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ABSTRACT

A particle simulation usually suffers from a high level

of unphysical noise unless a large number of particles are used. To

improve this situation, a hybrid scheme is used replacing the general

particle mover by a linearized fluid mover for those species of ions

and electrons which do not undergo large amplitude perturbations and

keeping the fully nonlinear particle mover for those species which

experience more violent changes. The structure of these hybrid codes

(electrostatic and electromagnetic) is shown with two applications,

which produce excellent agreement with linear and nonlinear theories

plus substantial reduction in the noise level and the computing cost.

The use of the linearized fluid equations is justified through moni

toring Vj.1^/^^ » to guarantee that it stays small.

- 2 -



I. INTRODUCTION

Beam-plasma-type instabilities which are simulated using

particle codes require a very large number of simulation particles for

the plasma part, which is usually 100 to 1000 times denser than the

beam part, in order that the noise from the plasma particles does not

obscure the instability. An example of this difficulty was observed

in the simulation of the velocity space ring-plasma (flute-like) instab

ility, which was due to the interactions of energetic beam ions (a ring

in velocity space) with cooler Maxwellian plasma ions as carried out

through a particle code by Birdsall et al. [1]. In order to reduce

the plasma noise, Langdon [2] suggested the construction of a hybrid

code using particles for simulation of the beam and a linearized

fluid for the plasma. The linearization needs to be monitored but it

is generally justifiable since the plasma component stays linear in most

weak beam-strong plasma interactions [3]. Our particle-fluid hybrid

scheme will be discussed in detail. Applications of two hybrid codes,

electrostatic and electromagnetic, will be given to the study of linear

and nonlinear evolution of the magnetized ring-plasma instability and

the usual beam-plasma instability. Note that the use of a hybrid for

a beam-plasma-type instability not only has the merit of eliminating

the noise from the plasma particles but also reduces computing cost

drastically (one fluid equation integration in place of many plasma

particle integrations) with only little efrect on the physical pro

perties .
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The hybrid simulation of an unmagnetized beam-plasma instab

ility yields results (linear and nonlinear) almost identical to those

using a wholly particle code. However, for the ring-plasma instability

the difference between hybrid and particle simulations is appreciable;

the hybrid code provides remarkable verification of the linear Vlasov

theory compared with the particle code results. This excellent agree

ment extends to a wide range of parameters whether electrostatic or

electromagnetic. Hybrid simulations also provide extensive information

about nonlinear evolution of this instability such as col 1isionless

beam spreading, average slowing down, and saturation level, which agree

well with analytic explanations.

In Sec. II, the structure of these hybrid codes is shown.

In Sec. Ill, the application of these codes to the ring-plasma instability

is given, including comparison to theoretical analyses and wholly particle

simulation. In Sec. IV, application to the unmagnetized beam-plasma in

stability is given with some new results (theory and simulation) on satur

ation effects. Section V is the conclusion.
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II. STRUCTURE OF HYBRID CODES

(1) Electrostatic Version

The electrostatic hybrid code consists of the particle

code (ESI, electrostatic 1d) and the fluid code (EFL, Eulerian fluid,

linearized, 1d). The particle code (written by Langdon) is used for the

beam particles, as the beam can exhibit highly nonlinear behavior. The

fluid part uses the linearized Eulerian fluid equations which are ade

quate for simulating the plasma component which experiences only small -

amplitude fluctuations.

The structure of ESI is well-known [k]. In the following

we describe a one dimensional version of EFL.

The equations for a col 1isionlesss charged fluid in

Eulerian form [5] are the equation of continuity

|2-+ V•(py) -U N)

the equation of motion

|f+(v.v)v =SL (E +vxB) -2t (2)
at - - m--- nm

the equation of state (adiabatic)

P

= constant (3)
Y

P0 -n0KT (4)

and the field equations
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V.E= p/eQ (5)

E = -V<|> (6)

where p = nq is the charge density of a fluid element and y is the

ratio of specific heats; the rest of the symbols are standard.

