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1. Introduction

This paper discusses the idea of a fuzzy model, ways

in which such models may be constructed and ways in which

their performance may be evaluated.

The first part of the paper is concerned with the

relevance of fuzziness as a concept in systems modelling.

It is argued that, because fuzzy set theory has the ability

to handle linguistic information, the most natural definition

of a fuzzy model is in terms of finite discrete relations.

The second part of the paper reviews some techniques

for model construction. These fall into three broad

categories, namely verbalisation, fuzzification and

identification. Each is considered in turn and its ad

vantages and disadvantages examined.

The next section considers ways in which the performance

of a fuzzy model may be assessed. The idea of model quality

is introduced and is seen to be a multi-faceted concept

which includes complexity, uncertainty and accuracy.

The main body of the paper concludes with two examples.

The first of these is a well studied problem in the system

identification field. The second is a problem in river

water quality modelling and shows quite clearly the main

features of the fuzzy modelling methodology.
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2. The Fuzzy Model

There are many situations in which our understanding

of process behaviour is imprecise. In the steelmaking

industry, for example, dynamic models of the basic oxygen

furnace rely on a representation of very complex chemical

and physical phenonema in terms of nonlinear ordinary

differential equations. This may be adequate in a given

context but no modeller of this process would argue that

it is a true understanding. Similarly, in economics it

is possible to construct time series models for the highly

inter-connected variables which characterise the system.

However, such models are •notoriously1 poor.

The limited performance of the models in these

examples, and in other cases as well, may be a result of

the "Principle of Incompatibility". This is an intuitive

idea introduced by Zadeh which states that as systems

become more complex, it becomes increasingly difficult to

make statements about them which are both meaningful and

precise.

Fuzzy set theory, originated by Zadeh and developed

by many others, is a tool for handling imprecision. What

it allows the modeller to do is make statements about process

behaviour which, although inaccurate in the usual sense,

convey an understanding of the basic characteristics.

A distinction should be made though between •subjective1

and •objective1 fuzziness. The former is typified by the

steelmaking example. Here the imprecision lies in our

inability to gather sufficient information from the process

rather in any actual fuzziness in the laws governing its



behaviour. In the economic system though it is possible

to argue that not only can we not measure all the relevant

variables but also that the decisions taken, and hence

the laws of economics, are almost certainly governed by

fuzzy reasoning.

There are many forms which a fuzzy model could take.

It could simply be a static description of relationships

between variables. Or it could be a forecasting model for

use in economic planning. In this paper the emphasis is

on dynamic systems models for use in the control

engineering type of application.

One paticularly interesting form is derived from the

study of fuzzy numbers (Dubois and Prade^). Let R be the

set of real numbers and JR be the power set, P(1R), of

strongly convex and normal fuzzy sets in1R . A fuzzy system

may then be defined as a function

**Ln»fcB»*d-~fcn

such that

X(t+1) = f(x(t), U(t), P)

where XT(t) =(x^t), ... ,xn(t))
UT(t) =(u^t), ... ,ujt))

are the state and input vectors of the fuzzy system at



time t and

PT = (P-j* ••• f Vd)

is the parameter vector. The vector components x±, u± and

p± being elements in &. Thus the function, f, and the
parameter vector, P, define a model of the system.

Whilst there are few results using this formulation,

it is hoped that concepts in conventional systems theory

can be generalised to what might be called a fuzzy systems

theory (deGlas4).
However, this approach does not explicitly utilise

the linguistic properties of fuzzy set theory. One of the

reasons for the success of fuzzy set theory in tackling

control problems is exactly this parallel with natural

language (Tong5). It is unfortunate, therefore, that this

is lost when pursuing the algebraic notions outlined above.

An alternative is to model the system in terms of

linguistic relations. In doing so, the model becomes the

dual of a fuzzy logic controller and fits naturally into the

theoretical framework of fuzzy control systems described

in Tong .

