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ABSTRACT

This paper presents a secant method, based on R. B. Wilson's formula,

for the solution of optimization problems with inequality constraints.

Global convergence properties are ensured by grafting the secant method

onto a phase I-phase II feasible directions method, using a rate of

convergence test for crossover control.
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1. Introduction

When solving engineering design problems with distributed constraints,

by means of outer approximation algorithms such as those described in [1], [2],

one has to solve a large number of simpler optimization subproblems with a

finite number of inequality constraints. In the context of engineering

design, these subproblems are characterized by the fact that function and

derivative evaluations are very costly, sometimes requiring as much as one

minute of computer time (on a CDC 6400) for a simple function evaluation.

In solving such subproblems by means of phase I-phase II feasible direction

algorithms [3], one invariably finds that the time to solve a quadratic

program, which yields Kuhn-Tucker type multipliers, is less than one tenth

of the time required for a single function evaluation. This observation

leads to the conclusion that the cost of solving quadratic programs at each

iteration can be neglected in any scheme for solving such subproblems.

While phase I-phase II feasible direction algorithms are quite dependable,

they are inherently slow, which has led a number of researchers to look for

better alternatives. The most successful alternatives so far have consisted

of adaptations of Newton's and quasi-Newton methods. The development of

these methods can be traced through the progression of papers by Wilson [4],

Robinson [5], Han [6,7,8], and Powell [9]. So far, they have developed a

number of important local convergence and rate of convergence results as well

as some proposals for global stabilization based on exact penalty functions.

The open questions in the current stabilization schemes [8,9] are those of

(a) how to select the required exact penalty function constant and (b) how to

ensure that the locally convergent superlinear method does in fact take over

in the end.
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Han [6,7] and Powell [9] have explored the use of quasi-Newton methods

based on symmetric rank two updating formulas, such as BFGS. The main diffi

culty with such formulas in a global stabilization scheme is that they need

to be supplied with a sufficiently good initialization when one is sufficiently

close to a solution point. So far, no constructive tests have been proposed

that can be used to determine when one is sufficiently close to a solution

for the local method to converge.

On the other hand, there are some examples in the literature of effective

global stabilization of secant like algorithms [10,11,12]. Although secant

methods require one more gradient evaluations per iteration than BFGS type

updates, they are considerably more robust, since the required precision of

approximation can be enforced, and they have a higher rate of convergence

because their updates use fewer past points.

In this paper, we present a superlinearly convergent, globally stabilized

secant method, approximating Wilson's formulas [4], for optimization problems

with inequality constants. The stabilization is accomplished by grafting

the secant method onto a phase I-phase II method of feasible directions.

The phase I-phase II method makes good progress in the initial iterations,

and then, on the basis of a special test, it turns over the computation to

the secant method when the superlinear rate of convergence of the secant

method begins to manifest itself. As a result, we obtain a robust algorithm

-3-



with excellent efficiency which should prove most useful in solving optimi

zation problems arising in engineering design.

2. Building Blocks for an Algorithm

Consider the problem

min{f(x)|g:j(x) <0, jGm} (2.1)

where m 4 {1,2,.. .,m}, and f: ]Rn •* R , g^: ]Rn -»- R, jGm, are three times

continuously differentiable. To ensure that Kuhn-Tucker conditions [13]

hold at solutions to (2.1) and that phase I-phase II feasible directions

methods apply, we make the following hypothesis:

Assumption 1: For every xG ]Rn, 0^ co{Vg^(x), jGl(x)}, where co

denotes the convex hull of the set and

Kx) &{jGm|gj(x) =0} . (2.2)
D

When Assumption 1 is satisfied, if x is a local minimum for (2.1), then,

according to the Kuhn-Tucker theorem [13], there exists a multiplier y such

that (with g= <g1,g2,...,gm)T)

Vf(x) +^>^y =0 (2.3)
dx

g(5) < 0 (2.4)

y > 0 (2.5)

<Y,g(x)> = 0 (2.6)

We note that, unlike the case of equality constrained problems, the

necessary optimality conditions for a local minimum of (2.1), (2.3)-(2.6),

are different from those of a local maximum (in which y < 0). Hence a solu

tion of (2.3)-(2.6) can only be a local minimum or saddle point.
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As has been pointed out by S. Robinson, the system (2.3)-(2.6) cannot

be solved by the extensions of Newton's method which he and Pshenichnyi have

proposed [14,15], for the following reason. Let

A(x,y) ^ f(x)+<y,g(x)> . (2.7)

Then (2.3) becomes

Vx£(x,y) = 0 . (2.8)

