

Copyright © 1978, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

A Machine Independent Algorithm for Code Generation
and Its Use in Retargetable Compilers

by

Robert Steven Glanville

Computer Science Division
Department of Electrical Engineering and Computer Sciences

Technical Report No. UCB-CS-78-01
and

Electronics Research Laboratory
Memorandum No. ERL-M78/9

University of California, Berkeley
94720

A Machine Independent Algorithm for Code Generation

and Its Use in Retargetable Compilers*

Robert Steven Glanville

Abstract

This dissertation presents a method for the construction of efficient code generators for

high-level procedural programming languages from a symbolic description of the instruction set

of the target computer. A table driven algorithm is given that translates a relatively low-level

intermediate representation of a program into assembly or machine code for the target com

puter. A construction algorithm is presented that produces the required tables from a func

tional description of the target machine. By supplying an appropriate machine description, new

tables can easily be created, thus retargeting a compiler for the new computer. Techniques are

developed to prove the correctness of the resulting code generator based on the instruction set

description.

The output of the front end of the compiler is assumed to be a linearized intermediate

representation (IR) of the source program consisting of a sequence of parenthesis-free prefix

expressions. Implementation decisions concerning representation and storage allocation, as well

as all but the low-level, machine dependent optimizations are already incorporated into the IR.

Each machine instruction is described by a prefix expression and an assembly or machine

language template. The code generation algorithm performs a pattern-matching similar to pars

ing. However, unlike the situation in syntax analysis, target machine descriptions are normally

highly ambiguous. By defining a property called uniformity, which is satisfied by most instruc

tion sets, it is possible to give a concise characterization of the sequence of prefix expressions

computed by an instruction set, to check that all possible inputs to the code generator fall

within this class, and to produce a left-to-right deterministic linear-time code generator.

Ambiguities in the machine description are resolved in favor of choosing longer instruc

tion patterns over shorter ones, thus effectively attempting to produce the object program that

is shortest in terms of the number of instructions generated while containing the same

sequence of operations. In practice this heuristic works very well. In comparison with existing

compilers, the code generated by this algorithm is of equal or better quality (in terms of the

size of the code produced). The instances in which existing compilers produce superior code

tResearch sponsored by National Science Foundation Grant MCS74-07644-A03.

stem from optimizations, i.e. changes in the sequence of operations, that were not employed in

this work. Most of these optimizations could be combined with our method of code generation.

The code generation routines for most existing compilers are written by hand and use

sequences of instructions identified by the implementer. By choosing code sequences in a sys

tematic algorithmic fashion, our code generators are more consistent and more successful in

using the full range of machine instructions, including many special purpose instructions.

Professor Susan L. Graham

Chairman of Committee

Acknowledgements

I wish to express my gratitude to the many people who helped make this dissertation a

reality. The members of the faculties at Berkeley and Southern Methodist Universities pro

vided the excellent educational environment so necessary in such an endeavor. My special

thanks goes to my advisor, Professor Susan L. Graham, who provided the encouragement and

guidance I needed, and to the members of my committee, Professors Lawrence Rowe and Ilan

Adler.

It is impossible to properly acknowledge the numerous persons upon whose work, ideas,

and stimulating discussion this dissertation is based. Of particular note are Jeff Barth and Bill

Joy, who were graduate students at Berkeley concurrent with myself. I cannot begin to express

my thanks to my wife, Linda, who found the time and energy to provide the moral support I

needed to complete this dissertation, despite the fact that she was suffering through the same

ordeal with her own dissertation. I would also like to thank my parents for encouraging me in

my academic pursuits. Finally, I would like to thank Polynomial who contributed countless

hours of her undivided attention to each and every detail of my dissertation, even as I wrote it.

The financial support of the National Science Foundation under grant MCS74-07644-A03

is gratefully appreciated.

Table of Contents

Chapter 1: Introduction 1
1.1 Goals of Automatic Code Research 2
1.2 Overview of Compilation 2

1.2.1 Analysis 2
1.2.2 Synthesis 4

1.3 Why Study Code Generation 5
1.4 Previous Work 6

1.4.1 Procedural Code Generation 6
1.4.1.1 UNCOL 6
1.4.1.2 Elson and Rake 7
1.4.1.3 Wilcox 9
1.4.1.4 Donegan 11
1.4.1.5 Analysis of Code Generation Languages 13

1.4.2 Code Generation by Semantic Machine Description 13
1.4.2.1 Miller 13
1.4.2.2 Weingart 14
1.4.2.3 Analysis of Semantic Code Generation 16

1.5 Summary of This Project 17
1.6 Comparison with Compiler-Compilers 17

Chapter 2: Design of a Machine Independent Compiler 19
2.1 Machine Independent Aspects 20
2.2 Parameterizable Machine Dependent Implementation Decisions 22
2.3 Code Generation 26
2.4 Optimization Phases 26

2.4.1 Constant Folding and Constant Propagation 28
2.4.2 Peephole Optimization 29
2.4.3 Common Subexpression Elimination 30
2.4.4 Other Optimizations 31

Chapter 3: The Target Machine Description 32
3.1 The Internal Representation (IR) 32
3.2 Modeling Computer Instruction Sets 36
3.3 The Structure of TMDL 41
3.4 A Sample Machine Description 43

Chapter 4: The Code Generation Algorithm 45
4.1 Shift-Reduce Parsing Algorithm 46
4.2 Adding Semantic Information to the Parser to Make a Code Generator 49
4.3 Register Allocation 51
4.4 A Simple Example 52
4.5 Automatic Construction of a Code Generating Parser 56

4.5.1 The Initial Table Construction 56
4.5.2 Correct Code is Always Generated 61
4.5.3 Looping 66
4.5.4 Complexity of Loop Detection by Preprocessor 68
4.5.5 Loop Elimination by Preprocessor 69
4.5.6 Blocking and Uniformity 71

4.5.7 Semantic Blocking 82

Chapter 5: Two Examples: The PDP-11 andThe IBM 370 86
5.1 The Preprocessor andCoder Implementations 86
5.2 Generating PDP-11 Object Code 87
5.3 Generating IBM 370 Object Code 101

Chapter 6: Results and Conclusions 111
6.1 Postfix vs. Prefix 112
6.2 Areas for Future research 114

References 116

Appendix A: PDP-11 Machine Description 119

Appendix B: IBM 370 Machine Description 122

Ill

Figures

1.1 Block Diagram of a Compiler 3
1.2 GCL Floating Point Assignment Macro from [Elson70] 8
1.3 Code Generation Template from [Wilcox71] 10
1.4 CGPL Routines for ADD and SUB from [Donegan73l 12

2.1 Generation of a Machine Independent Compiler 20
2.2 Bootstrapping to a New Computer 22
2.3 PASCAL-P Compiler Targeting Information 25
2.4 Three Places for Modular Optimization 27
2.5 Some Peephole Optimizations 30

3.1 Sample Machine Description 44

4.1 Sample Instruction Set Description 53
4.2 Code Generation Table for Example 54
4.3 Initial State Computation for Example Instruction Set 62
4.4 Code Generation Table for Example 63
4.5 Graph Constructed to Eliminate Loop: d—♦...—►d 70

5.1 A Machine Independent PASCAL Compiler 87
5.2 PDP-11 Preprocessor Execution Times 89
5.3 PDP-11 Code Generator Table Sizes 90
5.4 PDP-11 PASCAL Runtime Organization 92
5.5 PDP-11 PASCAL Procedure Entry and Exit Code 93
5.6 Matrix Multiplication Routines 94
5.7 Integer Read Routines 95
5.8 PDP-11 IR Translation of Test Programs 96
5.9 Assembly Listings for matrixmult Routines 97
5.10 Assembly Output for readn Routines 100
5.11 IBM 370 Preprocessor Execution Times 102
5.12 IBM 370 Code Generator Table Sizes 102
5.13 IBM 370 PASCAL Runtime Organization 103
5.14 IBM 370 Translation of Test Programs 104
5.15 ALGOL-W Comparison Routines 105
5.16 IBM 370 Assembly code for matrixmult 108
5.17 ALGOL-W Assembly code for matrixmult 109
5.18 IBM 370 Assembly code for readn Routines 110

IV

Algorithms

4.1 The Code Generator 50
4.2 The Initial LR(0) Code Generator Constructor 58
4.3 The Initial SLR(l) Code Generator Constructor 60
4.4 Loop Detection 69
4.5 Loop Elimination 72
4.6 Uniformity Test for Algorithm 4.3 78
4.7 Blocking—Uniformity Test for Algorithm 4.2 80
4.8 Default List Construction 84

Chapter 1: Introduction

A compiler is a computer program which translates other programs, written in a particular

programming language, into executable code for a specific target computer. This dissertation

presents an approach to the problem of producing a retargetable (and transportable) compiler

for a high level programming language. Such a compiler could be systematically reconfigured to

generate object code for any one of a large class of commercially available computers. A major

part of this research concerns the automatic creation of a suitable code generator for each target

computer from a symbolic description of that computer's instruction set.

The overall design of a retargetable compiler that incorporates such a code generator is

presented in Chapter 2. Particular emphasis is given to discussing the degree of machine

dependence that is inherent in various portions of a compiler in a general implementation.

Topics closely related to code generation, including register allocation and optimization, are also

discussed. Finally, practical aspects are considered, such as the efficiency, modifiability, and

maintainability of the resulting compiler.

The target machine description language, TMDL, used by the machine independent com

piler, is described in Chapter 3. Since the instruction set description, a major part of TMDL, is

closely linked to the internal representation (IR) output of the analyzer, the internal representa

tion is also discussed. Motivation is given for the design decisions, as they are very much

affected by the code generation algorithm used.

Chapter 4 presents a table driven pattern matching algorithm that generates object code by

'parsing' the output of the recognition phase of the compiler using the target computer's

instruction set as the grammar 'rules'. A finite state pushdown automaton is constructed from

the patterns defining the computer's instruction set. At compile time, the output of the parser

is taken as the input to the automaton. The longest leftmost instruction pattern is found and

the corresponding object instruction is emitted. An algorithm is presented that computes the

tables required by the code generator from a semantic description of the target computer's

instruction set. The properties of the code generation algorithm are then investigated to deter

mine the type of code produced, what it efficiently codes, and how one can insure that a

machine's instruction set will cover all possible outputs of the compiler. The correctness of the

code generator and coder construction algorithms is addressed next. Sufficient conditions that

the code generator will not loop, block on valid input, or generate incorrect code are given.

The machine independent code generation algorithm is thus proven to always generate correct

code for any valid IR input.

Example code generators for a PASCAL implementation are presented in Chapter 5. The

target computers used are the PDP-11 and the IBM 370. The code generated by the coder lor

several sample programs is compared with the output of existing compilers on the target com

puters.

Chapter 6 concludes with the overall results and comments on the feasibility of using this

method of code generation both in code generation research and in production compiling.

Areas for future research are also discussed.

1.1. Goals of Automatic Coder Research

The major goal of this research is to design a compiler for a single, high-level language

that can be systematically reconfigured to produce code for a variety of distinct target comput

ers. The modularity necessary for this task is obtained primarily from the use of symbolit-

description of the target computer's instruction set. The compiler will be reconfigurable to

'favor' specific target computer architectures by allowing the implementer to choose between

certain alternatives (such as how the run time stack is implemented) and to input specific facts

about the computer (such as the number of registers). It is expected that machine independent

local optimizations will be included in the compiler to allow it to produce good object code.

Also, knowledge about the behavior of the particular code generation algorithm used should

allow the compiler to arrange the intermediate text symbols, in a machine independent fashion,

in a way that allows a simple-minded coder to do well. The work of [Loveman76l and [Car-

ter75] suggests that such an approach is feasible. In Loveman's research source language

transformations are used to improve the code generated; in Carter's work the intermediate code

is transformed by various optimizations prior to code generation.

1.2. Overview of Compilation

Code generation is one aspect of the complex process of compilation. Because the termi

nology used to describe some critical points in the compilation process is not standardized, a

brief review of compilation is presented next. The model used is similar to that of [Wilcox7l|.

Figure 1.1 gives an overview of the structure of the compiler model used.

1.2.1. Analysis

Analysis, the first portion of the compilation process, is the phase in which the compiler

determines the structure and meaning of the source program being compiled. The original pro

gram, written for ease of human comprehension, is transformed into a form that is easy for the

computer to manipulate. Analysis also provides the programmer with information about syntax

violations of the language present in the program. The analysis phase produces a set of tables

describing the functional and representational aspects of the data manipulated by the program

and an abstract program tree (APT) which represents the executable portion of the source pro

gram.

Analysis is divided into three subtasks: lexical analysis, syntactic analysis and semantic

analysis. Lexical analysis, also referred to as scanning, is the process by which the compiler

groups certain strings of characters into individual tokens. Identifiers, single and multiple char

acter operators and numerical constants are examples of tokens. Comments and insignificant

blanks are discarded. Each distinct token is given an integer number, allowing the compiler to

work with fixed length integers instead of variable length character strings, thus simplifying the

task. The output of the scanner is a list of tokens that represent the source program that is

being compiled.

Syntactic analysis, or parsing, is the process by which the compiler determines the struc

ture of the program. Normally, the tokens output by the lexical analyzer are treated as symbols

in a context free language and parsed by one of the well known deterministic context free pars

ing algorithms. As the parse is performed, an APT is constructed that represents the program

structure. An APT is similar to a parse tree. The interior nodes of a parse tree represent non

terminals in the context free grammar used to define the syntax of the program. All tokens

appear as leaves of the tree. In an APT, tokens appear as interior nodes, and there are very

few, if any, nodes that do not correspond to tokens in the source program.

Semantic analysis is the process of determining the meaning of a program. Attributes of

variables, constants, functions and procedures are determined and put into the symbol table. In

strongly typed languages, type checking is performed to determine the necessary coercions, and

to insure that the use of a variable is consistent with its definition (an error message is issued if

it is not). The meaning of ambiguous symbols such as + , which may be integer or real addi

tion or perhaps set union, may also be determined.

1.2.2. Synthesis

Synthesis is the process in which the compiler builds an equivalent object code represen

tation of the program in the machine language of the target computer. Internal representations

for the data objects described in the symbol table are chosen, and object code sequences arc

generated that manipulate the data as described by the APT. The environment required by the

language being compiled must also be simulated on the target computer. Any implementation

dependent restrictions violated by the program are reported. Wilcox calls the synthesis phase

the code generation phase, but in this dissertation the term code generation will refer to the

restricted task of choosing actual object code instructions to implement the program.

Synthesis is divided into the subtasks of storage allocation, translation, code generation

and, optionally, optimization. Storage allocation is the assigning of memory locations to vari

ables. Translation converts the APT into a low level internal representation (IR). The IR

can be thought of as the assembly language for some ideal, source language dependent com

puter. It is an efficient representation, and often contains operations that depend upon specifics

of the particular language being compiled. Optimization is a translation of the IR into itself or

another IR that will allow the code generator to produce better object code, according to some

cost criteria. Code generation is the mapping of the final IR representation into instructions of

the target computer.

The individual phases of real compilers are seldom as distinct as this model would indi

cate. In any particular implementation, distinct phases and tasks are often performed in parallel

due to the strong interactions that must occur between phases or to allow a more efficient

implementation. Translation is often performed by the parser as a consequence of each reduc

tion. Storage allocation can be done as early as when the variable declarations are encountered,

or as late as after the optimization phase to allow the additional information gained to better

allocate available resources. And in a one pass compiler everything is done in parallel. In this

dissertation, however, we will speak as though the phases occur sequentially, in the manner

described, and note any difficulties that might be encountered in altering the model to

correspond to real compilers.

1.3. Why Study Code Generation

Research in code generation has lagged behind the rest of compiler research for several

reasons. In order to analyze a problem mathematically one has to build a precise model of

exactly what is happening. For scanning and parsing, there are clean models that allow very

complete mathematical analysis. Optimization research also has provided models of the pro

gram improvement process. However, while there have been significant results in treating code

generation mathematically ([Newcomer75] or [Aho76l for example), research has been with

idealized models of computers. Real computers tend to be rather messy to describe as they

simply do not have mathematically elegant instruction sets. There are always special instruc

tions that implement certain computations quite efficiently. Furthermore, there are a variety of

architecturally distinct commercial computers. A single model would have to be complex

indeed to include them all, and would lead to a less efficient implementation of a code genera

tor than a model that was tailored around a single computer design.

The fact remains that real compilers must generate object code for real computers. The

result is that most code generators are designed from the ground level by the implcmcntors.

Retargeting a compiler for a new computer may require a substantial amount of work, especially

if reasonably good object code is to be generated. This dissertation does not attempt to build a

formal model of computer instruction sets, but instead presents a method of generating code by

pattern matching with a simplified representation of a computer's instruction set. It is hoped

that this research will help in the creation of retargetable and transportable compilers.

1.4. Previous Work

We next turn to a summary of the efforts that have been made in the past to improve the

code generation process. Previous research in code generation can be divided into two classes.

The first class allows the user to provide information about the target machine in procedural

form. The implementor describes the code generation process and makes all of the decisions as

to what kind of code is to be generated. There are several special purpose code generation

languages and interpreters that have been designed for this purpose. The second class uses
information about the target machine supplied in a descriptive format, or data base. A code

generator is automatically constructed from facts describing the resources of the target com

puter and the semantics of each instruction on that computer. The work carried out for this

dissertation falls into the second class.

1.4.1. Procedural Code Generation

1.4.1.1. UNCOL

In the late 1950's, an attempt was made to define a UNiversal Computer Oriented

Language, called UNCOL, to help make all languages easily available on all computers

[Strong58] [Steel6U. UNCOL was an intermediate language which was to be used as a stepping
stone in compiling any language. A program called a 'generator' would translate programs writ
ten in some source language into UNCOL, and a machine-dependent, language-independent

program called a 'translator' would generate object code for a particular target computer from
the UNCOL program. Thus, if a compiler was written for a new language it would become

available immediately on all computers, either because the source language it was written in was

already available on all computers, perhaps via UNCOL, or by translating the compiler into
UNCOL and generating a version that would execute on the target computer through its already
existing UNCOL to machine language translator. Likewise, for each new computer manufac
tured, once a single UNCOL to object code translator has been written, all existing languages
would become available on that computer, as well as a wealth of existing application programs.

The UNCOL approach would substantially reduce the number of compilers required to have all

languages available on all computers. For M languages to be available on each of N computers,

there would only have to be M + N translators written, instead of the usual M x yv. There

would also be a certain inherent compatibility among implementations of a language due to the

fact that there would be virtually a single compiler for that language.

Unfortunately this project failed. The variety of languages, computer architectures, and

instruction sets available at that time proved to be too difficult to adequately represent in a sin

gle intermediate language. There was also some concern that such a two translator scheme

would be relatively inefficient when compared to a standard compiler. In any event, UNCOL

never enjoyed wide-spread use despite its authors' dedication to practicality.

1.4.1.2. Elson and Rake

Elson and Rake describe an implementation of a code generator which generates optim

ized code for an experimental PL/I compiler [Elson70]. The code generator interprets macro

commands written in a special code generating language, GCL. Input to the coder is a syntax

tree produced by the parser representing the program being compiled. General purpose tree

referencing functions are provided to allow the coder to traverse the data structure easily.

The user provides a separate macro, coded in GCL, for each type of node that may appear

in the tree. Each macro includes all required logic for optimization, code emission, and error

detection and correction for that particular type of node. Flow of control is determined by con

ditional branches, parameterized subroutine invocations, and a multidimensional table look up

facility that is used as a multidimensional computed GOTO. The language has an assembly

language appearance and the examples given are difficult to comprehend, primarily because of

the four dimensional computed GOTO's. For example, the floating point assignment macro is

over 90 lines long and does not support double-double precision or complex data types. It is

also optimized specifically for minimum execution time on the IBM 360 System/65. A portion

of that macro appears in Fig. 1.2.

Elson and Rake's method has a number of advantages. The machine dependent code

emitters provided by GCL ease the task of code emission. The quality of code produced by

their implementation is quite good. The tree referencing primitives allow the implementor to

test the context of a particular node to determine applicable optimizations. Powerful optimiza

tions that would be difficult to detect in a linear representation may be readily implemented.

For example, in the PL/I statement:

/= LENGTH(SJ\\S2)\

©FLOATASSIGN OMD

START ©FLOATASSIGN

DCL (GOPT,LLEN,RLEN,WKCELL,RATR,LATR,LO,LB,LI,LL,LR,RO,RB,
RI,RR,RL,WKCELL)CELL,GPR REG (FIXED)

*CHECK GLOBAL CELL WHICH HAS COMPILER OPTIONS

IF (BIT(GOPT,OPTT) = 01BIT(GOPT,MG5) = 0),OK
MSG'@FLOATASSIGN OPTIMIZED ONLY FOR MOD 65,TIME OPTION'

♦FIND BYTE LENGTHS OF SOURCE AND TARGET

*@FLOATLENGTH UTILITY EXPECTS CURSOR AT PARENT OF ARITH NODE

OK PUSH ARG(l) o.
LINK © FLOATLENGTH (LLEN)
POP

PUSH ARG(2)
LINK ©FLOATLENGTH(RLEN) f
POP

IF (LLEN = 16|RLEN = 16),NOT16
MSG'DOUBLE DOUBLE LENGTH NOT SUPPORTED BY ©FLOATASSIGN'

RTN

NOT16 IF (ARG(l).ARG(D.COMPLEX | ARG(2).ARG(l).COMPLEX),NOTCPX
MSG'COMPLEX NOT SUPPORTED BY ©FLOATASSIGN'
RTN

NOTCPX SET LALN = 2 - ARG(l).UNALIGNED
SET RALG = 2 - ARG (2).UNALIGNED

♦NOW DO TABLE LOOKUP AND GO TO RESULT LABEL TO

♦SET UP REQUIREMENTS FOR SOURCE RESULT, DEPENDING
*ON LENGTHS AND ALLIGNMENTS

LOOK ERR1 ,WKCELL,TBL1 (LALN,LLEN/4,RALN,RLEN/4)
GO TO WKCELL

ERR1 MSG'ERROR IN TBL1 LOOKUP IN ©FLOATASSIGN'

RTN

♦FOLLOWINGARE THE RESULT LABELS OF LOOKUP

♦TARGET 4 BYTES ALLIGNED, SOURCE ALLIGNED. ASK FOR
*RX REFERENCE OR FLOATING REGISTER

RXFR1 SET RATR = M'FOOOIOOO'

GOTO LRX

*8 - BYTE RESULT NEEDED IN FLOATING REGISTER, SO SOURCE
♦WILL DO SDR, LE OR LD OR MVC(4), SDR, LE
FRFW1 SET RATR = M'30000000'

♦GET ADDRESSIBILITY OF TARGET AS RX OR RS REFERENCE

LRX SET LATR = M'COOOOOOO'

GOTO LINK

♦REQUESTBOTH SOURCE AND TARGET AS RS REFERENCES
♦SINCE MVC WILL BE DONE **
RSI SET RATR = M'40000000'

TBL1 TBL(2,2,2,2) REF
ARRY RXFR1,RXFR1,FRFUL1,FRFUL1,FRFUL1,RS1,RS1,RS1,RS1,

RS1,RS1,RS1,RS1,RS1,RS1,RS1

END

Fig. 1.2. GCL floating point assignment macro from [Elson70].

the code generated does not actually concatenate strings SI and S2. Strength reduction is used

to implement the concatenation operator as a much more efficient add instruction in the con

text of a length function. Code is generated that is equivalent to the statement:

/ = LENGTH(Sl) + LENGTH(S2)\

This optimization results in substantially improved code. Finally, the code macros are easily

altered to detect and exploit special cases that at first were thought unimportant.

Elson and Rake's method is not without its drawbacks. The fact that GCL is an inter

preted language causes a certain amount of overhead. The macros tend to be large, complex

and difficult to understand. They are, in fact, so large that they had to be paged in from disk in

the authors' implementation. The size of the macros is due in part to the size and complexity

of both the language being compiled and the instruction set of the IBM 360. The macros are

machine dependent, relying heavily upon the target computer's architecture and instruction set

not only with respect to optimization but also to type checking. The concatenation optimization

mentioned previously, impressive as it is, is the result of a highly specific decision by the impie-

mentors to watch for this type of construct. The retargeting of this compiler for a new com

puter would require not only a complete rewriting of the code generation macros, but even a

rewriting of part of the GCL itself, as there are specific procedures in GCL that depend upon

the instruction formats of the target computer. This method relies heavily upon the

implementor's ability to design and debug the code generation macros, quite a formidable task

for a language/machine combination like PL/I on the IBM 360.

1.4.1.3. Wilcox

Wilcox describes a model for code generation for modern high level programming

languages that is based on the code generator he designed for the Cornell PL/C compiler [Wil-

cox71]. Code generation is divided into four phases: storage allocation, translation (of the APT

into tuples), global optimization, and coding. The analysis phase of the compiler constructs an

abstract representation of the program. The translator produces a code sequence for an artificial

source language machine, called an SLM, that is based on the operators and data types of the

source language. Each node of the APT results in a sequence of such instructions. The coder

produces object code for the target computer from the SLM program after an optional optimiza

tion phase. An implementation map is used to generate a sequence of object machine code

instructions for each SLM instruction.

In order to generate object code for a particular computer, the user provides a subroutine

for each SLM instruction. These routines are written in a coding language, ICL, especially

designed for the object machine. Statements in ICL are precompiled into templates which arc

interpreted at compile time by the code generator. The code template for binary addition on

the IBM 360 presented by Wilcox is reproduced in Fig. 1.3. ICL is low level and assembly like.

ADDB BR A,ADDB1 ->ADDB1 If A is in a register
BR B,ADDB2 - > ADDB2 If B is in a register
LGPR A Generate code to load A into

register
ADDB1 BR B,ADDB3 - > ADDBB3 If B is in a register

GRX A,A,B Generate A+B
B ADDB4 ->Merge

ADDB3 GRR

ADDB4 FREE

ADDB5 POP

EXIT

AR,A,B Generate A+B
B Release resources assigned to B
1 Remove B descriptor from stack

ADDB2 GRX A,B,A Generate A+B
FREE A Release resources assigned to A
SET A,B A now designates result location
B ADDB5 ->Merge

Figure x.x Code Template for Binary Addition (one-pass)

Fig. 1.3. Code Generation Template from [Wilcox71J.

10

11

12

13

To retarget a compiler for a new computer, a new ICL compiler has to be designed for

that target computer and an interpreter has to be written. This is not as difficult as it may

sound, as ICL is like an assembly language and therefore relatively easy to compile. Then a

new set of ICL templates has to be written to govern code generation. This is obviously not as

simple a task as one might hope when retargeting a compiler. But Wilcox was primarily

interested in code generation techniques, not portability. It seems possible to produce better

object code using this method than other methods more concerned with portability. ICL tem

plates also allow the implementor a separate vehicle for specifying the code generation part of

the compiler, quite possibly reducing the implementation and debugging effort required. How

ever, the addition of a new optimization may require minor additions to the ICL used in order

to collect additional necessary information. The implementor still has to make all of the local

optimizations and instruction choices, and, like GCL used by Elson and Rake, this method

relies heavily on the implementor's ability to design and debug code generation routines.

1.4.1.4. Donegan

In his dissertation, Donegan proposes an organization for a general code generation

scheme, though it was not implemented [Donegan73]. The input to the code generator is a
syntax tree and a symbol table. Code is generated directly from the tree without translation
into a linearized form. To determine what code will be generated for each type of node in the

syntax tree, a separate routine is written in a Code Generation Preprocessor Language, CGPL,

designed by Donegan. Routines written in CGPL are translated by a preprocessor into PL/I

source routines which can then be incorporated into a compiler.

The code generation algorithm accepts expressions of the language being compiled as a

parameter and generates object code to compute that expression. Evaluation proceeds by a

traversal of the syntax tree. As each operator is encountered, the coder is considered to be in a

state that corresponds to the locations of its operands, such as in an accumulator or in memory.

The operand state idea is based on earlier work done by [Miller71] which is summarized in a

later section of this chapter. For each operator, the implementor specifies three sets of facts.

The first is a list of special conditions that will apply to the operands upon entry to that CGPL

procedure. An example would be that both operands cannot be in the accumulator of a single

accumulator machine at the same time. The second is a set of state tuples from which code can

be directly emitted for that operator, and the corresponding PL/I code to actually generate the

correct code. The PL/I code is usually a single call to a particular code generation routine. The

third set of inputs is a list of state transitions that transform operands from one state to another

and PL/I code generation sequences to implement them. This information allows the code gen

erator to automatically modify the state of the operands, bringing the coder into a terminal slate

from which code can be emitted. Example CGPL routines for integer addition and subtraction

for a simple one accumulator computer with a stack appear in Fig. 1.4.

As stated earlier, the preprocessor generates PL/I routines as output from the CGPL

input routines. It also generates a table for each operator that describes the state transition

paths that will be used to generate code for all valid input state pairs. Thus the CGPL routine

for a particular operator will not have to recompute transition paths each time it is invoked at

code generation time. The preprocessor also checks to make sure that it is possible to generate

code for all valid operand state pairs. Donegan discusses the problem of determining the shor

test state transition path when several possible instruction sequences exist, based on supplied

instruction costs.

