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ABSTRACT

We review, using a few simple examples, the mechanism for

a very general stochastic motion the Arnold diffusion which

occurs in near-integrable Hamiltonian systems with more than two

degrees of freedom. The examples chosen describe the effect of per

iodic perturbations on a free particle system in three dimensions.

The calculated Arnold diffusion rates are in good agreement with

the results of simulation studies.
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I. INTRODUCTION

One hundred and forty five years after W. R. Hamilton for

mulated his famous equations, the long term motion they describe is

still not completely understood. The nature of the motion is firstly

determined by the degree of symmetry of the Hamiltonian system accord

ing to the rule^ that "the less symmetrical the Hamiltonian system,

the more intricate is the motion." For each symmetry, there exists

an independent global invariant of the motion. Symmetries may be

"visible" or "hidden", and often it is not easy to guess whether or

• • 2
not they exist. A notable example is the Toda lattice Hamiltonian,

which apart from the energy has one "visible" and one "hidden" symmetry

There is no known analytic procedure for obtaining the global invari

ants of the motion for a given Hamiltonian, or even for determining

their total number. As stated in a recent review^, "a theory that

could be used to test the presence of one symmetry or another of a

given Hamiltonian, and in particular to calculate its degree of sym

metry, is still waiting to grow out of 'alchemy' into 'chemistry'.

Therefore, eschewing alchemy, we pass this problem by in silence."

In the discussion that follows, we consider only Hamil-

tonians that are autonomous (the quantity represented by the Hamil

tonian function is conserved). Any Hamiltonian that is not autono

mous may be made so by introducing an extended phase space.^

There are two distinct classes of Hami1tonians, integrable

and nonintegrable. For integrable Hami1tonians with N degrees of

freedom, N independent symmetries exist (including energy). These
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allow for the isolation and independent solution of the motion in

each degree of freedom. All trajectories are regular and are confined

to an N dimensional surface in the phase space. According to a

theorem of Siegal's*^, such Hamiltonians are rare. In the generic

case, the Hamiltonian is not completely integrable. Hamiltonians in

this second class have M (less than N) independent symmetries.

These symmetries may be used to reduce the Hamiltonian to a system

with (N-M+1) degrees of freedom which has no global invariants and
5 6

always displays some stochastic motion. It has been shown ' that in

general, these non-integrable Hamiltonians generate a finite propor

tion of trajectories which are stochastic, and a finite proportion

which are integrable. The integrable trajectories do not reflect

global invariants of the system since their existence depends dis-

continuously on the initial conditions. Stochastic and integrable

trajectories are intimately commingled, with a stochastic trajectory

lying arbitrarily close to every point in the phase space.

For two degrees of freedom, stochastic trajectories may

be isolated from one another by integrable (KAM) surfaces. For three

degrees of freedom (with only one global invariant), the integrable

trajectories still exist, but do not isolate the stochastic trajec

tories. All stochastic regions of the phase space are connected into

a single complex network the Arnold web. The web permeates the

entire phase space, intersecting or lying infinitesimally close to

every point. For an initial condition on the web, the subsequent

stochastic motion will eventually intersect every finite region of the

phase space (or energy surface, for an autonomous system) this is
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the Arnold diffusion?'®

Although the merging of stochastic trajectories into a

single web seems to be a general characteristic of N>2 non-inte-

grable systems, there is some controversy, and the question is not

Q

entirely settled, Contopoulos Zt dt. have performed simulation

studies on a particular model with N = 3 , and have found results

which they interpret to indicate the existence of segregated stoch

astic regions. One of these regions exhibits the usual single invar

iant (energy), while the others seem to be characterized by a second

invariant in addition to the energy. Whether this additional invar

iant is truly a constant, or whether the slow rate of Arnold diffusion

has caused it to appear as a constant, is not yet known.

II. FREE PARTICLE HAMILTONIAN SYSTEMS

We consider Hamiltonians comprised of an integrable part,

, and a small perturbation, >

Hn =

where j and 0 are the N-dimensional action and angle vectors of

, and is periodic in 0 with period Zir . The stochastic

web appears in the neighborhood of the resonances of the unperturbed

Hamiltonian. The resonances are the closed, periodic trajectories of

u(0)
"n •

As a specific example, we examine in detail the system

shown in Fig. 1. A free particle moving in three dimensions is subject
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to the influence of a small, spatially periodic perturbation,

H=l^+eT-V +c.c. (1)
2m ^ m

m -

where m is called the resonance vector and has three integer compo

nents. We also have

e. = K.x.
J J J

K. E .
J X.

For simplicity, we assume the components of K to be equal, = K .