Equations (1)~(4) are to be written for as many fluids as

are being used, each with its own v , p , p and y •

This set of fluid equations is only one of several sets

that might be used. Other sets can be made, for example, by keeping

different numbers of moments of the kinetic equation. Equation (1)

comes from taking the zero-th order moment (fluid number density

fdv) and Eq. (2) comes from the first order moment (fluid momentum

myfdv ). Equation (3) closes the set. Keeping the next moment

(which is fluid energy ^

equation. This was not done here, implying that there is no heat flow

from one element of the fluid to another. Had the third moment been

retained, then it would have been necessary to assign an (internal)

energy density to each fluid element (grid cell), and provide an equation

for the evolution of the energy density.

Prior work with charged and magnetized fluids is both ex

tensive and sophisticated. The ideas of mixing fluids and particles and

where to place closure are far less extensive and developed. Two chal

lenging codes and initial results are those of Marder [6] and Anderson [7]

The linearization of Eqs. (1) & (2) for a nondrifting plasma

(which drops the potentially bothersome advective term v •Vv) in an

^

f
o»

2
nmv fdv) would have produced the heat-flow

applied magnetic field B are
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where

*hat "KEi +-vi xV "^vpi

3p
= - D V • V

at po -l

p0 = noq pi = V
2 T . f+2

v = k— and y = ——
t m f

(7)

(8)

where f is the number of the degrees of freedom (y = 3 for one spatial

dimens ion).

For the numerical model of the fluid, the first-order

quantities (subscript 1 now dropped) y , p and E are grid quantities,

which may be centered spatially and temporally, as shown in Fig. 1.

In finite-differencing, Eqs. (7) and (8) become in one dimensional form

n+£ n-i

At

n+1 n

pj ~pj

At

s " Pi

J+t J+i
xB,

j+i J-i

Ax

Yv

n n1

pj+i - pj

Ax

(7)

(8)

Equations (7)' and (8)' form a leap-frog pair, which are second-order

accurate in the time integration.

The fluid dispersion relation and consistent excitations

are readily obtained. In the absence of B field, the linearized

equations are
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Time grid

n+i
*

P,<b I E

f f
*

I /^

n-l

j +l Space grid

Fig. 1 Time and space centered leap-frog grids. E.+1 is calculated using

d>? and A? , for the two-point scheme, v. ? is advanced to
j j+l J+2
n+7 . _n n , nvj+i "sing Ej+, ,p. and pj+]
n+1 . n+i . n+i

p. using v.,, and v. , .
J J+i J"i
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8v.

= - E

at m
P« 3x

3p av.

at ax

3E
1 H1

3x

Assuming traveling wave solutions of the form

v,(x,t) = V sin (kx - ait)

E.(x,t) = £ cos (kx - cat)

p. (x,t) = R sin (kx - cot)

(9)

(10)

the above set produces the familiar dispersion relation of Bohm and Gross

2 2^,22
a) =w + yk v

P t

For initial velocity modulation as

v.(x,0) = V sin kx

the corresponding density modulation is

p.(x,0) = — pA V sin kx
1 a) 0

(11)

(12)

(13)

where k and co are related as in Eq. (11).

The effect of the spatial grid is as follows. Assume that

all variables behave as exp (-itut) and let At •> 0 . Let the four spatial
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derivatives be replaced by i^ , ik2 , ik and ik^ ,all to be obtained

from finite differences. Then Eqs. (9) become

icovj = i k.(f>
m

iujp1 = ~ p0 ik3 vl

•<?♦ =

The new dispersion relation is

2 2k1k3 M .. ,.
a) = a) —7T- + yv. k„k

p k2k4

2

t ~2"3

Yv.
t .ik2 p

(U)

(15)

The four k's are now calculated. Since E = - V<f> and E is defined and

wanted between grid points, we use the two-point scheme

Vi"*j

J+4 -Ax

Assuming that all variables may be expanded in a finite Fourier series, as

♦j E
(x.)