CGPL is a higher level code generation language than those used in previous work. It

allows a cleaner representation of the information than is possible in lower level languages, and

consequently should require less implementation and debugging time. It has incorporated in it

SGENERATE ADD;
DECLARE CONDITIONS (VAR TREEPTR) MUTUALLY EXCLUSIVE,

(INACCONSTACK) INTERNAL;
TERMINAL

(VAR,INACC) -> lGEN(ADD,OPl)',
(INACCVAR) -> 4GEN(ADD,OP2)',
(ONSTACK,INACC) -> 4GEN(ADD,NIL)';

TRANSITION

(VAR,INACC) -> LOADUP,
(TREEPTR,INACC) -> TRANS,
(INACCONSTACK) -> 4GEN(PUSH,NIL)';

END

$GENERATE SUB;
DECLARE CONDITIONS

(VARJREEPTR) MUTUALLY EXCLUSIVE,
(INACC,ONSTACK) INTERNAL;

TERMINAL

(INACCVAR) -> 4GEN(SUB,OP2)\
(INACCONSTACK) -> lCEN(SUB,NIL)';

TRANSITION

(VARJNACC) -> LOADUP,
(TREEPTR,INACC) -> TRANS,
(INACCONSTACK) -> 4GEN(PUSH,NIL)';

END;

Fig. 1.4. CGPL Routines for ADD and SUB from [Donegan73j.

some ideas on automatically determining instruction sequences from a semantic description of

what is needed to be done. In these two respects it is a distinct improvement over earlier work

in code generation languages.

However, CGPL is not entirely portable due to its close tie to a single high level language

and to the machine and implementation dependent state set and support routines. This author

feels that the quality of the object code produced by the system is not much better than that

produced by macro expansion. Operators are translated individually after all operands have

been evaluated and without regard to the requirements of subsequent operators. There is no

way to incorporate multiple operation instructions that might appear in a new computer's

instruction set (such as memory to memory addition — equivalent to an add and a store, or a

double indexed load — two adds and a load) without modifying the internal syntax tree to

locate where they might be used.

An implementation of CGPL was done by Maltz as an extension to the PASCAL

12

programming language [Maltz77]. The language aspects were improved somewhat, especially

the typing mechanism and syntax. Maltz's implementation also indicated that fair code could
be generated, but that the drawbacks previously mentioned were present. CGPL is just another

programming language that is specifically designed for writing code generators.

1.4.1.5. Analysis of Code Generation Languages

Code generation languages are not as successful as might be hoped. While they are an

improvement over the method of writing a code generator in a standard computer language,

since some bookkeeping is done automatically, the implementor still has to make all of the

low-level decisions, and consequently can make the same errors, whether they result in

incorrect or merely inefficient object code. This problem is magnified when more than one pro

grammer is involved in writing the code generator. It is more desirable to allow the program

mer to input a concise description of the target computer and let the code generator make all of

the decisions, assuming such a task could be efficiently done. If that description is concise, a

single programmer could write and maintain the code generator for a large compiler. Even if

several programmers were involved, the task would be simpler to understand. Many logical

errors would be eliminated, and the bulk of the remaining errors would be clerical in nature,

representing some misconception as to how the actual computer hardware behaves.

1.4.2. Code Generation by Semantic Machine Description

1.4.2.1. Miller

Miller describes an early attempt to automatically create a code generator from a semantic

description of a target machine [Miller71]. In his system, DMACS, a code generator is created

in two steps. In the first step the semantics of the language are defined by a set of machine

independent macros. In the second step information describing the structure and semantics of

the target computer is defined. All of the operators in the language macros must have instruc

tion sequences that implement them in the target machine description.

The code generation process is modeled as a finite state machine whose state is deter

mined by the runtime location of the operands to a particular macro. States are called permit

ted if object code can be directly generated to implement that macro from that state. If the

coder is not in a permitted state, a series of automatic transitions is made to bring it into such a

state. In order to do this, the user specifies a set of state transition paths and object code that

implements them, such as load, store, and register to register move instructions.

13

Data referencing is treated as a separate task. The language implementor defines data

reference macros and the machine specifier describes the resources available on the target

machine and how the distinct data classes are to be represented. It is then possible to have

automatic allocation and accessing of data items.

The problem with this work is that many simplifying assumptions are made concerning

the architecture of the target computer. Compilers for real machines are more complex than

Miller's model allows. Also, he only addresses the problem of generating code for two parts of

a compiler, expression evaluation and data referencing. Nevertheless, Miller opened a new area

of automatic code generation, the semantic machine description approach. A great deal of

research has been and continues to be carried out in this area.

1.4.2.2. Weingart

Weingart describes the code generator used in several implementations of the systems

programming language IMP [Weingart73]. His method is based on matching the target

computer's instruction set with the output of the parser to determine which instructions to gen

erate. The instruction set is encoded into a tree structure to facilitate the pattern matching pro

cess. A tree traversing routine accepts patterns from the parser and searches the tree for

equivalent patterns.

The user provides a description of the target computer's instructions in the form of a tree

structured data base. Only those instructions that implement operators in the source language

>are used. Instructions that move data between registers or load data from memory into aregis
ter do not implement any such operation and must be handled separately. Weingart describes a

program that helps to construct the data base for the user. The user also describes the format

in which the instructions will be output. Special conversion patterns are required in addition to

the instruction set description to allow the coder to start generating code for certain instances

for which the machine has no single instruction. For example, consider the statement:

A := B + C;

The output of the recognizer is something like:

m m m + :=

where m stands for the address of a variable. On a machine without a multiple address add

instruction the code generator would need some help in starting the code generation for this

statement. Since instructions to load a single operand into a register are not automatically

14

utilized by the code generator, the user supplies a special pattern called a conversion pattern to

match the 'm m +' portion of the input and arbitrarily generate code to load one specific

operand into a register. When generating code for an operator it is the user's responsibility to

specify conversion patterns for any case in which code cannot be directly generated. The input

string is then altered to reflect the load instruction:

m m r + : =

and code generation continues. The 'mrV portion of the input is then matched to an add

instruction, code is issued, and the input is changed to:

m r : =

The major advantage of this method of code generation is that it relies on the instruction

set of the target computer in deciding what code to emit. The clerical nature of describing an

instruction set is less prone to error than the creative nature of writing code generation rou

tines, macros, or templates. Every operational instruction is available to the coder, and with a

careful ordering of the instruction tree, special cases for non-standard instructions are automati

cally discovered by the code generator. Weingart claims that good local code is generated.

Finally, retargeting the compiler for a new computer is greatly simplified. One merely substi

tutes the new instruction set's description for the old as input to the tree builder and produces a

data base for a code generator for the new machine.

The disadvantages of this method are the difficulty of creating and using an optimal tree

structure for code generation and the lack of sufficient conditions to insure that a complete set

of conversion patterns have been supplied. The efficiency of the code generation algorithm as

well as the quality of the generated code are dependent upon an optimized version of the

instruction tree. If the tree is not compressed as much as possible (by combining prefixes of

similar instructions) then the coder will spend a lot of time searching the tree for patterns. If

there is one instruction that is a more efficient but a special case of another instruction, then

care must be taken to insure that the special case is matched first, or else it will never be used.

For example, if there is an add immediate instruction that adds an integer constant to a regis

ter, and a more efficient increment instruction that adds 1 to a register, then it is desirable to

use the increment instruction whenever possible. There is also a minor problem that would

result from an incorrect description of an instruction. This would cause incorrect code to be

generated, but would be relatively easy to detect as that instruction would always be issued

incorrectly.

15

A more serious problem is the lack of a method to determine whether the necessary set

of conversion patterns have been supplied. These patterns are not obtained directly from a

description of the instruction set, though some progress in this area is surely possible. It is

mandatory that the patterns be complete. Any omission would cause the coder to block at

some point and it would not be able to generate code for some legal expression. Without a set

of sufficient conditions that will insure that a complete set of conversion patterns have been

supplied, there will be no guarantee that the coder will not block on valid input.

1.4.2.3. Analysis of Semantic Code Generation

Semantic code generation is a promising area in compiler research. It strives to free the

compiler writer from having to painstakingly analyze numerous special cases when choosing

code sequences, and allows the entire code generation process to be viewed from a higher,

more abstract level. More of the implementor's time can be devoted to studying the problem

instead of juggling the solution, analogous to coding in a high level language as opposed to

assembly language. The fact that a code generator can be automatically created provides both

the possibility of writing a practical, easily retargetable compiler and developing a convenient

tool for investigating instruction set designs. Both are becoming increasingly important due to

the number of microprogrammable computers appearing today. Such development tools are

absolutely necessary if the increased flexibility provided by these new computers is to be fully

utilized.

A major problem with code generation by semantic machine description is to determine

the proper level at which to define the semantic model. A description at too high a level would

possibly make implicit assumptions about the target computer that are not always true, leading

to either inefficient or incorrect implementations. A description at too low a level would either

be too difficult to use or would result in an inefficient code generator. Furthermore, certain

computer architectures are difficult to model by a semantic description. Particularly notable are

the 'super computers' of both past and present and the one chip microcomputers. The
difficulty is perhaps inherent in their design rather than a shortcoming of semantic modeling.
Such computers are a product of pushing available technology to its limits in order to achieve a
cost or performance breakthrough. They were designed either for high speed or for low cost,

not for programming ease. Finally, there is some question as to whether any completely gen

eral code generation scheme can produce reasonably good code in an acceptable amount ol

computer time.

1.5. Summary of This Project

The approach taken in this dissertation is to implement a machine independent compiler

for a specific programming language that can systematically be tailored to generate code for any

specific computer. The input to the compiler that gives it this flexibility consists of both a list

of implementation decisions and a semantic description of the target computer. The implemen

tation decisions govern the method by which certain language constructs are to be imple

mented, hopefully in a way that is most amenable to the target computer. The semantic

machine description is at a relatively high level. To compensate for this fact the compiler is

tailored to produce an internal representation that favors the target computer's architecture,

according to the implementation decisions made. As many machine independent optimizations

as are judged worth while may be included in the compiler (constant folding, etc.). Specific

data concerning the target machine is used to guide other machine dependent optimizations. A

preprocessing algorithm is presented that reads the target machine instruction set description, in

the form of an ambiguous context free grammar, and outputs tables that a machine indepen

dent code generation algorithm can use to produce object code for the machine described.

Prior work in the area of parsing table construction using ambiguous grammars proved useful

[Aho75]. The IR input to the code generator is biased by the implementation decisions in a

way that will allow a simple, machine independent code generation strategy to generate reason

ably good code. Finally, algorithms are developed to eliminate the possibility of the coder loop

ing or blocking on valid input, resulting in a proof of correctness for the resulting code genera

tor. A more detailed description of this process is given in the next chapter.

1.6. Comparison with Compiler-Compilers

One may rightfully ask how this work differs from the compiler-compiler approach to

compiler construction and language portability. It may appear to be just a subset of compiler-

compiler research. This observation is in fact partially correct. However, the main difference is

that compiler-compilers strive to be as general as possible, especially at the front end, allowing

many radically different languages to be compiled, while this work is primarily concerned with

the code generation phase of compiling. What has been done is, in effect, to fix the front half

of a compiler-compiler system for a specific language and to concentrate on the relatively non-

understood back half, primarily code generation. Practically speaking, in our design, the front

end can be written as efficiently as standard one language / one machine compilers, something

not currently possible with compiler-compilers. Consequently such a compiler can be used in a

production environment. In a research environment, this work provides a valuable tool for

experimentation with code generation schemes and related areas, including register allocation

algorithms, determining the effectiveness of certain optimizations, and, perhaps most

17

importantly, allows the impact of different instruction sets on object code size and efficiency to

be studied.

r

Chapter 2: Design of a Machine Independent Compiler

This chapter discusses the overall design of a machine independent compiler. A compiler

is a program that translates programs written in a programming language into machine instruc

tions that can be directly executed by the target computer. This is in contrast to an interpreter

that translates source programs into pseudo code, which is in turn interpreted by another pro

gram when being run. A machine independent compiler can be reconfigured in a systematic

and well-defined manner to generate object code that can be executed on any specific target

computer.

In particular this chapter discusses a generalized retargetable compiler. A compiler is

retargetable if there is a well-defined procedure by which it can be altered to generate object

code for a variety of different target computers, even though the compiler itself might need to

be executed on a particular computer. A portable compiler is a retargetable compiler that can

be made to execute on the new target computer as well. The act of altering a compiler so that

it will execute on and produce code for a new computer is called transporting the compiler to

the new computer. The language compiled by a portable compiler is also said to be portable, as

it can be made to run on any computer by the transporting of its compiler. There are several

ways to actually transport a portable compiler [Welsh72] [Pasko73] [Nori74] [Poole74] [Glan-

ville76], the most popular being variations of bootstrapping in which the compiler is written in

the language which it compiles and then used to compile itself into code for the new target

computer.

The organization of the compiler is described with respect to these areas:

1) language dependent — machine independent aspects,

2) machine dependent aspects that have a small number of reasonable implementa

tions,

3) strongly machine dependent aspects (i.e. code generation), and

4) the use and effectiveness of specific optimizations.

Emphasis is placed on producing a compiler that can be retargeted for a new computer with

minimum effort, yet allows fast compilation and the generation of reasonably good object code.

It is argued that such a compiler can be written with almost the same effort required to imple

ment a single compiler for a single computer, and that such a compiler is desirable from a

language standard point of view as it would aid program portability. The final section discusses

various machine independent and machine dependent but parameterizable optimizations that

can optionally be included, with some observations as to their cost and effectiveness.

A compiler for a specific computer is generated by a preprocessor from a set of

specifications that define the target computer and the implementation decisions to be used. The

preprocessor can be thought of as a language dependent compiler-compiler. The input to the

preprocessor is a list of implementation decisions, a list of machine instructions along with their

semantics, and a set of parameters that describe the architecture of the target computer. The

output consists of a program in some high level language which is the compiler. A general

diagram of the compiler appears in Fig. 2.1. The implementor must also provide certain service

routines that interface with the operating system under which the compiler will be run. These

include routines for input and output, memory management, interprocess communication, and

other local support.

L Program —•

Machine Description

I

Preprocessor

I
Source for L Compiler

Written in L

Generates Code for C

I

L Compiler
Runs on C

Generates Code for C

I
L Cross-Compiler

Runs on C

Generates Code for C
C Object Code

Fig. 2.1. Generation of a Machine Dependent Compiler.

2.1. Machine Independent Aspects

When compiling a program for a given language, there are certain tasks that must be done

which are not dependent upon the target computer for which the code is to be generated. In

fact, if a complete definition of the language is available, it is possible to write a parser and a

semantic analyzer that would be adequate in a compiler for any target computer. The APT out

put of the recognition phase can also be in a machine independent language. Furthermore, a

multitude of language dependent but computer independent optimizations can be performed.

20

either on the source language itself or on the intermediate text. These optimizations are dis

cussed in Section 2.4.

In a machine independent compiler, machine independent aspects are programmed once

and used in all implementations. When generating a new compiler for a new computer, the

section of code for these aspects is simply copied. If the compiler is to be transported to new

computers, instead of simply to be retargeted to produce code for them, the question arises of

which language is to be used to write such a compiler. Assembly language is obviously not

suitable, as it is both difficult to write in and, by nature, not readily transportable to new com

puters. High level programming languages, such as PL/I, FORTRAN or COBOL also have

their problems. FORTRAN is available on most computers, but programs written in it are not

necessarily portable. There are too many hardware and implementation dependent restrictions

and 'enhancements', and it is not the ideal compiler implementation language. PL/I is better

suited to compiler writing, but is available on only a few computers. Systems programming

languages, such as PL/360, C, IMP, BLISS, and BCPL, are more suited to compiler writing but

they are machine dependent and each is only available on a small number of computers.

There are two immediate solutions to this dilemma. The first one applies only to those

languages in which a compiler may easily be written. This method requires that the preproces

sor and the machine independent compiler be written in the language to be compiled. Then it

is a relatively simple task to bootstrap these programs onto another computer using the follow

ing steps: The specifications for the new implementation are input to the preprocessor and the

source code for a compiler for the new computer is generated. That source is then compiled on

the existing compiler and the resulting object code is a cross compiler that executes on the old

computer and generates code for the new computer. Next, the source for the new compiler is

compiled on the cross compiler, and the result is a compiler for the new computer. This pro

cess is illustrated in Fig. 2.2.

The second method would be used to implement machine independent compilers for

languages which are not totally suited to compiler writing. The machine independent compiler

is written in a language that either is already available on the new computer or is implemented

via a similar machine independent compiler. The language used to implement the compiler for

the new language is then transported to the new computer in the manner described above, if

that language is not already available on the new computer. The machine semantics and imple

mentation details for the primary language being transported are then input to the preprocessor,

and source for the compiler that generates code for the new computer is output. This can then

be compiled and run on the new computer via the existing secondary language compiler.

21

New Computer Specificationfor C

1

Preprocessor

I
Sourcefor New L Compiler

Written in L

Generates Code for C

1

Existing L Compiler
Runs on C

Generates Code for C

1

Objectfor L Cross-Compiler
Runs on C

Generates Codefor C

L Cross-Compiler
Runs on C

Generates Code for C

I
Object for New L Compiler

Runs on C

Generates Codefor C

Fig. 2.2. Bootstrapping to a New Computer.

2.2. Parameterizable Machine Dependent Implementation Decisions

There are certain implementation decisions that, though a single choice could be used for

all target computers, can drastically affect the efficiency of the implementation. Such decisions

should be made with an actual target computer in mind. Ah example is the run time display in

ALGOL-like languages. On a computer with sufficient index or base registers, it may be best to

keep the entire display in registers. On a computer with a few base or general purpose regis

ters, it may be best to keep only the global and local displays in registers and access the others

via the complete display stored in memory. Single register computers might do better allocating

a fixed array in memory to the currently active display. The single register solution would work

correctly on any computer, but certainly not as efficiently on most. The number of reasonable

ways to implement the display, however, seems to be limited to these three. In fact, for a

given language, there are many implementation decisions that appear to have only a few good

choices on existing computers.

22

The idea of automatically tailoring the first part of a compiler to a specific target computer

via a list of attributes of that computer is not new. The PASCAL-P compiler uses just such a

scheme to automate variable allocation [Nori74]. The P compiler is actually the first half of a

complete compiler. Source programs are translated into assembly language for a hypothetical

stack computer, SC, with variable allocation and addressing governed by the machine depen

dent parameters supplied. Either the code can be interpreted (an interpreter written in PAS

CAL is supplied with the P-compiler), or various methods may be used to translate the assem

bly code for SC into object code for the target computer. Since the P-compiler is written in

PASCAL, it is possible to bootstrap a compiler onto the new computer once this has been

done. The P-compiler has been successfully bootstrapped onto a number of computers using

this method, including the Univac 1108 and the IBM-360 [Richmond74], the PDP-11 [Bron76],

and the PDP-10 [Grosse76], to mention a few.

When specifying a particular implementation of the machine independent compiler dis

cussed in this dissertation, the implementor supplys a checklist of such implementation deci

sions. The preprocessor then emits the corresponding sections of code, in whatever language

was used to implement the compiler, that correspond to the decisions. Since many such deci

sions are represented by a slight change to the IR produced in the translation phase, almost as

macro expansions, this should not be a difficult task. Again, consider the ALGOL runtime

display. The display is used to access variables. As discussed at length in Chapter 3, the IR is a

low level representation of the program being compiled. Included in it are the implementation

details of that particular compiler. So, any change in the implementation of the display will

result in a corresponding change in the IR code to access variables that is input to the code gen

erator. But this is a very local alteration to the IR, as if it were a macro substitution at each

variable access. No other portion of the compiler need know about this decision (aside from

the register allocator, which must not allocate any base registers, used to hold the display, for

other tasks). The code generator blindly translates IR symbols into object code instructions,

not knowing what ends they might accomplish.

Another example of an implementation decision that could be made via a checklist con

cerns the evaluation of Boolean expressions. It may be that the target computer has a set of

efficient compare instructions that computes a Boolean result from two operands. In that case,

it would be desirable to generate straightforward prefix code for the IR using relational opera

tions. Otherwise, it might be best for the compiler to compute the value using conditional

jumps [Bauer68] [Gries71] [Aho77b]. For example, the following Boolean expression:

(/ < J) and (A: * L)

23

could be represented in the two following pseudo target machine instruction sequences:

load n,/
It ri,y
load TlyK
ne r2,L
and rl,r2

load rl,/
comp ri,y
jge l.false
load rl,K
comp rl,L
jeq rl J.false

I.true load rl, = l
jump next, ins

l.false load rl,=0
next, ins

As the reader may have noticed, the two instruction sequences shown do not compute exactly

the same expression. The first one evaluates the entire expression verbatim. It always com

pares K and L even though the result of the computation may have been determined by the

comparison of / and J. (If one operand to a Boolean and operator is FALSE then the result

will be FALSE regardless of the value of the other operand.) The second code sequence uses

this fact to optimize the evaluation of the expression. If / is greater than or equal to J then a

jump is made directly to the FALSE label.

There are several points to be considered concerning the evaluation of Boolean expres

sions. It is often a decision of the language designers to require full evaluation of Boolean

expressions, to require the evaluation to stop as soon as the result can be determined (as in

ALGOL-W [Bauer68] and BLISS-11 [Wulf75]), or to allow the implementor to make the deci

sion (as in PASCAL [Jensen74]), either explicitly or accidentally. The last choice is undesir

able since it may lead to problems when moving a program from one compiler to another. It is

also important for the user to know which choice is being made. Consider the statement:

while (/ < MAX1NDEX) and (A[i) * x) do / := / + 1;

where A is an array with dimension 1..MAXINDEX. The execution of this statement will some

times result in a subscript referencing error when full evaluation is done, but never when

minimal evaluation is used. Such expressions are also affected by the order of evaluation when

the minimal computation method is used. In any event, the implementor of a compiler using

the machine independent compiler described in this dissertation will not be making a choice of

whether to use a partial or complete evaluation of Boolean expressions, as that is predetermined

by the language being compiled. Instead the implementor decides whether Boolean compares

are best implemented by arithmetic operations or conditional jumps on a particular target com

puter. It should also be noted that the compiler can often optimize jumps in a machine

24

independent manner, depending upon whether the Boolean value being computed is used in a

flow of control test as in:

if (/ < j) and (k ^ /) then ...

or an assignment statement:

Boolvar := (/ < j) and (k ** /);

The difference stems from the fact that an if statement only needs to transfer control to one of

two locations while the more general case of the use of a Boolean expression in the assignment

statement requires some standard representation of TRUE or FALSE to be explicitly generated

and stored into the variable Boolvar.

The PASCAL-P compiler requires 9 integer constants in order to specify a target com

puter. These constants are used to determine certain machine dependent limitations (such as

maximum integer value accepted), how much storage to allocate for the basic types, and com

piler limited constants (such as maximum string length). Figure 2.3 summarizes the required

constants.

Constant Usage

MAXINT the largest integer which the compiler will pro
cess.

CHARSIZE,
PTRSIZE,
INTSIZE,
BOOLSIZE,
REALSIZE,
SETSIZE

the number of basic, addressable storage units
required to store the values of the indicated
type. SETSIZE must be at least 59 as the P-
compiler utilizes sets of that size. (Alignment
boundaries are not handled).

DIGMAX the maximum length string of characters which
may be used to represent unsigned numeric
constants. This allows the compiler to manipu
late real values, which are not processed but
copied to the SC code output.

STRLGTH the maximum length string that can be handled
by the computer. Must be greater than DIG
MAX.

Fig. 2.3. PASCAL-P Compiler Targeting Information.

25

2.3. Code Generation

There are decisions that cannot be made without knowing certain facts about the target

computer, most notably which object code instructions to issue and how much memory to allo

cate for variables and temporaries. The feasibility of a machine independent compiler depends

upon the existence of a reasonably efficient generalized code generation algorithm. The

efficiency of the code generator and of the code it generates will have a strong influence on the

acceptance of the resulting compiler. The ease of specifying the instruction set semantics will

largely determine the number of computers on which such compilers are implemented.

A major problem associated with a machine independent compiler is choosing which

object code instructions to generate. This dissertation presents a model of computer instruction

set semantics and a general code generation algorithm that facilitate the implementation of a

code generator. The implementor supplies a list of the meanings of each instruction on the tar

get computer to the preprocessor. The preprocessor outputs tables that are read by a machine

independent code generator and are used to govern the object code generated at compile time.

The task of determining which instruction or instructions to emit for a particular language con

struct is handled automatically by the algorithm.

2.4. Optimization Phases

This section discusses modular code optimizations and how they could be included in the

overall design of the machine independent compiler. Modular optimization passes can be con

ditionally selected by the user when desired, thus eliminating extra overhead when efficient

execution is less critical (e.g. during program development). They would also provide research

ers with a convenient tool with which to study various optimization techniques and instruction

set designs. Empirical studies could be made to measure both the compile time cost and the

efficiency improvements of the optimizations on actual programs.

There are three places in the compiler that modular optimizations can conveniently be

inserted. The first is as an APT to APT transformation that detects source language level

optimizations. The second is an IR to IR translator that can utilize implementation dependent

information, present in the IR, to perhaps produce better code than the first type of optimiza

tion. The last is peephole optimization that is used to improve the object code that has been

generated by the code generator. Figure 2.4 shows the location of the optimizations in the

compiler. Some of the optimizations presented are implementable in a totally language-

dependent and machine-independent manner as a transformation of the APT. However, a

much greater improvement in the code generated is possible if they are applied after the intro

duction of implementation dependent information. Some are only applicable in certain

26

implementations and not in others. In any event, it is usually desirable to introduce optimiza

tions after a point at which the implementation dependent information is known.

Source Program

1
Compiler:

Analyzer

i

APT Optimizer

1

Translator

\

IR Optimizer

I

Code Generator

i

Peephole Optimizer

1

1
Object Code

Fig. 2.4. Three Places for Modular Optimization.

The word 'optimization' is used rather freely here. Perhaps 'code improvement' or even

'transformation' is better suited. There is no clear-cut line between generating 'optimized code'

and just plain 'good code'. In special cases, a valid 'optimization' may even result in pessim-

ized code. Unlike constant folding, which can only result in shorter object code and a faster

run time, common subexpression elimination may result in object code that actually 'costs'

more in certain specific cases than if it were not done. This depends on the cost measure used,

the architecture of the target computer, and its exact state when the object code is being pro

duced. Generally, the resulting object code will be shorter and/or will execute more rapidly

27

28

after the transformation has been applied. In any event, the term 'optimization' will be used

throughout this chapter in the preceding sense.

2.4.1. Constant Folding and Constant Propagation

One of the simplest optimizations to perform is constant arithmetic computations at com

pile time. In its basic form, this transformation consists of finding expression subtrees in the

APT in which all leaves are constants and replacing each subtree by a single node representing »

the equivalent constant value. The replacement requires evaluating operators, such as '3*5',

and certain functions with constant arguments, such as 'ARCTAN(1.0)*4.0'. User functions j

cannot be evaluated at compile time unless there is some mechanism to insure that they have

no side effects and that they always return the same value when called with the same parame

ters. The PL/I function attribute REDUCIBLE is one method for the user to notify the com

piler that these conditions hold [IBM65].

Constant propagation is also easy to perform. If a variable is assigned a constant value, its

value is used later in the program, and there is no way for the variable not to have that value

when control reaches the subsequent variable reference, then the constant may be substituted

for the variable in that reference.

Constant folding can be expanded to include the more general situation in which the com-

mutativity of an operator is used to discover otherwise hidden cases. However, one has to be

careful not to violate the semantics of the source language. Ask any numerical analyst what

certain 'legal' commutative reorderings of operands will do to the accuracy of certain floating

point computations. Also more compile time is required to discover generalized constant fold

ing.

A specific place that constant folding occurs frequently is in expressions used to access

array elements or record fields. The address of the array element A[i] may be computed as

'a + /", where 'a' is the address of A[0] (if it were to exist). Obviously, if V" is a constant,

then computing the address A[i] can be made much simpler. In FORTRAN the address would

be a compile time constant, and in PASCAL the array element would be addressed in the same *

way that a simple variable is addressed. If there is a constant component to the index, then it

could be added to 'a' at compile time to simplify the runtime expression. The address of a &

PASCAL-like record field, such as REC.FLD, is a constant offset from the beginning of the

record, which often can be added to the constant offset of the variable of which it is a part at

compile time.

Constant folding may not appear to improve the object code enough to be worth perform

ing. However, constant expressions may be introduced by macro expansion or by inline

procedures. If there are constant parameters to a macro or inline procedure, then a consider

able amount of optimization may be possible. Constant folding, along with dead code elimina

tion (the removal of code that cannot be reached), can even reduce the amount of work

required to implement a reasonably efficient compiler. A group at IBM is implementing an

experimental optimizing PL/I compiler [Harrison77]. In PL/I, string concatenation is a com

plex operation to optimize. String variables may be variable or fixed length, on word or byte

storage boundaries, have known or unknown compile time values, etc. Their solution to this

problem is to write one general string concatenation procedure and include an inline copy at

each occurrence of a concatenation operator, with the formal parameters replaced by the actu

als. Repeated application of constant propagation and constant folding, live-dead analysis, and

dead code elimination uses the information known at compile time to tailor the operations to

that particular call, thus optimizing the operation.

Constant folding and constant propagation are language dependent but machine indepen

dent optimizations. These optimizations can be programmed once and used in all implementa

tions. Either of the first two methods of adding them to the portable compiler is suitable. An

IR to IR translator would be able to detect optimizations involving the target implementation,

thus producing better code, but an APT to APT translator would be easier to implement.