The case of unequal K^. differs trivially from the one considered
here.

The action-angle variables for the unperturbed motion are

1 = (2)

e E K X (3)

0.(1) E^ I . {k)
- - m -

Note that the system is nonlinear in the sense that w is propor

tional to I (and also to y). The Hamiltonian in the new variables is

H=i jd |2 +eVv +c.c. . (5)
m m

m -
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When e = 0 , the projection of the motion into the three dimensional

frequency space (which is also the action and velocity spaces) is a

single point which may or may not represent a resonance. The set of

resonance frequencies is defined by

m-o) = 0 (for all m) .

Thus, for a given m , the loci of resonance points lie in a resonance

P^ane which is perpendicular to m and passes through the origin.

The resonance vectors m are shown in Fig. 2 (for m. =-2,-1,0,+1,+2).

The resonance planes are perpendicular to these vectors and the entire

set intersects every finite region of the action space. The intersection

of the resonance planes with the unperturbed energy surface

2 2 21^ + I2 + I3 = constant

is shown in Fig. 3. The intersection forms a network of resonance

lines called the "Arnold web". These lines form an everywhere dense

set on the energy surface.

We are now in a position to examine the effect of a finite

perturbation on the unperturbed motion. We look at three cases in

which the perturbation potential has one, two, and three Fourier com

ponents, respectively.

We consider first a potential with a single Fourier com

ponent n (for independent of [ , this might represent an electro

static plane wave). Leaving the c.c. notation as understood, the Hamil-

tonian can be written
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H=il •u+eV^e'-'2 (7)

and

dl an in*6 fn\
- = iil = IneV e - - . (8)

dt 39 -

Thus, the change in the action must always lie in the direction of the

resonance vector n , as shown in Fig. The motion is completely

integrable, but the energy surface is thickened by ZeV^ and a separ-

atrix forms about the resonance. The phase space trajectories are

those of a simple pendulum. Typical libration, rotation, and separ-

atrix motion is shown in Fig. 5- We note that since the motion is

always perpendicular to the resonance line, any displacement along the

resonance line is forbidden.

Consider now the case of two nonparallel, nonperpendicular

Fourier components (two waves),

H=^ I. I+ev +ev'-'- <9)
2m - - n t

i — = neV e - - + teMi>e - - UU;
dt - n - t

dS I 4. ^^9 in-0 il-6
dF= -1 ® • • (11)

The two primary resonance lines are shown as heavy curves in Fig. 6.

in addition to the primary resonances, the nonlinearity of the motion

excites an infinite set of secondary resonances. This can be seen by

iteratively solving Eqs. (lO) and (11) for [ and 0 . We choose
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the special case where the are not functions of ] (though the

- results are sinriilar if we include this dependence). Approximating

0 -yt and integrating Eq. (10), we generate the primary resonances

l(t) 'V A n cos (n-yt) + B cos (^-(ot) . (12)

Using this result In Eq. (11) and integrating yields

0(t) 'X' C n cos (n*yt) + DZ cos (>t«a)t) (I3)

where A,B,C, SD are constants. Using Eq. (13), a second iteration

of Eq. (10) now generates an infinite set of second order resonances.

For example, in Eq. (10) the term n exp [i(n«0)] results in an

infinite set of harmonics through the expansion

exp [in-e] 2 (c) (Dn-i) exp [i (m, n+m|)-ut]
m^m^ 1 2

where the J'>6 are Bessel functions. As can be seen from Eq. (1A),

all secondary resonances have the form

(m^n + m^Z) • y = 0

so the secondary resonance vectors also lie in the Z-n plane. These

are shown as thin lines in Fig. (6).