J

NG-1

r 2 *^ exp '̂Jk Ax^ *
j=o

where NG is the number of spatial grids, we obtain

k, =1= k dif (j k Ax)
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where

_ si n y
dif (y) =

Li kewi se

k2 = k3 = kk =kdif (jkAx)

Thus, Eq. (15) becomes

2 2 _,_• 2 .2 ,.,2 ,1. A .
a) = a) + yv k dif frkAx)

P t *

Similarly, for At^ 0 , we obtain

U)
2 . "I//. At\[ 2 . 2.2 2 /kAx\ 1*

=af sin {^tjK^v d,f \—)\

(16)

(16)

As an alternative to Eq. (16), let the E field be given at the grid

points as for the particles in ESI, so in Eq. (9)', the centered E..i 's

.n 1 /_n

Ej+± -I (Ej+1 +E?

*j+r*j-i , *j+2-*i
(-2Ax) (-2Ax)

Then the dispersion relation becomes

u) = a) [cos (ykAx)] + yv dif (-r-kAx) (17)

which is more dispersive than Eq. (16) and will not be used further.
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As a third alternative to Eq. (16), if we use a non-space-
centered E, such as that in ESI,

j »
J -2Ax *

2

then a) is complex, with growing and decaying roots and, hence, no good.

Simulation was done using this fluid code (EFL). It was

tried for thermal plasma oscillations with various values of X /Ax in

the absence of uniform BQ and also in the presence of BQ (the latter is
not shown in the following).

Using the fluid alone, all modes were initiated randomly

and showed clear plasma oscillations with almost no noise (and, of course,

with no Landau damping). The simulation frequencies fit the dispersion

relations Eqs. (16,17) very well ( s 3%) as shown in Fig. 2. The same

results are plotted versus kXQ out to about 0.4, the usable range of

the linearized fluid equations in Fig. 3.

Our hybrid scheme [8] combines EFL with ESI. Total energy

variation is used as a check on the accuracy of the scheme. The largest

change in total energy observed in most of our electrostatic hybrid

simulations, for about 5000 time steps, was about U, which is generally

of negligible importance.
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4.0- / \ -7^ = 1.27

CUr

0.0

0.0 .0 2.0

kAx

>-r-=0.637
( A v

IT

3.0

Fig. 2 Dispersion curves (to vs kAx) for fluid-plasma oscillation with

no magnetic field. The dashed lines are the Bohm-Gross disper

sions. The solid lines are the finite difference theoretical

dispersions using the 2-point scheme. The dotted lines are the

finite difference theoretical dispersions using the 4-point scheme

The simulation results for both schemes are indicated as points

and crosses, respectively. Use of smaller A.VAx produces

a) < u) for the 4-point scheme (not shown).
P
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0.20 0.30
kXD

Fig. 3 Expanded dispersion curves (co vs kXn) using the 2-point scheme.

The top curve is the Bohm-Gross dispersion. The next curve is the

2-point theory for X_/Ax= 0.637 ; the next curve is for An/Ax

= 0.318 ; the last curve is for X./Ax = 0.159 • The simulation

results are indicated as , A , O , with error bars, in

the same order.



(2) Electromagnetic Version

In the electromagnetic hybrid code we use the one dimensional

electromagnetic code EM1 [9], and use a modified (so as to be electromag

netic) EFL for the dense plasma part.

As shown in Fig. 4, the additional quantities kept in this

linearly polarized electromagnetic hybrid simulation are the radiation

fields B and E and current J both by ring and plasma parts.
z y y

Except for these, the scheme is almost identical to that of the electro

static hybrid version as Fig. 5 is compared with Fig. 1.
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y,vy,Jy,Ey

x,Vv,E
x,u-x

z, B7,B

Fig. k The coordinates and the quantities used in our electromagnetic hybrid

simulation. B is the applied uniform magnetic field, B and
z rv 3 z

E are the induced radiation fields, and J is the induced trans-
y y

verse current.
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Tempora
grid

n-l

j-l

i Jy
I

p,<p jExEy

VX,Vy J,

j+l Spatia
grid

Fig. 5 The electromagnetic leap-frog scheme is similar to that of the

electrostatic case (Fig. 1).
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III. APPLICATION TO RING-PLASMA INSTABILITY

(1) General View

A neutral beam injected perpendicular to a magnetic

field B into a target plasma becomes ionized and forms an energetic

charged ring in the velocity-space perpendicular to B . The inter

action of this beam (now a ring) with a Maxwellian target plasma drives

a flute-like (kn = 0) velocity-space instability. Recent laboratory

experiments (Seiler et al. [10], Yamada et al. [11], and Bohmer [12] as

as well as theoretical studies (Tataronis and Crawford [13], and Mynick

et al. [1^]) confirm this instability.

