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Abstract

This paper starts with a straightforward self-contained treatment

of the generalized Nyquist stability criterion based on the eigenloci

of the open-loop transfer function matrix. The derivation is straight

forward and does not invoke algebraic function theory, branch cuts and

Riemann surfaces. A similar criterion is derived for the distributed case

where the open-loop transfer function matrices belong to the recently

proposed algebra <8(a )mxm [9,14].
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I. Introduction

The Nyquist stability criterion has been generalized in several ways

for the multi-input multi-output case (see e.g. [1] to [7]). The concept

of plotting eigenloci of the open-loop transfer function matrix is

particularly attractive because it allows one to check the closed-loop

stability for a family of gain parameters by inspection. A rigorous

theory of such test was first given in [6] where the rational transfer

function case was treated in detail and much use was made of algebraic

function theory, branch cuts, etc. [6]. Later MacFarlane et al. (see

[7]) usedRiemann surfaces to discuss this stability test.

In this paper we present first a rigorous, straighforward and self-

contained derivation of the stability test based on eigenloci without using

either branch-cuts or Riemann surfaces; only standard facts of analytic

function theory are used (e.g. as in Chap IX of [8]). Second, we derive

the stability test for distributed systems; more precisely,for those

plants whose transfer function matrices belong to the recently proposed

algebra fiCc^)™™ ([9,14]).

Section II derives the generalized Nyquist stability criterion

for the lumped case. Section III develops the counterpart of section II

for the distributed case. To our knowledge this is the first treatment of

a Nyquist test based on eigenloci which considers unstable distributed

open-loop transfer functions. The recent summary [17] considers L2~stable

transfer functions.

Preliminaries

Let K. (<C) denote the field of real (complex, resp.) numbers. Let C

denote <E U {«>}. Let 3R denote the non-negative real line. Let C

o

(<D ) denote the closed-half complex plane {s £ c|Re s >^ a} (open-half
o-

o o

complex plane {s G <C|Re s < a}). (C ., <C _ are abbreviated as <E+, (D_,

respectively. Let IR [s] (H (s)) be the set of all polynomials (rational
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functions, resp.) in s with real coeffients. Let Z[<J>(s)] denote the

set of zeros of the polynomial <f>(s) e R [s]. Let P[ty(s)] denote the

set of poles of the rational functions ip(s) G TR (s). Let G(s) G IR (s)pXq;

-1 -1
N D is said to be a right coprime factorization of G(s) iff G(s) = N Dr r or >.'N'rr

and (N ,D ) is right-coprime [4]. For o G I, Ln denote the set
r r l,o

00

{f(-)|f(0 :R .+ I, I |f(t) |e~0tdt < «}. Let a G ]R , the convolution
Jo

algebra $(a) consists of the elements of the form
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i=0

t± > 0, for i = 1,2,...; (ili) f. G <E and 6(--t.) is the Dirac delta
00 -at.

distribution applied at t.; (iv) £|f.|e 1 < °o. #(0) is abbreviated
i=0 1

as (X. f(-) is said to belong to (X_(o) iff there exists a G ]R ,a <a

such that f(-) G ^(c^). Let fdenote the Laplace transform of f(-).

Let #(<*) denote the set {f|f G #(a)}. Let (X "(a) denote the set

{f|f G U_(a), f is bounded away from zero at infinity in (C }. Let

(B(o) be the convolution algebra corresponding to the pointwise product

algebra $ (o) = [U_(o)][#™(o) ]" , i.e. 6(a) is the algebra of quotients

f = n/d with n G ^_(a) and d G #~(0) [9,14].

II. Lumped case:

We consider the feedback system S shown in Fig. 1 where

G(s) G K. (s) is proper; (1)

k > 0. (2)

Let NrD^ be a right coprime factorization of G(s), then the closed-

loop system transfer function matrix r h* y is given by

Hyr(s) := kG(s)[I +kG(s)]"1 =kNr(s)[Dr(s) +kN^s)]"1 (3)



Since N and D +kN are also right coprime, det(D +kN ) is the closed-loop
r r r r r *-

characteristic polynomial. Consequently the closed-loop system is exp.

stable if and only if £[det(D +kNr)l CJ_ § and Hyr is proper. (Since
G is proper, H is proper if and only if det[I+kG(°°) ] ^ 0; the latter

condition will be guaranteed by the condition (i) of Theorems LI and L3).