2.4.2. Peephole Optimization

A substantial amount of optimization can be achieved by the use of a peephole optimizer

[McKeeman65]. Such an optimizer transforms object code after it has been emitted by the

code generator. An attempt is made to recognize certain instruction patterns and to replace

them with more efficient code sequences. There are several distinct classes of patterns that may

be used in a peephole optimizer. Some of them are listed in Fig. 2.5. For an example, con

sider the two statements:

A := B; C := A + 1;

Naive code generation might produce code similar to:

load rl,Z>
store rl,a
load rl,a
add rl, = l
store rl,c

Clearly the second load instruction is unnecessary as the value of A is already in register rl

Likewise, the add instruction could be replaced by an increment instruction, if one existed.

29

• Eliminating redundant loads and stores
• Recognizing target machine idioms
• Removing unreachable code blocks
• Eliminating jumps to jump instructions
• Algebraic simplification
• Strength reduction

Fig. 2.5. Some peephole optimizations.

As will be seen in Chapter 4, the code generator used in the machine independent com

piler is very good at utilizing idiom instructions, such as using increment to add 1. It is also

capable of performing a limited amount of strength reduction (e.g. replacing a multiply instruc

tion with a more efficient add or shift instruction). The other peephole optimizations, however,

would seem to improve the generated code a great deal, and should be carefully considered

when implementing a compiler [Wulf75].

2.4.3. Common Subexpression Elimination

Another language dependent, machine independent optimization is common subexpres

sion elimination. When the same subexpression appears more than once in a program, and the

compiler can determine that its value will be the same each time it is evaluated, then that

expression is called a common subexpression (CSE) and only need be computed once. Its

value can be stored in a temporary location and used upon encountering subsequent

occurrences of the subexpression instead of actually recomputing it. The rules that govern

when this optimization may be used are highly language dependent.

A CSE optimizer can be used in the machine independent compiler in several ways. The

simplest would be to locate all instances of a CSE, compute the value once and store it in a

temporary variable, and replace the uses of it by a reference to that variable [Schneck73]

[Loveman76]. The code generator would not even be aware that such an optimization had

taken place. Somewhat better code can be generated if the value is not stored into a temporary,

but flagged in the IR as a CSE. Each use of it can be replaced by a "use CSE" operator, and

the code generator can attempt to keep its value in a register throughout its lifetime. This

matter is described in more detail in section 4.3.

30

2.4.4. Other Optimizations

More global optimizations, such as code motion, can also be performed as APT to APT

transformations [Allen75] [Graham76] [Barth77]. The net result is almost a source level

optimization, so the code generator is not affected. Thus, these optimizations could easily be

utilized in a machine independent compiler.

31

Chapter 3: The Target Machine Description

This chapter describes the Target Machine Description Language, TMDL, that is read by

the preprocessor and the Internal Representation, IR, for the machine independent compiler

outlined in Chapter 2. TMDL is designed to be easy for the implementor to use. It is com

posed of sections that describe the resources of the target computer (such as the number and

kind of actual machine registers), how those resources are used (including logical groupings of

register classes and pairs, and which registers are free for the code generator to use), and the

instruction set description. The major part of the discussion of TMDL concerns the instruction

set description. Since it is closely tied to the IR, a description of the development and content

of the IR is given in the first section. The instruction set description is presented next, fol

lowed by a discussion of the remainder of TMDL. The final section gives a partial description

of a simple computer to give the reader a feeling for the nature of TMDL.

3.1. The Internal Representation (IR)

In order to generate object code in an automated system, it is necessary to define a

semantic model of computer instruction sets. Such a model is restricted in two ways. It must

interface with the computer (by describing the actual instructions) and with the semantic

description of the language being compiled. It is not surprising, then, that the design of the IR

used in a machine independent compiler is heavily influenced by the language used to describe

machine instructions, and vice versa. Due to the parsing nature of the code generation algo

rithm, the IR must be constructed from the same set of symbols used to describe the instruc

tion set semantics. In addition, the IR must have the property of locality, in that the meaning

of an expression is not affected by the context in which it appears. The reason for this will

become more apparent when the actual code generation algorithm is described. This section

outlines the development of the IR; the next section describes the instruction set semantic

language.

Consider the following PASCAL statement:

A := B + C (3.1)

This statement by itself is ambiguous. It represents a few valid and a multitude of invalid PAS

CAL statements, depending on the types and level of declaration of the variables, whether they

are fields of a record, function names, or even type names or undeclared identifiers. It should

be noted that it is not the function of the code generator to perform type checking or to report

32

other semantic errors. It will be assumed that the IR string passed to the coder represents a

semantically valid program, i.e. a legal program according to the rules of the language. To sim

plify the presentation, the type of all variables and operators in this section will be assumed to

be integer.

A source language prefix expression is an unambiguous linear representation of the APT

for a source language expression, having been linearized in Polish prefix order. In a prefix

expression, the number of operands to each operator (label of an internal tree node) is fixed

and each operator appears immediately prior to its operands. Parentheses, which are required

in standard infix notation, are not required in prefix notation, and consequently are absent.

Prefix notation is one of the simplest ways to unambiguously represent a source language state

ment in a known context. This representation is used as the input to the code generator by

some compilers [Aho72a] [Gries71]. For an in depth mathematical study of parenthesis-free

representations of trees, see [Meyers74]. The equivalent source language prefix expression for

(3.1) is:

:= A + B C (3.2)

This expression can be generated from the APT by a simple preorder walk [Knuth68]. In a

compiler that is generating code from prefix expressions, As B, and C would be pointers into a

symbol table where their attributes are described. Such a prefix expression does not provide

enough information for a code generator. Even knowing that A is a local variable, B is local to

the next statically enclosing procedure, and C is global is not sufficient. The code generator

must either have the details of the particular implementation built in (to be able to generate

code, for example, that accesses the value of a variable) or have that information represented

in the IR itself. The viewpoint taken in this dissertation is that the code generator's primary

responsibility is to generate correct code, and that it should not be required to make implemen

tation decisions. Thus, implementation details are incorporated into the IR.

Since (3.2) is at too high of a semantic level for the code generator to use, it must be

translated into an equivalent sequence of basic machine operations that convey how the source

language operations are to be implemented. (In particular, all coercions are explicit). This

translation is seldom more than a macro expansion. When the value of a variable is needed,

for example, it is replaced by an expression representing an access path to its value in that par

ticular implementation. When its address is required, such as the case for the identifier A in

(3.2), it is replaced by the corresponding expression. Unlike source language level prefix

representations, IR is a very low-level and local language, allowing expressions to be evaluated

without considering their contexts. The code generation algorithm presented in this dissertation

33

requires that the IR have this property. In contrast, source language prefix is usually not local.

An identifier may represent either the value or the address of a variable, depending on which

operand to an assignment operator it is. An exception would be BLISS [Wulf71] in which an

identifier always represents the address of a variable and must be dereferenced to obtain its

value.

The IR input to the code generator is a sequence of Polish prefix expressions composed

from a finite set of symbols, V, called the vocabulary. These symbols are classified into the

two major categories of operators and operands. In order to be able to define the set of well-

formed IR expressions, the number of arguments to each operator must be both fixed and

knownf. Each operator is also classified as being either a root-level operator (those that may

not appear in an operand to another operator) or an internal operator (those that must appear

as an operand to another operator). Let M be a mapping of symbols in V into the integers,

M: V —♦ integers, with M(e) equal to 1—n if e is an «-ary operator, and equal to 1 if e is an

operand. (Thus binary operators are mapped to —1, unary operators to 0, and operand symbols

to 1.) If E= e ...e. is a sequence ofsymbols in V, then M(E) is denoted W= Wy..wk. Eis a
Polish prefix expression iff:

1) w.+ W.+... + W = 1, and

2) Vj, Kj<k, WJ+... +MJ < 1.

A root-level IR expression is a prefix expression, E, that satisfies the two additional conditions:

3) e. is a root-level operator, and

4) e2,...,e. are not root-level operators.

An internal IR expression is a prefix expression containing no root-level operators. An

operand to an operator is either a single symbol that is itself an operand, or a sequence of sym

bols in V that form a Polish prefix expression that contains no root-level operators. The

operand immediately following a binary operator is termed the left operand; the other operand

is the right operand. An IR expression is a Polish prefix expression that does not violate any

of the above properties of its operators. An IR program is a sequence of root-level IR expres

sions that represent a translation of some valid source program. Prefix expressions are a linear

representation of expression trees. Root-level operators are those that must appear as the root

tFor simplicity, it is assumed in this dissertation that all operands are either unary or binary. All of our
methods are readily generalized to n-ary operators.

34

of the tree in the equivalent tree representation of an IR expression, while internal operators

are those that may not appear as the root.

Arithmetic expressions are represented in the IR by their equivalent Polish prefix

representation. The value of a variable is represented by a prefix expression describing an

access path to its value at execution time, and the address of a variable is represented by an

expression describing a way to compute its actual address at execution time. Likewise, control

structures and procedure and function invocations must be expressed as well-formed prefix

expressions. This is accomplished for higher level control structures by representing them as a

sequence of lower-level operations. A for loop, for example, would be broken up into the basic

operations of assigning the initial value to the control variable, assigning the limit value to a

temporary variable, incrementing the control variable, and conditionally jumping to repeat the

loop. It is important to note that root-level IR expressions cannot be embedded in one another.

If a conditional jump operator is root-level, then the code generator cannot load a variable into

a register, perform a test on its value and jump accordingly, and then increment and store the

value back into the variable*!". The basic operations required to implement the PASCAL for

loop:

for£>:= EtoFdo ... ; (3.3)

could be represented as:

D:= E\
TEMP.= F\
goto 2;

1:

D := succ(D)\
2: if D < TEMP then goto 1;

Actual IR code for this for loop is given later in this section.

The generation of IR is target implementation dependent. We therefore will make a few

assumptions about the target computer and the implementation for which code is to be gen

erated in order to allow (3.2) to be translated into IR. Assume that global variables reside in

memory locations fixed at load time, and that local variables reside in memory locations

addressed by the sum of a run time base address and a fixed displacement. If the base for local

variables is kept in a register, and each statically more global base is kept in a memory location

tThis restriction is imposed to facilitate proof of correctness of code generators. It does not restrict the im
plementation, since one could have distinct conditionaljump operators — one root-level and one internal —
which correspond to the same machine instruction.

35

that is pointed to by its immediately inner base (i.e. as a linked-list of bases headed by the local

base, as in [Wirth72]), then (3.2) may be rewritten as:

:= + ar +] + b] r] c (3.4)

The r's stand for the register that contains the local base, a b and c stand for address constants,

| is a unary operator that computes the value of the memory location addressed by its operand,

+ is integer addition and := is a binary operator that stores the value of its second operand

into the memory location addressed by the value of its first operand. The address of the global

variable C is then 4c\ and its value is '] c\ The address of the local variable A is the constant

'a' plus the run time base, i.e. '+ a r\ Since only the local base is present in a register, ZTs

base is found by following the linked-list headed by the local base. In this case B is one static

level out, so the value of Bys base is '] r\ the address of B is '+ b] r\ and the value of B is

't +b\r\

If D, £, and F are local variables in the above implementation, then the IR code for the

for loop in (3.3) would be:

:= + dr\ + er
:= + temp r] + fr
jL2

\L1 ...

:= + dr + t + dr\
:L2 < LI ? t + dr] + tempr

The root-level unary operator j is an unconditional jump operator that transfers control to the

symbolic label specified by its operand. The root-level unary operator : defines the location of

the label specified by its operand. The internal binary operator ? compares the values of its

operands and leaves the result in the condition code register. The root-level binary operator <

transfers control to the label specified by its first operand if the value in the condition code

register indicates that the first of the last two values compared was less than or equal to the

second. The symbols in the IR are sometimes qualified by semantic information. Such

qualification is discussed in section 3.2.

3.2. Modeling Computer Instruction Sets

The semantic description of an instruction is a prefix expression on the same level as that

of the IR. Base and index address calculations are expanded fully to reveal the precise value

that is computed by the instruction. However, a bit level description of the operations per

formed and their operands is not used, as it is more detailed than required. Instead operators

36

are typed according to the length of their operands. On the IBM 370, for example, there arc

several integer addition and memory reference operators. Full word instructions perform a full

32 bit integer addition and reference 32 bit memory words. Half word instructions also perform

a 32 bit addition but only reference 16 bits of memory for the second operand. Index and base

calculations, however, perform only 24 bit arithmetic, since the value being computed will be

used as a memory address. Of course a 32 bit add may be used in any place that a shorter

result is required if overflow conditions are either handled separately or ignored, but a 32 bit

memory reference operator cannot be used in place of a 16 bit one. The implementor may

specify cases where operator substitution is possible and thus the code generation algorithm has

a wider choice of instruction patterns available to use, e.g. to implement index additions. This

improves the quality of the object code generated.

The description of an instruction consists of three parts: the instruction pattern, the loca

tion of the result, and assembly information. The instruction pattern is a prefix expression

composed of IR symbols specifying what the instruction computes. The location of the result

is either an operand symbol representing a register or condition code or is non-existenff. The

Greek letter lambda, A, is used to specify that the location of the result is non-existent. The

assembly information specifies the target computer instruction that computes the expression

equal to the instruction pattern. Assembly information may either be symbolic assembly

language or binary machine code. Each instruction is thought of as computing an expression,

either for the value of the expression or for any side effects it may produce. A load instruction

would compute the obvious value of the contents of the memory location or locations loaded

into a register, while a store instruction computes an expression that one is primarily interested

in for its side effect. The value calculated and used as the memory location in which to store is

normally discarded after its use. The value stored into memory is normally of no interest to

the code generator once the store has taken place. For the purposes of this section we will con

centrate on the problem of picking machine instructions for the generated code and we will

avoid any attempt to use the values left in registers from previous computations. Information

retention as such is a simplified form of common subexpression elimination, and is not con

sidered the responsibility of the code generator*. Thus the location of the result of a store

instruction is non-existent in so far as the code generator is concerned, as the values computed

are no longer needed in order to generate code for the remainder of the program. In a similar

manner, the location of the result of a jump instruction or procedure call does not compute a

t Not ice that a value may be termed non-existent in this sense even though it is contained in memory.
tThis is not to suggest that such retention cannot be exploited by the compiler. Detection of such common
subexpressions would take place prior to code generation and the information would be explicit in the IR in
put. (See section 4.3)

37

value that will be used in evaluating the current expression and therefore is considered non

existent.

There is a relationship that must hold between the instruction pattern and the location of

the result in a valid TMDL description. If the instruction pattern is a root-level expression, i.e.

if the leftmost symbol is a root-level operator, then the instruction computes (or completes the

computation of) a well formed IR expression. The location of the result for such instructions

must be X. All other instructions compute expressions without a root-level operator, and must

have a non-X operand symbol for the result location.

The description of a typical indexed load instruction would be:

Result IR Pattern Assembly Information (3.5)

r ::=(! + k r) "load r,k,r"

The meaning is to load the contents of the memory location addressed by adding the address

constant k to the value of a register, into another register. The instruction pattern used by the

code generator for this instruction would be *f + k r\

In (3.5) each of the registers that appear in the instruction pattern may correspond to any

actual register in the target machine. There are no restrictions on which ones they may be.

Certain instructions contain semantic restrictions on some of their registers in that they must be

the same actual register as another register in the instruction pattern. These instructions cannot

be fully described by context-free instruction patterns. An example of such an instruction is a

two address memory-to-memory integer add instruction that adds the contents of two memory

locations and places the sum in one of the locations. A description of such an instruction

would be:

X::=(:= k + \ k f k) "madd k,k" 0.6)

Clearly some mechanism must be provided to inform the code generator that in order to be

able to use this instruction the first k must be the same as one of the subsequent ks. The solu

tion is to add semantic qualifiers to the symbols of the instruction set description language that

specify equivalences between symbols of the same kind that appear in a single instruction.

These qualifiers are specified by a dot, '.', followed by an integer index. A qualifier may appear

after any input symbol that needs this kind of semantic information. The net result is that this

instruction cannot 'match' unless all symbols of the same kind and index have equivalent

value. For example, (3.6) would be described by:

38

X :: = (:= k.l +] k.l] k.2)
X ::= (:= k.l + } k.2] k.l)

madd M''
madd A,*'

(3.7)

There are two patterns for this instruction since the operator + is commutative. Notice that

k.\ and k.2 could be the same constant. The qualifications indicate which symbols must be the

same, but not which are distinct. (If it were necessary to indicate distinctness, a suitable con

vention could, of course, be established.)

Additionally, some instructions, such as increment or clear instructions, require specific

constants or registers to appear in their descriptions. A specific constant is indicated in an

instruction description by following the symbol defining its class (such as k) by an equal sign,

= , and the actual constant. Thus increment and clear instructions would be described by:

r::= (+ r A=l)
/•::= (A:=0)

inc r,r

clr r"

(3.8)

The first instruction pattern indicates that the contents of a register is to be incremented by one

and that the result may be placed into any register, since there is no semantic restriction on the

result register. If the instruction were to require that the result be put back into the original

register, then the description would be:

r.\ ::= (+ r.\ k=\) inc (3.9)

The assembly information field of an instruction description contains either a symbolic or

a bit-level description of the object instruction being described. In this dissertation it will be

assumed that symbolic assembly language is to be generated, though in an actual production

compiler one may prefer to generate object modules directly. This assumption does, of course,

imply an additional pass of invoking an assembler, but is conceptually the same and avoids a

messy language for describing machine code instruction formats at the bit level. A final assem

bly pass does have its advantages and is used by several production compilers, such as the C

compiler in the UNIX operating system [Ritchie76]. This organization allows the assembler to

solve problems such as forward referencing, choosing long vs. short jump instructions [Szyman-

ski78], generating loader and debugger compatible object modules, performing peephole optimi

zation, and locating and utilizing machine dependent idioms.

In a symbolic instruction description, there must be a way to bind specific symbols in the

instruction pattern to symbols in the symbolic description. This is indicated by appending a

dot, V, followed by the digit corresponding to the associated symbol in the instruction pattern

to the symbol appearing in the assembly field. Since every field in the symbolic description

39

must be associated with a specific symbol in the instruction pattern, all symbols in the pattern

that represent a class of values must be semantically qualified. Thus the complete description

of the instructions in (3.7) through (3.9) would be:

X ::= (:= Ar.l +] k.l] k.2)
X ::= (:= Ar.l +] k.2 T Icl)
r.l ::= (+ r.2 A=l)
r.l ::= (+ A:=l r.2)
r.l ::= (k=Q)
r.l ::= (+ r.l k=l)
r.l ::= (+ A=l r.l)

Again, two descriptions are required for a complete listing of the commutative operations, so

the inc and madd instructions each appear twice.

Similarly, semantic qualifications of certain operand symbols in the IR may be necessary.

This normally occurs when a symbol may represent any single value in a given set. The exact

value represented is indicated by appending a dot, '.', followed by that value. Thus, the IR

input:

+ r.5k.l00

indicates that the actual register r5 and the specific constant value of 100 are to be used in the

final code generated.

Some instructions require that an operand be in an adjacent pair of registers. Register

operands in a TMDL description that correspond to register pairs (see section 3.3 for a discus

sion of how this is done) must be treated differently in the assembly field of an instruction

description. Normally, only one of the actual registers in a register pair appears in an assembly

language program. Which one is specified in the assembly information field by following the

register description by an additional dot, '.', and a 1 or 2 indicating whether the first or second

register's name should be substituted in the code output. For example, letting d designate a

double register, the double register right-shift instruction:

d.l ::= (— d.l k.l) l'rsd </.l.l,A.l"

indicates that the first register of a register pair is used in an assembly language description of a

right-shift-double instruction.

The temptation to use the code generator to perform optimizations that are not directly

related to choosing the output instructions has deliberately been resisted. It would be possible

for the code generator to perform additional optimizations, such as constant folding, by a

madd *.1,A.2"
madd A.l,£.2"
inc r.l,r.2"
inc r.l,r.2"
clr r.l"

inc r.l"

inc r.l"

40

suitable extension. For example, the instruction pattern:

k=(k.l + k.2) ::= (+ k.l k.2) ""

could be used to fold the addition of integer constants. The code generator is not the appropri

ate place to perform such optimization; the instruction pattern 4+ k.l k.2' is not related to the

target machine but to the programming language, and therefore does not belong in a target

machine description. It also needlessly complicates the code generator, requiring an interpreter

to evaluate arithmetic expressions.

3.3. The Structure of TMDL

A TMDL program consists of four sections. The first is an option statement that is used

for requesting printed output of the code generator's tables and for debugging. The second is a

list of the registers available on the target computer. The third defines classes of registers to

facilitate the instruction description, and contains a list of the terminal symbols expected as the

input (the symbols in the IR) and the kind of semantic information they will contain. The last

section is a description of the instructions on the target computer.

The option statement consists of the string 'Soptions' followed by a comma separated list

of the options that are to be set. It is terminated by a semicolon. Thus:

Soptions trace,codetables;

would indicate that 'trace' and 'codetables' are to be set. This statement is optional, and may

be omitted if no options are selected.

The second section lists the actual registers on the target computer. They are separated

into two groups: allocatable and dedicated. The allocatable registers are available for the regis

ter allocator to use in any manner desired, while the dedicated registers are reserved for specific

functions and can only be used when explicitlyrequested. A sample register description is:

Sregisters
Sallocatable {r2,r3,r4,r5,r6,r7,r8,r9,rl0,rll,rl2};
$dedicated {r0,rl,rl3,rl4,rl5};

When symbolic assembly information is used in the instruction set description, the register

names will be output as they appear in the register description.

The next section describes the symbols that are to be used in the grammar for code gen

eration and instruction description. It is divided into two parts for nonterminals and terminals.

41

The nonterminal section defines logical classes of either actual registers or ordered pairs of

actual registers. Each logical class is bound to a nonterminal in the instruction set grammar.

All members of a class are assumed by the register allocator and code generator to be indistin

guishable. They are used interchangeably unless a particular register is specifically indicated in

an instruction description or in the IR input. An actual register may appear in several logical

register classes. A sample register class definition is:

Ssymbols
Snonterminals

r = r0,rl,r2,r3,r4,r5,r6,r7,r8,r9,rl0,rll,rl2,rl3,rl4,rl5;
d = <r2,r3>,<r4,r5>,<r6,r7>,<r8,r9>,<rl0,rll>;
e = r2,r4,r6,r8,rl0;
o = r3,r5,r7,r9,rll;

The nonterminal r defines the total set of registers on the target machine. The nonterminals d,

e, and o designate the allocatable double, even, and odd registers, respectively.

The description of terminal symbols serves two purposes. It allows a minimal amount of

error checking of the IR input and it classifies terminal symbols as either constants, unary

operators, or binary operators. The latter information is used in determining 'escape routes'

from potentially looping configurations in the code generator. The terminal symbols must

include descriptions of all symbols that will appear in the IR. Otherwise there would be IR

code sequences for which it would be impossible to generate code. A sample terminal symbol

section for a simplified IR follows:

Sterminals
k: 0,32767;
+ ,-,*,/,= : binary;
:= ,|: unary;

The binding for k indicates that it is an operand, the values of which can range from 0 to

32767.

The final section of a TMDL program describes the instruction set of the target computer.

It is headed by the string ^instructions' and concluded by 'Send'. Since most computer charac

ter sets do not contain X, a period, '.', may be used in the TMDL program instead.

42

3.4. A Sample Machine Description

An example target machine description will now be presented. The target computer used

is a standard von Neumann computer with an array of identical general purpose registers. A

somewhat idealized computer is used to avoid an unnecessarily complex code generation exam

ple in Chapter 4. The instruction set uses primarily a one address scheme with a single

memory address field and two register fields. One register is used as an index register, when

index mode is specified, and as an operand in register to register mode. The other register is

the second operand and the location of the result of arithmetic operations. There arc four pri

mary addressing modes: immediate, direct, immediate indexed, and indexed direct. Addition

ally, there are two register addressing modes where either the second operand or its address in

memory resides in that register. When a jump or store instruction is executed, the addressing

scheme is changed to represent one additional level of indirection. The value of the operand is

used as the address at which to store the result. The machine description with a subset of the

actual instruction set appears in Fig. 3.1. For simplicity, only the operations of load, add, and

store are used in this example.

The instruction 'r.l ::= (+ k.l r.l) "add r.l, = /c.l" ' is not included because the

instruction 'r.2 ::= (+ k.l r.l) "load r.2, = A.l,r.l" ' does the same computation and is more

general since the result of the addition may be placed in a different register. Also, the fact that

the add instructions are commutative is reflected by the two patterns for each actual instruction,

such as lines 17 and 18. It can be inferred from the instruction descriptions that := is a root-

level operator, where as + and] are internal operators.

43

TMDL Preprocessor VO.O 01/Jun/77

1*

2*

3*

Soptions statesets,tables;

Sregisters
4* Sallocatable {r0,rl,r2,r3,r4};
5*

6*

7*

Sdedicated {r5,r6,r7};

Ssymbols
8* Snonterminals

9* r = r0,rl,r2,r3,r4,r5,r6,r7;
10* Sterminals
11* k: 0,32767; + binary; f unary;
12*

13* Sinstructions

14*

15* r.2: = (+ t + k.l r.l r.2)
16* r.l : = (+ r.l | + k.l r.2)
17* r.l : = (+ t k.l r.l)
18* r.l : = (+ r.l t k.l)
19* r.l : = (+ r.l r.2)
20* r.2: = (+ r.l r.2)
21* X ::= (:= \ + k.l r.l r.2)
22* X ::= (:= + k.l r.l r.2)
23* X ::= (:= } k.l r.l)
24* X ::= (:= k.l r.l)
25* X ::= (:= r.l r.2)
26* r.2: = (t + A:.l r.l)
27* r.2: = (+ Ar.l r.l)
28* r.2: = (+ r.l A.1)
29* r.2: = (f r.l)
30* r.l : := (t A:.l)
31* r.l : := (A.1)
32*

33* Send

binary;

14Jun77 13:34:01

'add r.2,A.l,r.l";
"add r.l, A.1,r.2";
"add r.l,A.l";
"add r.l, A.1";
"add r.l,r.2";
"add r.2,r.l";
"store r.2,* A.1,r.l";
"store r.2,A.l,r.i";
"store r.l,*A.l";
"store r.l,A.l";
"store r.2,r.l";
"load r.2,A.l,r.l";
"load r.2, = A.l,r.l";
"load r.2,=A.l,r.l";
"load r.2,*r.l";
"load r.l, A.1";
"load r.l, = A.l";

Fig. 3.1. Sample Machine Description.

44

Chapter 4: The Code Generation Algorithm

This chapter describes a syntax driven code generation algorithm used in the machine

independent compiler outlined in Chapter 2. The code generator is based on a deterministic

shift-reduce parser. The state set and moves of the parser are determined by the semantics of

the instruction set of the target computer. Tables defining the automaton are automatically

constructed by a preprocessor from a description of the instruction set for the target machine,

specified in TMDL. This provides a high degree of flexibility in the code generator, a section

of the compiler that is generally considered non-transportable. Sufficient conditions arc

developed that insure that the code produced by the code generator is correct. The input to the

coder is a low level prefix internal representation of the program being compiled, tailored to a

specific target implementation. The coder can be thought of as first performing a context free

parse of the IR string using the instruction set as grammar rules. As each reduction is sig

nalled, "semantic" routines are invoked. Finally, the corresponding object instruction is emit

ted.

In practice, the context free grammar defined by the instruction set of a computer is

almost certain to be ambiguous. There are usually several different instruction sequences on

any given computer that produce the same effect. The problem is further complicated by the

desire to produce the best possible code. The situation is analogous to finding the shortest

(according to some cost criteria) parse of an input string using an ambiguous grammar. Many

optimizations used in compilers can be thought of as an attempt to determine the order of

reductions that will produce the best code. Of course even finding the shortest parse defined by

an ambiguous context free instruction set grammar in no way insures that optimal code has

been generated. Common subexpression elimination, for example, which cannot be performed

in a context free code generation scheme, can further reduce the cost of computing many

expressions.

The code generation algorithm presented is not an optimizer. Instead, its goal is to

translate the IR input into a sequence of object code instructions that correctly implements the

desired operations on the target computer. It must at the same time avoid producing poor

code. To do so, the algorithm uses a simple heuristic in an attempt to emit the instructions

that correspond to the longest instruction patterns in the input string. Target machine depen

dent code sequences and implementation dependent constructs are used in generating the IR.

This serves two purposes. It is the vehicle by which the code generator is informed of the

details of how each language feature is to be implemented on a particular target machine. It

also aids the code generator in matching longer instruction patterns that represent some special

45

instruction on that target machine, thus resulting in better code. Target computer parameter

ized optimizations can be used to improve the overall quality of code generated, as can

language dependent, machine independent optimizations. One important property of the code

generation algorithm is that it can utilize many kinds of optimization information, when

present. Included are the abilities to take advantage of live-dead variable analysis and common

subexpression information (see section 4.3).

4.1. Shift-Reduce Parsing Algorithm

The code generation algorithm used in the compiler described in Chapter 2 is a modified

deterministic LR(l)-like shift-reduce parser [Aho72a]t. Because the context free grammar

being used to generate code is usually ambiguous, standard context free parsing methods of

linear complexity do not apply. This section describes the modified shift-reduce parsing algo

rithm. Subsequent sections explain how the parser is turned into a code generator, and how the

tables for such a parser are constructed from an instruction set grammar. Several algorithms

are developed that allow the parser constructor to determine the instances where the parser can

loop, to eliminate the possibility of looping without altering the IR inputs for which code can be

generated, and to test for and eliminate the possibility of the code generator blocking on valid

input (or inform the user that the IR input must satisfy certain restrictions, to be checked by

the implementor). It is therefore possible to determine whether the coder will generate code

for all valid inputs or not.