An early simulation for this instability was that of Birdsall

and Maron [1] using a particle code. Their simulations had large noise

due to the particles in the dense plasma component which almost obscured

the instability itself, thus providing only a qualitative verification of

the instability.

The hybrid codes described in the previous section have

been used to study the ring-plasma instability. The complex frequencies

of the hybrid simulations agree remarkably well with the linear Vlasov

theory within a few percent both for electrostatic and for electromagnetic

cases (for the widely varying electromagnetic effects).

In addition to the small amplitude behavior, hybrid simula

tions provide useful information on some nonlinear phenomena. The non

linear evolution observed in simulations shows appreciable average

slowing and broadening of the ring in v space in a short time, on

the order of an ion cyclotron period, at about the time the growing field
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energy reaches its first peak value. The slowing and spreading are not

due to collisions. Considerable structure has been observed in the velo

city-space v perpendicular to the magnetic field as predicted analy

tically. As nonlinear effects increase, the wave growth slows and

reaches saturation. For most of ring to plasma density ratios, the satur

ation mechanism was found to be by trapping.

Details of these linear and nonlinear observation and

checks with theoretical analyses as well as the comparison with the

particle simulation results [1] are discussed elsewhere (Lee and Birdsall

[15]).

Compared to the pure particle code [1], these hybrid codes

[8] have much less noise because there is no noise from the denser Maxwellian

plasma, and they require much less computing time while keeping the neces

sary number of particles to describe the physics properly. For cold plasma

simulation, only a small number of particles is generally used. For a warm

plasma, modelling with particles requires a larger number of particles to

fill the 2v velocity space and Id coordinate space; even then, the noise

level, dependent on 1//N , may not be small. For the hybrid case cited

here, we used 256 "particles" for the core with no noise (like N->-«>).

(2) Justification of Linearized Fluid

The linearity assumption is good only when perturbed fluid

plasma velocities v. remain small compared to the wave phase velocity

co/k . This is so because from the linearized continuity equation

o w/k - v. w/k

1 + —- +{
w/k

- 19 -
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V/e found that the linearization was satisfied except for the strong-

beam regime at saturation. In order to check whether v,«w/k , kv /w

was continually monitored, as shown in Fig. 6. In Fig. 6, the maximum

perturbed plasma velocity is seen to be not negligibly small only at

large beam strength, i.e., at R=1 (where R is the ratio of beam to

plasma density) near and after the saturation. In order to allow larger

nonlinearity in the fluid plasma, changing to a new model (e.g., using

a Lagrangian fluid) is recommended.
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» 10-a
Approximate
Maximum

Level

0 1 2 3 4 5 6 (R=I,I0
0 2 4 6 8 10 12 (R= I0"2)
0 5 10 15 20 25 30 (R=IO'3)

Fig. 6 The time evolution of the maximum perturbed plasma fluid velo
cities v. for R=l , 10"1 , 10"2 , and 10~3 , obtained from
electrostatic hybrid simulations of Ref. [1*4]. Note that the
linearity assumption does not hold near the saturation time for
strong beams where the wave phase velocity (w/k) is only about
1.6 above the perturbed fluid velocities. Here, Vb and vtp
indicate the initial velocity of the beam and the plasma
respectively, and

ci
is the ion cyclotron frequency
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IV. APPLICATION TO BEAM-PLASMA INSTABILITY

(1) General View

The familiar beam-plasma instability in the absence of

magnetic fields is readily simulated using the hybrid code. The linear

ized plasma like that of O'Neil et al. [3] is noiseless, allowing very

low level effects to be followed. We have used this code in this manner,

and also to obtain saturation behavior where the plasma remains linear,

but the much weaker beam becomes highly nonlinear. In the latter, we

found that the peak amplitude (saturation) of electrostatic field energy,

for essentially single mode excitation fell off very rapidly for k

away from that for maximum linear growth, v ,more rapidly than did
'max r 1

y/Ymax • This is somewhat new but predicted by single mode trapping

theory and verified using both particle code ESI and the hybrid code

ES1+EFL.