For small perturbations, thin stochastic layers are formed

about each resonance line. The formation of stochastic layers occurs

when the separatrices of neighboring secondary resonances overlap.®

Although the motion is now stochastic near a resonance, the system is
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still confined to a small region of the energy surface. As shown by

Eq. (10) (and as illustrated by Fig. 7), all trajectories are restricted

to planes parallel to the ^~n plane. Motion along a resonance line

(the Arnold diffusion) is not allowed. Note that for a small enough

total energy (or a large enough perturbation) the secondary stochastic

layers may overlap, leading to diffusion around the intersection of

the n-Z plane and the energy surface. The two wave problem can

easily be reduced to two degrees of freedom by separating out the

motion in the direction perpendicular to the £-n plane.

In our final example, the free particle interacts with

three noncoplanar, nonperpendicular Fourier components (or waves).

We have

~ \f in*0 . « „ i^-e . ^ w «P'6-T- = neVe--+-ce V«e - - + peVe- - .
dt - n - Z - P

The three primary resonance lines are shown in Fig. 8. As before, the

nonlinearity of the motion generates a web of second order resonances,

wi th

(m^^ +f"2- ^ "^3^^ •w= 0 . (16)

The system may now move in any direction along the energy surface in

[ space. Again, thin stochastic layers form near each resonance line.

In contrast to the previous examples, stochastic trajectories may now

exhibit Arnold diffusion, moving along the resonance lines and exploring

every finite region of the energy surface.

From a practical point of view, there are two major questions

concerning Arnold diffusion in a particular system:
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(a) What is the relative measure of stochastic trajec

tories in the phase space region of interest?

(b) How fast will the system diffuse along the thin

threads of the Arnold web?

III. THE BILLIARDS PROBLEM

We have studied in detail the motion of a simple physical

system with three degrees of freedom. As shown in Fig. 9, a point par

ticle bounces back and forth between a smooth wall located at z = h

and a periodically rippled wall located at z = 0. The ripple is de

fined by the equation

z = - a cos k X - a cos k y (17)
X X y y '

which is just a superposition of two perpendicular waves. This "hard

wall" system is very similar to the free particle model with a perturba

tion containing more than three noncoplanar Fourier components. It

exhibits both the stable KAM trajectories and Arnold diffusion.

It is possible to describe the motion of the particle in

terms of four difference equations. These give the evolution of the

trajectory angles ancl position as defined just before

the n bounce. The system is illustrated in Fig. 10 for 3^ =0 . In

this case the y motion is independent of the x-z motion and the system

reduces to two dimensions (stochasticity but no diffusion).

The exact difference equations for this system cannot be

written in explicit form, so it is of practical interest (both for analytic
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calculations and computational speed) to make some simplifying approxi

mations.

If we assume both

al Jsl « T and a k ,a k «: 1«l »I PI 2 X X y y

the rippled wall may be replaced by a flat wall at z = 0 whose normal

vector is a function of x and y (this is somewhat analogous to

the idea of a Fresnel mirror). The simplified difference equations

exhibit most of the general features of the exact equations and may

be written in explicit form

a . 1 = a + 2 Yx, (x ,y ) (18)
n+1 n 'x n n

Vl = % + 2 h tan (19)

6n+1 =

These equations may be interpreted as a mapping on the Poincare sur

face of section at z = 0 . A similar set of equations has been studied

via computer simulations by Froeschle and Scheidecker^®.

If Y is not a function of y , and y is not a
X y

function of x , the system breaks into two uncoupled parts describing

motion in x-z and y-z separately. Fig. 11 shows the motion in the

a-x surface of section for the uncoupled case. A number of different
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trajectories are shown, each with different initial conditions. Each

particle was allowed to run for 1000 iterations. The plot displays the

usual features of a system with two degrees of freedom, a) stable

trajectories b) stochastic trajectories, and c) resonance islands.

Of concern for the calculation of diffusion rates are the thick stoch

astic layers for |a| > (.6)7r/2 and the thin stochastic layer that

covers the separatrix of the central primary resonance.

Surface of section trajectories have also been computed for

the exact problem (a real rippled wall). The motion in the a-x

plane is shown in Fig. 12 for the same parameters and initial conditions

used in Fig. 11. The basic features of the exact problem are appar

ently well represented by the approximate equations.