By substituting G(s) = NrDr , we have

det[D +kN ]
det[l + kG(s)] = ~ (4)

det Dr(s)

Since det[I + kG(s)] G ]R (s) is analytic on <E, except at the poles

of G(s), we can apply the argument principle [8,p.246-247] to det[I + kG(s)l

to determine whether £[det(D +kN )] C £ . For this purpose, we construct

the Nyquist path N as shown in Fig. 2, where N includes the point +j°°

and -j00 (the e-indentations guarantee that G(s) is analytic on Nj. The

following result is well-known (see e.g. [10,p.141]).

Theorem LI (Stability theorem based on det[I + kG(s)]: Lumped case)

Let N be defined as above. Let the feedback system S of Fig. 1
00

satisfy eqns. (1) and (2). The closed-loop system S is exp. stable

(i) det[I + kG(s)] ^0, Vs G N
00

(ii) det[I + kG(s)] gG^ encircles the origin p^ times in
00

the counterclockwise sense, where p° denotes the number of

(D -zeros of the open-loop system characteristic polynomial,

counting multiplicities. n

Remarks LI: (a) In the single-input, single-output case, i.e., m=l,

Theorem LI reduces to the classical Nyquist stability criterion (see e.g.

[11,p.324]).

The e-indentations must be in (E_ since for the multi-input multi-output
case, the closed-loop system and the open-loop system may have some common

f"s+l

ja)-axis poles, e.g. if G(s) and k are such that I + kG(s) =

then s=0 is a open-loop system pole as well as a closed-loop pole.
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(b) Technically, Theorem LI follows directly from the argument principle

together with the fact that det[I + kG(s)] tends to a constant as |s| >(".

A great virtue of the classical Nyquist criterion is that it checks

the closed-loop stability for anj£ k > 0 by inspection of the Nyquist

diagram of G(s), whereas Theorem LI requires a plot of det[I + kG(s)] for

each k > 0 of interest which is very inconvenient. Our objective is to

derive straightforwardly a generalization of the classical Nyquist stability

criterion for multi-input, multi-output systems which allows us to test

the closed-loop system stability for any k > 0 by inspection.

Now, for each s G N^, G(s) is a well-defined (D™3™ matrix; thus for

each s G n^, we have m (not necessarily distinct) eigenvalues of G(s),

A^(s),A£(s),...,A (s), which satisfy

det[Ai(s)I - G(s)] = 0. i = 1,2,...,m (5)

Note that

det[AI -G(s)] =Am+ g1(s)Am_1 + ... +gm(s)

where the gi(s),s are proper rational functions. Hence we can write

det[AI - G(s)] =—yrr [3 (s)Am + $1(s)Am"1 + ... + 6(s)]
p vs; o l m

1 3(A,s) (6)
* 3 (s)

o

where $±(s) G m[s] for i = l,2,...,m; 3 (s) is the monic least common

denominator polynomial of (g,(s),g9(s),...,g (s)}. Since ?[3 (s)] C (P[G(s)]
: i z m o

and since N does not contain any pole of G(s),

5 (s) ^0, Vs G N (7)
O °°

5-



Thus, for all s GN , A. (s) is an eigenvalue of G(s) iff A. (s) is a zero
00 1 w ]_

of the polynomial A h- 3(A,s). Now, for any labelling, (A.(s))._ 9 ,
/s

of the eigenvalues of G(s), we have

m

det[I + kG(s)] = n (l+kA.(s)), ¥s G N (8)
i=l X

Note that, for each s G N
' 00

m

£1 det [I + kG(s)] =4- n (l+kA.(s))
i=l X

m

= E £ (l+kXi(s))
1=1

m 1

= 2^" (t + A-(s>) (by assumption (2), k > 0)
i=l

(9)

Now, as s travels along N , we can label the eigenvalues of G(s) such

that, for each i, s »-*- A, (s) is a continuous function; hence we obtain m

continuous eigenloci A.(N ) (this is possible because eigenvalues of a
1 oo

matrix are continuous functions of the elements of the matrix, see e.g.

[12,p.45]). Thus, at first sight, one might expect to count the number

of encirclements of the point 0 by det[I + kG(s)] ~l by summing the
00

number of encirclements of the point - -r by the A (N^'s. Unfortunately,

this does not work because some curves A.(N ) may not form a closed path
1 °°

as the example 1 below shows.