(2) Off-peak Saturation Effects

The single wave trapping theory of Drummond et al. [16]

provides a rough estimation of the saturation level of the electrostatic

field energy ESE relative to the initial beam kinetic energy KE ,

for a weak cold beam-cold plasma instability (with no magnetic field).

The saturation level is defined as

ic El.
_ ESE _ o first peak ,.,-v

n = KT— = :— (,9)
o,b . 2

imbVb
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From Ref. [16], it is shown that

n %
2Av

(20)

Vb

where Av is the difference between beam and phase velocities. If the

theoretically most unstable mode (i.e., the fastest growing mode y = Y' ' 3 3 1 lmax

when the spectrum is dense and continuous, roughly at kv./w ^1.0)

is allowed to grow, then the wave saturation is dominated by this fastest

growing mode. That is, a single wave structure exists at least up to the

first peak or saturation. In this single wave y=y case, Eq. (20)
r 3 ' 'max

takes the more useful form, as in Ref. [16]

where

n- \~

V3
R iJ>

\J^R =

n \ w
PP

(21)

n. , n are beam and plasma densities, respectively, and w , , w are
b p r . ' pb ' pp

plasma frequencies of the beam and the plasma, respectively.

However, if for some reasons the physical system does not

allow the excitation of the most unstable mode, allowing for only a single

wave at kv,/w /1.0 , where y=Y » then the estimation formula, Eq.
b pp ' 'max •

(21), should be modified because in deriving Eq. (21), it was assumed that

the phase.was that of the most unstable mode. This study was initially
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motivated by a computer simulation using R=0.001 and only a single

wave at kv./w =0.8 with y<Y .We were surprised to find
D PP max r

n=0.01 , which is much less than n=0.079 predicted by Eq. (21).

First we will estimate n for a wide range of kv,/w
b PP

using the single wave nonlinear trapping argument of Ref. [16]; that

is, Eq. (20) will still be used to relate n and Av . (This relation

needs modification when the plasma is not cold.) Next we will then

compare the estimate with simulation results both by a particle code (ESI)

and by the hybrid (ESI + EFL) code.

In simulations we fixed the beam strength at R= 0.001,

and observed the saturation level n and the maximum growth rate

Y/u)pp by cnan9«ng the parameter kvb/w . We varied v. ; changing

any other parameter (k or w ) yield similar results in those cases

that were checked.

(a) Estimation of Saturation Level

The dielectric function of the cold beam-cold plasma system

is wri tten as

2 2 2
w W . oj ,E(k)U)) = i- J2£ Eb s e (m) £b (22)
2 \2 p 2w (w -kvfa) (w -kv.)

Let f= (kvb/u )• and S=kvb -w«1 . Taylor expanding e (w) around

w= kv , we obtain (cf. Briggs [17])

V-'-f'p). „+sfe) „+<D(s2) =(,-^) +̂-+©(s2)
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Also, by Eq. (22)

Hence

or

where

2
w ,

p S2

2
a

R

^PP \ / ~pp ~pp
4=('••k)4-j,j!~t»*

w \ ft/ w f w
DD \ / dd nn

R*~J *3 +V" i'x2 (23)

_ -S
X = —

w

PP

When higher accuracy is necessary, the original quartic equation, Eq. (22)

may be solved directly. Since S is a small parameter, we take Eq. (23)

as our first approximation to the beam-plasma dispersion relation.