The difference equations, Eqs. (18) - (21), will be truly

three dimensional when includes a dependence on y and y^ a

dependence on x . This can be accomplished by adding a small diagonal

ripple to the bottom wall. The (virtual) normal to the surface z = 0

at (x,y) is then described by the angles

y = a k sin k x + ek y (22)
X XX X X c

where

y = a k sin k y + ek y (23)
y y y y' y c

y = sin (k X +k y) . {2k)
c X y" •

The parameter e is the amplitude of the diagonal ripple and indicates

the magnitude of the coupling between the x motion and the y motion
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As in the case of two degrees of freedom, there are both integrable

and nonIntegrable trajectories. Unlike the previous case, however,

stochastic trajectories are not confined to a particular locality in

the phase space.

An example of integrable motion is shown in Fig. 13. Three

invariants of the motion exist. The motion is confined to a two dimen

sional surface in the four dimensional surface of section. The projection

of this motion onto the a-x plane yields an annulus of finite area.

Figs. 13a and 13b show the motion of a single particle after 5,000

and 50,000 iterations, respectively. The initial conditions were

chosen close to the center of the primary resonance. For these intial

conditions, the fraction of the phase space area occupied by the Arnold

web is very small. It is therefore highly likely, but not absolutely

certain, that the motion shown in Fig. 13 is truly integrable. (Computer

roundoff errors may destroy this integrabi1ity on a very slow time scale.)

We turn, finally, to the featured topic of this paper,

stochastic motion in the Arnold web. The stochastic motion for the

coupled equations, Eqs. (18) - (2A), is characterized by only one

(global) invariant. It fills a four dimensional volume in the four

dimensional surface of section, and diffuses slowly along the thin

stochastic layers which comprise the threads of the pervasive Arnold

web. The web itself is composed of an intricate system of "freeways,

streets, sidewalks, cracks, etc." that permeates the entire phase space.

Particles diffusing along these thin stochastic pathways are able to

leave (and penetrate) even the predominantly stable regions of the phase

space, where the proportion of stochastic initial conditions is small.
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IV. DIFFUSION CALCULATIONS AND SIMULATION RESULTS

We examine two of the diffusion processes that characterize

the simplified system, Eq. (l8) - (2A). The first describes the dif

fusion of a along the thick stochastic layer of the 3-y motion.

The quantity a experiences diffusive fluctuations that result from

the small coupling to the random y motion. The second process is

similar to the first, except that a now diffuses along the thin

separatrix layer of the 3~y motion. Thick layer diffusion tends to

be much faster than thin layer diffusion due to the greater random

ness of the y motion in the former case.

In order to calculate the diffusion rates, we adopt a

simple model of the diffusion process. For both the "thin" and

"thick" layer processes, we assume that the y motion is confined to

the stochastic layer. It then acts as a stochastic pump, transporting

energy back and forth between the x and z motions. Its own energy

may not change except for the small fluctuations necessary to affect

the pumping action. (Note that this is not strictly true. It is

possible for the system to leave the main resonance along a thin

"alleyway", but this turns out to be very unlikely.)

The first step in the calculation is to find a Hamiltonian

that will generate the surface of section mappings, Eqs. (18) - (2A).

In deference to our original model in Fig. 9, we choose a "kicked"

Hamiltonian

H(a,x,3,y,n) = 2h Zn [sec a ] + 2h tn [sec 3] -2 6^(n) C(x,y) (25)
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where

and

C(x,y) = a cos k x + a cos k y + ecos (k x + k y) (26)V »7 / ^ y y7 \ ^ y// \ /

+00

6^(n) = 6(n-m)
m=-co

= 1 + 2 23 cos (2'irnq) . (27)
q=1

Equations (l8) - (2^) may be derived from Eq. (25) by a simple integra

tion of Hamilton's equations. Note that H in Eq. (25) is a nonauto-

nomous Kami 1tonian in two degrees of freedom. It is related to the

net energy in the x and y motion, and is not conserved.