Example 1:

Consider G(s) =

0 1

S+l

r- ^ , N2x2
G ]R(s)

Then det[AI -G(s)] =A2 -|~. The eigenloci A^Nj, ^(Nj are shown
in Fig. 3, where N^ is the jw-axis, w G [-oo^+oo]. a
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It turns out that (a) since the set of eigenvalues of G(-j°°) is

equal to the set of eigenvalues of G(+j«) counting multiplicities, we can

always form an indexed family of closed paths M) from the
J j=l,2,...,p

set of eigenloci A (N ), i = l,2,...,m (see (Lemma L2, part (a) below);
1 °°

(b) since the paths Y*'s are closed paths, it is legitimate to define

the number of encirclements of some point in (D by Y*J and (c) for any

choice of (y*) » the sum of the number of encirclements of
J j=l,2,...,p

- t- by the Y*'s is equal to the number of encirclements of the origin by
k j

det[I + kG(s)]| c-r; . Thus we can test the closed-loop stability for any
s*=N

1
k > 0 by inspection of the number of encirclements of - -r by an indexed

family of closed paths (obtained from the eigenloci A (N^'s).

Notation

Let y(') : [<*>3] -> <D be a closed path, i.e. y(*) is continuous and

Y(a) = Y(3) [8,p.217]. Let the point a £ Y,where y := Y([a,3]). Then C(a;Y)

denotes the number of counterclockwise encirclements of a G (E by y>

i.e. [8,p.223]

Note that strictly speaking, the integral in eqn. (10) requires y(0 to

be a circuit [8,p.223], i.e. y(*) bas to be a closed path and differentiable

almost everywhere. However, Eilenberg's method specifies a standard

procedure to treat the case where y(*) is not necessarily differentiable

almost everywhere, [8,p.251].

Generalized Nyquist Stability Criterion

For technical reasons, we parametrize the Nyquist part N^ shown in

Fig. 2 by t G [a ,a _], a compact interval. More precisely, we define
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a continuous function N (•) :[a ,a ,_ ]->- <E so that^ N ([a ,a ,,1) =N ,
00 o q+1 •» o q+1 °°

^oo^a0^ = ""J00* ^(a )=+joo. For convenience, we shall choose the

parametrization N^C-) to be a strictly increasing function; thus as t

increases from a to a +,, the point N^Ct) moves upward along N^ from

-j00 to +j°o (e.g. first use the ordinate u of iw as a parameter and then

choose t = tan go) . Note that there are only a finite number of points

in (C, thus in ^-{-j^+j*},- where G(s) has multiple eigenvalues.

Consequently, the e-indentations of N^ in Fig. 2 can be chosen so small

that Vs G Noo-{-j<x>,+j°°}, G(s) has multiple eigenvalues only at a finite

number of points on the ja)-axis, u> G (_ooj+oo) . Let jb-,jb«,...,jb denote

An,

such points, i.e. G(jb.), i = 1,2,...,q, has multiple eigenvalues. Let

a.,a.,...,a ^ 1 be such that a < a_ < .. . < a < a ,. and that
1 2 q o 1 q q+1

^a±> =Jbi» ±=1,2,...,q. Let I±(.) =[a^,^] + <C, i=1,2,...,q+1,

be such that I (t) = N^t), Vt ^ [a. l»a1]> i»e« ^oo^') is t*ie juxtaposition

of I (•), i = 1,2,...,q+1 [8,p.217]. The images of the I.(.)'s are shown in

Fig. 4. Let Z G {1,2,...,q+l}; for each s G I which is not an endpoint

of I., G(s) has m distinct eigenvalues A (s), i = l,2,...,m. Since

s h- G(s) is continuous on N and since the eigenvalues of a matrix are

continuous functions of the elements of the matrix [12,p.45], we can

uniquely define m continuous oriented eigenloci y f, i = l,2,...,m by

Tu(t) := Ai(I£(t)), t€ [a^.c^] (11)

The Lemma L2 below shows that from (y.«). t <•> , we can construct
lx, i=l,2,. .. ,m

£=1,2,...,q+1

an indexed family of closed paths whose image will be called the

(2)
We use f(«) to denote a function and f to denote the image of its

domain under the map f(•).

(3)
The polynomial Ah- 3(A,s) in eqn. (6) has multiple zeros for some

C G (C iff the discriminant 8(s) of 3(A,s) is zero at 5 [13,p.248-250]. Since
9(s) is a polynomial in s, there are only a finite number of such £*s.
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generalized Nyquist diagram of G(s).

