively. As the

message rate increases, the gap between the primary site

and decentralized control models widened.



MESRATE

1

3
10

Table 3-11

PS1

94994(63)
93996(64)
87998(67)

MESCPURATE

.01 93996(64)

.05 88953(67)

.1 83273(72)

.3 58676(102)

MESOULP

1000-50 93996(64)
10 82804(72)

6 55200(108)

181

Effects of Network Parameters

PS2 WW SNOOP

94720(63)
93319(64)

88078(67)

93319(64)
88767(68)

83086(73)
58372(102)

93319(64)
83234(72)
55692(108)

96839(61)
97134(61 )
96037(63)

97145(65)
95048(63)
92394(65)
83313(72)

97145(61)
96827(62)
95948(63)

97037(62)
96204(62)
96875(62)

96204(62)
94710(64)
91860(65)
82690(73)

96204(62)
96979(62)
96242(62)

A more dramatic change occurred when the message CPU

rate was varied. During these experiments, the MESRATE

and MESBDWT were fixed at 3 and 1000 respectively. With a

3 millisecond cost (MESCPURATE = .1) for sending a mes

sage, the primary site models produced only 89% of the

useful computer utilization that was realized with the

decentralized concurrency control algorithms. With a 9

msec message rate (MESCPURATE = .3) this percentage drops

to 72%.

Similarly, a dramatic change in USEFULIO and response

time for the primary site models was realized as the mes

sage bandwidth was restricted. For these experiments, the

message rate and message CPU rate parameters were fixed at

3 and .01 respectively. Note that while the performance

i®
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of the primary site models was heavily affected by the

restricted bandwidth, the decentralized models were hardly

affected at all. This result is due to the fact that with

the primary site models, almost 40,000 more messages were

sent than with the decentralized algorithms.

Variations in the DATARATE, PRETRAN and PREDATT

parameters had little or no effect on the performance of

the four concurrency control algorithms. Class 2 transac

tions were all small. Thus any wait on the data transmis

sion queue was also small even if all of the distributed

transactions transferred all of their data.

As expected, the performance of a primary site con

currency control algorithm deteriorated as restrictions

were placed on the network. The effect of the restric

tions on the wound-wait and SNOOP algorithms was much

smaller.

H•—• Canonical Scenario Revisited

In section 4.1, the effects of the different con

currency control algorithms on computer utilization and

average response times with two different classes of tran

sactions were presented. In those experiments a very

fast, low overhead and high bandwidth network was assumed.
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Subsets of those cases were rerun under alternate

network assumptions. For the results presented in Figure

3-12, the MESRATE was assumed to be 10 simulation time

units or about .3 seconds. The MESBDWT parameter was set

to 6, while the MESCPURATE was set to .1, simulating a

cost of about 3 msecs to handle a message at a node.

These settings roughly resemble the ARPANET parameters.

Note that the simulations were not run for all of the

granularities.

In section 4.1 for class 1 transactions with finer

granularities, no one concurrency control algorithm seemed

dominant. Figure 3-12 shows, on the other hand, that the

decentralized algorithms, the wound-wait or SNOOP, produce

significantly better machine utilization than the primary

site models. The drop of about 9% realized with the pri

mary site models, when compared to the decentralized

models, is consistent with the drop observed in section

4.6, when only one of the network parameters was varied.

The advantage of the decentralized algorithms for

class 1 type transactions shown in section 4.1 became even

more apparent when a slower network was assumed. Note,

however, that under the given network parameter the useful

computer utilizations for even the decentralized algo

rithms were much lower than with the original network

parameters. Thus, regardless of the concurrency control



in

c

a>

£

ID

IOO-i

tn

o

m

in

o

80-

60-

40-

20-

0

184

/«r , snoop
?****&*

^S

ww
^^SNOOP

§^

•PSI.PS2

—I

0 |02 io • io
No. of locks (log scale)

Figure 3-12: Canonical Scenario
Limited Bandwidth



185

algorithm, a 'distributed database where all transactions

are very small is perhaps not suitable for a slow computer

network.

5. CONCLUSIONS

As with the centralized database concurrency control,

the algorithms and parameters of the concurrency control

for a distributed database are also application and system

dependent. In this section the major conclusions on the

locking granularity, the algorithms for class 1 and class

2 type transactions are reviewed.

jj.K Locking Granularity
/ ——~~^~——"••"-——-—-

In general, a finer granularity is required for lock

ing in a distributed database than in a centralized data

base. However, if the locks are well-placed with respect

to the accessing transactions, the finest granularity is

still not worth the additional concurrency produced.