The grammar used by the parsing algorithm is a set of TMDL instruction descriptions, as

discussed in Chapter 3. The instruction grammar is slightly different from a conventional

context-free grammar, but the differences are for notational convenience only. The vocabulary

V is the set of symbols defined in the third section of the TMDL description, where N denotes

the set of nonterminals and T denotes the terminal symbols. However, unlike the more usual

situation, elements of T may also occur in N, meaning that some nonterminals can also occur

in the IR. (Typically, this facility is used to specify base registers in the input.) The

corresponding context-free grammar would have, for example, a non-terminal r, a terminal r,

and a rule r ::= r with no associated code generation.

The other difference from conventional grammars is the special left hand side X, which

designates "no result". To obtain a corresponding conventional grammar, one would replace X

by a nonterminal, say L, and add the rules S ::= L \S L. In other terms, the instruction gram

mar generates or describes a sequence of derivations from X. (Note that X is not an element of

tThe reader is assumed to be familiar with LR(1) parsing and parser construction.

46

N or V.)

In the discussion that follows, we refer to our notation as a grammar G. The language

generated by G in the fashion just described is denoted L(G).

A shift-reduce parser consists of a pushdown stack and a finite control with a finite set of

states Q. The pushdown stack contains the start state q^ at the bottom, followed by 0 or more
repetitions of pairs of entries, consisting of a vocabulary symbol followed by a state symbol!*.

The state symbol at the top of the stack always designates the current state. The finite stale

control determines the action of the coder as a function of its current state and the current

input symbol. Input is read and pushed onto the stack until the right hand part of a grammar

rule is on the top of the stack (disregarding the intervening state symbols). The parser may

then perform a reduction using one of the variants of that rule. (The choice is made by a

semantic routine.) The top symbols corresponding to the right hand part of the grammar rule

(and intervening state symbols) are popped and the nonterminal on the left of that rule is

pushed onto the stack, followed by the new current state. The parser then continues to shift

and reduce until it has reduced the entire input string to a single start symbol, at which point it

reports success and halts. The parser also detects erroneous input and informs the user. (Such

errors normally indicate bugs in earlier stages of the compiler.)

At any given time the parser is in a specific state, q, in Q. After each action of shifting

or reducing, the parser moves to a possibly different state. The action of the parser is deter

mined by two functions, called ACTION and NEXT. These functions are defined on Q x V.

Values of NEXT are single states in Q, and values of ACTION come from the set {shift,

reduce /?, accept, error}. When the parser is in state q and the next input symbol is x, the

action of the parser is uniquely determined by the value of ACTION(q,x). If the action is

shift, then x is pushed onto the stack, followed by the unique state symbol q' = NEXT(q,x),

the input is advanced, and the parser moves to state q'. If the action is reduce /?, then the

parser performs a reduction using a grammar rule r ::= a in the set R. All rules in R have the

same syntactic right hand part but may differ in their semantic restrictions or their left hand

parts. The particular rule used is determined from the semantics of the rules and the symbols

on the stack (as described in section 4.2). The instruction pattern a will always be on the top

of the stack at the start of the reduction. The parser then pops the stack 2|a| times, uncovering

the state q' that it was in just prior to reading the first symbol in the prefix expression just com

puted. The left hand part of the rule, r, is pushed onto the stack, followed by

q" = NEXT(q',r), moving the parser into state q", and the process continues. If the action is

|As usual, the vocabulary symbols could, in theory, be omitted. However, we find them convenient.

47

accept then the parser halts and reports that it has successfully parsed the input stringt. II the

action is error then it reports that there is no parse for the input string and halts.

A configuration of the parser is a snapshot of the parser at an instance while it is parsing.

It is shown as:

(stack -♦ input$)

where stack is the sequence from bottom to top of the symbols on the pushdown stack, input is

the unread part of the input, $ is an implicit end of input marker (not normally shown when

input remains), and the top stack symbol q is the current state. Unread input symbols are

shown in italics, and symbols on the stack are shown in bold type. The initial configuration is

the configuration in which the parser always begins, with the start state symbol qQ on the slack,

none of the input having been read, and in the start state qfl. A move of the parser is the per
forming of a single action, taking it from one configuration to another. A move is represented

as:

(Sj-m^I- <s2-/2)

A single move operation is represented by the operator h-, n moves in succession by r-", one

or more moves by I- +, and zero or more by \- . Thus, a shift operation is represented as:

(...aqkbq. —xyz...) r- (...aqkbqjxqj —yz...)

where ACTION(q.,x) = shift and NEXT(q.,.v) = q,. Areduce would be:

(...aqkb1qI...bmqi —xyz...) h- (...aqkwq.— xyz...)

using the rule 'w ::= b„...b 'for the reduction, where NEXT(q. ,w) = q.. A total parse to
1 m k j

acceptance would be:

(q — input) \- (q. —• $)

with (q^ —input) being the initial configuration and ACTION(q.,S) being accept. In the code
generator under discussion the only accept action occurs when the parser is in the initial slate.

tNote that by definition the action is accept only when no input remains.

48

q.. The code generation algorithm appears on the following page as Algorithm 4.1. The con

struction of the ACTION and NEXT functions is discussed in section 4.5.

4.2. Adding Semantic Information to the Parser to Make a Code Generator

The shift-reduce parsing algorithm presented so far is not sufficient to select instructions

for the target machine. The primary function addressed so far has been the matching of

instruction patterns in a machine description with input strings in an intermediate language.

Missing is a set of provisions for handling the semantic information needed to generate final

object code, such as which register r stands for or which constant k is. This shortcoming can

be handled by carrying semantic information along with the state information on the coder's

stack. For example, when a shift is performed with the input symbol r standing for a register,

the specific register represented by that r is also pushed onto the stack. Then when a reduce is

done, the semantic information necessary to generate a final instruction can be read off the

stack.

The addition of semantic restrictions to the instruction description allows a greater

number of special instructions to be described. It also complicates the meaning of the reduce

operation in the shift-reduce code generation algorithm. A single instruction pattern may

correspond to more than one instruction as the introduction of semantic restrictions may

require the duplication of some instruction patterns by forcing some commutative operations to

be represented by two identical patterns (e.g. add r.l,r.2 and add r.2,r.l) and by allowing one

instruction to be specified as a special case of another (e.g. inc r.l and add r.l, = k.l). It also

may be that two distinct instructions compute the same expression but leave the result in regis

ters of different classes (e.g. loadx xl,a and loadr r.l,a). Thus, when a reduce is performed,

there may be a list of rules from which to choose instead of a single rule.

The rule used when a reduce operation contains more than one rule is picked by a simple

heuristic. Rules are ordered by the preprocessor into a 'best instruction first' sequence. At

code generation time, the set of rules for a specific reduce action is tested in that order until an

instruction is found that is semantically compatible with the information on the top of the

stack. Since all instructions in a reduce set have the same instruction pattern, the 'cheapest',

according to some cost criteria, instructions are tested first. If the length of an object instruc

tion in bits is used as the cost factor, a 16 bit long increment instruction will be tested before a

32 bit long add immediate instruction, since the basic patterns are identical but the 'cost' of the

increment instruction is less.

It is also possible, if all the instructions in the set have semantic restrictions, that more

than one instruction is generated. This situation is discussed in section 4.5.7.

49

Algorithm 4.1 — The Code Generator

Input: ACTION and NEXT functions (represented in matrices) derived from machine
M's description, and the IR of a program, P, being compiled.

Output: An assembly language program for P on machine M.

Method: Perform a Shift-Reduce parse of the IR input, emitting target instructions whenev
er reductions are performed.

Initialization: Set the parser's state, S, and the stack to q^.

Step I: Set the look-ahead symbol, u, to the next input symbol. If all the input has been read,
set u to the end of input symbol, $.

Step 2: Perform the action in ACTION[S,w]:

shift: Push uonto the stack. Then set S to the value of NEXT[S,w], push S onto
the stack, and advance the inputone symbol. Go to step /.

reduce R: Output an instruction from set R or an equivalent sequence of instructions
(see section 4.5.7). If the rule used is 'r ::= a' then pop the stack 2|«|
times and set S to the state on the top of the resulting stack. If r ^ Xthen
push r onto the stack, set S to the value of NEXT[S,r] and push S onto the
stack. Go to step 2\.

accept: The code generator halts. Code has been generated for the entire IR input
string. This can only happen when all of the input has been read (i.e. ;/ is
$) and the stack is empty (i.e. S is qfl).

error: Issue an error message and halt. The IR input has no parse using the
underlying grammar for M's instruction set.

tlf r € N, then ACTIONlS.r] must be shift.

50

4.3. Register Allocation

Register allocation is handled automatically by the code generator. The machine descrip

tion specifies how many and what kind of registers exist on the target computer, and which

ones are available to the register allocator. Each nonterminal in the grammar, in general,

represents a logical register or a class of logical registers. Each logical register is associated with

an actual machine register or pair of registers. In this way information such as the fact that dO

is the register pair <rO,rl> is included in the machine description.

Each actual register has a descriptor associated with it that describes its status. This

description includes a Boolean flag indicating whether the register is allocatable or not and a use

count field that indicates the number of times that the value in that register will be used before

it is discarded. Normally, i.e. without common subexpression elimination, this value is either

zero or one. A register is busy if it has a non-zero use count, and is free if it has a zero use

count. Any free register may be allocated. When a register is allocated its use count is incre

mented by one, and after its use it is decremented by one. Initially the use count for all allo

catable registers is set to zero.

Register allocation occurs as a subtask to a reduce operation. After an instruction pattern

has been semantically verified, the use count for each actual register in the instruction pattern

is decremented. Then, if the result of the instruction is non-X, and if the result register is not

semantically linked to any other register in the instruction pattern, the register allocator is asked

for a register of the appropriate class. The register allocator then returns a free register in that

class, after setting its use count to 1. If the result register, r, is semantically linked to a register

in the instruction pattern, then r must be used as the target register and its use count set to one

(since it contains a newly computed value). Note that in the presence of common subexpres

sions the semantic test for instruction compatibility must include a check to see if there will be

an error in this case. If r is linked to another register, then r must have no other references

outside the scope of that instruction pattern. If it does, i.e. if the use count is greater than the

number of references to r in that instruction pattern, then since the execution of that instruc

tion would alter the contents of r the other uses would then be incorrect. When this occurs,

the code generator allocates a new register, r\ in the same class as r, issues an instruction to

move the contents of r to r' and then issues the first instruction using r' as the target register.

A slight addition to the register allocation scheme is required to utilize common subex

pression (CSE) information. A binary operator, O, is added to the IR that lakes an integer con

stant as its first operand and an arbitrary expression as its second. The meaning of this operator

is that the second operand is a common subexpression that is to be used the number of times

specified by its first operand. Each occurrence of the operator O, i. e. each designation of an

51

expression as a CSE, is implicitly numbered sequentially from 1 as it is read. The first place

that a CSE is used is where it is computed, as an ordinary operand. Subsequent uses are indi

cated by a 'use CSE' operator, ®, which is a unary operator taking a constant as its operand,

indicating which CSE it represents. For example, the two statements:

A := B + C; D := B + C;

would have an IR representation of:

:= k.a O k.2 +] k.b \ k.c :=k.d®k.l

Upon encountering a define CSE operator, the code generator sets the use count of the register

containing the CSE's value to the number of times that it will be used. Thus, that value will be

preserved until its final use because that register will remain busy. This is equivalent to adding

a special grammar rule:

r.l ::= (O k.l r.l)

for each logical register class to the machine description with the semantics that the use counl

for register r.l is set to k.l. The mechanism does not have to actually be implemented in this

manner — it is simpler to 'hard-wire' it into the code generator. Likewise, when a use CSL

operator is encountered, the actual register that contains that value is substituted into the IR

stream, equivalent to a grammar rule of the form:

r.l ::= (<g> k.l)

with the associated semantics of using the actual register that contains CSE number k.1 for r.1.

4.4. A Simple Example

A simple code generation example is presented next. The target machine is the one

described at the end of Chapter 3. The instruction set description is repeated in Fig. 4.1 for

easier reference. A table summarizing the parser produced appears in Fig. 4.2. In the table,

the ACTION and NEXT functions are represented in the following format: Columns of the

table are headed by symbols in V and rows correspond to states in Q. An entry in row q,

column v of the table is of the form 'a:b\ where a always represents ACTION(q,v) and b is

NEXT(q,v) when a is shift, and the rule set by which to reduce when a is reduce. The

52

ACTION values shift, reduce, accept, error, are abbreviated respectively S, R, A, E.

1* r.2 ::= (+ j + k.l r.l r.2) «'add r.2,A-.l,r.l";

2* r.l :: = (+ r.l | + *.l r.2) ' 'add r.l,U,r.2";
3* r.l :: = (+ t k.l r.l) 'add r.l,*.l";
4* r.l :: = (+ r.l t k.l) 'add r.l,U";
5* r.l :: = (+ r.l r.2) 'add r.l,r.2";

6* r.2 ::= (+ r.l r.2) 'add r.2,r.l";
7* X ::= (= 1 + k.l r.l r.2) 'store r.2,*U,r.l";

8* X ::= (= + k.l r.l r.2) 'store r.2,£.l,r.l";

9* X ::= (= t k.l r.l) 'store r.l,**.l";
10* X ::= (= Ar.l r.l) 'store r.l,A:.l";

11* X ::= (= r.l r.2) 'store r.2,r.l";
12* r.2 ::= (t + k.l r.l) 'load r.2,*.l,r.l";

13* r.2 ::= (+ k.l r.l) 'load r.2, = A:.l,r.l";
14* r.2 :: = (+ r.l k.l) 'load r.2, = fc.l,r.l";

15* r.2 ::= (| r.l) 'load r.2,*r.l";
16* -r.l ::= (t k.l) 'load r.l,k.V\
17* r.l :: = (k.l) 'load r.l, = k.l";

Fig. 4.1. Sample Instruction Set Description.

Code will now be generated for the expression:

A :== B + C

where the variables are addressed as those in (3.4). The equivalent IR expression is:

:= + ar.7 + \ + b] r.l \ c

(By convention, r7 is being used as the base register.) The initial configuration of the coder is

that it is in the start state, with an empty stack, and reading the input symbol- := , where the

lower case alphabetic characters a, b, and c stand for address constants lk\ The semantic infor

mation associated with input and stack symbols is also shown in the configurations, but the

stack symbols themselves are omitted. The actual value of a symbol is appended to it wiih a

dot. The initial configuration appears as:

(1 — := + k.ar.7 +] + k.b] r.7 } k.c)

The action specified by ACTION(l,:=) is shift and NEXT(1,:=) is 2, so the next

configuration of the coder is:

53

Code Generator Move Table

$ r A- + I : =

1* ACCEPT S: 2

2* S: 3 S: 4 S: 5 S: 6

3* S: 7 S: 8 S: 9 S: 10

4* S: 11 S: 8 S: 9 S: 10

5* S: 12 S: 13 S: 9 S: 14

6* S: 15 S: 16 S: 17 S: 10

7* R: 11 R: 11 R: 11 R: 11 R: 11 R: 11

8* R: 17 R: 17 R: 17 R: 17 R: 17 R: 17
Q* S: 12 S: 18 S: 9 S: 14

10* S: 15 S: 19 S:20 S: 10

11* R: 10 R: 10 R: 10 R: 10 R: 10 R: 10

12* S: 21 S:22 S: 9 S: 23

13* S:24 S: 8 S: 9 S: 10

14* S: 15 S:25 S:26 S: 10

15* R: 15 R: 15 R: 15 R: 15 R: 15 R: 15

16* S:27 S: 8 S: 9 S: 10

17* S: 12 S:28 S: 9 S: 14

18* S:29 S: 8 S: 9 S: 10

19* R: 16 R: 16 R: 16 R: 16 R: 16 R: 16

20* S: 12 S:30 S: 9 S: 14

21* R: {5,6} R: {5,6} R:{5,6} R: {5,6} R: {5,6} R: {5,6}
22* R: 14 R: 14 R: 14 R: 14 R: 14 R: 14

23* S: 15 S: 31 S:32 S: 10

24* S:33 S: 8 S: 9 S: 10

25* S:34 S: 8 S: 9 S: 10

26* S: 12 S:35 S: 9 S: 14

27* R: 9 R: 9 R: 9 R: 9 R: 9 R: 9

28* S:36 S: 8 S: 9 S: 10

29* R: 13 R: 13 R: 13 R: 13 R: 13 R: 13

30* S:37 S: 8 S: 9 S: 10

31* R: 4 R: 4 R: 4 R: 4 R: 4 R: 4

32* S: 12 S: 38 S: 9 S: 14

33* R: 8 R: 8 R: 8 R: 8 R: 8 R: 8

34* R: 3 R: 3 R: 3 R: 3 R: 3 R: 3

35* S:39 S: 8 S: 9 S: 10

36* S:40 S: 8 S: 9 S: 10

37* R: 12 R: 12 R: 12 R: 12 R: 12 R: 12

38* S:41 S: 8 S: 9 S: 10

39* S:42 S: 8 S: 9 S: 10

40* R: 7 R: 7 R: 7 R: 7 R: 7 R: 7

41* R: 2 R: 2 R: 2 R: 2 R: 2 R: 2

42* R: 1 R: 1 R: 1 R: 1 R: 1 R: 1

Fig. 4.2. Code Generation Table for Example.

54

(1 2 — + k.a r.7 + } + k.b } r.7 } k.c)

In a similar manner, the next 9 configurations are:

(1 2 5 — k.a r.7 +] + k.b \ r.7 \ k.c) I-
(12 5 13.a — r.7 +] + k.b } r.7 } k.c) h-
(12 5 13.a 24.7 — + I + k.b } r.7 } k.c) \-
(12 5 13.a 24.7 9 —] + k.b \ r.7 \ k.c) \-
(12 5 13.a 24.7 9 14 — + k.b \ r.7 } k.c) h-
(12 5 13.a 24.7 9 14 26 — k.b \ r.7 \ k.c) \-
(12 5 13.a 24.7 9 14 26 35.b — 1 r.7 \ k.c) h-
(12 5 13.a 24.7 9 14 26 35.b 10 -» r.7 \ k.c) r-
(12 5 13.a 24.7 9 14 26 35.b 10 15.7 — t k.c) \-

"load rl,*r7"

In this configuration the coder issues instruction 15: "load r.2,*r.l" which has the pattern

'r.2 ::= (f r.l)'. In the instruction pattern the logical register 'r.l' is semantically linked to the

actual register r7. The logical register 'r.2' is not bound to any register in the instruction pat

tern, so the register allocator is used to determine that it will be bound to the actual register rl.

Then the top 2 states are popped off the stack, revealing state 35 on the top of the stack. The

actual register rl is bound to the result symbol 'r.2', the current state is set lo

NEXT(35,r) = 39, and 39.1 is pushed onto the stack. The remainder of the coder's

configurations follow:

(12 5 13.a 24.7 9 14 26 35.b 39.1 — \ k.c) \-
(12 5 13.a 24.7 9 14 26 35.b 39.1 10 — k.c) h-
(12 5 13.a 24.7 9 14 26 35.b 39.110 19.c — $) \-

"load r2,c"

(12 5 13.a 24.7 9 14 26 35.b 39.1 42.2 — $) \-

"add r2,Z?,rl"

(12 5 13.a 24.7 33.2 — $) \-

"store r2,fl,r7"

(1 — $) accept

55

4.5. Automatic Construction of a Code Generating Parser

The algorithm for building the table used by the code generator is presented next. For

conceptual clarity, we present the algorithm in several stages —i.e., an initial table is computed

which is then modified. These modifications could be incorporated in the initial algorithm.

The discussion of each modification motivates its necessity and indicates how this incorporation

is done.

4.5.1. The Initial Table Construction

This section presents an algorithm for computing, from an instruction set description, the

initial ACTION and NEXT functions for a parser that will generate object code. The melhod is

similar to the algorithm for building SLR(l) parse tables.

It should be emphasized that the table construction algorithm presented will accept any

context free grammar as input, not necessarily unambiguous, and will produce a deterministic,

shift-reduce parser as its output. However, in the general case, the language accepted by the

resulting parser is not guaranteed to be the same language defined by the grammar. If the

grammar satisfies certain sufficient conditions presented later in this chapter, then it is possible

to build the tables in such a way that the language accepted by the parser is the same as that

defined by the grammar. Other linear parsing algorithms accepting ambiguous context free

grammars allow a much wider set of grammars to be used, but fail to provide any assurance

that the resulting parser will not loop or block on valid input [Aho75]. While it is relatively

safe to use such methods in carefully controlled situations where the consequences arc well

understood, (such as the dangling else problem, or defining the precedence or associativity of

specific infix operators), it is not at all acceptable to use them to construct code generators in a

manner similar to that of this dissertation. The class of ambiguities defined by an arbitrary

instruction set description is not guaranteed to be accepted by such a parser. It is mandatory

that sufficient conditions be known to test the correctness of the resulting code generator before

they are used in compilers.

The other algorithms presented here also have limited usefulness on non instruction set

grammars. The loop detection algorithm will correctly locate all existing loops in the tables for

grammars with no lambda rules, but the loop removal and blocking removal algorithms depend

upon the fact that the language being parsed is a sequence of Polish prefix expressions, and that

the symbols have fixed arity.

First, a few definitions will be given. Letting G be the instruction description grammar,

V* represents strings of 0 or more symbols in V and lower case Greek letters from the first of

the alphabet, a /3 &y, represent members of V*. If v ::= a /3 is a grammar rule in G, where

56

either v € N or v = X, then [v —a . j3] is an LR(0) item. I is the set of LR(0) items lor a

grammar G. Each state, q, in Q is associated with a non-empty subset of I, referred to as the

value of q. The core ofq is the set of items in q of the form [v —• a • 0] with a ^ X.

The first stage for the algorithm for creating a code generator appears as Algorithm 4.2. It

is very similar to an LR(0) table constructor. The state set generated is identical to the LR(0)
state set produced by an LR(0) or SLR(l) table constructor. The only difference is the way the

algorithm computes the ACTION function when there is a shift/reduce or reduce/reduce

conflict. Conflicts will always exist when the input grammar is ambiguous because the set of

grammars that are SLR(l) does not include any ambiguous grammars. Shift entries for which

there are no conflicts are the same as in an LR(0) or SLR(l) table. Shift/reduce conflicts are

settled in favor of the shift. This choice is an attempt to allow the coder to match longer

instruction patterns. If reduce were picked, the coder would issue only the simplest instruc

tions. Reduce/reduce conflicts are resolved in favor of the longest instruction pattern. Some

instruction set descriptions have multiple rules with the same pattern. That is, the rules have

the same instruction pattern, but different semantic restrictions or result symbols. All such

rules are entered into the reduce set R of a single entry in the table. The particular instruction

issued is determined at code generation time. The preprocessor arranges multiple rule entries

in a 'best instruction first' ordering, however, in an attempt to generate better code. Semantic

processing and reduction choices are discussed in more detail in section 4.5.7.

In Algorithm 4.2 (and in the implementation), the resolution of shift-reduce conflicts is

done in LR(0) fashion. In other words, if a state has a shift/reduce conflict, no reduce moves

are signalled, even for lookahead symbols for which no shifts are possible. Similarly,

reduce/reduce conflicts are resolved without consideration of lookahead symbols and reduce

actions are indicated for all possible input symbols. Thus the algorithm does not compute fol

low sets. (For x € V, the follow set FOLLOW(x) is the set of input symbols that can follow a

given grammar symbol in a sentential form.)

In a state with no possible shifts, carrying out the reduction without inspecting the input

is always safe. If the lookahead were inspected, the possible actions would be either reduce or

error. If the action should be error, i.e. the next input cannot validly follow, then the error will

eventually be indicated, before the input is advanced (see [Aho72a] for discussion of this

point). Since errors occur only from compiler bugs, such deferral of error detection does not

degrade the algorithm.

It turns out that for many instruction grammars, the LR(0)-like construction suffices also

for states having LR(0) shift/reduce conflicts because an SLR(l) conflict-resolved state having

both shift moves and reduce moves cannot arise. However, for some grammars, reduce moves

57

Algorithm 4.2 —The Initial LR(0) Code Generator Constructor

Input: A TMDL instruction set description for machine M.

Output: The initial ACTION and NEXT functions (represented in matrices) for a code
generator for machine M.

Method: Construct a set of LR(0) states for the context free grammar underlying the given
instructions. As it is being done, fill in the NEXT and ACTION values to produce
the code generator, resolving conflicts.

procedure genera testates;

begin

qQ —close({i € I | / = [X —. a]});
k — 0; n «— 0; /* highest state number */

while k < n do begin

if 3 / € q with / = [x — a . 0], 0 ^ X, then

V v € V do

if 3 / € q with / = [x — a . v 0] then
ACTION!^, v] «- shift;
q —close({[x-+ a v. 0] | U—a . v0] € </AJ);
if 3 ?. = «' then NEXT[^,v] = ?.
else /! —/! + 1; <7„ —?'; NEXT[^,v] —^

else ACTION[<^,v] «-error
else fl —{U —a •] € qu | 2 / € qlm, i = U' —a .], length(a') > length(a)};

VvH

A:^ A: + 1;

Vv€ Vdo ACTION[^,v] —reduce R;

end;

ACTION [<?0,#] —accept;
end generatestates\

function close(q)',

begin

repeat

q «- q + [[x — • a) \ [y—0 • x y] 6 g, x ^ X}
until ^ does not change;

return (<?);

end close.,

58

for non-shift lookaheads are filled in at a later stage by the blocking-uniformity algorithm

(Algorithm 4.7). Algorithm 4.3 is an SLR(l)-like constructor in which the reduce moves are

filled in by the initial constructor. This point is discussed further in section 4.5.6 (which also

contains a more precise definition of FOLLOW).

Using Algorithm 4.2, we will now build a code generator for the following simplified

instruction set:

1* r.l ::= (k.\)

2* r.l ::= (f r.2)

3* r.l ::= (+ r.l r.2)

4* r.l ::= (+ r.2 r.l)

5*X ::= (: = r.l r.2)

6* r.l ::= (\ + kl r.2)

load r.l, = A'.l"

eval r.l,r.2"

add r.l,r.2"

add r.l,r.2"

'store r.2,r.l"

load r.l,/c.2,r.2

State 0 initially contains the item [X — . :«= r r] and does not change during closure. The only

valid look ahead symbols are := and $. State 0 is thus:

0* [X —. := rr]

$: accept

:=: shift 1

with any ACTIONS not listed being error. As with all code generators created by Algorithm 4.2

or Algorithm 4.3, the only accepting configuration is when the parser is in the initial state, 0,

reading the end of file symbol, $. Equivalent^, all input must have been read and the stack

must be empty. This insures that the entire IR string has been fully processed.

State 1 initially contains the single item [X — := . r r]. It was introduced when the dot

was advanced over the assignment operator in the item in State 0. Since the dot precedes the

variable r, the closure of State 1 adds all items of the form [r—• . a]. No further change

occurs in the closure and the resulting state is:

59

60

Algorithm 4.3 — The Initial SLR(l) Code Generator Constructor

Input: A TMDL instruction set description for machine M.

Output: The initial ACTION and NEXT functions (represented in matrices) for a code
generator for machine M.

j

Method: Construct a set of SLR(l) states for the context free grammar underlying the f
given instructions. As it is being done, fill in the NEXT and ACTION values to
produce the code generator, resolving conflicts.

procedure generatestates\

begin

q0*- closeiii £ l|/= [X —. a]});
k «— 0; n ♦— 0; /* highest state number */

while k < n do begin

V v € V do

if 3 / € q. with / = [x —• a . v 0] then

ACTION [qk,v] —shift;
q' •*— close({[x —- a v • 0] | [jc —- a . v0] € q });
if 3 q. = q then NEXTl^v] = q.
else n—n + 1; qn «- q'\ NEXT[?fc,v] —q^

else if 3 / € q with / = [x —» a .] then
/? —{U —a •] € qk | v6 FOLLOW(x), 2 / € <7r / = [x —a •] such that

both length(«') > length(a) and v 6 FOLLOW0c')};
ACTION[qk,v] <- reduce R\

else ACTION [qk,v] —error;
* —fc+ 1;

end;

ACTION[?0,#] —accept;
end generatestates;

function close(q)\
begin

repeat

q — q + {[x —> • a]\\y —> P • x y] 6 ?, x 5* X}
until </ does not change;

return (</);

end close;

1* [X —:= . rr]

[r-.k]

[r-.fr]

[r-.+rr]

[r — . f + k r]

r: shift 2

k: shift 3

+: shift 4

T: shift 5

A full description of the initial state computation is given in Fig. 4.3. We omit the set notation

for reduce actions and use a sequence of rule numbers instead. Notice that state 10 has two

reduce actions with the same syntax but different semantics. The table describing the initial

ACTION and NEXT functions, which are also the final functions for this simple example, is

given in Fig. 4.4.