Lemma L2 (Generalized Nyquist diagram: Lumped case)

Given a proper G(s) G ]R (s) and the associated eigenloci

(y.«) defined by eqn. (11), then
i=l,2,. .. ,m

£=1,2,.. .,q+l

(a) the members of (y.«) can be juxtaposed to form an
i=l,2,. ..,m

£=1,2,...,q+1

indexed family of closed paths (y*) . , ~ for some 1 < p < m:
j j=l,2,...,p ._ f _

(b) let A(.) : [a ,a ,-] -* <E be defined by
o q+i

m

A(t) := n (l+kY.£(t)), Vt G [0^,0^1, £= 1,2,...,q+1 , (12)
then

(i) A(«) is a closed path, i.e. A(-) is continuous on [a ,ct ,,]
o q+1

and A(a ) = A(a ,, );
o q+J

(ii) 0£A([ao,aq+1]) iff "^ (Y.£) ;
i—1,2,...,m
£=1,2,...,q+1

j j=l,2,...,p

obtained in part (a)

P ,

(iii) C(0;A) = V C(- t-;y*) for an^ indexed family (y*) .

Proof of Lemma L2: see Appendix

Now we are ready to present the generalized Nyquist stability

criterion for the lumped case.

Theorem L3 (Generalized Nyquist Stability Criterion: Lumped Case)

Consider the feedback system S shown in Fig. 1 and described by

eqns. (1), (2). Associated with G(s) G IR (s)mXm are the eigenloci

(Y^) defined by eqn. (11). Then the closed-loop system Sis
i=l,2,...,m

£=1,2,...,q+1

exp. stable
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(i) -££ (Y*). ,9 ;k j j=l,2,...,p

(ii) V C(- ±;Y*) - p° ,
J=l

where p denotes the number of C -zeros of the open-loop system

characteristic polynomial counting multiplicities and (y^)._, 9

denote any indexed family of closed paths formed from (y.0)
1*" • 1 o1=1,2,...,m

£=1,2,...,q+l

Remarks L3: (a) Theorem L3 generalizes the well-known classical Nyquist

stability criterion to the multi-input, multi-output case. Note Theorem L3

requires us to check the number of encirclements of - — by a finite family

of closed paths (y*) 9 which is formed from the eigenloci of G(s)
3 J~l> 2,...,p

as s moves up along the Nyquist path N of Fig. 2.
m

(b) Theorem L3 uses the identity det [I + kG(s)] = II [1 + kA (s)],
i=l

(which holds for all s where G(-) is well defined) and the fact that we

can label the A.(s)'s such that s h- A.(s) are continuous functions on N^.

Hence the net change in phase of det [I + kG(ju))] along N^ is simply the

sum of the changes in phase of [A.(s) - (-1/k)] along N . This
l

observation does not require that each A.(s) be defined as an analytic

function in any part of (E,: it simply requires that we compute the A^'s

for each s G N . Note that in our treatment, the argument principle is
00

Ak

only used in Theorem LI and is only applied to det[I + kG(s)], thus we need

not mention branch cuts and/or Riemann surfaces and/or the extended

argument principle [16,17].

III. Distributed case

We consider the feedback system S shown in Fig. 1, where

G(s) G ©(a )mxm for some a < 0 (13)
. o o

k > 0 (14)
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Note that any proper rational function is an element of &(o) for any

a G ]R . Thus the present formulation includes the lumped case in sec. II

as a special case. Let (77 ,0 ) be a a -right-representation of G(s)

[9,14]; equivalently:

(i) G(s) = 7T (s),0 (s)"1 with Jl G 0. (a )mxm, & G d (a )mxm;
r r r - o r - o

-1 .., -A ^ ,<? ,__ vmxra A ei A , ^ xmxmi

(15)

(ii) there exist H G& (a )mxm, 2/ G (4 (a )mxm such that
r - o r - o

lir7lr +#r4 =i ; d6)

(iii) det O (s) is analytic and bounded away from zero at » in C ,.

°° (17)
Without loss of generality [14], <£5 (s) may be taken to be a proper

o

rational function matrix with all its poles in (C , hence by eqn. (17),
o

lim det D (s) = constant ^ 0 (18)
I I t"|S|-*»

Note that the closed-loop system transfer function matrix r «• y is given

by

Hyr =kG(s)[I +kG(s)]_1= kTT^Oj.+kT^]"1 (19)

Since (~fl ,,0+kTt' ) is also a -right-coprime, detfjQ +k Yt ] is the closed-

loop characteristic function [14]. Consequently, the closed-loop system

A A /si

is U-stable iff inf |det U5 + k Jt ]| > 0. By substituting G = /X JO ,

we have

Re s > 0 r r

det[£) (s)+k/T (s)]
det [I + kG(s)] = ^ - (20)

det £>r(s)

Since det[I + kG(s)] is analytic on (E except for a finite number of

poles in <C (these poles occur at zeros of det «£) (s)), we can apply
o

the argument principle [8,p.246-247] to det[I + kG(s)] to determine
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whether inf |det[.0 + kH ]| > 0. For this purpose, we construct
Re s > 0 r r

a Nyquist path Nw as in the lumped case (see Fig. 2). Note that (a) the

e-indentations are again taken to the left of the jw-axis for the same

reason as stated in the lumped case; (b) by assumptions (13) and (15)^(17),

Ak

G(s) is analytic on (C except for a finite number of poles in (E (these
o /> . o

poles are the zeros of det <Q (s)). Since a < 0, the e-indentations can

be taken to the left of the jw-axis poles of G(s); furthermore, we choose

the indentation radius e <_ |a | so that G(s) is analytic on N .