To solve, (2.3)-(2.6), given (x.,y.) G ]Rn x lRm , the extended Newton method

[14] computes (x.+1,y.+1) according to the rule

Xi+l = xi+Vi

yi+l = yi+Wi
(2.9)

where (v ,w ) is the solution of

minimize j{llv||2+||w||2} (2.10a)
subject to

92£(x.,y.) 32*,(x.,y.)
V A(x.,y.) + V^v + a I w = ° (2.10b)x l i a 2 3y9x

3g(x )
g(x±) + 9xX v < 0 (2.10c)

y + w> 0 (2.10d)

3g(x.)
<yi,g(xjL)+ 9xX v> +<g(Xl),w> =0 (2.10e)
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For a suitably bounded solution of (2.10) to exist, Robinson requires that

the system (2.10b)-(2.10e) satisfy the LI condition in [14] in a neighbor

hood of a Kuhn-Tucker point. Unfortunately, it has been shown by

Robinson that this system never satisfies his LI condition and hence may

not be solvable by the extended Newton's method. Robinson proposed to

salvage the situation by making use of an idea proposed but not analyzed,

by Wilson [4]. Robinson had to strengthen his assumptions as follows.

Assumption 2: Let (x,y) be any Kuhn-Tucker point for (2.1), i.e. (x,y)

satisfies (2.3)-(2.6). Then (i) f* >0 for all j€ I(x) (strict comple-
32£(x v)mentary slackness), (ii) J'J is positive definite on the subspace

i ^x
{h|<Vg (x),h> =0, jGl(x)} (second order sufficiency condition); and

(iii) the vectors VgJ(x), j G I(x) are linearly independent. Q

Instead of solving (2.10), for (v.,w.), Wilson proposed to solve, instead,

tthe smaller quadratic program below, for (v.,y.,-):
1 x+1

32i(x,y)
minimize <Vf(x ),v> + -r<v , » v> (2.11)

3x

subject to

3g(x.)
g(x±) + 9x1 v <0 (2.12)

Suppose v. is a solution of (2.11) and y. - is the corresponding multiplier.

Then, we find that (v-»Yi+1) satisfy (2.10b)-(2.10d) and, in addition, yi+1

satisfies the nonlinear version of (2.10e), namely

3g(x.)

<yi+i^(xi)+-lx^V =° (2*13)
Hence, when v. = 0 solves (2.11), (xi»yi+1) satisfy (2.3)-(2.6).

,2,
t 3 i
From [5], (2.11)-(2.12) converges locally if—r (•,*) is continuously

3x

differentiable, i.e. if f(«) and g(*) are only twice continuously
differentiable.
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As is well known (see [10,11,16]), secant methods are considerably more

efficient than Newton's method. To construct a secant version of

(2.11)-(2.12), we only need to substitute a finite difference
2

approximation for the matrix U^Zl in (2.12), defined as follows. Let
3xZ

(Vn'W'^rW^Wz'W'-'^i'^ be given and let Ht
be a matrix whose j column h (j =1,2,...,n) is given by

hi .i=r<Vfri-WVj-w^ -V (xi-n+k^i-^-k>} (2 •14)
IV

with kG {l,2,...,n}, e. the jfc unit vector in ]Rn and

k = i-n+k i-n+k-1 yi-n+k 'i-n+k-1

The specific order in which k and j appear in (2.14) is immaterial, but

assumed to result from a cyclic column replacement scheme. We now state a

secant method.

Algorithm 2.1 (Secant)

Data: (xQ,y0) G/xl1, HQ GW?** (symmetric), e>0, a± G(0,1).
Step 0: Set i = 0.

Step 1: Solve

, 3g(x.)
min{<Vf(xi),v>+^<v,Hiv>|g(xi) +—g^-v <0} (2.16)

A
for v. and the corresponding multiplier y#11 = y. +w.. Set x. = x, +v..

l l+l l l l+l i l

Step 2: Compute

V+i= rtV^i+i^i'i^i+i^-VW+i^i+i" (2-17)
J 1

with j = i mod n, and

A = min{(0v 0+lw 0),e} . (2.18)
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Set

Hi+1 = [hl,ijh2,iJ---'hj-l,i>hj,i+rhj+l,i,'**,hn,i] (2*19)

Step 3: Set i = i+1 and go to step 1. •

The following theorem follows directly from Theorem 3.1 in [5], Lemma 3

in [12] and Theorem 2 in [11],

Theorem 2.1: Let (x,y) be a Kuhn-Tucker pair for problem (2.1), i.e. it

satisfies (2.3)-(2.6), and suppose that Assumption 2 holds. Then there

exists a p > 0 such that if Algorithm 2.1 has constructed an infinite

r -CO
sequence {(x.,y.)K . in which for some i_ > 0, (x. n,y. n),...,i v 2. ± i=l 0 — in-n-l,yi0-n-l"

(x. ,y. ) are in the ball
i i

0 0

B((x,?),p) A {(X,y) |l|x-xll <p, ||y-y!l<p}, (2.20)

then the following hold .