Thus, in the remainder of the paper, a fuzzy model

is defined as a finite set of linguistic relations,

tr. ; i=1, ... #nl ,which together form an algorithm, A,

for determining the outputs of the process from some finite

number of past inputs and past outputs. Usually, of course,



the model is to be implemented on a digital computer. In

which case, the output space and the input space of the

system have to be discretised and will be denoted S and

U respectively. The set of numerical definitions of the

primary fuzzy sets used in specifying A will be denoted,

F, so that the fuzzy model is now defined in terms of a

quadruple, (S,U,F,A). Then using the calculus of fuzzy

sets it can be rewritten in terms of a finite discrete

relation, R, and a composition operator, o , such that

(S,U,F,A)-* (R,o ).

3. Model Construction

There appear to be three ways in which information

about a systems behaviour may be obtained. They are not

mutually exclusive and indeed it is reasonable to suppose

that some combination of all three would be the most

effective way of constructing a !good» model.

3.1 Verbalisation

This is the process of recording verbal descriptions

and formalising them as fuzzy relations. The descriptions

may be given by process operators, plant managers or process

technologists. In fact, anyone who has some 'feel1 for

the process could be considered a possible source of

information.

The idea of asking operators to describe their actions

is not new and has been well studied by workers in the

field of industrial psychology (Bainbridge'). There are,



however, some severe problems with this approach, principally

methodological. It is, for example, difficult to ensure

that in observing the operator all significant responses

have been recorded (Umbers8). Similarly, there is no

guarantee that the operators verbal responses are accurate

descriptions of his mental model.

Nonetheless, this approach has been successfully used in

the study of the Activated Sludge sewage treatment process

(Beck, Latten and Tong9). In this work the plant manager
was given a carefully constructed questionnaire in which

he was asked to describe the behaviour of the process under

certain hypothetical operating conditions. From his answers

it was possible to construct a fuzzy control algorithm which

embodied several important feature of the plant»s dynamic

behaviour.

Much work needs to be done to perfect this technique.

At present, there is no systematic way of approaching a

given verbal modelling problem although some obvious

guidelines .-may be drawn up. Difficulties, apart from those

already mentioned, include selecting the primary sets and

the appropriate discretisations.

3.2 Fuzzification

10
Zadeh's "Extension Principle" can be used to extend

the meaning of an ordinary mathematical expression from

points to fuzzy sets. In this way any exact relationship

known to hold for the process can be transformed into a



fuzzy relation.

Thus if 'f is a scalar function of 'n1 variables

x1f ... ,xn such that y=f(x) and /^(x) is the membership
function associated with the »ith» variable then

M/(y) = max Imin (u,,(x) : i=1, ... ,n)l
^KyJ y=f(x)L i ~x J

In practice it is necessary to restrict the values

that x and y can take to be both finite and discrete. This

presents some implementation problems which are basically

concerned with the discrete representation of fuzzy sets.

Suppose a fuzzy set of temperature is defined on the

continuous range [o,100°l then a finite discrete represent

ation corresponds either to a set of representative points

in to, 100*3 or a set of intervals on [o,100*3 . The first
of these may be termed a 'point - set» and the second an

•interval - set'.

Obviously, there are four combinations of x and y

representation. However, only one leads to a straightforward

computational problem and that is to choose x to be a

point-set and y an interval-set.

Of course the different representations will give

different fuzzifications of the original function, although

they may be similar linguistically. Very little practical

work has been done on the evaluation of the Extension

Principle and it is not at all clear if the choice of fuzzy

set representation is of real significance.
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3.3 Identification

In many cases, industrial processes for example, it

is possible to perform data logging experiments. These

produce various amounts of non-fuzzy data relating to input

variables and output variables. The generation of fuzzy

relational descriptions of this data, and hence the process,

is called 'identification*.

11
A technique for doing this has been reported by Tong #

It is essentially a method for testing fuzzy propositions

about the process against the data to see if they are •true'.

Those which are then constitute valid fuzzy descriptions

for incorporation in the model.

The technique has deficiencies, pricipally because

it does not eliminate the need to do some kind of correlation

analysis on the input and output variables. However, it

remains the only published method for utilising input-output

data.