4.5.2. Correct Code is Always Generated

This section will prove that, under a few basic assumptions, the code generated by the

code generation algorithm is correct. The major problem is showing that instructions are issued

in the correct order. An instruction to add the contents of two registers only implements the

addition specified by a source language program if the current contents of those two registers

corresponds to the operands of that addition. It will be assumed that the IR input to the code

generator is correct, i.e. that it represents some valid source program, and therefore must be a

list of prefix expressions. The implementor either can insure that the IR generator is correct or

can insert a 'well-formedness' test in the IR generator, based on the mapping given in Chapter

3. It will also be assumed that the TMDL machine description accurately describes the target

computer. The preprocessor has no way of detecting errors in a machine description, save cer

tain errors of omission. Finally, it will be assumed that for 'correct' IR input, the coder always

reaches an accept state. This fact is established in section 4.5.6. We begin by proving a few

basic lemmas.

Lemma 4.1: For any given configuration, the concatenation of the vocabulary symbols on the

stack, the bottom symbol being on the left, with the unread input forms a sequence of

root-level IR expressions.

Proof: By induction on the number of moves made by the parser. We will show that the

[X := r r]

$: accept
:=: shift 1

[X-
[r-
[r-
[r-
[r-

:=.rr]
k]
tr]
+ rr]
t +kr]

r: shift 2

k: shift 3

+. shift 4

t: shift 5

[X-
[r-
[r-
[r-
[r-

:= r . rj

k]
tr]
+ rr]
t + kr]

r: shift 6

k: shift 3

+: shift 4

f: shift 5

[r-k.]

all: reduce 1

[r-
[r-
[r-
[r-
[r-

+ . rr]
. k]
• tr]
. + rr]
• t + k r]

r: shift 7

k: shift 3

+. shift 4

}: shifts

[r-t

[r->.

[r-.
[r-.

• r]
. + kr]
k]
tr]
+ rr]
t +kr]

9*

10*

11*

12<

r: shift 8

k: shift 3

+. shift 9

t: shift 5

Fig. 4.3. Initial State Computation for Example Instruction Set

[X - rr

all: reduce 5

[r — + r . r]
[r-
[r-
[r-
[r-

k]
tr]
+ rr]
I + kr]

r: shift 10

k: shift 3

+. shift 4

}: shift 5

[r-J r«]

all: reduce 2

[r — + . r
[r — | + •
[r-
[r-
[r-
[r->

k]
tr]
+ r

t +

r]
kr]

rl
kr]

r: shift 7

A:: shift 11

+: shift 4

]: shift 5

[r— + rr.]

all: reduce 3 4 ******

[r-k.]
[r — t + k . r]
[r-.k]
[r — . T r]
[r — . +rr]
[r — • t + k r]

r. shift 12

k: shift 3

+: shift 4

]: shift 5

[r-*| + kr-]

all: reduce 6

62

$ r k + t ;==

0 A: S: 1

1 S:2 S:3 S:4 S:5

2 S:6 S:3 S:4 S:5

3 R: 1 R: 1 R: 1 R: 1 R: 1 R: 1

4 S:7 S:3 S:4 S:5

5 S:8 S:3 S:9 S:5

6 R:5 R:5 R:5 R:5 R:5 R:5

7 S:10 S:3 S:4 S:5

8 R:2 R:2 R:2 R:2 R:2 R:2

9 S:7 S:ll S:4 S:5

lot R:R K:R R:R R: R R:R R: R

11 S:12 S:3 S:4 S:5

12 R:6 R:6 R:6 R:6 R:6 R:6

t/? = (3,4).

Fig. 4.4. Code Generator Table for Example.

weights assigned to IR expressions in Chapter 3 always obey the definition of prefix

expressions.

Inductive Hypothesis: The concatenation of the stack and remaining input symbols forms a

sequence of root-level expressions.

Basis: In the initial configuration the stack contains the single entry qQ which is not a

vocabulary symbol. The input is a sequence of root-level expressions, and the /.//. is

trivially upheld.

Inductive Step: Assume that the I.H. holds for a given configuration. We will show that it

then holds after any next move. There are 4 cases to consider, corresponding to the 4

distinct actions:

shift: The leftmost symbol from the remaining input is read and pushed onto the stack.

The string resulting from the concatenation of the stack and input symbols does not

change.

reduce: Let e....e..e....ee....e be the symbols in the configuration of the parser

immediately prior to this reduce action, with e....e. being the instruction pattern and e the
J K r

location of the result for this reduction. Since the instruction pattern is a prefix expres

sion, w.+... + w = 1. According to the table construction algorithm, the action reduce is
J K

63

only entered into the tables when the top most symbols on the stack correspond to the

instruction pattern for rule /. There are two cases to be considered.

Case 1: The location of the result of the instruction issued is X. The instruction pattern

for such instructions must be a root-level expression. This action removes the entire

expression from the stack, and leaves nothing in its place. The resulting concatenation,

e,...e. ,e, , ,...e , is therefore still a sequence of root-level IR expressions.
1 j-l k+l nr

Case 2: The location of the result of the instruction issued is non-X. The instruction pat

tern is an internal prefix expression. It therefore must be an argument to another opera

tor in a root-level expression, e....e._.e....e e.e.. By 1) and 2) of the definition of

prefix expressions in Chapter 3, we have w.+.-. + Wj = 1 and w. +...+w < 1. The
reduce action will remove e....e from the stack, and replace it with e, (which must be an

J K i

operand symbol), so w = 1. The resulting expressions is e.„.e. ^efek+y..e{. Since
w = 1 = w.+...+ h> , we have: w.+...+ w. , + w+w. , , + ...+w. = 1, and 1) is satisfied,

r j k' i j-l r k+l 1

Since e....e. is a prefix expression, V x, i < x < k, w. + ...+ w < 1, so
i k ix

W. + ... + W. , + vv = w.+... + w. . + W.+...+ W < 1 and w. + ... + w. . + w+w. , . + ... + W
i j-l r l j-l j x i j-l r K+l n

= w.+...+ w. , + w. + ...+ m>. +w. , . + ...+ W < 1, n < 1, so 2) is upheld. 3) is upheld,
i j—1 j k k+l n

since e. is a root-level operator, and 4) holds since no symbol in e.+l...ek is a root-level

operator, and ei+y»e--ietek+\-el is a Prefix expression and therefore ^-fj_|'/k +|-('m
is still a sequence of root-level IR expressions.

accept: The parser halts without altering the input or stack. The I.H. holds trivially.

error: Even though this cannot happen for valid input, this action would leave the input

and stack unaltered. •

Lemma 4.2: The evaluation of an operation is done after or concurrent with the evaluation ol*

all of its operands.

Proof: By induction on the number of operators in the subtree computed by the expres

sion headed by that operator.

Inductive Hypothesis: For expressions with k or fewer operators, the evaluation ol* an

operator is not done prior to the evaluation of any of its operands.

Basis: There are no operators in the expression, i.e. it is a single operand symbol. Until

64

it is used in an instruction that computes a larger expression, the value of the operand is

not altered but simply moved from register to register. Then the larger expression is

computed by a single instruction, and the I.H. trivially holds.

Inductive Step: Assume true for all expressions with k or fewer operators. For an expres

sion with k + 1 operators, the I.H. must hold for each operand to the primary operator,

as the operands will contain at most k operators. Once the instruction involving the pri

mary operator has been issued, the entire sub-expression headed by it will be reduced to

either a single symbol or to X. (This follows from the fact that instruction patterns are

deterministic prefix expressions with a rigid format.) That operator is therefore evaluated

either simultaneously or after its operands, and the I.H. holds. (A more rigorous proof of

this Lemma would use another inductive proof here on the number of operators in the

last instruction issued.) D

Lemma 4.3: The stack is always void of any IR symbols when the coder is in the initial state,

V

Proof: State q^ only contains items of the form [X —. a]. Therefore no entry in
ACTION is shift q-, for each shift action advances the dot over a symbol in at least one

item, [r -* a . a 0] to [r — a a • 0], which will be included in the next state. Therefore

the only way to enter state qfl is to pop all of the remaining symbols off the stack, reveal
ing the initial entry, q^ on the bottom. D

Lemma 4.4: Each root-level IR expression is completely evaluated before any symbol in the

next sequential expression is shifted onto the stack.

Proof: The only state in which items of the form [X — . a] are included is the initial

state. The only occurrence of root-level operators in instruction patterns are as the left

most symbol in a root-level expression, which are exactly those instructions where the

result is X. Therefore, the only state containing an item with the dot preceding a root-

level operator is qQ. By Lemma 4.3, the stack is always empty when the parser is in state

q™ therefore all input must be fully processed prior to shifting over a root-level operator.

But the IR input is a sequence of root-level prefix expressions, each containing exactly

one root-level operator as its first symbol, so, equivalently, each sequential root-level IR

expression is completely evaluated before any symbol in the next expression is read. D

65

Lemma 4.5: When an instruction, /, is issued by a reduce move, the top symbols on the stack

are exactly the symbols in the instruction pattern for /.

Proof: The lemma follows from the LR(k) properties of the algorithm (see section

4.5.6). D

Theorem 4.1: The code produced by the code generator upon making an accept move correctly

implements the original IR input.

Proof: By Lemma 4.5, an instruction is issued only when the top of the stack corresponds

to the symbols in that instruction's pattern. Those symbols are then popped and the

result symbol is used as the next input symbol. The instruction issued will compute that

piece of the prefix expression when executed, assuming that the machine description is

correct. The only accept move is in state qQ reading #, and by Lemma 4.3 the code

generator's stack is always empty when it is in state q-. Therefore whenever the code

generator accepts the input, it has parsed it entirely, and issued all of the necessary

instructions to implement it. The only remaining problem is that the instructions might

be issued in the wrong order. Lemma 4.2 states that code is issued to implement an

operation only after, or at the same time as, code is issued to compute the value of its

operands. Assuming that the semantic information properly keeps track of the contents

of registers, the value of a root-level expression is therefore computed correctly. Since

each root-level IR expression is implemented sequentially, the entire input is imple

mented in the correct order, and the code generator does indeed compute the IR input

correctly. D

4.5.3. Looping

A shift-reduce parser is said to loop if it makes an unbounded number of moves without

reading any further input. In general, there are two ways for looping to occur. If a shift-reduce

parser ever repeats a configuration, it will be in a loop, endlessly repeating the sequence ol"

moves that it just made, beginning and ending with that configuration. Several facts can be

observed about such looping sequences in general. There is no way to 'back-up' the input.

Once an input symbol has been read, by performing a shift, the input string will be shortened

for all future configurations. No previous configuration can ever be entered again. Therefore

no input symbol can be read during a loop, i.e. no shifts can be performed on new input sym

bols. One way for a shift-reduce parser to loop is by reducing on chain rules. A chain rule is a

rule of the form 'x ::= y' where y is a single symbol in V. Such a reduction leaves the size of

66

the stack and input unchanged, so an unbounded sequence of chain reductions is possible.

Another way a shift-reduce parser can loop is to add symbols to the stack by reducing lambda

rules (rules with an empty right-hand part), and then reduce those symbols back out, returning

to a previous configuration. It is possible for chain rules to be interspersed among the moves in

such a sequence. Code generation grammars, however, have no lambda rules and therefore

cannot loop in this manner.

It is also possible for the parser to loop without returning to a previous configuration.

This could only happen if the parser continually increases the size of its stack, without reading

any input; it is not possible without reducing lambda rules.

Detecting the possibility of such looping by examining the tables of a shift-reduce parser

is, in general, quite complex [Aho72a]. But code generation grammars contain no lambda

rules, allowing the possibility of looping to be determined in a much simpler manner, by exa

mining the ACTION and NEXT functions.

Briefly, the only way that a code generating parser can loop is by entering into a series of

chain-rule reductions that bring it into a previous configuration. If a reduction of a rule with a

longer right-hand part is performed, then the stack will have grown smaller. Since there are no

lambda rules, the only way to increase the stack to its previous size is by performing a series of

shifts. But that will advance the input, and there will be no way to return to a previous

configuration. Thus, a reduction using a rule with a right hand side longer than one symbol will

prevent the coder from returning to a previous configuration and therefore prevent it from

looping. Similarly, the stack cannot grow without bounds. This can happen only in the pres

ence of lambda rules. In fact, the size of the stack cannot exceed the length of the original

input string, as the only way to increase the size of the stack is to perform a shift, which reads

an input symbol.

It can be determined whether a code generator can loop by examining its ACTION and

NEXT functions and finding all places that a chain rule reduction occurs. To see how this is

done, consider the following generalized sequence of moves that form a loop:

(...qdq1 —> w...) \- reduce (dj ::= d)

(...qd^-M;...)!-*-2

(...qdkJqk —• w...) h- reduce (d ::= dR1)

(...qdqj —» w...) {Same as first configuration above }

The values of ACTION and NEXT causing these moves are summarized in the following table:

67

dk-i •.. dj d w

q S:qk ... S:q2 S:Ql

*2

R:(d, ::= d)
R:(d2 ::= d,)

<*k R:(d ::- _J

We will now discuss how to detect potential looping patterns in the parser's tables. The

method takes each state, q, and checks for potential chain rule loops from that state by defining

a relation characterizing the parser move:

(...aqdjqk —• w...) \- (...aqd.^ —w...)

and then taking the transitive closure of that relation to find the loops. We define the relation

CHAINLOOP on N x N to be:
q

d. CHAINLOOP d. <=>
« q j

3 qk € Qsuch that ACTION(q,d.) = shift, NEXT(q,d.) = qR,
ACTION(qk,w>) = reduce{d. ::= dj},
ACTION(q,d.) = shift, NEXT(q,d.) = q,.

where w is an input symbol. The parser will be able to loop if and only if there is a variable d.

with d. CHAINLOOP+d..
i q l

It is possible to check the code generator tables for the possibility of looping. In short,

one computes for all states q, CHAINLOOP . If there is a variable, d, with

d CHAINLOOP+d, then the coder may loop when in a configuration of the form

(...qdq. —* w...). The algorithm for computing CHAINLOOP appears as Algorithm 4.4.

4.5.4. Complexity of Loop Detection by Preprocessor

The complexity of loop detection by the preprocessor is examined next. If N represents

the number of variables in the grammar, then each transitive closure takes time O(N). If Q is

the number of states and V the number of symbols in the total vocabulary, then the complexity

of this test by computing CHAINLOOP is in the worst case QN3, which is greater than N4.
(Typically, Q is on the order of several hundred and N is 5 to 10.) If the grammar contains no

68

Algorithm 4.4 — Loop Detection

Input: NEXT and ACTION functions for a shift-reduce parser.

Output: A list of looping configurations.

Method: Compute CHAINLOOP„ for each q € Q and check for the existence of a d € V
>+

q
with d CHAINLOOP+d?

procedure loopdetection\
begin

V q € Q do begin
CHAINLOOP — 0;
V d € N do begin

if ACTIONfM = shift and NEXT[<jr,rf] = q then
if ACTIONEM = reduce R then

V chainrules v ::= d 6 R do begin
CHAINLOOP <- CHAINLOOP + {(</,v)l;

end;
end;
V d € N do begin

if (d,d) € CHAINLOOP+ then
f' — NEXTMl;
output("Looping configuration: i...qdq' — w...)");

end;
end;

end loopdetection\

chain rule loops, then the parser cannot loop. Even if the grammar does contain chain loops,

the parser may not loop, since conflict resolution may have eliminated the potentially looping

chain reductions. In general, CHAINLOOP will be extremely sparse so the closure is easily

computed by graph traversal. Since N is normally quite small, a straightforward bit-wise imple

mentation is also feasible.

4.5.5. Loop Elimination by Preprocessor

It is possible for the preprocessor to automatically eliminate potential looping in a code

generating parser by introducing new states into the parser's tables which suppress unnecessary

chain reductions. In fact, by a slight addition to Algorithm 4.4 all loops may be eliminated in a

single pass as they are discovered.

69

To show how loop elimination is done, assume that we have discovered a loop including

configuration (...qdq — w...) with d CHAINLOOP+d. By definition, root-level expressions

(hence, rules with the left hand part X) must begin with an operator. Consequently there is no

d 6 N such that d CHAINLOOP"*" d. Thus q ^ qA. By definition of CHAINLOOP,
ACTION(q,d) is shift, NEXT(q,d) = q' and ACTION(q',w) is reduce /?, where Uj ::= d is in
R (for some ut 6 N). Therefore [u{ —*•. d] must be in q. Likewise, all of the items of the
form [u —• . v], v € N, involved in the looping must also be in q.

To break the loop, we consider why the chain item [u. — . d] is included in state q by the

constructor. Since q ^ qQ, the chain item is added by the closure operation. Hence there is

some item [x —• a . v0], where a ^ \ and v € N, in the core of q such that for some y,

v =^.* Uly. But by a simple inductive argument, Uj-y must be a prefix expression, since the
right hand part of each rule is a prefix expression. Hence y = X and v =#•* u by a sequence

of applications of chain rules v ::= u , ufc ::= u.., ..., u, ::= u-, each having acorresponding
chain item in q. Although u *:= d is a rule included in the loop, the other chain rules in the

derivation v =>* Uj may or may not be. The loop is completed by a set of items of the form:
{[d —• . Wj] [Wj —• . w2J ... [w. —• u.]} for some i < j < k or u = v (see Fig. 4.5). In any
case the looping is prevented by modifying the states in the loop so that d is necessarily reduced

to v (i.e. the derivation v =#•* ut ==>* d is reconstructed) and then v is shifted. This is
accomplished by removing the item [w. —•• . u.] from state q. The effect of shifting v is to enter

a state containing item [x — a v . 0]. The next move of the parser is either a reduction by a

non-chain rule or a shift of an input symbol — either kind of move breaks the loop.

wt ... w.
l i

ul •••

U. U. ., ... U. t U, V
j j+1 k-1 k

Fig. 4.5. Graph Constructed to Eliminate Loop: d—»...—d.

Modifying the coder's tables to prevent looping is performed in the following way: A

directed graph is constructed from the chain rules involving only nonterminals. As shown in

Figure 4.5, the nodes of the graph correspond to nonterminals in the grammar, and arcs exist in

the graph from v to u for each chain rule of the form u ::= v. Each arc is given a positive.

70

non-zero length that is used as the 'cost' of the code that will be generated for such a reduc

tion. If there are several semantically restricted forms of the rule, one could use the average or

expected cost of the variants. Alternately, a constant cost of 1 works quite well. For each state

q" such that ACTION(q,^) = shift, NEXT(q,u.) = q" and ACTION(q'» =
reduce {w, ::= u., u.,, ::= u.) a new state q'" is constructed that is the same as q" except that

1 i j' j+i j

it contains only those chain rules which transform the nonterminal u. into a nonterminal that is

closer to a nonterminal v, with an item of the form [x —a . v0] € q, i.e. wt ::= u^ is
removed from the reduce set for q" to make the reduce set for q'". NEXT(q,u.) is then set to

the newly created state. Thus, any chain rule reduction done immediately after shifting from

state q will reduce the distance between the symbol on the top of the stack and the closest sym

bol that will allow an item in the core of q to be extended. Since the minimum distance is

zero, this process must terminate in at worst |N|-1 chain rule reductions, and the loop has been

eliminated. Since no moves other than multiple-possibility reductions have been eliminated,

the language accepted by the automaton is unchanged. This algorithm is given as Algorithm

4.5.

4.5.6. Blocking and Uniformity

Once the possibility of looping has been eliminated, the only way that the code generating

algorithm presented in this dissertation can fail to generate code for the input (i.e. can fail to

reach the accept action) is by blocking. A coder is said to block when it performs an error

action. In this section a sufficient condition for instruction grammars is presented, together

with an algorithm for testing whether an instruction set satisfies the condition, and a

corresponding sufficient condition for the IR that is straightforward to check. It is argued that

if both the IR and the instruction set satisfy the sufficient conditions, then the coder cannot

block. We then indicate how the conditions might be weakened if necessary for a particular

instruction set. In order to simplify the presentation, we assume in this section that no reduce

set R contains two or more rules with different left hand parts. This restriction is removed in

section 4.5.7.

An instruction set grammar is said to be uniform if it satisfies the following condition:

Any left (similarly right) operand of a binary operator b is a valid left (respectively right)

operand of b in any prefix expression of V* containing b. Any operand of a unary opera

tor u is a valid operand of u in any prefix expression of V* containing u.

An instruction set is uniform if its grammar is uniform. The essential idea of uniformity is that

operands to an operator are valid independent of context.

71

Algorithm 4.5 — Loop Elimination

Input: NEXT and ACTION matrices, the set of LR(0) items, and a list of all chain rules
and their costs for a shift-reduce code generator.

Output: A new set of NEXT and ACTION matrices for a shift-reduce code generator th;il
cannot loop.

Method: Locate loops by computing CHAINLOOP and remove some reductions so that
looping is no longer possible.

/* Compute DISTANCE[u,v) = cost of shortest code sequence from u to v*/

V w,v 6 N do DISTANCE[u,v] — oo;
V chain rule u ::= v € G do

DISTANCE[u,v) - cost[v ::= u]\
V w € N do

V u € N do
V v € N do

if DISTANCEluM > DISTANCEDM + DlSTANCE[w,v\ then
DISTANCEluM - DISTANCE[uM + DISTANCED, v}\

if V v € N DISTANCE[vM = «> then return; /* there are no loops V

V q € Q do begin
Compute CHAINLOOP using Algorithm 4.4;
if 3 v € Nwith (v,v) €<7CHAINLOOP+then begin

I* Compute MINDISTANCE [v] V v */

V v € N do MINDISTANCElv) — oo;
V x € N with \y —a . x 0] € g, a ^ X, do begin

MINDISTANCEU) — 0;
V v € N if DISTANCE[v,x] < MINDISTANCEU] then

MINDISTANCElv] - DISTANCE[v,x}\
end;

V v € N do begin
<7'-NEXT[<7,v]; /? - 0;
« — (numstates <— numstates + \)\ q — q'\
V rule V ::= v' € ACTION^', v], do begin

if MINDISTANCE[v'] < MINDISTANCElv) then
Add all rules V ::= v' to R\

end;
ACTION!? ,v] — reduce R; NEXT[?,v] — <? ;

end;
end;

end;

72

We give some examples to clarify this notion. Consider the six rule example of section

4.5.1. The possible operands of f, +, and := are all registers (or prefix expressions that result

in registers) except for the left operand of + and the operand of] in rule 6. However the left

operand of +, a constant, can be transformed into a register by rule 1. Also, the operand of 1

in rule 6 is a special case of the operand of j in rule 2 (i.e. this is an ambiguity which will be

resolved by using rule 6 whenever possible). Thus, whenever the operators f, + , := occur,

their operands are any expressions corresponding to registers (i.e. generated by r in the gram

mar).

An example of an instruction set which is not uniform is:

1* r::= (+ } k k)
2* r::= (+ Art k)
3*X ::= (:= r r)

In this example A: is a valid first operand of + only if the second operand is 'f ky and vice-

versa.

We next give an algorithm to determine whether an instruction grammar is uniform.

Rather than testing the grammar, the algorithm is a blocking test of the code generator. We

present the algorithm and also argue that the uniformity test fails (i.e. blocking can occur) if

and only, if the grammar is not uniform.

To describe the test easily, we need some terminology to refer to parts of a prefix expres

sion. Let e....e....e. be a prefix expression, where k > 2 and 1 < i < k. As is well known, the
1 1 K

prefix expression corresponds to a (unique) binary tree with nodes labelled by the '̂s, where e]
labels the root and non-leaf nodes are labelled by operators. The subtrees rooted by children of

an operator node represent its operands (see, for example, [Meyers74]).

We define the following function and predicate for each such prefix expression ey..e^. For

1 < i < k, parent(e,e....e....e) = e. where e. is the parent of e in the tree corresponding to

the prefix expression. (Clearly j < i). For 1< i ^ k, the value of leftchikK?.,^...?....^) is
TRUE if e. is the left child of its parent in the tree corresponding to the prefix expression and

FALSE otherwise (namely, if e. is the right child). The single child of a unary node is assumed

to be aleft child. It is easily shown that for any prefix expression ey..ek and for 1 < i ^ k,

1) leftchild{e.,e....e....e.) = TRUE iff e., is an operator, and
1 1 I K i i

2) leftchild(e.,e]...ei...ek) = FALSE iff e{_x is an operand symbol.

Using parent and leftchild, we define the relations used by the uniformity test. The

73

definitions are presented with respect to a particular instruction grammar G. Let B C V be the

binary operators; let U C V be the unary operators. Define the relation LEFT on

(B U U) x V as:

bLEFTv iff

3 a rule r ::= abv0 for some r € N U {X}.

It is a simple consequence of the properties of prefix expressions, that if b is an operator,

parent(\,abYp) = b and /e/?cMrf(v,abv0) = TRUE. Define the relation RIGHT on B x V

as:

b RIGHT v iff

3 a rule r ::= ab0vy

for some r € N U {X} and some prefix expression 0 r* X.

It is easily shown that if b is a binary operator and 0 is a prefix expression,

parent(\,abpvy) = b and fe/te/j/W(v,ab0vy) = FALSE.

In addition, we need the usual grammatical leftmost and rightmost descendent and follow

relations. Define the relation FIRST on V x V as:

u FIRST v iff

3 a derivation u =¥>* \a for some a € V*, u € V.

Thus u FIRST v if there is some derivation in G from u that yields v as the leftmost symbol.

Similarly, define LAST on V x V as:

uLASTv iff

3 a derivation u =#>* av for some a € V*, u € V.

By the usual product of relations, b LEFT FIRST v iff v can appear as the first symbol in the

left operand to b in a derivation in G, and b RIGHT FIRST v iff v can appear as the first sym

bol in the right operand to b in a derivation in G. For u € V, let

FOLLOW1 (u) = {v | for some r ::= axy0, r € N U X,

xLASTu and y FIRST v}.

74

Let

X-LAST = {u | 3 rule X ::= ax for some a € V* and x LAST u}.

(It is easily shown that X-LAST consists only of operand symbols.) Then for u € V,

FOLLOW(u) =
FOLLOWl(u) if u £ X-LAST

FOLLOWl(u) U {root-level operators) if u € X-LAST.

The definitions have the following consequences:

Lemma 4.6: Let G be an instruction set grammar. Let u,v € V. Then v € FOLLOWl(u) iff v

can follow u in a prefix expression generated by the grammar. Also v € FOLLOW(u) iff

v can follow u in a sequence of prefix expressions generated by the grammar.

Proof: Left to the reader. •

Lemma 4.7: Let G be an instruction set grammar.

1) Let u be an operator. Then V v € V, v € FOLLOW(u) iff u LEFT FIRST v.

2) Let u be an operand symbol. Then V v € V, v € FOLLOWl(u) iff 3 r ::= ab0xyy,

where r € N U {X}, such that b is a binary operator, 0x is a prefix expression, x LAST u,

and y FIRST v, in which case b RIGHT FIRST v.

Proof: Left to the reader. D

Using the definitions, we can characterize uniformity by the following lemma.

Lemma 4.8: The following conditions.are equivalent:

1) G is a uniform grammar.

2) Let Q be the set of LR(0) items generated for G.|

2a) V u,v € V, if u LEFT FIRST v then V q € Q containing [r — a . x 0] where

parent(x,ax(3) = u and leftchild(x,axp) = TRUE there is some [r' — a . x' 0'] in q

such that parent(x\a'x'p) = u, leftchild{x\ax'p') = TRUE, and x' FIRST v, and

2b) V u,v in G, if u RIGHT FIRST v then V q € Q containing [r — a • x 0] where

""The reader should recall from the theory of LR-parsing that such a set of items can be generated for any
context free grammar, even though a consequent parser generation method might yield a parser with conflicts
(i.e. a nondeterministic parser).

75

or ^ X, parent(x,axp) = u, u € B, and leftchild(xyaxp) = FALSE, either there is

some [r' —a . x' 0'] in q, a ^ X such that parent(x\a'xp') = 11,
leftchHd(x\a'x'p') = FALSE, and x' FIRST v or there is some [r" —y .] in q, y * A
such that v € FOLLOW(r").

Proof: (Informal) 1—2. Suppose G is a uniform grammar. Let Q be the set of LR(0)
items generated from G and let w € V. It follows from the correct prefix property of the
LR(0) construction that every state q € Q containing an item of the form [r —a w• 0]
(i.e. an item with an occurrence of w before the dot) represents a state of the automaton

after recognizing one of a regular set of initial segments of prefix expressions containing

w, where the initial segment ends in w. Furthermore, every item [r' — 8 . e] in such a

state q has the property that either 8 is a suffix of aw or aw is a suffix of 8. Let u be an

operator occurring in at least one instruction.

1—2a. Let v be any symbol such that u LEFT FIRST v. Then v is the first symbol of a

left operand of u in some prefix expression. Since G is uniform, v must be a possible first

symbol of a left operand in any prefix expression containing u. Let q 6 Q be any slate

containing an item of the form [r —a u . x 0]. Since the operator u must be followed in

any prefix expression by a left operand and since it must be possible for the left operand

to start with v, under the standard 'canonical' parser construction, state q must signal a

shift action or a reduce action when the next input symbol is v. Since the right hand part

of every rule is a prefix expression, there is no item in q of the form [r —a u .] (i.e. no

rule ends with an operator). Consequently q must contain an item [r' —a' u . x' 0'] the

closure of which signals a shift on v. Thus, x' FIRST v. Clearly parent(x',a'ux'p') = u
and leftchild(x,aux'p') = TRUE.

