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ABSTRACT

In this paper the expression for the 'time to failure distribution'

for systems modelled as continuous-time finite state Markov Chains is

derived using only elementary concepts of probability. This is used to

obtain the expressions for expected time to failure and expected cycle

time of the system. It is shown that under steady state assumptions the

system can be modeled as if it were a two state Markov Chain for the com

putations of commonly used reliability indices.
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1. Introduction

We consider a finite-state continuous-time Markov Chain. The state

space is partitioned into two sets: U, the set of 'up-states' and D,

the set of 'down-states.' Suppose that initially the system is in U

with a given probability distribution. In this paper we derive the

expression for the distribution of the time at which the system leaves U.

Based on this general expression for the time to failure distribution,

we present a simple derivation of the expected cycle time.

This problem arises in reliability studies [1]. Consider, for

example, a complex repairable system with many independent components

where each component has an exponentially distribured failure and rapair

time. The system can then be modeled as a 2n-state continuous-time

Markov Chain, where n is the number of components in the system. Of

these states, some correspond to the system being up (working) while the

others correspond to system failure. In such models it is of great

interest to find 'time to failure' distribution. Such models have been

applied to large-scale power system studies [2] in the so called frequency

and duration method.

Brown [3] has derived the time to failure distribution for a parallel

system (system for which the set D consists of only one state, viz,

where all components have failed). Kielson [4] has considered the struc

ture of various failure time distributions of a general system and their

inter-relationships. Ross [5] and Barlow and Proschan [6] have consid

ered the case where initially all the components are up. They have

derived some important properties of the time to failure distributions.

The derivation presented here makes use of only elementary concepts
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of probability. We first note that the time to failure distribution

function satisfies a linear first order differential equation with time

varying coefficient. This coefficient is seen to depend on the vector

of conditional probabilities. This vector satisfies a first order non-
t

linear differential equation. We obtain the solution of this differen

tial equation to derive the expression for the mean time to failure

distribution. This expression is used to obtain the expression for

expected cycle time and the expected time to failure of the system.

2. Preliminaries

To make the analysis manageable let us number the states 1 to N

with the states in U numbered 1 to M. Let x(t) denote the state at time

t. The assumptions inherent in the system model are given by:

Basic Assumptions.

1. For each time t, for each i,j such that i ^ j there exists a

X. . such that

Prob{x(t+At)=j |x(t)=i} = A. .At + o(At); At _> 0 (1)
1»J

2. The Markovian assumption that:

Prob{x(t1)=j|x(t)=i;S} =Prob{x(t1)=j|x(t)=i}

where t, > t and S is any condition prior to time t.

3. X. . is independent of time t.

4. Prob{x(t+At)=i;x(t+0At)=j for some 6 G (0,1)|x(t)=k} = o(At)

whenever i ^ j and j ^ k.

In view of the above assumptions the system is time-invariant and without

loss of generality let us assume that the initial time of interest is 0
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(the result that we obtain can be easily translated to any other start

ing time).

Problem Formulation.

We are given that at time 0 the system is in the set of up-states

and we are also given the initial probability distribution p where the

i-th component of £ is the Prob{x(0)=i}. Let T represent the time at

which the system leaves the set U. We are interested in obtaining the

distribution of T viz.

F(t) = Prob{T>t|x(0) £ U;p }

= Prob{x([0,t]) C u|x(0) e U;jp_}

In order to obtain F(t) we shall obtain the differential equation

governing the function F with At > 0

F(t+At) = Prob{x([0,t+At]) Cu|x(0) e U;^}

= Prob{x([t,t+At]) Cu|x([0,t]) C U;^}

Prob{x([0,t]) Cu|x(0) G U;p }
— — ~~o

= (l-Prob{x(t') is not in U for some t' in

[t,t+At]|x([0,t]) CU;^}) F(t)

= [l-(X(t) At + o(At))]F(t)

Prob{x(t+At)GD|x([0,t])OJ;po}
where X(t) = lim —

At>0

At>0
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From this it follows that

dF

dt
(t) = - X(t)F(t) (2)

Remarks. We can regard X(t) as the rate of departure from the set

U. This would depend on the state of the system at time t. Thus in

order to obtain X(t) we require the probability distribution of the

state at time t. This as we shall see presently depends on t and

satisfies a nonlinear differential equation. We are however given the

initial probability distribution viz. p and the initial value problem

has a closed form solution. Using this solution we obtain the expres

sion for F(t).

3. Expression for F(t)

Notation: When we use t_,t-»..., it is assumed that tn < t.,

Definitions.

N N

l, , = - Y, X. and A= {X. .}
i.i jti i.J iO i,j=1

j^i

jj(t) a row vector of dimension M such that

2. (t) = Prob{x(t)=i|x([0,t]) cU;£o}

_s(t) a row vector of dimension N such that

\ju ^
adu V

s1^,^) =Prob x(t2)=i|x([0,t1]) CU;^};

clearly s. (t,t) = _£ (t) i = 1,2,...,M.