The need for finer granularity in a distributed data

base was caused by one major factor: transactions held

locks at one node while waiting for locks at another node.

f$
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When that condition was avoided with the PS2 model, much

coarser granularity was acceptable.

Even that model, however, required slightly less

coarse granularity than was required for a centralized

; database under the same assumptions. In the centralized

database, 10 to 100 granules produced the maximum useful

computer utilization under the well-placed lock assump

tions. In the PS2 distributed database, 100 to 1000

granules are required. In the PS2 model and very coarse

granularity, many distributed transactions have to release

and rerequest locks at a low number nodes. The additional

locking overhead makes coarse granularity unacceptable.

5.2. Class 2 Transactions

If the number of distributed transactions is low

(£10%) and the network is considered lightly loaded, the

performance of all four concurrency control algorithms was

t' very similar for class 1 transactions.

§ ' As the percentage of distributed transactions

increase, the primary site 2 model produces better com

puter utilization and average response times than either

of the decentralized models. In these cases, the extra

two messages required in the primary site model represent

a lower percentage of overhead since the transactions will
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be sending at least 2 * NSLAVE messages anyway. Moreover,

this overhead is more than offset by the ability to avoid

inactive nodes.

When the bandwidth of the network is lowered and the f-

number of distributed transactions is low, however, the

decentralized concurrency control models produce better

computer utilization and response time than the primary

site models. In these cases, the primary site lock mes

sage overhead interferes with the normal transaction pro

cessing.

The above two conclusions come into conflict as the

percentage of distributed transactions increases and a low

bandwidth network is assumed. The simulation results

indicate that with a low bandwidth network, the SNOOP dis

tributed concurrency control algorithm is best when less

than 45% of the transactions are distributed. When more

than 45% of the transactions are distributed, the primary

site 2 model is preferred. [*J

When the percentage of distributed transactions is . "^

less than 10%, the SNOOP and wound-wait algorithms perform \

equally well. However, as that percentage increases, the

SNOOP model results in better performance than the wound-

wait model. As expected in these cases, the percentage of

conflicts increases and has a more adverse effect on the

wound-wait algorithm.
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5.*3' Class 2 Transactions

Under the class 2 transaction assumption, all of the

transactions are small and randomly access entities in the

^ ^ database. In these cases, the decentralized concurrency

control models consistently produce better response times

and useful I/O and CPU utilization than the primary site

models. With extremely small transactions, the extra mes

sages in the primary site models represent a significant

delay factor. Furthermore, the small transactions make

the probability of conflict and restart very low with the

dectralized concurrency control algorithms.

Also, with only small transactions and random lock

placement assumptions, the locking overhead is a signifi

cant factor. When all of this overhead is concentrated at

one site, that site can bottleneck as either the number of

sites .in the network or the percentage of distributed

transactions increase.

The above observations for class 2 transactions hold

^'" "• even under optimistic network conditions* As the network

parameters become restrictive, the advantages of the

decentralized concurrency control become even more evi

dent.

The wound-wait and SNOOP concurrency control models

produced extremely similar results for class 2 transac-
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tions. This similarity was due to two factors. First,

the small transactions are involved in very few conflicts

and thus the probability of a transaction blocking and

being blocked by an older distributed transaction is

extremely small. The second factor is that a transaction

is much more likely to be blocked by an older transaction

(in which case, no wound or kill takes place) since the

individual sites operate with a preclaim locking strategy.



CHAPTER 4

CONCLUSIONS

The major goal of this thesis was to examine the

effects of concurrency control on the performances of

database management systems. The effects of concurrency

control on performance are dependent on two conflicting

factors. On the other hand, the database system perfor

mance can be enhanced by allowing concurrent users simul

taneous access to the database. Both the useful computer

utilization and the average response time can be improved

by supporting a multiple user environment.

On the other hand, the database system performance

might be degraded due to extensive concurrency control

overhead. The concurrency control overhead is due to the

computer resources utilized in some type of "locking".

The "locking" is used to prevent one user of the. database

from interfering with the processing of another user.

In the first section of this chapter,"the major con

clusions from Chapters 2 and 3 are reviewed. In the next

section the applications of these conclusions to other

concurrency control implementations are projected and

several areas of further research are suggested.

190
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1- SUMMARY OF PREVIOUS CONCLUSIONS

Simulation models were used to study the performance

effects of concurrency control in both centralized and

distributed databases.

1.1- CENTRALIZED DATABASES

In a centralized database, all database activity,

including concurrency control, are processed on a single

computer system. A simulation model was used to determine

the optimum granularity for locking, the effects of a

variety of workload and system characteristics, the

effects of a lock hierarchy, and the effects of a "pre-

claim" versus a "claim as needed" locking strategy.