1 — 2b. Let u be a binary operator and let v be any symbol such that

u RIGHT FIRST v. Then v is the first symbol of a right operand of u in some prefix

expression. Since G is uniform, v must be a possible first symbol of a second operand in

any prefix expression containing u. Let q 6 Q be any state containing an item of the

form [r —a • x 0] where a ** X, parent(x,axp) = u, u € B, and

leftchild(x,axp) = FALSE. By reasoning analogous to the previous section of the proof,

when in state q, the automaton has just recognized a sequence of input symbols ending in

u followed by its first argument (a prefix expression). Since the automaton must next

accept a prefix expression starting with v, there must be the possibility of a shift action or

a reduce action from state q when the next symbol is v. It follows from the construction

76

of Q that q must contain an item [r' —a . y], a ** X where either y = X and

v € FOLLOW(r') or y = x'0' and x' FIRST v. It remains to show that if the item has

the form [r' — a . x' 0'], then parent(x\ax'P') = u and Ieftchild(x',a'x'p') = FALSE.

Since leftchild(x,axp) = FALSE, a must end with an operand symbol. Since a and a'
end with the same symbol, leftchild(x\a'x'P') = FALSE. Since ax0 and a'x'0' are prefix

expressions and either a is a suffix of a' or a' is a suffix of a, a straightforward argument

establishes that parent(x\a'x'p') = parent(x,axp) = u.

2 -• 1. Suppose G is a grammar which satisfies conditions 2a and 2b. Then for every u,v

such that u is an operator and v is a valid first symbol of a left operand (similarly right

operand) of u, whenever the automaton has recognized u (respectively, and its first

operand), i.e. whenever the automaton is in a state with an item having a dot following u

(resp, with an item that is valid for the prefix of a sentential form ending in u0 where 0 is

a prefix expression), v is a possible next symbol (see lAho72a]). Since v is either a com

plete operand or another operator one can argue by induction on the size of the operand

tree that the grammar must be uniform. D

Suppose Algorithm 4.3 (the SLR(l)-like algorithm) is used to compute the table for the

code generator. We know from the theory of LR parsing (see, for example, [Aho72a]) and the

fact that the right parts of rules are prefix expressions that for any q 6 Q, u € V,

1) ACTION(q,u) = shift iff q contains some item [r —a . x 0] where x=^*uy,

y € V* (i.e. x FIRST u).

2) If q contains some item [r —a .] then ACTION(q,u) = reduce R for every

u € FOLLOW(r) such that q contains no item [r' — a • x' 01 where x' FIRST u.

If Algorithm 4.2 (the LR(0)-like algorithm) is used, then 1) above is still true but the second

condition becomes:

2') If q contains no items [r -♦ a . 0], 0 ?* Xand q contains some item [r -♦ a .] then

V u € V, ACTION(q,u) = reduce R. If q contains some item [r —• a . 0], 0 ^ X then

V u 6 V such that ACTION(q,u) ^ shift, we have ACTION(q,u) = error.

Using these properties and lemma 4.8 we obtain:

Lemma 4.9: Let the code generator tables be computed by Algorithm 4.3. The following con

ditions are equivalent:

1) G is a uniform grammar.

2a) V u,v € V, if u LEFT FIRST v then V q € Q containing [r — a . x 0], where

r € N U {X}, parent(x,axp) = u and leftchild(x,axp) = TRUE, it follows that

77

ACTION (q,v) = shift, and

2b) V u,v in G, if u RIGHT FIRST v then V q € Q containing [r — a . x 0] where

r € N U {Xj, parent{xyaxp) = u, u € B and leftchild(x,axp) = FALSE,

ACTION(q,v) 6 (shift,reduce R). D

The idea of the uniformity test is the following: For every operator, the LEFT FIRST

and RIGHT FIRST relations are computed. The algorithm then inspects the stales for items

[r — a . x 0] as specified in lemma 4.9, finds the appropriate parent, and checks that for all

first symbols of left and right operands, either a shift or a reduce is signalled. Note that it

suffices to check for error because only state q_ can have an accept action. Also note that the

possibility of a reduce in 2a) is ruled out by the form of the grammar (i.e. u must be an opera

tor and must be the last symbol in a, and no right hand side of a rule can end in an operator).

Algorithm 4.6 — Uniformity Test for Algorithm 4.3

Input: ACTION and NEXT matrices computed by Algorithm 4.3, the relations
LEFT FIRST and RIGHT FIRST, and the set of LR(0) items for a shift-reduce
code generator. \

Output: A list of table error entries, if any nonuniformity exists.

Method: Check each state for error actions on follow relationships.

procedure uniformitycheck\
begin

V q 6 Q do begin
V items of the form [r —♦ a . v 0] € q, a ^ X do begin

x <— parent(v,avp);
if leftchildi v,a i>0) then

V u with x LEFT FIRST u do begin
if ACTION lq,u] = error then

output("Not Uniform");
end;

else (* x € B and v begins the second operand *)
V u with x RIGHT FIRST u do begin

if ACTION lq,u] = error then
output("Not Uniform");

end;
end;

end;
end uniformitycheck\

7H

It follows easily from lemma 4.9 that:

Theorem 4.2: Algorithm 4.6 generates output if and only if the instruction grammar used by

Algorithm 4.3 to generate the ACTION table is non-uniform. D

Suppose Algorithm 4.2 is used to compute the table tested by the uniformity test. Let us

compare the tables generated by Algorithms 4.2 and 4.3. Every shift action for Algorithm 4.2

will be a shift action for Algorithm 4.3 and conversely. However some reduce actions for

Algorithm 4.2 could be error actions for Algorithm 4.3. These moves would be in states having

no shift actions and in fact represent error situations with delayed detection. They cannot

invalidate the uniformity test. In addition, some reduce actions for Algorithm 4.3 could be

error actions for Algorithm 4.2. This situation arises in states having a nonterminal before the

dot in each core item and at least one shift action (note that this is a state in which a right

operand is expected). In this case, the reduce action must be inserted in the table generated by

Algorithm 4.2. This addition has been incorporated into Algorithm 4.7.

It follows from Lemma 4.9, Theorem 4.2, and the LR properties of the construction that:

Theorem 4.3: Algorithm 4.7 generates error output if and only if the instruction grammar used

by Algorithm 4.2 to generate the ACTION table is non-uniform. D

It appears from the commercially available instruction sets we looked at, that the need for

the table modifications made by Algorithm 4.7 rarely arises. We give an example in which

additional reduce actions are needed in section 5.2, although the necessity for such additions

resulted from the fact that only a partial instruction set description from an existing machine

was supplied.

Suppose the grammar is found to be uniform. Furthermore, suppose that a particular IR

input auv0 is a sequence of root-level expressions. It follows from lemmas 4.7 and 4.9 that for

any operator u, for any v € V, and for any state q such that for some q' € Q,

ACTION(q',u) = shift and NEXT(q',u) = q, ACTION(q,v) = error iff u not LEFT FIRST v.

Recall that in either Algorithm 4.2 or Algorithm 4.3, for any state signalling no shifts, reduce

actions are indicated for any symbol which can follow the left-hand symbol of a rule being

reduced. It follows from this fact and lemmas 4.7 and 4.9 that for any operand symbol u, for

any v € V, and for any state q such that for some q' € Q, ACTION(q',u) = shift and

NEXT(q',u) = q, ACTION(q,v) = error iff for each item [r — a . y] in q, either y = X,

r ^ X and v g FOLLOW(r) or y = x0, parent(x,axp) = b, leftchild(x,axp) = FALSE and

b not RIGHT FIRST v. In the former instance (y = X), there can be no rule r' ::= a'b0xyy

such that y FIRST v, parent(y,abpxyy) = b and x FIRST r. It follows that when the code

generator enters state q and the parsing stack (omitting the state symbols) has the form ab<r

where or is a (non-empty) prefix expression and b is a binary operator, b not RIGHT FIRST v.

79

Algorithm 4.7 — Blocking—Uniformity Test for Algorithm 4.2

Input: ACTION and NEXT matrices computed by Algorithm 4.3, the relations
LEFT FIRST and RIGHT FIRST, and the set of LR(0) items for a shift-reduce
code generator.

Output: A modified ACTION table and a list of table error entries, if any nonuniformity
exists.

Method: Check each state for error actions on follow relationships.

procedure uniformitycheck\
begin

V q € Q do begin
V items of the form [r — a . v 0] € q, a ^ X do begin

x — parent(v,avp)\
if leftchild(v,avp) then

V u with x LEFT FIRST u do begin
if ACTIONlq,u) = error then

output ("Not Uniform");
end;

else (* x € B and v begins the second operand *)
V u with x RIGHT FIRST u do begin

if ACTION^, u] = error then
if 3 /" € q with / = [x' — a] such that u € FOLLOW0c') then

R«- {[x —a .] € qk \v€ FOLLOWU)
2 / € q , / = lx — a' •] such that

both length(a') > length(a) and v € FOLLOWOt')};
ACTIONS v] — reduce R\

else outputC'Not Uniform");
end;

end;

end;
end uniformitycheck\

Since the code generator cannot loop, it can fail to generate code for an input IR sequence

only if it blocks. By the remarks above, blocking is characterized by the LEFT FIRST and

RIGHT FIRST relations on the instruction grammar. Consequently, any input IR sequence

E = e.e„..e k > 2 is said to be valid for the code generator if:

1) E is a sequence of root-level expressions,

2) Me. € B U U, e. LEFT FIRST e. ., and

3) V e. € B, e. RIGHT FIRST e. where e.^....e. . is an (internal) prefix expression.
i i j i+i j—l

80

In terms of retargetability, one might prefer to state the situation another way. Let

LEFT¥„, RIGHTID, and FIRSTID be the relations satisfied by the IR. In other words, substitut-
IR IR 1R

ing LEFTIR for LEFT, etc., the IR satisfies 1), 2), and 3) above. Let LEFTCG, RIGHTCG, and
FIRST^ be the relations of a uniform instruction grammar described previously. Then an

CG

intermediate representation (IR) is valid for a code generator (CG) provided that:

LEFTIR C LEFTCG,
RIGHTIR C RIGHTCG, and
FIRSTIR C FIRSTCG.

Since the compiler probably cannot generate all IR expressions generated (i.e. computed) by a

uniform instruction set, the inclusion might be proper in some instances.

It is the responsibility of the implementor (or of some other part of a compiler-writing

system) to specify LEFTIR, RIGHTIR, and FIRSTIR. However, specifying these relations is
considerably simpler that characterizing the set of strings that are possible IR expressions.

For most actual instruction sets we have looked at, one can use simpler computations of

the relations LEFT FIRST and RIGHT FIRST than the ones suggested by the definitions.

Define relation LT on (B U U) x V by:

bLTu iff

3 a rule r ::= bu0 for some r € N U {x}.

Define RT on B x V by:

bRTu iff

3 a rule r ::= b0uy for some r € N U {X}

and some prefix expression 0 ^ X.

The difference between LT and LEFT is that to compute LT, one inspects only the left

most operator of each rule. (Similarly for RT and RIGHT). Clearly, LT C LEFT and

RT C RIGHT. Consequently LT FIRST C LEFT FIRST and RT FIRST C RIGHT FIRST.

Suppose LT is used instead of LEFT and RT is used instead of RIGHT in Algorithm 4.6.

If the containment of LT in LEFT or of RT in RIGHT is proper, then certain actions will not

be inspected by the modified algorithm. However, if the computation performed by lemma 4.7

is replaced by the computation obtained by substituting LT, RT for LEFT, RIGHT respectively

in lemma 4.7, then the resulting but somewhat less precise computation can be used in the IR

validity check. In other words, if LEFTIR C LTCG, RIGHT,R C RTC(;, and
FIRSTJR C FIRSTCG, then the code generator produces code for all inputs (but it might never
be possible to use certain sequences of instructions).

We now state a theorem that says the code generator will always produce correct output

for any valid IR input.

Theorem 4.4: If G is a uniform grammar, a is a valid IR string according to G, and the code

generator constructed for G by the algorithms in Chapter 4 is shown to contain no loops,

then that code generator will always accept a and generate correct code for a.

Proof: Theorem 4.1 states that correct code is always generated (i.e. incorrect code is

never generated). By a simple counting argument it can be shown that a non-looping

code generator must eventually accept an input string or else block (i.e. perform an error

action). Since a is valid, the code generator will not block. Therefore it must accept, and

consequently will have generated correct code for the entire input. •

Notice that we have indirectly justified the conflict-resolution rules used by Algorithms 4.2 and

4.3, namely that shift/reduce conflicts are resolved in favor of shifts and reduce/reduce

conflicts are resolved in favor of the longest reduction.

Suppose the grammar is not uniform. Then certain operands to certain operators can

occcur in some contexts but not in others. If the implementer can identify these operators,

operands, and contexts, and can insure that the same restrictions apply to the IR, then our

method can still be used. Since non-uniform instruction sets do not seem to occur in real

<machines, we have not attempted to study weaker conditions that uniformity.

4.5.7. Semantic Blocking

If the code generator is performing a reduce R, but each rule in R contains a semantic

restriction that is not satisfied, then the coder would semantically block. This can usually be

avoided by the use of a default list of shorter instructions that contain no semantic restrictions

and together compute the desired expression. This list is automatically generated by the

preprocessor. Again consider the memory-to-memory add instructiont. The basic instruction

pattern is ': = k + \ k \ k\ If this pattern occurs in the IR, but the constants associated with

each of the three fc's are distinct, then the instruction cannot be used. If there are instructions

with the patterns 'r ::= \ k\ V ::= + | k r\ and 'X ::= := k r\ then they could be issued,

simulating a non-restricted memory-to-memory add instruction, and the code generation could

fA ::= (:- A.1 + T *.l t k.2) "madd k.2,k.\"
X ::-(:- A.1 + f A.2 T A. 1) "madd k.2,k.l"

82

proceed from there as though the longer instruction had been issued. In fact, a default list of
instruction patterns that contains shorter, possibly semantically restricted instructions is used.

This allows the code generator to utilize any shorter special instructions instead of always

reverting to 'worst case' code when the longest instruction is not suitable. If no instruction on

the reduce list for a specific sub-pattern is applicable, then that pattern's default list is recur

sively utilized.

Default instruction lists for reduce states are automatically constructed by the preproces

sor. These lists are obtained by simulating the action of the coder using as input each instruc

tion pattern that contains only semantically restricted instructions in its reduce list, using only

those rules with right-hand sides that are shorter than the pattern under consideration. The

construction, in effect, builds a code generator for the subset of shorter instructions patterns,

and simulates the resulting code generator's actions, noting where each instruction is issued.

This process appears as Algorithm 4.8.

In the presence of semantically restricted instruction patterns, the code generation Algo

rithm 4.1 will choose from a list of rules in step 2 when a reduce action is performed. Assum

ing that this list has already been sorted by the preprocessor, the rules must be tested sequen

tially until one is found that is semantically compatible. In the event that no instruction is

acceptable, the default list of reductions is used to implement that reduction.

There are several classes of semantic restrictions that may have to be satisfied. Constants

in the IR input may have to be equal to specific values, such as 1 in an increment instruction,

and logical registers may have to be equivalent to specific actual registers. Multiple occurrences

of a symbol in any class may have to refer to the same actual value or register. If the result is

to appear in a register, then there must not be any references to the value in that register out

side of that instruction pattern. Such references could exist only if some sort of common

subexpression elimination has been done. (Register allocation is discussed in section 4.3.)

Finally, any additional semantic restrictions required to properly describe a particular target

computer may be added to the code generator. The proof of correctness only requires that a

default instruction or list of instructions be available for each restricted instruction, so that it

will always be possible to generate code.

If two instructions have the same instruction pattern but different result locations, the

actual instruction used is arbitrary. Adherence to the uniformity condition insures that the

coder will still accept the input regardless of the choice made. The item [x —• 0 •] will not be

included in a state of a uniform instruction set unless a reduction using it on a valid input

a0y ==#• axy is still valid. For practical reasons, one may preorder the instructions by cost, by

the instruction that leaves the result in a register class with more actual registers (in an attempt

83

84

Algorithm 4.8 — Default List Construction

Input: The table for a shift-reduce code generator. The parameter q is the semantically
restricted state.

Output: A list of default instructions for the semantically restricted reduce move.

Method: Build a code generator without the semantically restricted instruction and simulate i
the action of the code generator reading the restricted instruction pattern as input,
noting where instructions are issued. The kth symbol of pattern p is designated
plk). The state at the top of the stack is designated tos.

procedure defaultlistconstructoriq);
begin

/* ACTION[g,*] = reduce Ry and all instructions in R semantically restricted */

/* Find the Starting State for this pattern */

p «— R.H.S. of instruction pattern for rules in R followed by T;
q' <— first state with [v —» • p] in it;
m - {[v - a . 0] € 11 v € V, |a0| < |p|};
/-{[v-.a] €l|v€ V); *-l;

/* Simulate the action of a code generator on the input p
using only patterns that are shorter than p */

while k < |p| do begin
repeat

case ACTIONEM] of
accept: fr«— <»; Reaaflag«— TRUE;
shift: q" *— closeim H (q'—J))

if 3 an item [x -* a • v 0] € q" with v = plk] then
q — NEXTU', plk])\ Reaaflag<- TRUE; push(q');

else /«- "x ::= a" with [x —a .] € q" for maximum |a|;
output("reduce / at /:"); pop \a\ times;
q *- NEXT[tos,x]; push(q)\

reduce:/— "x ::= a" € /?; output("reduce / at A;");
pop \a\ times; '̂«— NEXT[tos,x]; push(q')\

error: output ("Cannot produce code for p");
end;

until Reaaflag;
k*- k+\\

end;
end defaultlistconstructor;

to avoid having to save registers in temporaries), or by any other ordering desired, and the

coder would still function correctly. It is also possible to examine the operator corresponding to

parent(x,axy) to determine the instruction that leaves the result in a location that is closer to a

valid operand to that operator, thus possibly avoiding a subsequent register move instruction.

85

Chapter 5: Two Examples: The PDP-11 and The IBM 370

This chapter describes partial implementations of code generators for PASCAL on two

target computers using the machine independent compiler techniques described in this disserta

tion. The target computers are the PDP-11 and the IBM 370. These computers were picked

for the trial implementations because of their general availability and their contrasting architec

tures and instruction sets. PASCAL was used for the source language because of its relatively

clean design and increasing popularity, the author's familiarity with it, and the existence of

PASCAL compilers and interpreters locally.

The preprocessor system and code generator described in this dissertation were fully

implemented. The implementations are described in section 5.1. A full PASCAL compiler was

not implemented in order to make the project manageable by a single person. Instead, a very

straightforward translation of source programs into IR was done by hand in order to generate

code. The remaining two sections describe the sample implementations, the problems encoun

tered in producing them, and the kind of code they generate.

5.1. The Preprocessor and Coder Implementations

The TMDL preprocessor and code generator are written in Unix PASCAL and execute on

a PDP-11/70 via an interpreter [Joy77]. The preprocessor consists of four passes. This organi

zation was necessitated by the limited address space of 28K words (program + data) of the

PDP-11, not by the preprocessor algorithm. The first pass performs the scanning, parsing, and

semantic analysis for TMDL and produces diagnostic messages and source listings for the user.

A small amount of processing is performed on the instruction patterns to allow more efficient

semantic checking by the code generator. Using Algorithm 4.2, the second pass computes the

LR(0) item set and SLR(l)-like state set necessary to construct the code generator, and the ini

tial NEXT and ACTION matrices and reduce lists used by the code generator. The third pass

uses Algorithm 4.7 to determine whether the coder will block, and if so, whether the blocking

can be prevented. The fourth pass performs loop detection and elimination (using Algorithms

4.4 and 4.5), and constructs the necessary default instruction lists using Algorithm 4.8. Listing

and debugging options are also available. The code generator reads the files produced by the

preprocessor and the IR input and generates symbolic assembly language output. At present,

the IR is implemented as a source level language consisting of ASCII characters, much like the

examples in this dissertation. While this is not the most efficient IR representation possible, it

does allow test strings to be more easily constructed by hand. A production compiler would ol"

course utilize a binary coding for the IR, and would also be compiled instead of interpreted.

86

Some graduate students at Berkeley are presently constructing a front end for a machine

independent PASCAL compiler using the front end of the Unix PASCAL interpreter. The

interpreter is multiple pass and builds an APT in the process of compiling a program. It is a

relatively easy task to flatten the APT into a suitable IR. Thus, with a reasonable amount of

effort a make-shift front end is being constructed, resulting in a complete, if somewhat patch

work, machine independent compiler, allowing real programs to be compiled. Figure 5.1 out

lines such a completed implementation.

TMDL

Machine

Description

PASCAL

Source

Program

Preprocessor

Front

End

Scanner

-

Table

Constructor -

Blocking
Detection &

Removal

-

Looping
Detection &

Removal

1
Code

Generator

Tables

I

1
TMDL

Source

Listing

Compiler:

-+APT-* — IR^

Interpreter
Front

End

Machine

Dependent
Translator

Table-Driven

Code

Generator

1
Assembly

Listing

I
PASCAL

Listing

Fig. 5.1. A Machine Independent PASCAL Compiler.

5.2. Generating PDP-11 Object Code

A TMDL description of the majority of the instruction set of the PDP-11/70 computer

was used to create a code generator for the PDP-11. The PDP-11 architecture is very enlight

ening concerning TMDL and the Shift-Reduce code generation algorithm. It illustrates the

considerable power of semantic machine description systems, particularly TMDL. Notable is

the ease with which complex instructions can be described, (e.g. the memory-to-memory,

indirect, indexed integer subtract instruction on the PDP-11). (No comment is made at this

time as to the utility of such an instruction.) Describing the PDP-11 also uncovers deficiencies

in TMDL and the code generation algorithm. These are primarily associated with the

87

awkwardness in handling instructions that have computational side effects (such as the auto

increment and decrement modes on general purpose registers when used as index registers) and

instructions that differentiate between odd and even numbered registers (such as the integer

multiply and divide instructions).

The TMDL machine description for the PDP-11 appears in Appendix A. There are 106

distinct instructions and variants described in this partial list. There are 10 pseudo-instructions

that are used exclusively in determining whether a register is odd or even numbered in prepara

tion for a multiply or divide operation; these instructions generate no code. A few addressing

modes were left out of the description for some instructions in order to fit the preprocessor into

core, as were the I/O, floating-point, procedure invocation, and byte-length memory referenc

ing instructions. There are 26 distinct symbols used in the vocabulary (in addition to end-of-

file, $). Five represent register classes: r any general purpose register, d an odd-even pair of"

allocatable registers, o and e odd and even numbered allocatable registers, and c the condition

code register. Of the eight general purpose registers on the PDP-11, the first five are allocat

able, r5 is the local base register, r6 is the stack pointer (also referred to as sp), and r7 is actu

ally the program counter, pc, and not a general purpose register at all. Two symbols A' and / are

used to represent constants, one for 16-bit, word-length constants and the other for compiler

generated label numbers. There is no reason that these symbols could not be merged into a

single symbol; they are only distinguished in order to clarify the instruction set description for

the reader. There are seven jump operators: <, >, <, *>, =, ?*, and j. The first six

represent conditional jump binary operators. A transfer of control to the label defined by the

first argument is taken if the indicated relationship holds between the last two values compared,

according to the current state of the condition code register. The unconditional jump operator,

jy is a unary operator taking only a label number as an operand. The symbol : is a unary opera

tor that defines the location of the label specified by the value of its operand. The comparison

operator, ?, compares the values of its two operands and sets the condition code register

accordingly. The dereferencing symbol, f, is a unary operator that computes the value of the

16-bit memory location addressed by its operand. The store operator, := , stores the value of

its second operand into the 16-bit memory location addressed by its first operand. The remain

ing 8 symbols, + ,-,*, /, w, &, |, and !, are operators representing integer addition, subtrac

tion, multiplication, division, and negation, and Boolean and, or, and not, respectively.

The resulting code generator has 217 active states. Five looping configurations were

detected and eliminated from the initial coder's tables of 217 states, causing 5 new states to be

created, for a maximum state count of 222. This left 2 original states unreferenced. Four of

the newly created states were identical, including reduce lists, and could be combined into a

single state, for a net of 217 states. The final coder was shown to be loopless by Algorithm 4.4.

88

<t

One potentially blocking state was discovered and was altered to prevent the possibility of its

blocking. The specifics of this blocking are discussed in detail later in this section.

The total execution time for creating the PDP-11 code generator was 315 seconds. A

summary of the execution times for each pass and function is given in Fig. 5.2. These timings

are for interpretive execution with all runtime checks enabled. Since subranges are used exten

sively in the programs, the runtime range-checking overhead was significant. A run with run

time checks disabled required only 233 seconds. The fact that the programs were being exe

cuted on an interpreter is responsible for an estimated factor of 10 to 20 in the execution time.

The estimated execution time for a compiled version of the preprocessor would be 16 to 32

seconds with runtime checks enabled, a remarkably low time.

Module Function
Execution Time (Seconds)

With Tests Without Tests

PASS1 Processing TMDL Source 10.45 9.78

Writing File 1.88 1.83

PASS2 Creating States 283.63 205.07

Writing Files 3.35 3.30

PASS3 Eliminating Blocks 6.95 6.22

PASS4 Eliminating Loops 3.32 2.50

Making Default Lists 5.90 4.52

Total: 315.48 233.22

Fig. 5.2. PDP-11 Preprocessor Execution Times.

The size of the resulting code tables is also pleasingly small, requiring 6300 bytes of

storage. A large percentage of the basic storage requirement was eliminated by employing a

simple table compaction technique. Instead of keeping the ACTION and NEXT tables as full

arrays, identical rows were merged, and each state was given an index into the resulting merged

array. Since there are only 7 unique rows in the ACTION table for the PDP-11 description, the

requirement for the necessary 189 entries (27 entries/row x 7 rows) using only 2 bits per entry

is just 48 bytes. Each state is required to have an index into this array of 3 bits in length, so an

additional 82 bytes is required for the 217 values. There are 134 distinct rows in NEXT, for a

total of 3618 bytes plus 217 for the index array. The default list requires 90 bytes plus a 217

byte index, and the reduce list requires 360 bytes plus the 217 byte index. The assembly infor

mation fields in the instructions require an additional 1440 bytes, for a grand total of just under

6300 bytes, a quite small code generator indeed. The sizes are summarized in Fig. 5.3.

89

Item Entries Bits Total Bytes

ACTION array 189 2 48

Index to ACTION 217 3 82

NEXT array 3618 8 3618

Index to NEXT 217 8 217

Reduce List 360 8 360

Index to Reduce 217 8 217

Default List 90 8 90

Index to Default 217 8 217

Assembly Information - - 1440

Total: 6289

Fig. 5.3. PDP-11 Code Generator Table Sizes.

The potentially blocking state was intentionally introduced into the machine description to

illustrate the blocking detection and removal mechanism. It represents an incomplete rather

than erroneous instruction set description, so the preprocessor was able to accommodate it.

The instruction which causes the 'trouble' is an indirect, indexed store constant instruction

described by:

k ::= (:=] + k.\ r.l k.2) "mov Ar.2,*U(r.l)"

Since there is no other instruction description that stores into an indirect, indexed memory

location, the only item that can be extended once the pattern ':= f + fcr' has been shifted

into the stack, is [\ — :=] + k r . k], indicating that initially the only valid next symbol

would be a constant. But any arithmetic expression potentially could be stored into an indirect,

indexed memory location, so any initial expression symbol should be accepted as a valid next

symbol. State 137, where the block occurred, was initially:

137* [e — r .]
[o - r .]
[d-r.]
[r— + kr.]
[r — t + k r .]
[\ — := t + kr. k]

k: shift 166

The dot in the last item precedes the second operand to := , so all symbols x with

:= RIGHT FIRST x should have an action other than error. By removing the non-completed

item introduced by the troublesome instruction, and recomputing the ACTION for the

90

additional symbols, the action reduce V ::= f + k r' was inserted into the table for all such

entries. The block was thus eliminated, as the code generator could continue from that state

for any valid next symbol. Note that this is the action that would have occurred on the input

':= f + k r k* had the indirect, indexed store constant instruction not been included in the

machine description in the first place. The coder will, however, issue that instruction when the

necessary pattern appears, so the quality of code produced by the code generator is not

degraded by making this change.

The runtime environment required for PASCAL is described next. The PDP-11 has

addressing modes that increment or decrement a general purpose register when it is used as a

memory address. These instructions allow main memory to be treated like a stack in a very

simple and efficient manner. The UNIX operating system uses an inverted stack (where the

top of the stack is at the lowest memory address) to hold saved registers, operands, and return

addresses when calling systems routines, so this convention was adopted for PASCAL. By con

vention, general purpose register sp (r6) points to the next free location on the top of the

stack. When a value is pushed onto the stack, sp is first decremented by 2 (the PDP-11 is byte

addressable) and the the resulting value is used as the memory location into which to store the

value. The base address for local variables is kept in r5, and is normally greater than sp. The

base address for the statically enclosing procedure is stored in the memory location pointed to

by r5, and the base address for each successively enclosing procedure is pointed to by the last

active, enclosed procedure's base. The resulting linked-list facilitates the accessing of non-local

bases, allowing a simple indirect memory reference to chain to the base address of the next

statically enclosing procedure. The first segment of memory below sp is the free space, fol

lowed by the heap, the global variables (at constant memory locations), and the executable

code. This organization is depicted in Fig. 5.4. The calling and return code sequences neces

sary to maintain PASCAL'S runtime environment are shown in Fig. 5.5.