(a) The sequence {(x.,y.)}._. constructed by Algorithm 2.1
1 1 1-lQ

converges, superlinearly,.to (x,y), with root rate t , i.e., see [17, (9.2.5)],
^ 1/t1 n

0 < lim(llx -xll+lly -yll) < 1, where T is the unique positive root of
11 n

tn+1-tn-l =0 (T G(1,2) and T \lasn +»),
n n ^

i

(b) There exist M>0, 66 (0,1) such that (Ox^-^D+Oy j-y B) <M6 n.
(c) For

P(xi^i> =^"V/(xi'yi)I|2+ l|g^i)+"2} (2*21)

P(xi+1,yi+1) <p(xi,yi) holds for all i>iQ, where g(x±)+ is avector with

components max{0,gJ(x.)}, j G m.
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We see from Theorem 2.1 that the secant method (2.1) has excellent

local convergence properties (local in the sense that it depends on a suffi

ciently good initial guess x , H ). However, it, as well as other secant

methods, has rather poor global convergence. In [11,12,18] we find stabiliza

tion schemes for secant and Newton algorithms based on the descent function

p(»,») in (2.21). Note that p(«,0 achieves its minimum value of zero at

any Kuhn-Tucker pair (x,y).

The stabilization schemes in [12,18] fall back on a gradient method for

minimizing p(x,y) when the secant method fails or when (x^y^ is unacceptably

far from a solution. Unfortunately, the computation of V p(x,y) involves the
2

computation of 3^x>y\ which nullifies the savings achieved by the use of
3x

the secant matrices H . Hence we find it necessary to resort to an alternative

approach. Specifically, we propose to stabilize the secant methods by

grafting it onto a dual phase I-phase II method of feasible directions,

stated below (see also [3]). This method has the desirable feature that it

produces multipliers at each iteration that can be used for updating the H..
2

3 £(x v)
Furthermore, it does not require the Hessian o • This metnod wil1 be

3x

used to obtain a sufficiently good approximation to a Kuhn-Tucker point, and
2

3 £(x v)to the required Hessian v ' , for the secant method to converge. The
3x

details of meshing the two algorithms together will be given in the next

section.

We shall need the following notation. Let

iJKx) &max{gj(x)} (2.22)
j^m

ij;(x)+ &max{0,\Kx)} (2.23)

-9-



Algorithm 2.2 (Phase I-Phase II Method of Feasible Directions)

Data: xQ G ]Rn, aG (0,1), $G (0,1), 6>1.

Step 0: Set i = 0.

Step 1: Compute

0(x )^max{ I yj(fej(x )-*(x ))-y%(x,).-yl \ yjVgj(x,)+y°Vf(x.) ||
- m jGm

y>0, IyJ=l) " (2.24)
i=0

and set

h, £-[y?Vf(x.) + Iy^Vgj(x.)] (2.25)
1 1 x jGm 1 x

where (y.,y.,...,y.) is the solution of (2.24).

Step 2: If 6(x ) = 0, stop. . Else compute the smallest integer k. >_ 0 such

that k k

f(x.+B ih.)-f(x )<3Wx ) \ /o oA N
i i i — i \ if ^(x.) = 0 (2.26a)

k. I
gJ (x±+3 1hi) <0 Vj Gm J

and

k k.

i|i(x +3 Ti±) -*(x±) <8^(x^ if iKx±)+ >0. (2.26b)

V
Step 3: Set x - = x. +$ ti., set i = i+1 and go to step 1. •

The following result is proved in [3], with part (e) following from

Theorem 1.3.66 in [13].

Theorem 2.2: Suppose that Assumption 2.1 is satisfied. Then

(a) 0(0 is continuous.

(b) 0(x) = 0 if and only if x is a Kuhn-Tucker point for the problem

(2.1), i.e. for some y G m™, (x,y) satisfies (2.3)-(2.6). 0(x) < 0

otherwise.