Now we have the following stability theorem which is the counterpart

of Theorem LI in the distributed case.

Theorem Dl: (Stability theorem based on det[I + kG(s)]: distributed case)

Let N be defined as above. Let the feedback system S of Fig. 1

satisfy eqns. (13)^(17) . Assume that

G(s) tends to a constant matrix as |s| -»• °° in <D (21)

U.t.c. the closed-loop system S is ^(a)-stable, for some a < 0

(i) det[I + kG(s)] ^ 0, Vs G n^; (22)

(ii) det[I + kG(s)] ^- encircles the origin (23)
oo

p, times in the counterclockwise sense, where
+

p denotes the number of <E -zeros of the open-loop

system characteristic function det «Or(s),

counting multiplicities.

Proof of Theorem Dl: see Appendix

Remarks Dl: (a) Assumption (21) means that the almost periodic asymptotic

behavior of G(jw) reduces to a constant matrix. This constant matrix is

the zero matrix in many cases.
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(b) Theorem Dl guarantees £((a)-stability, for some a < 0 ; this implies

exp. stability : more precisely; in view of (21), H (s) tends to a

constant as Is! •*• °° in C. , hence H (t) • H 6(t) + H, (t) where H G ]R
11 + yr o 1 o

mxm

and 1L (•) G ] . Consequently, the response y(-) of the feedback system

S to any step input r(t) = L(t)v, where v G ]R , will tend to H (0)v

exponentially since the error y(t) := y(t) - H (0)v satisfies that for

some p < °°, Hy(t)H < pllvlle . Thus H can be said to be exp. stable.
— yr

To obtain, for the distributed case, a generalized Nyquist stability

criterion similar to Theorem L3, we note that the discriminant of the

polynomial A h> det[AI - G(s)] is a polynomial in the elements of G(s)

[13,p.248-250], hence

(i) it is an analytic function of s in (C - |R[det JO (s)]; (24)
o

(ii) it can only have a finite number of zeros in any compact

subset of <C
a +
o

(25)

Thus we can choose the radii of the e-indentations so that for s G N ,
CO

G(s) has multiple eigenvalues only for some isolated points on the

jw-axis, where w G [-»,+«,] , Suppose that there is only a finite number

of values of w such that G(ju>) has multiple eigenvalues. Then the

construction of the generalized Nyquist diagram of Lemma L2 still holds

and we are right back to the previous case. However, as shown in the

example 2 below, it may happen that, for some G(s) G tQ (o )mxm g(s)
o

has multiple eigenvalues for an infinite number of points on the jw-axis.

Consequently, a naive generalization of Lemma L2 requires a construction

of an infinite digraph (see the proof of Lemma L2).

Example 2

Consider G(s) =

3
10

(s+10)3
83-4

g12^

__ io3
(s+8)3(s+4) (s+10)3

-13-
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where g12(s) = ^tg-^t)] with

g12(t) =
0, t$ [0,1]

t(l-t), t G [0,1]

Note that G(s) G (X_{a )x2 for any a >-4, thus G(s) satisfies

assumption (13). The discriminant of the polynomial A '->- det[Al - G(s)]
3
8«4

is, for this case, equal to - • g _(s). By direct calculation
(s+8)i(s+4) L

using tables [15, formulas 440.11 and 440.12], we obtain

. 0)

2 sm(-) - - cos(-)

812(J«) =^ '—^ 2- (27)
(-)

Thus the discriminant has an infinite number of jw-axis zeros, i.e.

A.

G(s) has multiple eigenvalues for an infinite number of points on the

jw-axis. n

To overcome this difficulty, we note the following. Let

A., i = 1,2, ,u be the distinct eigenvalues of G(+j°°) with multiplicities
l o

m., respectively. Then by continuity, for any given e > 0, there exists

ft > 0 such that for i = l,2,...,u , G(jto) has m. eigenvalues inside the

closed disc D(A.,e), V |w| > ft. Now by (25), G(ja)) has multiple eigenvalues

for only a finite number of points within the compact interval [-jft,+jft].