Two sample programs are examined next to investigate the quality of code generated by

the code generator. Unfortunately, there was no PDP-11 PASCAL compiler available with

which to compare the resulting code. Therefore the closestequivalent programs were written in

C, the systems programming language for UNIX, and the resulting code used for the compari

son. An idiom optimizer is used by the C compiler to optimize the assembly language output

prior to assembly. It was trivial to utilize this post code generation optimizer to further

improve the output of our code generator, an unexpected bonus. Two PASCAL programs were

hand translated into IR and input to the code generator. They appear along with their IR and C

counterparts in Fig. 5.6 through Fig. 5.8. The first subroutine performs matrix multiplication

and the second is an integer read function. It should be noted that more efficient C programs

could be written. C allows the programmer to explicitly optimize programs extensively at the

91

Memory Mapped
Input/Output

Stack Frames

and

Local Variables

I

Free Space

t

Heap Storage

Global Variables

Executable

Code

FFFF
16

DFFF
16

— r5

sp

0000
16

Fig. 5.4. PDP-11 PASCAL Runtime Organization.

source level. But it would be an unfair test to compare the output of the PASCAL compiler

with the code generated by the C compiler for such a program, so the closest C equivalent to

the PASCAL programs are used.

Only code for the body of the procedures is used in the comparisons. Since C routines

call the subroutines csav and cret to handle entry and exit code, the actual C assembly language

output for procedure entry and exit is smaller but slower than inline code. Additionally, the

runtime environment required for PASCAL is more complex and requires additional overhead

to maintain. Therefore the only meaningful comparison of the routine sizes would exclude

entry and exit code.

The assembly code produced for matrixmult by the machine independent code generator

and the C compiler are shown in Fig. 5.9. The machine independent compiler generated code

that is substantially better, requiring 65 words of memory compared to the 73 words required

by the C compiler. The only code generated by the C compiler that is better is the use of a

shift instruction to implement the doubling operations required in indexing integer arrays. This

92

— r5

mov argl, —(sp)

mov argn,—(sp)
sp mov 5-//rt/r,r4t

jsr r5 >proc
mov r5, —(sp)
mov r4, —(sp)
mov sp,r5
sub $/oc, sp

static-link

local

data

argl

argn

dynamic-link

return address

static-linkt

local

data

a) Procedure invocation code sequence

static-link

local

data

argl

argn

dynamic-link

return address

static-linkf

local

data

— r5

sp

mov resultyiQt
add $2,r5f
mov r5,sp
mov (sp) + ,r5
rts r5

add $«*2,sp*

static-link

b) Procedure exit code sequence

Present only with parameters.

tNot needed if called procedure is at top level.
tUsed only for functions.

Fig. 5.5. PDP-11 PASCAL Procedure Entry and Exit Code.

93

— r5

sp

^r5

— sp

94

{ PASCAL program }

const MAXINDEX = 9;
type matrix = array lb..MAXINDEX) of

array 10..MAXINDEX) of integer,

procedure matrixmultiv&r a,b,c: matrix);
var ij,k,sum: integer;

begin I
for /: = 0 to MAXINDEX do

for j := 0 to MAXINDEX do begin
sum :— 0; *
for A: := 0 to MAXINDEX do !

swm := sum + ali] Ik] * blk] [/];
c[/'](/"] := swm;

end;
end { matrixmult};

/* C program */

matrixmult(a,b,c)
int a[10] [10],M10] [10],c[10] [10];
{ int ij,k,sum;

for (/=0;/<=9;/=/+l) {
for (j=0;j<=9;j=j+\) {

sum = 0;
for (k=0;k<=9;k=k+\) {

sum = sum + ali] Ik] * blk] (/'];
}
c[i]\j] = sum;

Fig. 5.6. Matrix Multiplication Routines.

instruction could be generated by the machine independent compiler if additional instruction

patterns had been included to use a shift instruction in the assembly field, when the constant in

the multiply is equal to the semantically restricted value of 2, as in:

'o.l ::= (* o.l k=2) "als o.l" ';

No new states would be added to the tables since the new instructions' patterns would be

semantically restricted versions of existing patterns. The net size of the resulting code would

be 62 words, only 85 per-cent the size of the C compiler's code.

{ PASCAL program }

var ch: char;

function readn: integer;
var Ival,base: integer;

begin
while ch = '' do read(ch);
if (ch < '9') and (ch > '0') then begin

if ch = '0' then base := 8

else base := 10;
ival:= 0;
repeat

Ival := Ival* base + ord(ch) — ordCO');
read(ch);

until (ch < '0') or (ord(ch) - ordCO') > base);
readn := Ival;

end else readn := —1;
end { readn };

I* C program */

int ch;

readn0
{ int answer,Ival,base;

while (ch == '') ch = getcharO;
if ((ch <='9')&&(ch >='0')) {

if (ch =='0') base = 8;
else base = 10;
Ival = 0;
do{

Ival = Ival* base + ch — '0';
ch = getcharO;

} while ((c/i >= '0') && ((c/z - '0') < base));
answer = /vo/;

} else answer = —1;
return (answer);

i

Fig. 5.7. Integer Read Routines.

95

1.1

1.3

1.5

1.6

1.4

1.2

:= +

J 1.2
:= +

J 1.4
:= +

:= +

jl.6
:= +

:= +

< 1.5
:= +

:= +

< 1.3
:= +

< LI

k.Ir.5k.O

k.Jr.5 k.0

k.SUM r.5 k.0

k.Kr.5 k.0

k.sumr.5 + } + k.SUM r.5
1 + t + k.A r.5 * k.2 + * \ + k.I r.5 k.M \ + k.K r.5

] + } + k.B r.5 * k.2 + * \ + k.K r.5 k.M] + k.J r.5
k.Kr.5 + t + k.Kr.5k.l
? t + k.Kr.5 k.M
t + k.C r.5 * k.2 + * \ + k.I r.5 k.M f + k.J r.5 \ + k.SUM r.5
k.J r.5 + t + k.Jr.5 k.I
? j + k.J r.5 k.M
k.Ir.5 + t + k.Ir.5k.l
? f + k.lr.5 k.M

a) IR translation of matrixmult

l.l * 1.2 1 \ k.CHk."
jil

1.2 > 1.3 1 \ k.CHk.'9'
< 1.3 1 \ kCHk.'V
^ 1.5 1 } k.CHk.'0'
:= + k.BASE r.5 k.8

jl.6
1.5 := + k.BASE r.5 k.10

1.6 := + k.LVAL r.5 k.0

1.7 := + k.LVAL r.5 - + * | + k.LVAL i
< 1.8 1 j k.CHk.'0'
< 1.71 - \ k.CHk.'O' f + k.BASEr.5

1.8 := + k.READNr.5 } + k.LVAL r.5
J M

1.3 := + k.READNr.5 k.-\

1.4

b) IR translation of readn

Fig. 5.8. PDP-11 IR Translation of Test Programs.

96

LI:

L3:

L5:

L6:

L4:

L2:

clr -2(r5)
jbr L2

clr -4(r5)
jbr L4

clr -10(r5)
clr -6(r5)
jbr L6

mov $12,rO
mul -2(r5),r0
add -6(r5),r0
mul $2,r0
add 12(r5),r0
mov $12,rl
mul -6(r5),rl
add -4(r5),rl
mul $2,rl
add 10(r5),rl
mov (rl),rl
mul (rO),rl
add rl,-10(r5)
inc -6(r5)
cmp -6(r5),$ll
jle / L5

mov $12,rO
mul -2(r5),r0
add -4(r5),r0
mul $2,r0
add 6(r5),r0
mov -10(r5),(r0)
inc -4(r5)
cmp -4(r5),$ll
jle L3

inc -2(r5)
cmp -2(r5),$ll
jle LI

a) Code Generator's Code

L2:

L5:

L8:

L10:

L9:

L7:

L6:L4:

L3:L1:

clr -10(r5)
cmp $11,-I0(r5)
jit L3

clr -12(r5)
cmp $11,-I2(r5)
jit L6

clr -16(r5)
clr -14(r5)
cmp $11,-I4(r5)
jit L9

mov -10(r5),rl
mul $12,rl
add -14(r5),rl
asl rl

add 4(r5),rl
mov (rl),rl
mov -14(r5),r3
mul $12,r3
add -12(r5),r3
asl r3

add 6(r5),r3
mul (r3),rl
add -16(r5),rl
mov rl,-16(r5)
mov -14(r5),r0
inc rO

mov r0,-14(r5)
jbr L8

mov -10(r5),rl
mul $12,rl
add -12(r5),rl
asl rl

add 10(r5),rl
mov -16(r5),(rl)
mov -12(r5),r0
inc rO

mov r0,-12(r5)
jbr L5

mov -10(r5),r0
inc rO

mov r0,-10(r5)
jbr L2

b) C Compiler's Code

Fig. 5.9. Assembly Listings for matrixmultRoutines.

97

One might expect that the post-code generation optimization pass available for C compila

tions would make up the difference. This is not entirely the case. The optimized code modules

were 62 (59 if a shift were used) and 66 words in length. A closer look reveals the reasons

why. The C optimizer is primarily concerned with global optimizations involving the rearrange

ment of code blocks to minimize conditional tests and jumps in loops, and with eliminating

jumps to jumps. (The PDP-11 has single and double word jump instructions, the former hav

ing a limited range of ± 128 words, so this optimization is important.) The compiler is respon

sible for recognizing idioms such as incrementing a variable or adding to memory. However,

the compiler does not discover the full complement of such patterns unless they are explicitly

indicated in the source program. The machine independent code generation algorithm, on the

other hand, recognizes all special single instruction idioms regardless of their context. Two

examples from the matrix multiply routines exemplify this point. The first one occurs when

loop control variables are incremented and the second involves adding the value of an expres

sion to a variable. In the C compiler, adding 1 to a local variable is only converted into an

increment instruction when it is explicitly written as an increment operator. The naive state

ment:

/ = /+ 1;

yields the following 5 words of code:

mov /(r5),rl
inc rl

mov rl,/(r5)

The C compiler does detect the fact that adding 1 can be best implemented by an increment

instruction, but only when the value being incremented is in a register. Therefore, the com

piler will never discover that the increment memory instruction could be used. If the program

mer has explicitly indicated that the variable / is to be incremented, as in:

then the compiler does issue the locally optimal code:

inc i(iS)

The affect is equivalent to adding a unary operator to the IR that increments the memory

98

location addressed by its operand. The machine independent code generation algorithm, how

ever, produces an increment instruction in all possible cases without the aid of such an opera

tor. A similar source language optimization in C allows the programmer to indicate that the

value of an expression is to be added to a variable. The naive C statement:

sum = sum + <expr>;

generates suboptimal code, while locally optimal code results from the equivalent statement:

sum = + <expr>;

In the first case, the C compiler computes the value of <expr>, leaving the result in a register,

adds the value of sum to that register, and stores the result into sum. In the latter case an add

to memory instruction replaces the add and the store, saving two words of code. The code gen

erated by the machine independent code generation algorithm produces the optimized version,

again without the aid of a new IR operator.

Figure 5.10 shows the assembly code produced by both code generators for the second

example routine, readn. The code generated is almost identical in every respect. The machine

independent code generator produced 64 words of code while the C compiler produced 65. The

difference is due to an unnecessary jump instruction generated by the C compiler that jumps to

the next sequential memory location. Again, more efficient C programs can be written by util

izing features and operators that are not present in PASCAL. Since PASCAL does not have a

return statement, the value of a function is stored in a local variable until the function is

exited. The C program was also written in this manner, though slightly better code is produced

by the use of return statements (62 words). The post code generation optimizer does remove

the unnecessary jump instruction from the C compilers output, and the resulting code for each

compiler is 61 words, identical except for register and label numbers and the reassigning of the

relative addresses of local variables.

The machine independent code generation algorithm utilizes many special purpose,

machine dependent instructions, such as increment memory, without the aid of a special source

language operator or other means of locating such occurrences. This observation would indi

cate that a PASCAL compiler using such a code generator would produce code almost as good

as a systems programming language like C. Furthermore, the programmer is not forced to

write cryptic and unreadable programs using those special operators in order to produce the

most efficient programs. The 'natural' representation of the statement is just as good, even

without the extra cost of an expensive optimization pass. Thus, a code generation algorithm

99

LI: cmp _ch,$40 L2: cmp $40,_ch
jne L2 jne L3

jsr pc,_getchar jsr pc,_getchar
mov rO,_ch mov rO,_ch
jbr LI jbr L2

L2: cmp _ch,$71 L3: cmp $71,_ch
jgt L3 jit L4

cmp _ch,$60 cmp $60,_ch
jit L3 jgt L4

cmp _ch,$60 cmp $60,_ch
jne L5 jne L5

mov $10,-6(r5) mov $10,-14(r5)
jbr L6 jbr L6

L5: mov $12,-6(r5) L5: mov $12,-14(r5)
L6: clr -4(r5) L6: clr -12(r5)
L7: mov -6(r5),r0 L9: mov -12(r5),rl

mul -4(r5),r0 mul -14(r5),rl
add _ch,rO add _ch,rl
sub $60,r0 add $-60,rl
mov r0,-4(r5) mov rl,-12(r5)
jsr pc,_getchar jsr pc,_getchar
mov rO,_ch mov rO,_ch
cmp _ch,$60 L7: cmp $60,_ch
Jit L8 jgt L10000

mov _ch,rO mov _ch,rO
sub $60,r0 add $-60,r0
cmp r0,-6(r5) cmp -14(r5),r0
jit L7 jgt L9

L8: mov -4(r5),-2(r5) L10000:L8: mov -12(r5),-10(r5)
jbr L4 jbr L10

L3: mov $-l,-2(r5) L4: mov $-l,-10(r5)
L4: mov -2(r5),r0 L10: mov

jbr
-10(r5),r0
LI

LI:

a) Code Generator's Output b) C Compiler's Output

Fig. 5.10. Assembly output for readn routines.

that was primarily designed to provide ease of use in describing the code to be generated, and

to allow retargeting and transporting of a language to be done with minimal effort, has in addi

tion succeeded in producing very respectable object code.

100

\9

5.3. Generating IBM 370 Object Code

A TMDL description of a portion of the instruction set for the IBM system/370 computer

was used to generate a coder for that machine. Enough instructions were described to allow

code to be generated for the sample programs of section 5.2. Equivalent ALGOL-W programs

were written and compiled on the IBM 370 in order to compare the code generated. The

results appear in this section.

The IBM 370 is a more conventional computer than the PDP-11. It does, however, have

an enormous instruction set, including a wealth of extremely specialized instructions such as

edit, search, decimal arithmetic, convert-to-binary/packed-decimal, etc. These special instruc

tions were not used in the machine description — there is no equivalent construct in PASCAL.

Some of those instructions would require a small PASCAL procedure equivalent. This is not a

deficiency of the code generation scheme; such instructions are only utilized in special places

even by assembly language programmers. The remaining instructions constitute standard

memory-register and register-register operations.

The TMDL machine description for the IBM 370 appears in Appendix B. It contains 58

distinct instructions and variants, 3 of which are pseudo-instructions and generate no code. Of

the 27 symbols used (in addition to $), there are only 4 that differ in meaning from those used

in the PDP-11 description. The operand k represents a 12 bit constant instead of 16, and the

memory reference operators | and := reference 32 bit quantities instead of 16. The operator a

indicates 24 bit integer addition, and is used primarily in indexing operations, while the opera

tor + indicates integer addition of 32 bit operands. The fact that the more general operator can

be used to implement an index addition is indicated by listing each instruction that implements

+ as also implementing a, as in:

r.l ::= (+ r.l r.2) "ar r.l,r.2"
r.l ::= (a r.l r.2) "ar r.l,r.2"

This duplication of instruction descriptions accounts for 4 of the instruction patterns.

The resulting code generator has 164 states. Two looping configurations were detected

and eliminated from the basic tables of 164 states, creating 2 new states. This left 1 original

state unreferenced. The two newly created states were identical, and could be combined, for a

net result of 164 states. The final coder was shown to be loopless. No blocking configurations

were discovered, and no default lists had to be constructed. The total execution time for the

construction was 165 seconds (or 111 seconds with run-time checks disabled), an estimated

equivalent of 8 to 16 seconds for a compiled version. The resulting tables occupy 4700 bytes.

Execution timings and table sizes are summarized in Fig. 5.11 and Fig. 5.12.

101

Module Function
Execution Time (Seconds)

With Tests Without Tests

PASS1
Processing TMDL Source 5.82 4.40

Writing File 1.10 .87

PASS2
Creating States 147.43 98.45

Writing Files 2.98 2.00

PASS3 Eliminating Blocks 5.87 4.60

PASS4
Eliminating Loops 2.37 1.40

Making Default Lists .27 .15

Total: 165.84 111.87

Fig. 5.11. IBM 370 Preprocessor Execution Times.

Item Entries Bits Total Bytes

ACTION array 140 2 35

Index to ACTION 166 3 63

NEXT array 3164 8 3164

Index to NEXT 166 8 166

Reduce List 222 8 222

Index to Reduce 166 8 166

Default List 0 8 0

Index to Default - - 0

Assembly Information - - 820

Total: 4636

Fig. 5.12. IBM 370 Code Generator Table Sizes.

The runtime environment supporting PASCAL is similar to that used by other PASCAL

implementations [Wirth71,72]. The IBM 370 has an array of 16 general purpose registers. This

would allow the display to be kept in registers if so desired. However, in interest of efficient

procedure entry and exit code sequences, only the local and global displays are kept in registers.

The intervening displays are seldom accessed by programs according to a study by [Wirth72], so
this decision does not slow the execution of procedure bodies unacceptably. The dedicated

registers are allocated in the following manner: The display for local variables resides in rl4

while the display for global variables resides in rl3. There are no absolute addressing instruc

tion modes in the IBM 370 instruction set. Memory is addressed as base + displacement +

optional index, so the global variables also must have a display. Program jumps are also base-

relative, so an additional register rl5 is used to hold the display for the currently executing pro

cedure. This value is loaded upon procedure entry and exit but remains constant within a

102

procedure, limiting the maximum size of the body of a procedure to 4096 bytes. The top of

the run-time stack and the bottom of the heap are pointed to by registers rl2 and rll, respec

tively. Figure 5.13 shows the overall organization of memory.

Heap

1

Free Space

?

Stack Frames

and

Local Variables

Global Variables

Executable

Code

System
Support

FFFFFF
16

— rll

rl2

— rl4

rl3

— rl5

000000
16

Fig. 5.13. IBM 370 PASCAL Runtime Organization.

The code generated for the two sample programs matrixmult and readn is presented next.

The closest equivalent compiler available was the ALGOL-W compiler [Bauer68], so equivalent

programs were written in ALGOL-W, compiled, and the resulting object code used for a com

parison. The IR code for the two routines is given in Fig. 5.14. It is almost exactly the same as

that for the PDP-11. The only major difference is that global variables are addressed by the

sum of a constant offset and a base register. The equivalent ALGOL-W routines are given in

Fig. 5.15.

Not a lot of effort was put into designing the IBM 370 code generator. There was no such

computer immediately available and few people knowledgable in IBM 370's were around to help

make decisions about the best organization for PASCAL. The TMDL description was

103

:= ak.Ir.!5k.O

J 1.2
/./ := ak.Jr.15 k.0

J i4
1.3 := ak.SUMr.l5k.O

:= ak.Kr.15 k.0

jl.6
k.SUMr.15 +] a k.SUM r.l5
f a] a k.A r.15 * k.2 + * } a k.I r.l5 k.M] a k.K r.15

} a] ak.B r.15 * k.2 + *] a k.K r.15 k.M] a k.J r.15
k.Kr.15 +] ak.Kr.15 k.J
1 | ak.K r.l5k.M
t ak.Cr.15* k.2 + * \ a k.I r.15 k.M} ak.Jr.15 \ ak.SUMr.15
k.Jr.15 + t a k.J r.15 k.I
1 \ ak.Jr.l5k.M

k.lr.15 + | ak.Ir.l5k.l
1 \ ak.lr.l5k.M

1.5

:= a

1.6 < 1.5
:= a

:= a

1.4 < 1.3
:= a

1.2 < /.;

1.1 *

jl.
1.2 >

<

*

jl.
1.5 :=

1.6 :=:

1.7 :=

<

<

1.8

jl.
1.3 : ^

1.4

a) IR translation of matrixmult

1.2 1 t ak.CHr.13k."
1

1.3 1 \ ak.CHr.l3k.'9'
1.3 1 \ ak.CHr.l3k.'0'
1.5 1 t ak.CHr.l3k.'0'
ak.BASEr.l4k.8

6

a k.BASE r.l4 k.10

a k.LVAL r.14 k.0

a k.LVAL r.14 - + *] a k.LVAL r.14 \ a k.BASE r.l 4 } a k.CH r.l 3 k.'V
1.8 1 | ak.CHr.l3k.'0'
1.71 - f a k.CHr.13 k.'V] a k.BASE r.14
a k.READNr.14 \ a k.LVAL r.14

4

ak.READNr.l4mk.l

b) IR translation of readn

Fig. 5.14. IBM 370 Translation of Test Programs.

104

procedure matmult(integer array a,b,c(**));
begin

integer sum,ij,k;
for / := 0 until 9 do

for j := 0 until 9 do begin
sum := 0;
for k:= 0 until 9 do

sum := sum + a(i,k)*b(kj);
c(ij) := sum

end

end.

a) ALGOL-W matrixmult procedure

begin
string(l) ch;

integer procedure readn;
begin

integer answer,Ival,base;
while ch = "" do read(ch);
if (c/* <= "9") and (c/? >= "0") then begin

if ch = "OMhen base := 8
else £>ase := 10;
/va/:= 0;
while (ch >= "0") and ((ch - "O") < base) do begin

/va/:= /va/* base + ch - "O";
reaa"(c/j)

end;
answer := /va/

end else answer := —1;
answer

end;
end.

b) ALGOL-W reaaw procedure

Fig. 5.15. ALGOL-W Comparison Routines.

105

106

generated by the author from a hardware manual on the IBM 360 [IBM66]. Consequently a

few simplifying assumptions were made to ease the implementation. It turns out that many of

the same simplifications have been used in implementing other compilers on the IBM 360,

including the ALGOL-W compiler and at least one PASCAL compiler. These simplifications

include limiting the size of the code for a procedure and the directly addressable local variable

space to 4096 bytes each. In any event, a TMDL description of the IBM 370 was written and

the code generator was altered to produce IBM 370 assembly language code with a minimum of *

effort.

The assembly code output by the machine independent code generator is examined next. *

The output for matrixmult appears in Fig. 5.16. It consists of 60 instructions, and occupies 212

bytes. The equivalent ALGOL-W code appears in Fig. 5.17, also consists of 60 instructions,

and occupies 224 bytes. As with the comparisons with C in section 5.2, only the code gen

erated for the bodies of the procedures is shown, as the parameter passing and environment

housekeeping performed by the two languages differs somewhat. The output of the ALGOL-W

compiler is somewhat larger, primarily due to the fact that the step and limit for the for loops

are kept in memory despite the fact that they are compile-time constants. The use of a BXLF

instruction at the end of each for loop, however, almost makes up for the extra 16 bytes of ini

tialization code per loop. Including the instruction description:

\ ::= « /.l ? r.l r.2) "BXLE r.l,r.2,L/.l(rl5)";

in the IBM 370 TMDL description would result in its replacing a CR and BC instruction pair

three times, shortening the code by a total of 6 bytes.

The assembly language output for both readn routines appears in Fig. 5.18. The machine

independent compiler generated 45 instructions requiring a total of 164 bytes of memory,

exclusive of the two calls to the read routine. The ALGOL-W compiler generated 44 instruc

tions and three literals requiring 170+3 bytes. The difference stems from the fact that the glo

bal character variable ch is treated as a string of length one by the ALGOL-W compiler but is m

treated as a scalar variable by PASCAL. ALGOL-W issues the more efficient CLC instruction

when comparing ch to a literal constant, but issues less efficient code when generating character

constants for use in a computation. Literal constants are built by the pair of instructions: ?

SR r3,r3
IC r3,0026(rl4)

where 0026(rl4) addresses the character constant. The SR instruction first clears r3 and then

the IC instruction inserts a single character into the lowest byte. The machine independent

code generator issues the single instruction:

LA r3,"0"

to load any constant in the range 0 to 4095.

107

LI:

L3:

L5:

L6:

SR r2,r2
ST r2,001C(rl4)
BC 14,L2(rl5)
SR r2,r2
ST r2,0020(rl4)
BC 14,L4(rl5)
SR r2,r2
ST r2,0028(rl4)
SR r2,r2
ST r2,0024(rl4)
BC 14,L6(rl5)
LA r2,2
LA r3,12
LR r4,r3
M r4,001C(rl4)
A r4,0024(rl4)
MR r4,r2
A r4,0010(rl4)
L r2,0000(r4)
LA r3,2
LA i4,12
M r4,0024(rl4)
A r4,0020(rl4)
MR r4,r3
A r4,0014(rl4)
L r3,0000(r4)
LR r4,r3
MR r4,r2
A r4,0028(rl4)
ST r4,0028(rl4)
LA r2,l
A r2,0024(rl4)
ST r2,0024(rl4)
L r2,0024(rl4)
LA r3,ll
CR r2,r3
BC 12,L5(rl5)
LA r2,2
LA r3,12
LR r4,r3
M r4,001C(rl4)
A r4,0020(rl4)
MR r4,r2
A r4,0018(rl4)

L4:

L2:

L r2,0028(rl4)
ST r2,0000(r4)
LA r2,l
A r2,0020(rl4)
ST r2,0020(rl4)
L r2,0020(rl4)
LA r3,ll
CR r2,r3
BC 12,L3(rl5)
LA r2,l
A r2,001C(rl4)
ST r2,001C(rl4)
L r2,001C(rl4)
LA r3,ll
CR r2,r3
BC 12,Ll(rl5)

Fig. 5.16. IBM 370 Assembly code for matrixmult.

108

r

H
2

t-*
5*

*
a

s
H

O
»

H
>

H
>

H
*

H
O

*
H

>

to
to

to
to

to
~

t
o

t
o

t
o

t
o

t
o

t
o

t
o

J
to

t*
»

to
to

o
©

*>
*

©
2~

X
©

*>
>

©
o

O
£

g
£

o
O

O
O

»-
»

*
.

-I
*.

O

•1
.
^
1

1
"
1

•—
o

r
,

o
*

o
o

n
ow

^
©

*>
>

©
>

*
i

CD
GO

o
r
<

.
o

v
o

o
o

o
*

-
o 0

0
o

o

•
i

»
<

i
>

i
i

i
l-

l
•^

»
i

>
1

*
*

»•
«

•*
"
i

•1
i
l

1
H

1
I
O

1
*

1
r»

r*
0

0
tO

t
o

t
o

t
o

t
o

£
k

J
t

V
I

V
l
«

k
^

M
N

K
)

W
U

i
lO

JO
to

J
to

t
o

t
o

t
o

i
#

V
*

#
*

#
i
*

*
*

©
©

©
o

©
ET

o
o

o
o

o
o

X
o

(
/I

o
o

o
o

o
o

•*
o

o
o

o
o

o
?«

•
1

O
V

O
o

o
o

o
o

o
t
/
l

o
o

o
o

o
o

<*
>

t
o

O
l-

»
t
f
l
v
O

v
O

K
J
O

O
N

>
J
t
t
)
^
B

3
0

0
0

i©
CO

oo
>

w
^
T

o
o

*
J

•
*

o
o

<
=

>
S

;*
*"

"*
*

«"
•«

*
^

~
\

"
"
^
'
^

O
n

o
!>

-
^

O
O

O
*i

•"«
•"*

*3
•*

•*
*i

O
"
i

J*
**

•1
*1

•*
.

>
—

s
*

|
v
-^

•
^

>
J-

h
-

JL
*>

H
-

»-
*

h-
i
r
i

i—
w

i-
>

—
'

N
^

^
~

,
\
^

s
~

'

•-*
•-*

^
r
i

**
2»

*
i

!-
*

>
-»

•-
»

"—
'

>
-»

••*
i-

*
»-

*
s

f*
S

••
*

r
w

O
w

^
>

W
y
^
.
V

^
H

*
V

_^
^—

O O r

H*
m

S
I
m

W
I
-

H*
S*

H
-

^
£

l
~

£
2

,
&

S»
K*

^
H*

S»
a

£*
*L

H»
^—

'
>—

'>
W

^3
"

W
^-

^
s—

'>
-^

>
*-

'•
"*

V
_^

£
"

£™
v^

/
>

W
"—

"
<

W
>_

X
N

_^
^
~

w
W

S
-/

2 •<
"

o o Q
.

o
r 4

^
.

r O
S

w
r
r
w

r
r
c
f
l
t
-
>

>
2

r
2

r
w

r

i
s

r
r

N
~

T
N

W
U

N
N

W
W

N
N

''
'

-
•*

o
*

~
<•

o
o

©
o

ri
o

©
o

o
*

~
-
_

r
,
©

©
r
,
s
o

o
©

©
w

o
©

o
©

n
2

-
^

D
O

/«
.