(c) If the sequence {x.,y.} constructed by Algorithm 2.2. is finite,

then its last element (x ,y ) defines a Kuhn-Tucker pair (x ,y ), with
s s s s

ys = -0 ys' 3 * »* •"'
ys
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(d) If the sequence {x ,y } constructed by Algorithm 2.2 is infinite,

then any accumulation point (x,y) of (x.,y } defines a Kuhn-Tucker pair (x,y)

with y defined by y = 77 y , j = l,2,...,m.

y

(e) If the sequence {x.} constructed by Algorithm 2.2 is infinite and

bounded and Problem 2.1 has only isolated Kuhn-Tucker points, then x -*- x as

i -* °°, with x a Kuhn-Tucker point. Ll

3. The Robust Algorithm

We now state our algorithm which uses the phase I-phase II method of

feasible directions (Algorithm 2.2) for bringing the iterative process into

a region where the secant method (Algorithm 2.1) converges. Recall that

p(») was defined in (2.21).

Algorithm 3.1 (Globally Stabilized Secant Method)

Parameters: a G (0,1), $G (0,1), y G (0,1), 6 >_1, e > 0, eQ > 0.
/— n /- nxnData: xfi G ]R , » G ]R 9 symmetric.

Step 0: Set i=0, it =0, e=e. Compute 9=max{ 2yJ(g:I(x0)- y 6^(xQ) )
y 3=1

- y WxQ)+ - 2-||y vf(xQ) + I y3VgJ(x0)||Z|y >0, £ yJ =1}, and corresponding
j=l j=0

multipliers y^, j=0,1,...,m. Set y^ =—^ yjj, jGmif y ± 0, and set
• _• ^0

y0 = y0' ^ G -' otherwise«
Step 1: Solve for v. and the corresponding multiplier n.+1 the QP:

1 3g(x.)
min{<Vf(xi),v> +2<v,Hiv> g(x )+—^-v <0} (3.1)

Step 2: If (3.1) has a solution (v±,Tii+1) and v± = 0, stop. If (3.1) has a

solution (v.,n. -), with v± ^ 0 and

Ilvill+Ilni+ryi" ± * (3-2)
set

xi+i = xi+vi <3-3>

yi+1 = n1+1 ; (3.4)
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compute H. . by replacing the k column, h, ., of H., with k = i mod n, by the

vector .

Yi+i A^V'WVk'W-V'vyi+i" (3-5a)
with

A± = mln{eJxi+1-x1l+By1+1-y1l}. (3.5b)

Set i = i+1, I = £+1 and go to step 1.

Else, proceed.

Step 3: Compute 0(x.), y., j = 1,2 n as solutions of

6(x.) =max{ Jyj (gj (x.)-i|»(x.),) -y°6i|»(x.)_|_
y j=l m V
-i|y°vf(x1)+ I y^g^x^U2 I yj =1, y>0}. (3.6)

j-0

Step 4: Set

\ =-[yjvf(x )+ I y^Vgj(x )]. (3.7)
jGm

Step 5: Compute the smallest integer k. >_ 0 such that

k. k

f(x.+$ \.) -f(x.) < 3 a0(x )
1 X k. X ± ) if *(x.). =0 (3.8a)

ip(x. +3 V) 10 '

and

Set

k k

iKx.+3 V) -iKx.) <B^©(x.) if ^(x±)+ >0 (3.8b)

xi+1 =xi +3\ (3.9)

Step 6: Compute 0(x .), yr _, j = 0,1,...,m by solving (3.6), with x. ..

replacing x±. Set y±+;L = (y±+1t. •. .y™+1> >with y^+i =Zq- yi+i> if yi+l *°» and
set y^+1 = y^+1» J = l,...,m otherwise.

Step 7: Set i = i+1.
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Step 8: If 0(x.) >yQ, set 0 = 8(x ). Compute H to be the matrix with

columns h, ., k = 1,2,...,n,
K, 1

h. . = -[V £(x.+ee. ,yJ-V £(x.,y.)]
k,i e x i k J± x i"i

Set e = Y£ an(* go to step 1. Else go to step 4. D

We now proceed to examine the properties of Algorithm 3.1.

Lemma 3.1. Suppose that Assumption 2.2 holds and that Algorithm 3.1

constructs an infinite sequence {(x.,y )} such that for i >_ i. _> 0, (x.,y.)

is constructed in step 2. Then {(x.,y )} converges superlinearly, with

root rate t , to a Kuhn-Tucker pair,
n

Proof: By construction, in step 2, flx -x.fl +lly.,,-y.ll _< Ky for all i >_ iQ

and some K > 0. Hence, setting z = (x,y), UzO = II xll + OyD, we have, for any

k >_ 1 and i ^ i^,

i+k—1 °°

tlz-.u,-2.'1 1K I V1 <KIV1 > (3'10)
1+fc 1 £=i 1=1

which shows that {z } is Cauchy and hence converges to a point z = (x,y).