What is required in this area is a theoretical invest

igation of the relationship between models and data,

analagous to that done in conventional system identification
1 p

(see Eykhoff for example).

4. Model Evaluation

After the model has been constructed it must be tested

and evaluated. In the conventional modelling excercise

this rarely consists of more than the calculation of some

accuracy measure between the model and the data. In the

fuzzy case this is inadequate and a more detailed inspection

of the model is required.

Usually, several models have been constructed and the

modeller wishes to choose the best amongst them. The first



requirement is that the models all come from the same

'class'. In the context of the model definition given in

section two, this means that S,U and F must be the same.

Thus the only thing that varies is A, the set of fuzzy

relations.

Of primary importance is model complexity, denoted p^.

Clearly, if the models are the same in all other respects

then the one with least complexity is preferred. It is

natural to choose as a measure for p the number of linguistic

relations which make up A.

Related to complexity is the notion of accuracy. This

is problematic in fuzzy models since they generate fuzzy

sets as outputs, in contrast to the measured data which is

non-fuzzy. Although non-fuzzy values can be generalised

to fuzzy singletons, the distance measures usually proposed

for fuzzy sets (Kaufmann 5afor example) are not really

appropriate. Furthermore, the model operates with discretised

variables and consequently there are bounds on the accuracy

that can be achieved.

One way of overcoming these difficulties is to de-fuzzify

the outputs of the fuzzy model. Note that whilst this seems

appropriate in the current context it is not necessarily

a general solution. Be-fuzzification may be achieved in

several ways and there is no published evidence to suggest

that any method is superior. One obvious way is simply to

select the value corresponding to the peak in the fuzzy set,

averaging when there are several such values. Another is

to select the value which divides the area under the member

ship function curve in half.
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Having fixed on a method, two accuracy measures seem

appropriate. The first is simply the squared error, such

that

P2(i) =(y(D -yd))2

where y(i) is the de-fuzzified model output at the 'ith'

data point and y(i) is the 'ith' non-fuzzy observation.

This accuracy measure is useful because it is the most

commonly employed measure in non-fuzzy modelling. The

second accuracy measure is the absolute difference between

the discretised de-fuzzified model output and the discretised

measurement. That is,

P3(D - I D[y(ifl - Dfyd)] I

where B[.} denotes a discretisation mapping and is such

that B:y-*£j ;j=1f ... ,I»J where L is the number of
discretisation points (or levels) for the output space. The

value of this accuracy measure is that it does not discriminate

against the inherent inaccuracy introduced by using dicretised

fuzzy sets.

A third, and final, aspect of model evaluation is the

notion of uncertainty. It is obviously the case that output

sets with different membership functions can generate the

same de-fuzzified output but, intuitively, the 'sharper'

the output set the better. The notions of non-probalistic
13entropy developed by BeLuca and Termini ^ are of some use

in this context. However, a simpler and more direct measure
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of uncertainty is to set

P4(i) =1->*Cy(i)]

where /*,£•! is the membership function of the model output

set.

Measures p2(i)t P3U) and P4(i) are for single data
points only and thus for a given data set of »N' points they

become

P2 =^EP2(i) P3 =4ZP3(i) P4 = nZP4(1)
Ul w»l U*

So any model can be characterised in relation to any set of

data by means of complexity, p<j, accuracy, p2 and p^, and

uncertainty, p..

In general, the more complex the model the higher the

accuracy and the smaller the uncertainty. However, it may

not be a trivial task to impose an ordering on the models

on the basis of such measures. The trade-offs between com

plexity and accuracy and between complexity and uncertainty

may require the modeller to use some external criteria in

order to select a 'best' model.

5. Application Studies

The following two examples illustrate some of the

characteristics of fuzzy models and emphasise the points

14
made above. The first example is a model of Box and Jenkins

gas furnace data and shows how effective the model construct

ion techniques can be. The second example consists of two
1 s

models of Beck's J river water quality data. The first is



12

simple and appears satisfactory, but has some unexpected

consequences. The second is much more complex but overcomes

the deficiencies of the first.