The overall conclusions on locking granularity are

application dependent as shown in Table 4-1.

Table 4-1 Locking Granularity

small large mixed sized
Transactions Transactions Transactions

Well-placed Coarse gran. Coarse gran. Coarse gran.

Random Fine gran. Coarse gran. Lock Hierarchy
placement witn Fine gran>
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In many cases coarse granularity, such as file or

relation locking, is preferred. However, if random lock

placement is assumed and all of the transactions are

small, the coarse granularity is unacceptable and fine

granularity locking must be implemented.

If random lock placement is assumed and a variety of

different sized transactions are present in the workload,

a lock hierarchy should be used. In such a hierarchy,

some large transactions can lock large granules, while

other small transactions lock much finer granules. If a

transaction were to set more than 1% of the smaller locks

under any one large lock, it would be more efficient for

that transaction to simply set the one large lock.

In a preclaim locking strategy, a transaction

acquires all of its locks at the beginning of the transac

tion. In a claim as needed locking strategy, the locks

are acquired as the respective parts of the database need

to be accessed. With a few exceptions, the preclaim stra

tegy produced better machine utilization than the claim as

needed model. However, the above conclusions on locking

granularity and a lock hierarchy hold, regardless of

whether a preclaim or claim as needed strategy is used.
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j_.£. Distributed Databases

In a distributed database, the database activity,

including the concurrency control, are processed on

several computer systems connected by a network. Four

concurrency control algorithms were simulated in order to

study their performance effects under a variety of work

load and network conditions.

Two of the algorithms simulated involved a central

ized concurrency control where locking for the entire

database was controlled at one primary site in the net

work. In the "primary site 1" model, transactions acquire

the locks needed at each node or site in some fixed order.

If the locks for one node are denied, the "blocked" tran

saction waits for those locks while holding locks on lower

ordered nodes.

In the alternate centralized control model, the "pri

mary site 2" model, the locks needed at each node are

again acquired in some fixed order. However, in this

case, if the locks for one node are denied, the 'blocked'

transaction releases all currently held locks while wait

ing for access to the locked granules.

The other two algorithms simulated involved a decen

tralized concurrency control where locking for the portion

of the database at each node was controlled at that node.
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In the "wound-wait" model, deadlock is prevented by

"wounding" any "young" transaction that dares to block an

"older" transaction. The wound is transferred to all

sites where the wounded transaction is active. If a

wounded transaction is blocked at any site by an "older"

transaction, the wounded transaction releases its locks at

each site and is then restarted.

In the other decentralized control algorithm,

deadlocks are resolved by a global deadlock detector, or

"SNOOP". If a deadlock exists, a transaction is picked

which also releases its locks at each site and is then

restarted.

Which model is best in terms of its effect on the

distributed database system performance is also applica

tion dependent as shown in Table 4-2. Class 1 transac

tions refer to a workload environment where the locks are

assumed to be well-placed with respect to the accessing

transactions and that those transactions are of mixed

sizes. Class 2 transactions refer to workloads where all

of the transactions are small and random placement of

locks is assumed.

In some cases, it appears that the concurrency con

trol mechanism is not a significant factor in the database

system performance. For class 2 transactions, additional
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Table 4-2: Concurrency Control Models

Classl Class2

Transactions Transactions

Fast Net. Primary Site or Primary Site or
Most trans. Decentralized Decentralized
local

Slow Net. SNOOP Decentralized
Most trans.

local

Fast Net. Primary Site 2 Decentralized
Most trans.

non-local

Slow Net. Primary Site 2 Primary Site.
Most trans.

non-local

simulation runs showed that the preference for decentral

ized concurrency control could be offset by reducing the

database load at the primary site. Thus in these cases,

the choice of concurrency control algorithm may again not

be significant.

For class 1 transactions, when most of the transac

tions only required local processing and a slower, lower

bandwidth network is assumed, the SNOOP algorithm is pre

ferred. In this case, the SNOOP model was favored because

of the lower number of messages required.

Also for class 1 transactions, if most of the tran

sactions are non-local or distributed, the primary site 2

model is preferred. The advantage of the primary site 2

model is that only in that model does a transaction
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release locks at all other nodes while waiting for locks

at one node. In the other three models, it is possible

for a transaction to hold locks at one node while waiting

for locks at another node.

Another factor which favors the primary site 2 model

over the decentralized models when most transactions are

distributed, is that in those cases, the primary site

model no longer produces heavier message traffic.