Therefore, by assigning a set V of u nodes which now represent the

closed discs D(A?,e), i = l,2,...,u , we obtain a finite digraph ij by

the construction stated in the proof of Lemma L2 and we are right back to

the previous case. Now following the procedure stated in the proof of

Lemma L2, we identify, in the digraph H\ a finite indexed family of

closed paths I\, i = 1,2,...,p, for some p £ m. The corresponding

eigenloci will then form a finite indexed family of closed paths
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(y*) provided that additional m. directed paths are joined
i=l,2,...,p m

in each disc D(A.,e), i = 1,2,...,p from the eigenvalues of G(+jft) to
1 o

those of G(-jft). These (y*) constitute the required
i=l,2,...,p

generalized Nyquist diagram and the generalized Nyquist stability criterion

for the distributed case is stated in the Theorem D3 below.

Theorem D3 (Generalized Nyquist Stability Criterion: distributed case)

Consider the feedback system S shown in Fig. 1 and described by

eqns. (13)^(17) and (21). Consider the finite indexed family of closed

— oo

paths (y*) and the closed discs D(A.,e), i = l,2,...,u as
JJ-1.2.....P x \ .

indicated above. Let k > 0 be such that - t-£ D(X.;e) for i = 1,2,...,u .
k l o

U.t.c. the closed-loop system S is ^(a)-stable, for some a < 0

(i) " ~ £ (Y*)
J j=l,2,...,p

(11) V C(- I; Y*) = p°
V j=l

where p denotes the <C -zeros of the open-loop characteristic

function det JO (s) counting multiplicities. n

Remark D3: Note that Theorem D3 does not assert anything when - 1/k

— OO

belongs to one of the discs D(A.,e). This represents no loss in practice,

since if - 1/k belongs to such a disc, then det[I + kG(jw)] = 0(e) at

high frequencies and clearly the system would then be very sensitive to

small changes in k or in G at those frequencies; indeed for such k's, the

transfer function matrix, from r to e, H (jw) = 0(l/e) at those
er

frequencies.

Example 3:

Consider the feedback system S shown in Fig. 1 with the open-loop
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transfer function matrix G(s) described by eqn. (26) of example 2. The

generalized Nyquist diagram of G(s) is shown in Fig. 5. Note that
At,

G(jco) has multiple eigenvalues at u) - +2.9868, +15.44, ..., etc. (which

are the solutions of sin — -y cos ~, see eqn. (27) of example 2). The

behavior of the eigenloci A (•), A2(.) is further magnified in Fig. 6:

a simple local analysis confirms that, at w - 8.9868, the eigenloci

A (•) and A (•) make a ninety degree turn.

Referring to the generalized Nyquist diagram of G(s) shown in Fig. 5,

we know that, by Theorem D3 above, the closed-loop system is £?(o)-stable

(for some a < 0) for k G (0,6] since the open-loop system has no (D -poles.
n

IV. Conclusion

The generalized Nyquist stability criterion based on the eigenloci

of the open-loop transfer function matrix is derived for the lumped as

well as the distributed case. First, a stability theorem based on

det[I + kG(s)] is presented (see Theorem LI and Theorem Dl). Construction

of the generalized Nyquist diagram is shown in Lemma L2. The generalized

Nyquist stability criterion is then presented in Theorem L3 (Theorem D3)

which shows that the stability condition of Theorem LI (Theorem Dl, resp.)

can be checked via the encirclement condition of the critical point by

theclosed paths formed by the eigenloci of the open-loop transfer function

matrix.
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APPENDIX

Proof of Lemma L2:

(a) To show that the members of (Y.^) can be juxtaposed to
i=l,2,...,m

£=1,2,...,q+l

form an indexed family of closed paths (y*) for some 1 <^ p £ m,
3 j=l,2,...,p

we construct a digraph ^/associated with (Y.0) • To each
1=1,z,...,m

£=1,2,...,q+1
point jbp^N^ where G(jb.,) has multiple eigenvalues I = 1,2, — ,q, we

assign a set V. of u. nodes where u. = number of jdistinct eigenvalues

of G(jb5); thus each node of V. represents a distinct eigenvalue of

G(jb?). We further assign a set V of u nodes to represent the distinct

eigenvalues of G(-j°°) as well as that of G(+j°°), (note that G(+j°°) = G(-j°°),

hence they have the same set of eigenvalues counting multiplicites).