For a small enough coupling e the diffusion is limited

by the rate at which energy can be passed back and forth between the

X and y motion. Therefore we neglect the explicit coupling to the

z motion and take only the q = 0 term in Eq. (27). (The z coupling

is recognized implicitly in the random phase assumptions that are used

later.) This approximation makes Eq. (25) autonomous

H(a,x,3,y) = 2h tn [sec a] + 2h Zn [sec 3] - 2 C(x,y) . (28)

If we assume a to be small we may simplify the first term

2

Zn [sec a ] 'v ^ (29)
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Equation (28) may be directly reduced to a nonautonomous Hamilton Ian

for the X motion only

"x " " ^^x "^x^ ' + , (30)

where y Is now considered to be an explicit function of n . Defining

0=k^x , <|)(n) =k^y(n) and y=-2e we have

2H = ha - 2a cos 8 + y cos [0 + ^(n)]. (31)
X X

The type of diffusion observed depends upon the Initial

conditions. For thick layer diffusion, the Initial conditions are

chosen close to the center of the primary resonance In the a-x

plane, and within the thick stochastic layer of the 3-y plane. In

the absence of coupling e = 0 the motion In the a-x plane Is confined

to a smooth closed curve (like those seen close to the center of Fig.

11). The number of bounces required to go exactly once around the

curve Is the a-perlod T^ . For a finite coupling , diffuses slowly

due to the small randomizing Influence of the stochastic 3~y motion.

The diffusion of H Is shown In Fig. 14 for 2,000, 10,000, and
X

30,000 Iterations. The mot Ion eventually explores all of the a-x plane,

The corresponding motion In the 3"y plane is restricted to the thick

stochastic layer, at least until the a-x nx5tlon reaches Its own thick

1ayer.

The diffusion coefficient for thick layer diffusion has

been calculated from Eq. (31), under the assumption that the n dependent

variable (|>(n) makes a sudden random jump to a new value whenever

n = Integer .
- 16 -



The evolution of , from Eq. (31), is

dH 9H

-d^ ° IT = [e +4.(n)] (32)

=^ [y cos (0 +<l))] " IJ ^ sin [0 +(f)(n)] . (33)

The first term contributes only a small oscillation with no net change

over long periods of time. For small amplitude libration in the x-a

plane, we have

where

0 'V 0 cos w n (34)
o o

<0 = = 2 k (ah)*
o T XX

a

Using this, we integrate the second term in Eq. (33)

m+1

•'m

AH^ = I dn y 0^ 0)^ sin (t^J^n) sin [0 +({»(n)] . (35)

For 0) «1 , this is
o

AH 'V y 0 03 si n (oi m) sin [0 + <l)(m)] . (36)
X o o o

We square this and average over both m and (f> to get

X Zt o o
t,(f)
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where we have used the assumption that (J) is randomized at m= integer .

The thick layer diffusion rate is then

D =i > = I V . (38)
I 2 8 o o '

The parameters y and o) will remain fairly constant as H diffuses.
o X

The quantity 6^ , however, increases with , resulting in an increase

in the diffusion rate as the x oscillations grow.

In Fig. 15, the theoretical value of is compared with

measurements obtained from the direct iteration of the difference equa~

tions. For each experiment, 100 particles were started with identical

initial conditions on a libration curve of the a-x plane, and with

random initial conditions in the thick stochastic layer of the 3-y

plane. The motion was followed for 500 collisions, and the RMS value

of the energy h(a was calculated and compared with the theory.

Figure 15a shows the variation with coupling strength e , Fig. 15b the

variation with a period T^ , and Fig. 15c the variation with the

number of iterations n . The solid lines show the theoretical pre

dictions and the triangles the experimental measurements. Each triangle

represents the average of four separate runs. The theoretical predic

tions, although consistently a little high, are quite good. The dis

crepancy probably reflects an expected small deviation from true random

phase.

We turn now to the thin layer diffusion. Although the initial

conditions remain close to the central fixed point of the a-x space,

they are now chosen inside the thin stochastic layer surrounding the
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primary separatrix of the 3-y space. The diffusion of H Is again

caused by the small coupling to the stochastic y motion, but since

thin layer trajectories are considerably less "random" than thick

layer trajectories, the diffusion is significantly weaker.

An example of thin layer diffusion is shown in Fig. 16 where

both the y and x motions are displayed on the same plot. The y

motion is confined to its separatrix until the x motion reaches its

own separatrix.

To calculate the diffusion rate, we find the energy change

AH^ as (() =k^y swings from (j) =-tt to <J) =+Tr . Starting with Eq.