Also we define 1 as a column vector of proper dimension with each
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component equal to 1. This vector is useful for summation of components

of row vectors.

3.1. The Differential Equation for p(t)

M

s^Xt+Atjt) = 23 Prob{x(t+At)=i|x(t)=j}
j=l

Prob(x(t)=j|x([0,t]) cU;£o}

M

= 2 sJ(t,t)(X. .At+o(At))+s (t,t)(l+X At+o(At)) (3)

Now

M

Prob{x(t+At) ^U|x([0,t]) c U;p} = J) ^(t+At.t)
^ i=l

M M

= £ {^(t.t) + Y, s3(t,t){X. At+o(At)}}
i=l j=l J*

M M

=1+22 sJ(t,t){X. At+o(At)
i=l j=l J,i

= 1+ £(t)AuulAt+o(At)

Hence for i = 1,2,... M

^(t+A^t)
* (t+At) =l+j^tH^ t-fo(At)

Using (3) we get

£(t)+p.(t)AmjAt+o(At)
£(t+At) 1+E(t)A TAt+o(At)

UIF1
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and

£(t)A At-£(t)JL lp(t)At+o(At)

where

d£

dF =-E*DD _£WS; *(0) "*o (4)

3.2. The Expression for F(t)

Also

prob{x(t+At) ^D|x([0,t]) C U;d }
X(t) = lim -5_

At->0 At
At>0

N

£ prob{x(t+At)=j|x([0,t]) CU; p }
,. j=M+l ^°
lim ^ t

At->0 At
t>0

N M Prob{x(t+At)=j|x(t)=i}
"» £ £ [ s
At->0 j=M+l i=l "c
At>0

Prob{x(t)=i|x([0,t]) cU;£o}]

N M

£ £ £ (t)X At+o(At)
lim J-* i-i 1>J
At->0 At
t>0

N M . M N

£ £/(t)x .=£ £ /(ox
j=m+l i=l 1,J i=l j=m+l 1,J
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M.N M . M

1=1 j=m+l ,J i=l j=l ,J

M M

-E £ /(ox
i=i j=i 1,J

-^COA^ (5)

It is easily verified that the solution for (4) is given by

W
£(t) -̂ (6)

£oe ±

Substituting (6) in (5) we get

wt) =.V ^ (7)
(° W, (7)

p e 1

Substituting (7) in (2) and noting that the numerator in (7) is the

defivative of the denominator we get

F(t) =^e UU 1 (8)

Remarks. Suppose that the following holds:

Sum of the elements in each row of A^ is the same (say X ). (9)

A-^t -X, t
Then ATTTT1 = - X 1 =• e = le . This with the initial con-

UU— out- —

dition that pi = 1 yields
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F(t) =e"X°utt (10)

Also it easily verified that F(t) is of the form (10) for any p

(with pi = 1) if and only if (9) holds.

Professor R. E. Barlow, after seeing the priliminary version of

this report, has suggested an alternative derivation based on the theory

of Markov Chains. His derivationis based on considering a new Markov

Chain with M+2 states with transition rate matrix A given by

*

X. . = X. . for 1 < i, j < M

M

= - £ X . for 1 < i <_ M and j = M+l
k=l 1»-

= - X for i = j and i > M

= X for i ^ j and i,j > M

= 0 for all other cases

With this {Mfl, Mf2} becomes an absorbing set and F(t) is the same as

the probability of finding the system in one of the first M states at

time t. Using the standard expression for this probability one obtains

Eq. (8).

4. Application to Reliability Evaluation

4.1. Preliminaries

In the previous section we derived an expression for the time spent

in a group of states, given the initial probability vector. In this
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section we shall apply the result to obtain the distribution of certain

important random variables used in reliability analysis. Since the

expression (8) requires that the initial probability vector be given we

proceed under the assumption that the system is in steady state. This

idea will be made precise after we define the random variables of

interest.

Definition

We say that the time spent in the down (up) states at time t is

T (T ) if the following event takes place

x(0") e U; x([t ,t +T,)) C D; x(t +T.) G u.
— — ood — o d.

Also we define the cycle time T at t as follows
J co

x(t~) €.D; xdit^+t^) Cu; xC^+t^.t+t^)) CD; x^-H^) GU.

with 0 < t < t .
1 c

Also it is useful to define another random variable y = t - t-. Through-

out this analysis we take t =0.
J o

Underlying Assumptions

1. Vt TT^t) = Prob{x(t)=i} exists.

12 N
Lemma: ir(t) = (ir (t),ir (t)...ir (t)) is a constant and satisfies

7r(t)A = 0.