Further we obtain

lm (x) = w. /w e y/u) (2*0
imag pp pp v^'

kv w w

Re (X) = —2- - -*- = f - -I- (25)
www
PP PP pp

n = 2Av = 2 Re (x)
(26)

b f
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The numerical solutions of Eqs. (23-26) are plotted in

Fig. 7. The saturation level [cf. Fig. 7(c)] increases monotonically

even past the maximum growth rate point kvu/w =1.0 . This is readilv
b pp '

justified by the fact that the saturation level is directly proportional

to the velocity slip [cf. Eq. (20)], namely, the difference between the

phase velocity of the growing mode and the beam velocity [cf. Fig. 7(a)],

(b) Verification by Simulations

(i) Particle Simulation (ESI)

The input parameters that we used are quite modest

nb = 256 , n = 128

wppAt =0.2 , w.At %6.3 x10"3

NG = — = 32
Ax

t*i (tp =- • '.-£
PP

Both momentum conserving and energy conserving schemes are used as the

charge and force weighting schemes. The excitation of modes is through

density (i.e., position) perturbation. All wave numbers are excited

initially with comparable amplitudes. The range from the starting wave

energy to the saturation level is about 106 to 108.

The results in Fig. 7 show very good agreement with those

of our approximation formulas, Eqs. (23)-(26). Saturation levels for all
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0)r

PP

5x10 -

(b)
y

U)
pp

(C) 7] 0.1 -

J

Fig. 7 Beam-plasma instability for R=0.001: (a) real frequencies of

growing modes (purely real frequencies are not plotted), (b)

growth rates, and (c) saturation levels. Curves are the theore

tical predictions of Eqs. (23) - (26). Single mode simulation

results are marked 0 (particle code) and x (-hybrid code);

real frequencies (a) also agree well with the theory (not shown).



of the runs in which the most unstable mode may exist compare roughly

with that calculated for the most unstable mode.

(ii) Hybrid Simulation (ES1 + EFL)

The input parameters for these cases are the same as in

the corresponding particle simulations.

Since this code uses linearized Eulerian fluid equations

for the plasma component, the results are expected to be good when the

linearity assumption holds, that is, when the ratio of the perturbed

plasma velocity to the wave phase velocity is small compared to the

unity [cf. Eq. (18)]. This was verified for most of the hybrid runs,

for example, (kv /w) was 0.57><10"2 for k. (vu/w )=0.7,
1 max mm b pp '

and 1.9x10" for k^. r(vb/wpp) =1.05 (the linear assumption holds
better for the former case).

Unlike the particle code, the hybrid simulation does not

generate the nonlinear harmonics of unstable modes as waves grow in time;

thus the number of modes initially excited yielded important differences.

As an example, for l<mjn(vb/wpp) =0.7 ,we obtained Y/w =2.7* 10~2 ,
_ "3n=2.2xlo wnen only the fundamental mode was initially excited by a

sinusoidal density modulation. This should be compared with that y/w
-2 -3 PP

-3.1x10 ,n =7.1xl0 (about three times larger) for k (v /w )=0 7
mm b pp

when all the modes are initially excited with comparable amplitudes (only

the latter cases, i.e., all-modes-excitation, are plotted in Fig. 7).

The amplitude of the initial mode energy is also an impor

tant factor for the study of the wave saturation. This level should be

quite low, as in laboratory experiments; otherwise, the simulation
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saturation levels will be appreciably affected. This effect was observed

in many of our runs listed here, and in ring-plasma simulations discussed

in previous sections, and in relativistic beam-plasma simulations [18].
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V. CONCLUSION

Hybrid codes are constructed combining an existing parti

cle code with a linearized fluid code. The application of these codes

to beam-plasm-type instabilities was presented. For the velocity space

ring-plasma instability, hybrid simulations yield much better agreement

with theory than do particle simulations. For the more familiar beam-

plasma instability, in the absence of a magnetic field, hybrid simulations

produce almost identical results to particle simulations (both of which

agree with linear and nonlinear analyses), but with much reduced computing

cost and noise level.

With the verification by simulations, it is shown that the

saturation level is very strongly influenced by the discrete wave number

spectrum, sometimes giving an order of magnitude different results by

choosing slightly different off-peak (in growth rate curve) parameters,

which must be considered in most simulations (whether hybrid or particle,

whether magnetized or unmagnetized).

- 30 -



ACKNOWLEDGMENTS

The authors want to express gratitude to A. B. Langdon

and W. M. Nevins for their useful suggestions and dis

cussions .