The distributed database simulations indicated that

some of the coarse granularity conclusions for the cen

tralized database do not hold for the distributed data

base. However, under the well-placed lock assumptions,

the finest granularity is still worse than a medium granu

larity concurrency control.

Z- FUTURE DIRECTIONS

The results of the simulation studies suggest several

areas for future study. Two such areas would be to extend

the lock hierarchy and the claim as needed locking models

to a distributed database. Another study would be to

investigate the multiple copy problem in the distributed

database model. The results of the simulations in this

study do, however, provide some insights in each of these

areas.
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For the centralized database, the conclusion was

reached that if the locks are well-placed, coarse granu

larity is preferred and a lock hierarchy is thus not bene

ficial. In those cases, it was more efficient to just use

one level of coarse locking (10 to 100 locks). In the

distributed database cases, finer granularity (500 to 1000

locks) is required even if well-placed locks are assumed.

A lock hierarchy in that granularity range was beneficial.

Thus a lock hierarchy at each node for a distributed data

base might be more useful than in a centralized database.

This projection could be verified by simple extensions to

the distributed database simulations similar to the exten

sion in chapter 2.

A claim as needed locking strategy may be required if

the entities to be accessed, and hence the granules to be

locked, are dependent upon the values of entities previ

ously accessed. With a claim as needed locking strategy

in a distributed database, the primary site models might

require two messages for every lock set. In addition,

with claim as needed locking, the primary site models

would also have to prevent or detect deadlock and thus

lose one of their advantages over the decentralized

models. Therefore, for claim as needed locking, the pri

mary site models would probably not be acceptable.

*%
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The comparison of the two decentralized concurrency

control algorithms might be affected by a claim as needed

locking strategy. With the preclaim locking strategy and

the wound-wait model, relatively few transactions were

wounded since there was a high probability that a blocking

transaction was older than the blocked transaction. With

a claim as needed locking strategy, however, a transaction

would request locks at several different instances during

its lifetime. Thus, the probability of being blocked by a

younger transaction would increase. Consequently, the

global deadlock detecter or SNOOP algorithm would probably

be better than the wound-wait algorithm in a claim as

needed locking environment. Simple simulation extensions

could also be used to test that hypothesis.

The multiple copy concurrency problem was discussed

in Chapter 1. In a distributed database, it is sometimes

advantageous to replicate parts of the database at several

of the nodes in the network. The multiple copy con

currency problem is to ensure that the replicated copies

are kept mutually consistent or identical during simul

taneous user updates.

The four distributed database concurrency control

simulations could be applied to the multiple copy problem

as follows. Assume that the entire database is replicated

at each node. Some transactions are 'read-only1 transac-



199

tions and just need to access the data at one node. These

transactions can be considered the local transactions in

the simulations. The 'write' transaction, on the other

hand, must cause activity at each node and thus may be

considered the distributed transactions.

In this interpretation, the PREDIST parameter would

represent the percentage of update transactions. Under

the above interpretation, the conclusion summarized in

Table 4-2 can be applied to the multiple copy problem. If

the database is dominated by updates (i.e. most transac

tions non-local) and the updates are relatively large and

sequential in nature (i.e. Class 1 transactions), a pri

mary site concurrency control is suggested. Thus all

transactions would first acquire locks at a 'primary copy'

of the data.

However, if all of the updates are small and random

in nature (i.e. Class 2 transactions) or most of the

transactions are 'read-only' with respect to this database

portion (i.e. local transactions) then a decentralized

concurrency control is suggested (or is at least accept

able). In a decentralized concurrency control, the

updates would request locks at each node and proceed with

the updates. However, the updates would have to be

prepared to be rolled back due to conflicts with other

updates.
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However, the above analysis is an over simplification

of the multiple copy problem in a distributed database.

One over simplification is that other concurrency control

solutions exist to the multiple copy problems which are

not directly extendible to the internal database con

sistency problems. These algorithms must also be compared

with the simulated algorithms.

More importantly, the above analysis assumes a fixed

distribution of the copies in the distributed database.

In other words, the database is fully replicated and then

the number of updates and the network parameters are

varied. But the optimum replication of the data actually

depends on the proportion of updates and the network

parameters. In fact the optimum replication of the data
may be influenced by the multiple copy concurrency con

trol.

These analysis deficiencies cannot be over come by

straightforward extensions to the existing simulation

models. Instead a more complete model should be developed

to jointly study the database consistency and multiple

copy problems.

In summary, this dissertation provides insights into

the effects of concurrency control on database system per

formance under a wide variety of conditions. The results

of the dissertation can be used to guide concurrency
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:cbhtrol implementations and parameterization^ in database

management systems.
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