(33) and again neglecting the first term we have

de
—— = - y — sin [6 + <|)(n)] . (39)
dn dn

As before, 0(n) corresponds approximately to small librat ions. But

instead of randomizing <()(n) with each bounce, we now assume that it

evolves very much like the phase on a pendulum separatrix.

0(n) = 0 sin [co (n + n )] (AO)
o •• X o ••

_i / 0) n\
4)(n) = Atan ^e ^ - ir (^1)

where co and oj are the frequencies of small oscillations about
X y

the central fixed points of the a-x and 6-y spaces, respectively. Let

0) = 2k /a h 03 = 2k /a h
X XX ' y y y

and defining
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then

""x
^ - ;;r (^2)

y

+ 00

AH = y6^r I ds I(s)
X 'o'" f

•/ — (30

where
/

I=cos [r(s +s^)] sin ^0^ sin [r(s +s^) + m

Using 0^ «1

I = cos [r(s +s^)] sin (() . (44)

Only the symmetric part contributes to the integral.

'sym " 2 (<i>+'*s) - cos (<l)-rs)] . (45)

Thus,

AH = - y0 r sin (rs^) [A«(-r) - A.(r)] (46)
X 2 o ' o' •• 2 2

where 's the Melnikov-Arnold integral^

A. (±r) = A7rre''"'"'̂ ^/s Inh (irr) . (47)

We have finally

- 20 -



AH = ^TryB r sin (rs ) sinh (Trr/2)/sinh (iir) . (^8)
X o o

If we assume that rs = co n is randomized after every half period of
o X o

2
<l)(n) , then we can average AH^ to get

<AH^> = F{r) (^9)
X o

s
o

where

F(r) = r^ sinh^(irr/2)/sinh^{irr) . (50)

A plot of F(r) is shown in Fig. 17- It is sharply peaked close to

r=l , suggesting that if the characteristic frequencies of the se-

paratrix and libration motion differ by as much as a factor of four,

the diffusion will be reduced by two orders of magnitude.

To obtain the diffusion coefficient, we need to know the

mean half period of the motion in the thin stochastic layer .

The half period of a true pendulum that follows a trajectory very close

to the separatrix is approximately

where

T = — In — (51)
6 "y |W|

*H - H

WE ^ « 1 ,
H
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and

H = -1^
5 h

is the separatrix energy. Chirikov® has shown that the average half

period inside the stochastic layer may be computed by simply inte

grating the half period over the energy interval of the layer. The

result is

T = — £n ^ (52)
8 "y |WJ

where is the relative energy at the edge of the layer (it has appro

ximately the same magnitude on both sides of the separatrix) and e is

the natural base. Chirikov has also calculated the layer width
o

using the so-called "whisker mapping". In our calculations, we have

used actual measurements of taken from computer generated plots

of the uncoupled motion. The separatrix width is not appreciably

affected by small couplings e «ay •

Combining Eqs. (A9) and (52) we get the thin layer diffusion

coefficient

<AHv>

D = ^ (53)

or

=ItirVe^oj F(r)/in (32e/|u |̂) . (5't)
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In Fig. 18, the theoretical thin layer diffusion is

compared with experimental measurements. Each triangle represents

the final spread of 100 particles that have been started with

identical initial conditions in the a-x space and slightly dif

ferent initial conditions in the thin stochastic layer of the 3"y

space. The motion was followed for 2000 iterations and the RMS

spread was computed using

=(-^ 2 ( f

The theoretical curves were calculated from Eq. (5^) with W^=.191 .

The variation of coupling strength is shown in Fig. I8a.

Variations with and n are shown in Figs. I8b and I8c, respectively

Again, the theoretical values fall slightly above the experimental,

probably due to the fact that the y motion phase (()(n) is not com

pletely randomized with each successive half period of the separatrix

motion. Phase correlations have been observed^® in a similar mapping

for the Fermi problem. Nevertheless, theory and experiment agree sur

prisingly well, lending considerable support to the validity of the

"stochastic pump" model of the Arnold diffusion.
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V. CONCLUSION

Any near-integrable system with N degrees of freedom

and M<N-1 global invariants of the mot ion wi 11 exhibit Arnold

diffusion. Diffusion occurs on the stochastic layers that form around

the separatrices of resonant trajectories. The resonant action asso

ciated with a particular layer is approximately conserved by diffusion

along that layer (and may be mistaken for an additional true invariant)