Now for £ = l,2,...,q, we assign m directed branches from V„ .. to V»,

each such branch represents one of the m continuous eigenloci Yio»

i = l,2,...,m. Similarly, we assign m directed branches from V to V ,

each such branch represents one of the m continuous eigenloci y. ,-• »

A*

i = l,2,...,m. A typical digraph corresponding to a 4x4 G(s) is shown in

Fig. Al. Note that in this example, G(+j°°) and G(-j°°) has four distinct

eigenvalues and G(jO) has two distinct eigenvalues of multiplicities 2,

respectively; hence q=l and we have only two set of nodes, V and V, .

Note that, by construction, the number of the directed branches entering

(or leaving) any node of AJ is equal to the multiplicity of the

corresponding eigenvalue. Hence, the digraph jU has the following

property:

for any node of %$, the number of branches entering that node
(Al)

is equal to the number of branches leaving that node.

We now construct a family of closed paths by suitable juxtaposition of
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the members of (Y.0) .We select an arbitrary node of ^7.
1^ • t n

1=1,z,...,m

£=1,2,...,q+l

We move along any directed branch to some other node. As we repeat this

process, by property (Al) of tJ and the fact that £f has a finite number

of nodes, we eventually reach an already traversed node; thus this process

identifies a simple closed path V in the digraph H . Corresponding to

each branch of T- is one member of the family (Y-„) • Bv the
J. 1** • i <-»

1=1,2,...,m

£=1,2,...,q+1

construction of the digraph xV, it follows that the eigenloci Y^'s

corresponding to branches of T form a not-necessarily-simple closed path

which we call y*. Now we delete from £} the branches associated with ?y

Note that the remaining digraph still has the property (Al). Now if

the remaining digraph contains no branch, there is only one closed path

T in J6 and the eigenloci (Y-n) form a single closed path
i=l,2,...,m

£=1,2,...,q+1
Y? in <E and we are done. Otherwise, we select an arbitrary node of aj

which has at least one outgoing branch and repeat the above procedure

until all branches of «tf are exhausted. The result is a finite indexed

family of closed paths (y*) in the complex plane C, where the
3 j=l,2,...,p

integer p G {l,2,...,m}.

(b)

(i) Since Yi£(*), i= 1,2,...,m; £= 1,2,...,q+1 are continuous
m - m

on tVr0^] and n (1+kYi£(0t£)) = n ^^i^+l^V^ A(0
i=l i=l

m

is continuous on [aQ,a +1]. Furthermore, A(aQ) = n (l+kYi;L(ao))
m _ m m

= n (i+kA,°°) = n (i+kA ) = n (i+kY. a+1(aa+1)) = A(aq+i) where
i=l 1 i=l i=l '4 4

aT°°, X. denote the eigenvalues of G(-j«>) and G(+j°°)
l l

respectively. Hence A(«) is a closed path,

(ii) follows from eqn. (11).
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(ill) 2,Jic(-|;T|) :-ij A
n=l n=l •'y* z + t-

Yn k

i-l t-l \t z+i

m. q+iA d^lt(t)+^)
-E Ej
i-l H-l^al-l YiJt(t) + k

Note that we can relabel the Y./s into Yft»'s so that for each

$G {l,2,...,m}, the juxtaposition of yRo» *• = 1,2,...,q+1 form a

continuous eigenlocus, say y«. Thus eqn. (A2) becomes

2,j E c(-iSY*>- e J —8 r-
n=l 3=1 ''a Yo(t) +r

_m_ f q+1
d[£n(Y (t) +p]

a
m c <

=Ej3=1''a

q+1 m
=j " d[£n n (Yft(t) +h]

Ja 3=1 B
o

q+1
=J d[£n A(t)] (by (12) and the fact that

a

(A2)

m _ m 1

i=l 3=1

•I Vl d(Mt))
O

dz

zJ
A

2-rrj C(0;A)

V£ = 1,2,...,q+1)

Q.E.D,
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Proof of Theorem L3:

o

The closed-loop system is exp. stable

(i) det [I + kfi(s)] * 0, Vs G Noo;

(ii) C(0; det[I +kG(s)]|fi^ )=p*
(by Theorem LI)

r (i) det[I + kG(I (t))] ^ 0, Vt G [a£_1,at,], V£ = l,2,...,q+l

^(ii) C(0; det[I + kG(I£(t))]

r m

) = P.

tG[a£-ra£]
£=1,2,...,q+1

(parameterization of N )

(i) n [1 + kA.(I£(t))] ^0, Vt G [a^,^], «- = l,2,...,q+l
i=l

m

(ii) C(0; n [1 + kxi(ijl(t))]
^ i=l t<EtVra£]