Proof: Using (5) we have

A(t-t )

ir(t) = — o
A(t-t )

JL(tQ)e °1
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A(t-to)
= ?r(t )e

— o

since Al = 0, ir(t )1 = 1
— — o —

Hence jr(0 is bounded

jr(«) is a constant

ttA = 0

2. In view of the above lemma let jr = jr(t) .

We assume that Vi it > 0

4.2. Distributions

Statement of the problem:

Given the above two assumptions we require the following distribu

tions

1. F (t) = Prob{T >t} and similarly F

2. F (t) = Prob{T >t}
c c

Since T = T+ y we have an equivalent formulation of 2 as

2'. F (t,x) = Prob{T >t|T =x}
y y u

Remark. If we have F (t,x) then clearly

Fc<t) =- rFy(t-x,x)dFu(x)

In order to use (8) we require the initial probability vector p .

Since the following problem comes up often in our work we solve it

first.

Problem. Given a set of states A, given that at 0 , x(0~) *= A,

the complement of A, given 2.(0 ) the probability vector at time 0 , find
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jo(0) the probability vector at time 0, given that x(0) £ A.

Clearly

Prob{x(0)=i|x(-6)=j} = X. ,6 + 0(6)

hence

Prob{x(0)=i} =£.p_.(-6)X. 46 + 0(6)

Prob{x(0)=i|x(0) G A}

£2, (-5)*, ,6+0(6)
^ J J >x

£.(-6)X. .6+0(6)
1^ 3 J J,:L

^(0")aj.i
^;v°->v

Hence J2A(0) is a multiple of p-r(0 )A._

Let £,T(0) be a row vector such that

J2*(0) = Prob{x(0)=i|x(0") G D;x(0) G U}

Also let je.n(t) be a row vector such that

j2^ =Prob{x(t)=i+M|x(t) eD;x[0,t) CU;x(0~) Gd}

In view of the result just stated we have

3^(0) is a multiple of ^w = -1^^

and
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j2D(t)isamultipleof£u(0)eAtAUD

Directapplicationof(8)yields

Auu* Fu(t)=2^We1

VyufJl1
^Auui

AUUt

'1dAyyt
TrTTAurldi?Ue -^UTJU-

and

F(t»x)=J2D(x)e""1

where

ADDt

AA^xAD])t
•^uAuueA^e1

.Auux AjAuU6Aypl

Fc(t)=~fFy(t-x,x)dFu(x)

-JFy(t-x,x)dFu(x)-jdFu(x)

Fn(t)-(Fy(t-x,x)dFu(x)

AuUX.ADD(t-x)
=Fu(t)+\VuueAupeIdx

J0TTA.1
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where we have made use of the fact that

A^ 1

AUUX^= - e A^l

Remark: The integral is a standard convolution integral of the form

!H(x)G(t-x)dx. While a closed form for the integral is not possible
0

we have the following easily verifiable result.

>°° -t

H(x)G(t-x)dxdt = 1 H(x)dx V G(t)dt[ H(x)G(t-x)dxdt =f H(x)dx [

4.3. Expectations

While the distributions we obtained in Section 4.2 are of importance,

in reliability studies one is more interested in the expected values of

these random variables. These values are sometimes used for reliabi

lity indices. In this section we shall compute these reliability indices.

While these computations are straightforward, the results we obtain can

be given extremely simple physical interpretations.

1. e(ttj) = Expected time spent in up-states

! »u<t)dt

ir„l
- tt„1 =VW^ HH J^A^

Similarly
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2. E(T_) = Expected time spent in down states

—D-

^DADU^

Remark: The vector JL..J. represents the vector of rates out of U,
UD

i.e.

± prob{x(At) G D|x(0)=i}
<-W> -£™ At *l.D

At->0

and —=- represents the vector of conditional steady state probability,

given that the system is up. If we define the steady state failure

rate of the system (X) as

ProMx(At) e D|x(0) G U}
X= £ Prob{x=i|x € U}X = lim

i<=J 1,U At-K)
At>0

and similarly steady state repair rate of the system (y) we have the

following:

e<v =i and E(v - i

Also noting that Tr_A__l = Tr.TA¥¥TTl we have
—D DD— -nJ UU-

Prob{x e U} = """ = -r£- and Prob{x GD}= -77-

3. E(T ) = Expected cycle time

•f F (t)dt
c
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= E(TTT) + VudV1
u' ' Vuui

where we have made use of the fact following the remark on convolution

integrals. Making use of the fact that

VUD = "-DADD and Villi = -J^XDU

we obtain

E(T ) = y + -
c X u

5. Conclusion

We collect the results in the previous section as the following

two key observations.

1. Even under steady state assumptions the transitions between two

groups of states in a time finite-state Markov chain' will not be a 'two-

state Markov chain' and hence the residence time in any group of states

will in general not be exponentially distributed.

2. However, for the calculations of the expected time spent in the

up-states, the expected time spent in the set of down-states, the

expected cycle time (or the mean time between failures), the probability

of finding the system up or down in a system modelled as 'continuous-time

finite-state Markov chain' we can model the system as if it were a 'two

state Markov chain' the two states being the 'up-state* and the'down-

state. '
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