5.1 The gas furnace data of Box and Jenkins

The data of Box and Jenkins is extremely well known ;

and is often used as a standard test for identification

techniques. It provides, therefore, a useful starting point

for assessment of the methods proposed in section three.

The data consists of 296 pairs of input-output measurements.

The input is gas flow rate into the furnace, the output is

the C02 concentration in the outlet gases and the sampling

interval is nine seconds.

Using a combination of the techniques described earlier,

the fuzzy model shown in Figure 1 was obtained. The table,

which in this case is 'complete1 since all the cells are

filled, is often called a •transition table' and should be

interpreted as follows.

The model is a relation between gas flow four sampling

intervals ago, C02 concentration one sampling interval ago

and current C02 concentration. That is, y(t) =f(y(t-l),u(t-4)).
The row indices are mnemonics for primary fuzzy sets of

gas flow. The column indices are mnemonics for primary

fuzzy sets of COp concentration as are the entries in the table.

Thus each entry forms an 'elementary' relation of the form

IF £u(t-4) is NQ1 &y(t-D is C3 ] THEN jy(t) is C4$
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where & corresponds to conjunction.

Interpretation of implication is, of course, a subject

of debate but in this example, and in the following one, a

cartesian product form is used (ie. A^B = AXB). The

reason for this is simply that it is unreasonable for the

modeller to infer anything at all if proposition A is not

true. Thus the transition table can be thought of as a

tabulation of a fuzzy function.

To test the model it is necessary to generate one-step-

ahead, OSA, predictions from the data. This is straightforward.

The procedure is to take the non-fuzzy measurements corres

ponding to y(t-l) and u(t-4), construct the fuzzy singleton

y(t-l)&u(t-4), calculate y(t)=y(t-1)&u(t-4)© R and then

de-fuzzify to give y(t).

The gas furnace model performs very well indeed. The

OSA predictions are shown in Figure 2 (continuous line)

together with the measured output data (crosses). The

complexity is equal to the number of compound relations

(ie. relations which fill more than one cell in the table)

and here is equal to 19. The other measures are

p2 = 0.469 P3 = 0.558 p4 = 0.220

so that the discretised de-fuzzified model output coincides

with the discretised measured output about half the time.

The average value of the membership function at the output

value is 0.780.

For comparison, the OSA predictions of Box and Jenkins
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deterministic model are shown in Figure 3. Their model has

the form

y(t) =-2*5L±.2*ZS^2i5il^ .u(t-3)
1.00 - 0.57B - 0.01B^

where B is the backward time shift operator, and gives an

equivalent p2 measure of 0.202.

The most interesting thing about the fuzzy model is

that it fits the last section of the data better than Box

and Jenkins model. The data is known to exhibit some non-

16
stationarity over the last forty samples or so (Young et al )

and it!s clear that the inherent non-linearity of the fuzzy

model gives it the ability to compensate for this. Inspect

ion of Figure 1 shows that the transition table has a broadly

•monotonic' form except for a few cells. Analysis of the

model shows that those cells marked with •*• are only in

operation during the last portion of the data and thus account

for the improved performance.

5.2 The river water quality data of Beck

The river can be thought of as a five-input two-output

process, see Figure 4, with biochemical oxygen demand, BOB,

and dissolved oxygen, DO, used as measures of water quality.

The data consists of 81 consecutive daily sampled values of

upstream BOD, upstream DO, volumetric flow rate, river water

temperature, hours of sunlight incident on the river during

each day, the downstream BOD and the downstream DO.
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A preliminary analysis of the data using only ident

ification suggests that downstream DO is a function only

of itself and downstream BOD. It also suggests that down

stream BOD is a function of itself and upstream BOD. The

model developed is shown in Figure 5 and is essentially two

single-input single-output processes in series.

The OSA predictions are shown in Figure 6 and the

quality measures are

DO: p1 = 9 P2 = 0.4204 P3 = 1.2468 p4 = 0.2727

BOD: p1 = 8 p2 = 0.5127 P3 = 1.1606 p4 = 0.3182

For comparison, Beck's model gives the output shown in

Figure 7. His differential equation model has equivalent

accuracy measure, p2, of DO: 0.4313 and BOD: 1.0364.