We have calculated diffusion rates for two types of dif

fusion using the simple model of a particle bouncing between a flat

and a periodically rippled wall. Both processes are strongly depen

dent upon the ratio of the characteristic frequencies of the stoch

astic layer and the diffusing oscillations. Thick layer diffusion

tends to be much faster than thin layer diffusion due to the more

frequent phase randomizations in the former. The excellent agreement

between theory and computer simulation supports the "stochastic pump"

model of the Arnold diffusion.
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FIGURE CAPTIONS

Fig. 1 The free particle is perturbed by a periodic perturbation in three

dimens ions.

Fig. 2 Resonance vectors m in action space (also frequency and velocity

space). The vectors are normalized to unity and projected at an

oblique angle. All vectors with 11^111.2 are shown.

Fig. 3 The Arnold web. The intersection of resonance planes with the

energy surface in action space. The lines shown correspond to

|m. I 12 .

Fig. A The energy surface, resonance vector, resonance line, frequency

vector and change in action for a free particle perturbed by a

single wave.

Fig. 5 Thickening of the action surface, libration, separatrix, and rota

tion motion for a single wave perturbation.

Fig. 6 Action (frequency, velocity) space for the two wave system showing

the primary resonances and the network of secondary resonances.

Fig. 7 Confinement of stochastic trajectories for the two wave system.

Motion is confined to the intersection of the n-Z plane with

the energy surface.

Fig. 8 Action space for the three wave system, showing the three primary

resonances and the network of secondary resonances — the Arnold

web.

Fig. 9 The three dimensional billiards problem. A point particle bounces

back and forth between a smooth and a periodically rippled wall.

Fig. 10 Motion in two degrees of freedom, illustrating the definition of

the trajectory angle a , and the bounce position x just before
n n
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t h
the n— collision with the wall. a = arctan (v /v ) ,

X z '

6 = arctan (v /v ) .
y z

Fig. 11 Motion in the a-x surface of section for the uncoupled billiards

problem described by the simplified Eqs. (l8)-(24). The parameters

are e = 0 ; X :h:a as 100:10:2 ; X = 2Tr/k . 15 particles are
XX XX

started at x = 0 and allowed to run for 1000 iterations each.

Fig. 12 Exact motion for the uncoupled billliards problem. Same parameters

as Fig. 11.

Fig. 13 Integrable motion in the coupled billiards problem. Motion is

projected onto the a-x surface of section. The projection onto

the 3-y surface is qualitatively the same. Parameters are z/h

^ .00^ ; X :h:a and X :h:a as 100:10:2 .
XX y y

Fig. 1^ Thick layer diffusion for the coupled billiards problem. Initial

conditions are close to the central "fixed point" in the a-x

space and within the thick stochastic layer (near |3| =Tr/2)

of the 3-y space. Parameters are the same as Fig. 13.

Fig. 15 Thick layer diffusion. Comparison of the theoretical diffusion,

Eq. (38) with the results of simulation experiments. In a),

the dispersion is plotted vs the coupling amplitude, e . In

b), dispersion vs the libration period, T . In c), dispersion vs
d

the number of iterations, n . Parameters (except for those varied) are

e/h = .0001 ; n= 500 ; X :h:a as 10:10:1 ; X :h:a as
XX y y

100:10:1.7 . Each triangle gives the spread of 100 particles.

Fig. 16 Thin layer diffusion. Initial conditions are close to the central

fixed point in the a-x space and within the separatrix stochastic

layer in the 3-y space. Parameters are the same as Fig. 13.
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Fig. 17 Plot of the function

k . .2/7ir\r sinh [-y)
F(r) =

• 1.2s I nh irr

for the dependence of thin layer diffusion on r = .

Fig. 18 Thin layer diffusion. Comparison of the theoretical diffusion,

Eq. (5^) with the results of simulation experiments. The

three graphs are the same relations as those shown in Fig. 15»

Parameters (except for those varied) are e/h=.0001 ;-n-ZOOO ,

X :h:a as 100:10:1 : X :h:a as 100:10:1.8 . Each triangle
XX y y

gives the spread of 100 particles.
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FIGURE 14. cont.
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