As a result, the matrices H -»» ^X?,y; as i -* ». Now suppose that (x,y)
3xZ

is not a Kuhn-Tucker pair. Then, the corresponding solution (v,w) of

min{<Vf(x),v>+|<v>-0%i)v>|g(x) +^v<0} >0 (3.11)
3x

satisfies

llvll+llwll > 0 (3.12)

where y+w is the corresponding Kuhn-Tucker multiplier for (3.11). Now, with

v =x -x.w =v , -y.» we have, by construction, that
i i+1 i i i+1 i

-13-



, 9g(x,)T
llv.ll+llw II >_min{0 vD+B wD V £(x.,y.)+H,v + r^-w =0,

j- i i x i i i dx rn -j o\
3g(x ) 3g(x.) U*iJJ

g(xi} +—3x~" V= °; yi +W= 0; ^i+W'SCx^ +—^- v> = 0}

Now, x. -»• x and y. -*• y. Hence, H,, -*- o'y; and therefore, we must have,
i l i _ 2 ' *

3x

since llv II + llw II •* 0, and since (v,w) is optimal for (3.13) with (x.,y.) and H.
i i n iii

replaced by (x,y) and X*y^, respectively, that
3xZ

0 = lim(llv.il+llw.ll) > llvll+llwll (3.14)
li —

But (3.14) contradicts (3.12) and hence (x,y) must be a Kuhn-Tucker pair.

The rest of the lemma now follows from the fact that H. •* 0,y- and
3x2

Theorem 2.1. D

Lemma 3.2: Suppose Algorithm 3.1 constructs an infinite sequence

{(x.,y )} containing two infinite subsequences, one constructed in steps 5

and 6 and the other in step 2. Let K C {0,1,2,...} be such that if i G K,

then (x.,y ) is constructed in steps 5, 6, and (x. ,,y. ..) is constructed

in step 2. Then any accumulation point of {(x. ,y )}.,- is a Kuhn-Tucker
i i i^K

pair.

K1 /\
Proof: Let K' C k be infinite and such that (x.,y.) • (x,y) . Then,

by construction in step 8 of Algorithm 3.1, for any i, i+k G Kf, k _> 1,

K'6^Xi+k^ - ^(x^ and hence Q(x±) •0. The desired result now follows from

Theorem 2.2a,b. rj

Theorem 3.1: Suppose that Assumption 2.2 holds and that Algorithm 3.1

constructs an infinite bounded sequence {(x.,y )}. Then {(x.,y.)) converges

superlinearly, with root rate t , to (x,y) a Kuhn-Tucker pair for Problem 2.1
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Proof: If there is an in such that (x.,y.) is constructed in step 2
U i i

for all i >_ in, then we are done by Lemma 3.1. Next, it follows from Theorem 2.2

that if (x.,y.) is constructed in steps 5 and 6 of Algorithm 3.1 for i = iQ,i +1,...,

then there exists an i >_ ifl such that for all i >_ i , 6(x ) >_ yQ for

any 0 < 0. Hence the algorithm will attempt to construct x .^^ +1 in

step 2. Now, by Lemma 3.2, if {(x. ,y )} is the subsequence of {(x ,y.)}
\ ik

such that (x. ,y ) is constructed in steps 5 and 6 and (x. ,.,y. ,,) is

Xk k „. k k
constructed in step 2, then any accumulation point (x,y) of (x ,y. ) is a

k \ y
Kuhn-Tucker pair. Hence, step 2 is entered with (x. ,y ) • (x,y) and

H. • ^y . It now follows from Theorem 2.1b that there exists an
\ 3x2

i„ such that (x.,y.) is constructed in step 2 for all i > i„ and hence we
2 l •'i —2.

are done. LJ

Conclusion:

The algorithm which we have presented consists of three segments. The

first is the phase I-phase II method of feasible directions which carried the com

putation into the convergence region of the second segment: the superlinearly

converging the secant method. The third segment consists of the tests which detect

whether the computation has entered into the region of convergence of the

secant method. The tests are based on rate of convergence detection, as

defined by (3.2), and on improved nearness to a solution, as defined by

step 8. Both of these tests depend on the parameter y G (0,1). It appears

that both tests are easiest satisfied, and hence the secant method is allowed

to continue, if y » 1. A good choice for the remaining parameters is

difficult to indicate a priori and will have to be determined by the user

on the basis of experience.

Given our past experience with secant methods we feel that the algorithm

which we have described in this paper will be quite competitive with other
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algorithms for the problem.- in question and hence will prove to be a

useful addition to the optimizer's arsenal.
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