On the whole, the fuzzy model does rather well. But

inspection of the transition tables in Figure 5 shows that

essentially the model is "next output equals current output".

Thus if the model is run as a pure predictor (ie. using de-

fuzzified model outputs instead of measured outputs) the

results are as given in Figure 8. The quality measures are

now

DO: p1 = 9 p2 = 1.1648 p^ = 1.8276 p4 = 0.3039

BOD: p1 = 8 p2 = 0.9782 p3 = 1.6646 p4 = 0.3169

and it's obvious that the model is really a crude approx

imation to the river's dynamic behaviour.
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The reasons for this become clear after a study of

Beck's model. This shows that sunlight, or rather a

weighted moving average of sunlight, plays an important

role. In particular, it is largely responsible for the

peaks which occur in both the downstream DO and Downstream

BOD at about forty days.

A second model was developed accordingly. It is much

more complicated, having a structure such that downstream

DO is a function of itself, downstream BOD, upstream BOD

and sunlight, and such that downstream BOD is a function of

itself, upstream BOD and sunlight. The model may not be

conveniently described by a transition table, but consists

of 20 rules describing downstream DO behaviour and 24 rules

describing downstream BOD behaviour.

The OSA predictions for this second model are shown

in Figure 9. The quality measures are

DO: p1 =20 p2 =0.6155 P5 = 1.2756 p4 =0.5455
BOD: p1 =24 P2 = 0.5912 p3 = 1.2306 p4 = 0.4727

Thus despite the large increase in complexity, both accuracy

and uncertainty are worse! However, using the model in a

purely predictive mode gives the output shown in Figure 10

and the quality measures

DO: p1 =20 p2 = 0.9306 p3 = 1.7148 p4 =0.5922
BOD: Pl =24 P2 =0.9420 p3 = 1.5526 p4 =0.5182

So, whilst these are still poor, the second model is a better

predictor than the first.
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Summarising these results, it is clear that neither

of the fuzzy models is as good as Beck's model. However,

it would be surprising if they were. What they do show,

though, is an ability to capture the underlying behaviour

of the river. It is also the case that neither model is

'best' in any absolute sense. It depends on the proposed

application. Thus the first model might be useful in

controller design whilst the second might serve as a qualit

ative description for non-specialist personnel.

6. Conclusions

Fuzzy models can obviously be made to work, and work

very well indeed. However its important to define those

situations in which a fuzzy model is appropriate.

The big advantage of a fuzzy model is that it is relatively

simple to construct and is in itself quite a simple stucture.

It does not require the modeller to have a deep mathematical

insight but relys more on intuition and experience of the

process. Its greatest value must be, therefore, in those

areas where such qualitative process knowledge is pre

dominant and essential for understanding.

It seems likely that in 'hard' technological areas,

where precision is often an over-riding consideration, fuzzy

models would be of most value as devices for assessing approx

imate behaviour rather than as tools for detailed engineering

design. However, in 'softer' areas, such as water quality

control, where the goals are usually less clearly defined,

fuzzy models may be useful in a wider range of tasks.



18

This paper has not been concerned with the use of fuzzy

models in socio-economic systems, although the work of

Wenstop17 and Kickert18 gives indications of the difficulties.

It does seem that for the ideas discussed in the preceding

sections to be generalised to such systems a considerable

amount of work needs to be done. In particular, the relation

ship between data set size and model complexity needs to be

examined, as does the the concept of 'model purpose1. Perhaps

a combination of fuzzy and non-fuzzy models would allow

broad generalisations to be made about systems without sacri

ficing accuracy where this is required?

The overall conclusion must be that,.whilst fuzzy models

can be successfully constructed, the overall concept needs a

considerably more detailed investigation before its true

worth can be evaluated.
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Figure 7. Response of Beck's model
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Figure 8. Pure predictions for the first model
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Figure 9. OSA Predictions for the second model
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Figure 10. Pure predictions for the second model
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