This work was supported by the U.S. Department of Energy

Contract EY-76-S-03-003*t-PA128.

- 31 -



• f

REFERENCES

1. C. K. Birdsall, M. J. Gerver, and N. Maron, "Ring-Plasma Instability:

Theory and Simulation", Bull. Am. Phys. Soc. 2j_, 1148 (1976).

2. A. B. Langdon, private communication.

f 3. T. M. O'Neil, J. H. Winfrey, and J. H. Malmberg, "Nonlinear Inter

action of a Small Cold Beam and a Plasma", Phys. Fluids, _U, 1204 (1971)

4. C. K. Birdsall and A. B. Langdon, "Plasma Physics via Computer Simu

lation" (to be published).

5. D. Potter, "Computational Physics", Section 9-1, John Wiley & Sons, 1973

6. B. M. Marder, "GAP, a PIC Type Fluid Code", Mathematics of Computa

tion 29, 434 (1975).

7. D. V. Anderson, "Col 1isionless Plasma Fluid Model Truncated by Tracer

Particles", Proceedings of Seventh Conference on Numerical Simulation

of Plasmas, June (1975).

8. J. K. Lee and C. K. Birdsall, "Particle-Fluid Hybrid Simulations

Applied to Beam-Plasma and Ring-Plasma Instabilities", Proceedings

of Eighth Conference on Numerical Simulation of Plasmas, PC-10, June

(1978).

9. A. B. Langdon, "Investigations of a Sheet Model for a Bounded Plasma

* with Magnetic Field and Radiation", Ph.D. thesis, Princeton Univer-

* sity (1970); B. I. Cohen, M. A. Mostrom, D. R. Nicholson, A. N. Kaufman,

*' and C. E. Max, "Simulation of Laser Beat Heating of a Plasma", Phys.

Fluids 18, 470 (1975).

10. S. Seiler, M. Yamada, and H. Ikezi, "Lower-Hybrid Instability Driven

by a Spiraling Ion Beam", Phys. Rev. Lett. 37, 700 (1976); S. Seiler,

-32 -



"Linear and Nonlinear Development of a Lower-Hybrid Wave Driven by a

Perpendicular Ion Beam", Ph.D. thesis, Princeton University (1977).

11. M. Yamada and S. W. Seiler, "Anomalous Slowing of a Perpendicularly

Injected Ion Beam in Both Quasi linear and Trapping Regimes", Phys.

Rev. Lett. 39, 808 (1977).

12. H. Bohmer, "Excitation of Ion Cyclotron Harmonic Waves with an Ion Beam

of High Perpendicular Energy", Phys. Fluids 19, 1371 (1976).

13. J. A. Tataronis and F. W. Crawford, "Cyclotron Harmonic Wave Propagation

and Instabilities", J_. Plasma Phys. _4, 231 (1970).

H. E. Mynick, M. J. Gerver, and C. K. Birdsall, "Stability Regions

and Growth Rates for a Two-Ion Component Plasma, Unmagnetized", Phys.

Fluids 20, 606 (1977).

J. K. Lee and C. K. Birdsall, "Ring-Plasma Instability; Linear Theory,

Simulation, Nonlinear Behavior", Bull . Am. Phys. Soc. 22, 1109 (1977);

"Velocity Space Ring-Plasma Instability, Magnetized: Parts Iand II",

Phy_s_. Fluids 22 (1979). (to be published).

16. W. E. Drummond, J. H. Malmberg, T. M. O'Neil, and J. R. Thompson,

"Nonlinear Development of the Beam-Plasma Instability", Phys. Fluids 13,

2422 (1970).

17. R. J. Briggs, "Two-Stream Instabilities", in "Advances in Plasma Physics1'
J

vol. 4, pp. 43-77, John Wiley S Sons, 1971.

L. E. Thode and R. N. Sudan, "Plasma Heating by Relativistic Electron s

Beams", Phys. Fluids 18, 1558 (1975).

14

15

18

- 33 -

^<*l


	Copyright notice 1979
	ERL-79-15