£=1,2,...,q+l

+
) = P

since the A.(s)'s are the eigenvalues of G(s), the [1 + kAi(s)]'s

are

r

Ak.

the eigenvalues of I + kG(s)

m

(i) n (1 + kY±£(t)) * 0, Vt G [Y£_ra£], Vi = 1,2,...,m, V£ =l,2,...,q+l
i=l

m

x (ii) C(0; n (1 + kY,p(t))
V. i=i 1J6

r (i) -\* (Y„)

tG[Vra£]
£=l,2,...,q+l

i=l,2,...,m
£=1,2,...,q+l

(ii) C(- ~;A) = p+
V

(i) - £ £ (Y*)
j=l,2,...,p

(11) f C(- i;Y*) - p+
v. J=1

-22-

(by definition of Y.«)

+
) = P.

(by eqn. (12))

(by Lemma L2)

Q.E.D.



Proof of Theorem Dl:

We will show,in two steps, that under the assumptions (13)^(17) and
A

(21), the closed-loop transfer function H G (X(o) for some a < 0 (thus

the closed-loop system is exp. stable) iff (22) and (23) hold.

Claim 1: As a consequence of (20) and of assumption (21), conditions (22)

and (23) are equivalent to

inf |x(s)| > 0 and inf |x(s)| > 0 (A3)
Re s > 0 sGN

where J(s) := det[0r(s) + k7Tr(s)].

Note that by (20), x(s) is meromorphic in <C and is analytic on
o

N ; furthermore, by (18) and (21), x(s) tends to a constant, say x(°°)» as

|s| -* » in <C . Thus the argument principle together with (20) show that

(22) and (23) are equivalent to (A3).

Claim 2: (A3) is equivalent to

inf |x(s)| > 0, for some a < 0 (A4)
Re s > o

It is clear that (A4) implies (A3). Thus we only have to show that (A3)

implies (A4). To see this, we note that assumption (15) and the closure
A

of the algebra (X (c ) under addition and multiplication imply that
* A

X(s) G &_(a ); thus there is some o < o such that x(s) G #(a-).

~°lt -1Therefore x(t)e G (X, where x(t) :- <£ [x(s)]. This implies that
-at a a

for some a0 G (a.,a ), tX(t)e Z G #, i.e. £ [t X(t)] = x'(s) G d.(o )
Z 1 o ^

A

C d.(o ). Thus x'(s) is analytic and bounded in (D . This together
o

with (A3) imply that there is a a < 0 such that (A4) holds.

Thus conditions (22) and (23) are equivalent to (A4) which, by (19)

A * A

and the a -right-coprimeness of {J( ,«0 +k7t )» is equivalent to
o

A

H G ^(a)1113™, for some a < 0. Q.E.D.
yr
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Footnotes

The e-indentations must be in <E_ since for the multi-input multi-output

case, the closed-loop system and the open-loop system may have some

common jco-axis poles, e.g. if G(s) and k are such that I + kG(s)

diag[(s+l)/s,s/(s+l)], then s=0 is a open-loop system poles as well

as a closed-loop pole.

We use f(•) to denote a function and f to denote the image of its

domain under the map f(•).

^The polynomial Ah- 3(A,s) in eqn. (6) has multiple zeros for some

C G <c iff the discriminant 0(s) of 3(A,s) is zero at c, [13,p.248-250].

0(s) is a polynomial in s, there are only a finite number of such Cfs.



Figure Captions

Fig. 1: Feedback system S under consideration.

Fig. 2: The Nyquist path N^ :"x" denotes the ja)-axis poles of G(s).

Fig. 3: An example which shows that each eigenlocus of the open loop

transfer function matrix may not form a closed path.

Fig. 4: The Nyquist path N shown in Fig. 2 is considered as the

juxtaposition of the paths I. (•)» i = 1,2,...,q+1. jb.,

i = 1,2,...,q, are the points on the jto-axis such that G(jb.)

has multiple eigenvalues.

Ak

Fig. 5: The generalized Nyquist diagram of G(s) considered in example 3

(G(s) is specified by (26)).

Fig. 6: Blow up of the eigenloci A,(*) and A_(.) in the neighborhood

of oj - 8.9868 r/s where G(joj) has a multiple eigenvalue.

Fig. Al: A typical digraph Jj corresponding to a 4x4 G(s) :G(+j°°)

= G(-j°°) has four distinct eigenvalues (represented by V ) and

G(j0) has two distinct eigenvalues with multiplicities 2,

respectively (represented by V ).
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