-
-

O
n

S
n

£
8

©

LI:

L2:

L5:

L6:

L7:

L8:

L3:

L4:

L r2,ch(rl3)
LA r3,"
CR r2,r3
BC 6,L2(rl5)

... read(ch) ...
BC 14,Ll(rl5)
L r2,ch(rl3)
LA r3,'9'
CR r2,r3
BC 2,L3(rl5)
L r2,ch(rl3)
LA r3,'0'
CR r2,r3
BC 4,L3(rl5)
L r2,ch(rl3)
LA r3,'0'
CR r2,r3
BC 6,L5(rl5)
LA r2,8
ST r2,0010(rl4)
BC 14,L6(rl5)
LA r2,10
ST r2,0010(rl4)
SR r2,r2
ST r2,0014(rl4)
L r2,0010(rl4)
M r2,0014(rl4)
A r2,ch(rl3)
LA r3,'0'
SR r2,r3
ST r2,0014(rl4)

... read(ch) ...
L r2,ch(rl3)
LA r3,'0'
CR r2,r3
BC 4,L8(rl5)
L r2,ch(rl3)
LA r3,'0'
SR r2,r3
C r2,0010(rl4)
BC 4,L7(rl5)
L r2,0014(rl4)
ST r2,000C(rl4)
BC 14,L4(rl5)
LA r2,l
LCR r2,r2
ST r2,000C(rl4)

a) Code Generator's Output

LI:

L2:

L3:

L4:

L5:

L6:

L7:

L8:

DS ' 7079'
CLC 0024(0,rl4),ch(rl2)
BC 7,L2(rl4)

... read(ch) ...
BC 15,Ll(rl4)
CLC 0025(0,rl4),ch(rl2)
BC 4,L7(rl4)
CLC 0026(rl4),ch(rl2)
BC 2,L7(rl4)
CLC 0026(0,rl4),ch(rl2)
BC 7,L3(rl4)
LA r2,8
ST r2,0038(rll)
BC 15,L4(rl4)
LA r2,10
ST r2,0038(rll)
SR r2,r2
ST r2,34(rll)
CLC 0026(0,rl4),ch(rl2)
BC 2,L6(rl4)
MVC 003C(0,rll),ch(rl2)
SR r2,r2
IC r2,003C(rll)
SR r3,r3
IC r3,0026(rl4)
SR r2,r3
C r2,0038(rll)
BC ll,L6(rl4)
MVC 003D(0,rll),ch(rl2)
SR r2,r2
IC r2,003D(rll)
L r5,0034(rll)
M r4,0038(rll)
SLDA r4,0020
AR r2,r4
SR r3,r3
IC r3,0026(rl4)
SR r2,r3
ST r2,0034(rll)

... read(ch) ...
BC 15,L5(rl4)
L r2,0034(rll)
ST r2,0030(rll)
BC 15,L8(rl4)
LA r2,l
LCR r2,r2
ST r2,0030(rll)

b) ALGOL-W Compiler's Output

Fig. 5.18. IBM 370 Assembly code for readn Routines.

Chapter 6: Results and Conclusions

The machine independent code generation algorithm and code generator construction

algorithms presented represent a step towards the automatic generation of correct compilers.

The advantages of such a tool are many. The size of a TMDL machine description is only a

fraction of the size of the equivalent source level routines. Furthermore, such a description

represents a major improvement in clarity and modifiability. A level of assurance that the code

generator always generates correct code is available that is not possible in other code generators,

short of an impractical, exhaustive proof for each routine used. The ease with which a new

machine description can be written and substituted for the existing one, thus creating a cross

compiler, is not available in standard code generation schemes. Similarly, it is straightforward

to alter the machine description to include additional instructions available on a upward compa

tible computer in a computer line, or to utilize instruction sets which are locally extended (e.g.

via microprogramming). Detecting where special instructions can be used is automatically han

dled, without a tedious case by case analysis by the implementer. The total size of the resulting

code generator (program + tables) is considerably smaller than procedural code generators, and

can be further decreased in size by the utilization of additional table compaction techniques.

Finally, as an added bonus, extremely good object code is generated, with the future addition of

all popular optimizations desired cleanly fitting into the compiler.

As with most code generation schemes, this method does not work well with some of the

more awkward computers in existence. The messier the architecture, the more headaches for

the code generator implementer, would seem to be the central theme. Of particular note is the

CDC-6000 series of computers (and all upward compatible artifacts). The high degree of com

plexity of the special functions provided by particular registers (often as side effects to some

other action) has caused other compiler writers considerable grief [Wirth72] [Ammann77]. In

addition, one must be concerned with the optimizations that must be used to fully utilize the

parallelism of the arithmetic unit, or the instruction cache, on some models. The newly emerg

ing micro-computers contain many of the same design mistakes made in earlier, large scale

computers. (With software costs as high as they are, it is unfortunate that industry is reluctant

to try to improve the machines on which software must run. Newer technologies are only used

to implement a faster or cheaper version of older, archaic architectures.)

The primary reason that such computers present problems to compiler writers is that there

are too many exceptions. Special functions and side effects are associated with specific regis

ters. Different instructions have different ways of handling addressing modes, often with sup

posedly complementary instructions lacking true symmetry [Wirth68]. Almost every single

112

register has some unique property. This is true even on cleaner designs (such as the PDP-11)

to a certain degree [Bron76]. Whether a register is odd or even is important to multiply and

divide instructions. The archaic use of a condition code register, as opposed to the computation

of a Boolean value that is left in a register, is totally unsatisfactory, and causes a great deal of

trouble, since there are almost always shorter code sequences for many special cases. In many

computers supposedly "general purpose" register rO cannot be used as an index register. The

cost of making each register in an array of general purpose registers functionally the same

surely cannot be prohibitive, especially in the anti-inflationary presence of diminishing hardware

costs. The machine independent code generation algorithm is yet another argument in favor of

cleaner computer architectures, though it can handle many of the existing anomolies. As more

elegant parsing tools were developed, more was understood about parsing, and consequently the

syntax of programming languages came to be more cleanly designed. There is no reason not to

alter the architecture of future computers to reflect advances made in code generation tech

niques. The impact on compilation speed and complexity, as well as the speed and size of the

resulting code, should be just as great and as positive.

6.1. Postfix vs. Prefix

The decision to describe the instruction descriptions as prefix expressions and conse

quently to require the IR to be a prefix language is not without foundation. In fact, postfix was

initially preferred. If the item sets defining the states of the shift-reduce parser used to gen

erate code are examined, the states roughly correspond to the set of possible instruction pattern

prefixes. On a computer with several addressing modes, a prefix description would have

separate patterns for each operator and addressing mode since the operator is the first symbol in

the description. A postfix description would allow the states corresponding to the addressing

parts of all operations to be combined, since the operator is the last symbol in the description.

Equivalently, there are fewer strings corresponding to valid prefixes of a postfix instruction

description than a prefix description, and consequently fewer states in the code generator.

Additionally, a postfix IR is easier to generate than a prefix IR, and can be done in a one pass

scheme. However, when an attempt was made to generate code for real computers, the code

generation algorithm did not work as well with a postfix description.

The major problem with a postfix description is that not enough information is known at

the time an operand is encountered to allow the code generator to properly handle it. It is not

known which operand the current expression is to what operator. Most computers have some

instructions that require one or more operands to obey exceptional conditions, such as being in

an odd-numbered register, while not similarly restricting the operands of other instructions. In

a postfix representation, the coder will stack both operands prior to encountering the operator.

f

It cannot be determined that the special conditions must apply until both operands have been

shifted onto the stack. If the first operand does not meet those special conditions there is no

way to transform it so that it will. The coder cannot modify any expression unless it is on the

top of the stack. The algorithm can be allowed to 'back-up' and fix the problem. But this

requires many more states to be added to the coder so that it can remember which way it is

supposed to be going, and needlessly complicates both the preprocessor and the code generator.

When a prefix representation is used, this problem does not occur. An operator is encountered

prior to its operands and any special conditions that they must meet are implicitly remembered

by the state of the code generator.

Consider the following integer add and divide instructions:

r.l ::= (/ d.\ r.2) "div rf.l.l,r.2"
r.l ::= (+ r.l r.2) "add r.l,r.2"

Assume that all integer divide instructions require that the dividend be in a double register, d.

Then in a prefix description the state containing the item [r —* / • d r] will remain on the slack

until after the next symbol has been converted into a d. Once the first operand has been com

puted, that operand will be changed into a d and the coder will be able to continue. In a postfix

description, however, the states containing the item [r —*. d r /] will also contain all items of

the form [r —• • a], including [r —♦ • r r +]. Again assume that the first operand to a divide

operator has been computed and is in a register, r. The coder will then shift to a stale contain

ing [r -* r . r +] but not [r —» d • r /] since it has not seen the operator and does not know to

convert the r into a d. After computing the second operand in another register, the coder will

move to a state containing [r -* r r. +] but not [r —* d r . /] and, in the case of a divide,

would block on the next input symbol, /.

Allowing the code generator to back up and fix single symbols will solve the problem for

the previous example, but consider the following instruction set:

r.l ::= (+ r.l r.2) "add r.l,r.2"
r.l ::= (+ | k.\ r.l) "add r.l,*.l"
r.l ::= (+ r.l \ k.\) "add r.lJU"
r.l ::= (- r.l r.2) "sub r.l,r.2"
r.l ::= (- r.l] k.\) "sub r.l,*.l"
r.l ::= (f A:.l) "load r.l.kA"

If the prefix code generator is generating code for the expression *— f k r\ once it has read the

—it will be in a state containing the items:

113

q: [r — - . r r]
[r - - . r t k]
[r - • | k]

[r-.a]

After performing a shift on f, it will be in a state without any item with the dot after a -.

Therefore, it must reduce the expression 'f k' to V before it can extend an item in the core of

q. Thus the code generator 'knows' that it must always load the first operand to a subtract

instruction intoa register before it can issue that instruction. In the postfix case, the IR expres

sion would be 'k \ r-' and the coder would shift over the string 'k f r' and block in the state:

q': [r — k f r . +]
[r - r . r -]
[r — r . k t -]
[r — r . a]

[r — . j3]

Thus, in a postfix representation the code generator would have to have the ability to back up

and fix expressions once the operator was encountered. Basically, a postfix parser is optimisti

cally shifting on any input for which there is an operator that can follow, and must correct any

misjudgments that it makes; a prefix parser is only shifting over input for which it knows that

any valid input can be accepted, and cannot get into such trouble. Therefore, prefix expres

sions are used to describe instruction sets. It is unfortunate that computers do not treat all

operands to all operators uniformly, for then this problem would disappear.

6.2. Areas for Future Research

The most obvious extension of this research is to complete the implementation of a total

compiler using the existing preprocessor and code generator. In fact, plans are currently under

way to implement an APT to IR translator and use the existing PASCAL interpreter's front

end, resulting in a machine independent PASCAL compiler. The code generator and prepro

cessor can then be bootstrapped into executable rather than interpretable code, as they are writ

ten in PASCAL. The front end of the PASCAL interpreter is written in C, and would have to

be rewritten in PASCAL in order to successfully bootstrap the entire compiler onto another

computer.

There are numerous related areas that should prove fruitful for further research. Several

topics concern adaptions or extensions of the machine independent code generation algorithm

to other requirements, and others are in the area of instruction set design and computer

114

! «

i »

architecture. One obvious extension of the algorithm to cover existing computers would be to

consider arithmetic stack computers [Burroughs64] [HP73]. Stack code can probably be gen

erated by extending the semantics of a shift move to include ordering information, i.e. to keep

track of which operand to each operator is first placed on the stack. This modification would

still allow the code generator to handle multiple operator instructions, but would retain ihc

information necessary to substitute a reverse subtract instruction for a standard subtract instruc

tion when needed. Another extension to the algorithm would be to allow the machine descrip

tion to force strict ordering on the evaluation of operands to certain operators. Such ordering

can probably be achieved by simply ignoring all instruction patterns that allow the left (or right)

operand to be deferred in evaluation, by not including items with the left operand to such an

operator in the set used in the closure operation during parse table construction. The construc

tor would be allowed to defer operations only if all operands were run-time constant expres

sions (such as base + offset computations) so that no future computation could alter that value

prior to its use.

With the increasing number of user microprogrammable computers, the possibility of con

ducting experiments in instruction set design are within the reach of many users. The machine

independent code generator is just the tool that will allow the experimenter to adapt a compiler

to new instruction sets with ease, thus avoiding the rewriting of all software. The code genera

tor also allows special instructions to be added to specific computers to handle special cir

cumstances. The code generator will be able to incorporate new instructions with minimal

effort.

15

References

[Aho72a] Aho, A.V., and Ullman, J.D., The Theory ofParsing, Translation, and Compiling,
Volume 1,2. Prentice-Hall, Englewood Cliffs, N.J. (1972).

[Aho72b] Aho, A.V., and Ullman, J.D., 'Optimization of Straight Line Code,' Siam J.
Computing, 1:1 (1972), 1-19.

[Aho75] Aho, A.V., Johnson, S.C., and Ullman, J.D., 'Deterministic Parsing of Ambi
guous Grammars,' Comm. ACM, 18:8, (August 1975), 441-452.

[Aho76] Aho, A.V. and Johnson, S.C., 'Optimal Code Generation for Expression Trees,'
Journal ACM, 23:3 (July 1976), 488-501.

[Aho77a] Aho, A.V., Johnson, S.C., and Ullman, J.D., 'Code Generation for Expressions
with Common Subexpressions,' Journal ACM, 24:1 (January 1977), 146-161.

[Aho77b] Aho, A.V., and Ullman, J.D., Principles ofCompiler Design, Addison Wesley,
Reading, Massachusetts, (1977).

[Allen75] Allen, F.E., 'Interprocedural Analysis and the Information Derived by It,' Pro
gramming Methodology, Lecture Notes in Computer Science, 23, Springer-Verlag,
New York, (1975), 291-321.

[Ammann77] Ammann, U., 'On Code Generation in a PASCAL Compiler,' SoJ'tware - Prac
tice andExperience, 7:3, (June-July 1977), 391-423.

[Barth77] Barth, J.M., A Practical Interprocedural Data Flow Analysis and its Applications,
Ph. D. dissertation, Department of Computer Science, University of California,
Berkeley, (May 1977).

[Bauer68] Bauer, H., Becker, S., and Graham, S., 'ALGOL-W Implementation,' Technical
Report CS-98, Computer Science Department, Stanford University, Palo Alto, Cali
fornia, (May 1968).

lBratman61] Bratman, H., 'An Alternate Form of the Uncol Diagram,' Comm. ACM, 4:3,
(March 1961), 142.

[Bron76] Bron, C, and DeVries, W., 'A PASCAL Compiler for PDP-11 Minicomput
ers,' Software - Practice and Exprience, 6:1, (January-March 1976), 109-116.

[Burroughs64] Burroughs B5500 Extended Algol Reference Manual, Burroughs Corporation,
Detroit, Michigan, (1964).

[Carter75] Carter, J.L., 'A Case Study ofa New Compiling Code Generation Technique,'
IBM Research Report RC5666, T. J. Watson Research Center, Yorktown
Heights, N.Y., (1975).

[Donegan73] Donegan, M.K., An Approach to the Automatic Generation of Code Generators,
Ph. D. dissertation, Rice University, Houston, Texas, (May 1973).

[Elson70] Elson, M., and Rake, S.T., 'Code Generation Techniques for Large-Language
Compilers,' IBMSystems Journal, 9:3, (1970), 166-188.

[Glanville76] Glanville, R.S., Design and Implementation of Portable Compilers, M.S. report,
Computer Science Report UCB-CS-76-46, University of California, Berkeley,
(June 1976).

[Graham76] Graham, S.L. and Wegman, M., 'A Fast and Usually Linear Algorithm for Glo
bal Flow Analysis,' Journal Acm, 23:1, (January 1976), 172-202.

lGries71] Gries, D., Compiler Construction for Digital Computers, John Wiley &Sons, Inc.,
New York, (1971).

9

[Grosse76] Groose-Lindemann, CO., and Nagel, H.H., 'Postlude to a PASCAL-Compiler
Bootstrap on a DEC System-10,' Software — Practice and Experience, 6:1,
(January-March 1976), 29-42.

[Harrison77] Harrison, W., 'A New Strategy for Code Generation — the General Purpose
Optimizing Compiler,' Fourth ACM Symposium on Principles of Programming
Languages, Los Angales, California, (January 1977), 29-37.

[HP73] HP3000 Reference Manual, Hewlett-Packard Company, Palo Alto, California,
(1973).

[IBM65] IBM System/360 Operating System: PL/I Languae Specifications, IBM Corporal ion
Manual (GC28-6571), Data Processing Division, White Plains, New York,
(1965).

[IBM66] IBM System/360 Principles of Operation, IBM Corporation Manual (A22-6821-3),
Poughkeepsie, N.Y., (1966).

[Jensen74] Jensen, K., and Wirth, N., 'PASCAL User Manual and Report,' in Lecture
Notes in ComputerScience, 18, Springer-Verlag, New York, (1974).

[Joy77] Joy, Wm.N., Graham, S.L., and Haley, C.B., Unix PASCAL User's Manual,
Computer Science Department, University of California, Berkeley, California,
(September 1977).

[Knuth68] Knuth, D.E., The Art of Computer Programming: Vol. 1: Fundamental Algorithms,
Addison Wesley, Reading Massachusetts, (1968).

[Lancaster76] Lancaster, R.L., and Schneider, V.B., 'Quick Compiler Construction using Uni
form Code Generators,' Software — Practice and Experience, 6:1, (January-
March 1976), 83-91.

[Loveman76] Loveman, D.B., 'Program Improvement by Source to Source Transformation,'
Third ACM Symposium on Principles ofProgramming Languages, Atlanta, Georgia,
(January 1976), 140-152.

[Lowry69] Lowry, E.S., and Medlock, C.W., 'Object Code Optimization,' Comm. ACM,
12:1, (January 1969), 13-22.

[Maltz77] Maltz, I.J., Implementation of a Code Generator Preprocessor, M.S. report, Com
puter Science Division, EECS, University of California, Berkeley, (Augusl
1977).

[McKeeman65]McKeeman, W.M., 'Peephole Optimization,' Comm. ACM, 8:7, (July 1965),
443-444.

[McKeeman70]McKeeman, W.M., Horning, J.J., and Wortman, D.B., A Compiler Generator,
Prentice Hall, (1970).

[Meyers74] Meyers, W.J., 'Linear Representations of Tree Structure: A Mathematical
Theory of Parenthesis-Free Notations,' Technical Report STAN-CS-74-222, Com
puter Science Department, Stanford University, Palo Alto, California, (July 1974).

[Miller71] Miller, P.L., 'Automatic Creation of a Code Generator from a Machine Descrip
tion,' Technical Report MAC TR-85, Project MAC, MIT, Cambridge, Mass.,
(May 1971).

[Newcomer75] Newcomer, J.M., Machine-Independent Generation of Optimal Local Code, Ph. D.
dissertation, Department of Computer Science, Carnegie-Mellon University,
Pittsburg, Pennsylvania, (May 1975).

[Nori74] Nori, K.V., Ammann, U., Jensen, K., and Nageli, H.H., 'The PASCAL (P)
Compiler: Implementation Notes,' Berichte der Fachgruppe Computer-
Wissenschaften, Eidgeribssische Technische Hochschule, Zurich, 10, (December
1974).

17

[Pasko73] Pasko, H.J., 'A Pseudo-Machine for Code Generation,' Technical Report
CSRG-30, University of Toronto, Ontario, Canada, (December 1973).

[Poole74] Poole, P.C., 'Portable and Adaptable Compilers, Compiler Construction, An
Advanced Course,' Ed. G. Goos and J. Hartmanis, in Lecture Notes in Computer
Science, 21, Springer-Verlag, New York, (1974), 427-497.

[Richmond74] Richmond, G.H, Editor, PASCAL Newsletter, 2, (May 1974).
[Ritchie76] Ritchie, D.M., 'A Tour Through the UNIX C Compiler,' unpublished internal

memorendum, Bell Laboratories, Murray Hill, New Jersey, (1976).

[Schneck73] Schneck, P.B., 'A FORTRAN to FORTRAN Optimizing Compiler,' Computer
J., 16:4, (1973), 322-330.

[Steel61] Steel, T.B., Jr., 'A First Version of UNCOL,' Proceedings WJCC, 19, (1961),
371-378.

[Strong58] Strong, J., et al., 'The Problem ofProgramming Communication with Changing
Machines: A Proposed Solution,' Comm. ACM, 1:8, (August 1958), 12-18.

[Szymanski78] Szymanski, T.G., 'Assembling Code for Machines with Span-Dependeni
Instructions,' Comm. ACM, to appear.

[Weingart73] Weingart, S.W., An Efficient and Systematic Method ofCompiler Code Generation,
Ph. D. dissertation, Yale University, New Haven, Conn., (June 1973).

[Welsh72] Welsh, J., and Quinn, C, 'A PASCAL Compiler for ICL 1900 Series Com
puter,' Software —Practice and Experience, 2:1, (January-March 1972), 73-77.

[Wilcox71] Wilcox, T.R., Generating Machine Code for High-Level Programming Languages,
Ph. D. dissertation, Technical Report 71-103, Department of Computer Science,
Cornell University, Ithaca, N.Y., (September 1971).

[Wirth68] Wirth, N., 'PL360, A Programming Language for the 360 Computers,' Journal
ACM, 15:1, (January 1968), 37-74.

[Wirth71] Wirth, N., 'The Design of a PASCAL Compiler,' Software - Practice and
Experience, 1:3, (1971), 309-333.

[Wirth72] Wirth, N., 'On "PASCAL", Code Generation, and the CDC 6000 Computer,'
Technical Report STAN-CS-72-257, Computer Science Department, Stanford
University, Palo Alto, California, (February 1972).

[WulHl] Wulf, W.A., Russel, D.B., and Habermann, A.N., 'BLISS: A Language for Sys
tems Programming,' Comm. ACM, 14:12, (December 1971), 780-790.

[Wulf75] Wulf, W., et al., The Design ofan Optimizing Compiler, American Elsevier Pub
lishing Co., Inc., New York, (1975).

118

Appendix A: PDP-11 TMDL Description

Soptions statesets,tables,loops,items;

Sregisters
$allocatable {r0,rl,r2,r3,r4,cc};
Sdedicated {rS,sp,pc};

Ssymbols

Svariables

r = r0,rl,r2,r3,r4,r5,sp,pc;
d = <r0,rl>,<r2,r3>;
o = rl,r3;
e = r0,r2;
c = cc;

Sterminals

k: 0,32767; /: 0,1023;
+ binary; — binary; * binary; / binary;] unary; := binary;
j unary; : unary; ? binary;
< binary; > binary; < binary; "^ binary; = binary; ^ binary;
& binary; |binary; ! unary; m unary;

$instructions

r.l ::= (*.l)
r.l ::= (| k.l)
X ::= (:= Ar.l r.l)
X ::= (:= Ar.l] k.2)
r.2 ::= (] + k.l r.l)
X ::= (:= + Ar.l r.l r.2)
r.2 ::= (f r.l)
X ::= (:= r.l r.2)
X ::= (:= r.l | r.2)
r.2 ::= (| f + k.l r.l)
X : = (= k.l k.2)
X : = (= + k.l r.l k.2)
X : = (=] + k.l r.l k.2)
X : = (= r.l k.l)
X : = (= r.l | + k.2 r.2)
X : = (= r.l | k.l)
X : ~ (= + k.l r.lX+ k.2 r.2)

r.l ::= (+ r.l r.2)
r.2 ::= (+ r.l r.2)
r.l ::= (+ k.l r.l)
r.l ::= (+ r.l k.l)
r.l ::= (+] k.l r.l)
r.l ::= (+ r.l | k.l)
X ::= (:= k.l + \ k.l r.l)
X : = (= k.l + r.l | k.l)

"mov $U,r.l";
"mov **.l,r.l";
"mov r.l,**.l";
"mov **.2,**.l";
"mov fc.l(r.l),r.2";
"mov r.2,*.1(r.l)";
"mov (r.l),r.2";
"mov r.2, (r.l)";
"mov (r.2),(r.l)";
"mov »£.l(r.l),r.2";
"mov $*.2,**.l";
"mov $A:.2,*.l(r.l)";
"mov $*.2,*Ar.l(r.D";
"mov $A:.l,(r.D";
"mov *.2(r.2),(r.l)";
"mov *A:.l,(r.l)";
"mov *.2(r.2),fc.l(r.l)";

"add r.2,r.l";
"add r.l,r.2";
"add $Ar.l,r.l";
"add $U,r.l";
"add **.l,r.l";
"add *k.l,r.V;
"add r.l,*k.V;
"add r.l,*k.V;

r.2

r.l

X ::

X ::

X ::

X ::

X ::

X ::

r.l

r.l

r.l

X ::

r.l

X ::

X ::

X ::

r.l

X ::

X ::

X ::

r.l

r.l

X ::

X ::

X ::

X ::

(+ t + k.l r.l r.2)
(+ r.l | + k.2 r.2)
= + k.l r.l + | + k.l r.l r.2)
= + k.l r.l + r.2 f + k.l r.l)
= + k.l r.l + f + k.l r.l f + k.2 r.2)
= + k.l r.l + | + Ar.2 r.2 f + k.l r.l)
= + A:.l r.l + A:.2 T + Ar.l r.l)
= + k.l r.l + t + A:.l r.l A:.2)

= (- r.l r.2)
= (- r.l Ar.l)
=(- r.l t k.l)
(:= k.l - \ k.l r.l)

=(- r.l f + A:.2 r.2)
= + k.l r.l - | +
= + k.l r.l - T +

A-.1 r.l r.2)
k.l r.l t +

= (
= (
= (+ k.l r.l - t + k.l r.l k.2)

k.2 r.2)

::= (*=0)
= (:= r.l A:=0)
= (:= k.l k=0)
= (:= + A:.l r.l A:=0)

::= (+ r.l A:=l)
::= (+ k=l r.l)
= (:= A:.l + j k.l A:=l)
= (: = k.l + A:=l f k.l)
= (:= + k.l r.l + k=l] + k.l r.l)
= (:= + Ar.l r.l +] + k.l r.l k=l)

r.l ::= (- r.l A:=l)
X ::= (:= k.l - \ k.l k=l)
X ::= (:= + k.l r.l - | + k.l r.l k=l)

e=0 ::= (r=0)
o=0 ::= (r=l)
e=l ::= (r=2)
0 = 1 ::= (r=3)
r=0 := (e=0)
r=l := (o=0)
r=2 := (e=l)
r=3 := (o=l)
r=0 := (</=0)
r=2 := (d=l)

e.l ::•• = (r.l)
o.l :: = (r.l)
d.l :: = (r.l)

d.l :: = (* e.l r.l)
d.l :: = (* r.l e.l)
o.l ::= (* o.l r.l)
o.l ::= (* r.l o.l)
d.l ::= (* e.l k.l)

"add *.l(r.l),r.2";
"add Ar.2(r.2),r.l";
"add r.2,*. 1(r.l)";
"add r.2,*.l(r.l)";
"add A:.2(r.2),*.l(r.D";
"add A;.2(r.2),*.l(r.l)";
"add $*.2,A\l(r.l)";
"add $Ar.2,Ar.l(r.l)";

"sub r.2,r.l";
"sub $*.l,r.l";
"sub *Ar.l,r.lM;
"sub r.l,*A:.l";
"sub *.2(r.2),r.l";
"sub r.2,*.l(r.l)";
"sub *.2(r.2),A:.l(r.l)";
"sub $*.2,*.l(r.D";

"clr r.l";
"clr (r.l)";
"clr *k.V;
"clr yt.l(r.l)";

"inc r.l";
inc r.l";
inc **.l";
mc *A:.l";
inc *.l(r.l)";

"inc k.l(r.l)n;

"dec r.l";
"dec **.l";
"dec U(r.l)";

"mov r.l.ftl";
"mov r.l,o.l";
"mov r.l,d.l.2; sxt d.\.\"

"mul r.l,e.V;
"mul r.l,e.V;
"mul r.l,o.l";
"mul r.l,o.l";
"mul $k.l,e.V;

20

>?

d.l ::= (* k.l e.l)
o.l ::= (* o.l A:.l)
o.l ::= (* k.l o.l)
o.l ::= (* o.l t r.l)
o.l ::= (* | r.l o.l)
e.l ::= (* e.l] r.l)
e.l ::= (* t r.l e.l)
d.l ::= (* e.l] + k.l r.l)
d.l ::= (* | 4- k.l r.l e.l)
o.l ::= (* o.l 1 + A:.l r.l)
o.l ::= (* f + £1 r.l 0.1)

r.2 := (/ d.l r.l)
r.2 := (/ d.l k.l)
r.2 := (/ d.l] + k.l r.l)

X :: = (: 1.1)
e.l := (? r.l r.2)
e.l := (? k.l 1 k.2)
C.1 := (? f k.l k.2)
C.1 := (? k.l t + k.2 r.2)
c.1 := (? t + k.l r.l k2)
c.1 := (? £.1 r.l)
c.1 := (? r.l U)
c.1 := (? r.l | *.l)
c.1 := (? j k.l r.l)
c.1 := (? t + k.l r.l r.2)
c.1 := (? r.l f + k.2 r.2)

X :: = (//-I)
X :: = (< 1.1 c.1)
X :: = (> 1.1 c.1)
X :: = (= 1.1 c.1)
X :: = « 1.1 c.1)
X ::•= (> 1.1 c.1)
X :: = (* 1.1 c.1)

r.l ::= (wr.l)
r.l ::= (& r.l r.2)
r.2: := (& r.l r.2)
r.l ::= (| r.l r.2)
r.2::= (| r.l r.2)
r.l ::= (! r.l)

Send

"mul $k.l,e.ln;
"mul $k.l,o.V;
"mul $k. l,o.l";
"mul (r.l),o.l";
"mul (r.l),o.l";
"mul (r.l),e.ln;
"mul (r.l),e.V;
"mul k.l(r.l),e.l";
"mul k.l(r.l),e.V;
"mul k.l(r.l),o.V;
"mul k.l(r.l),o.V;

"div r.M.1.1";
"div U.l,d.l.ln;
"div k.l(r.l),d.l.r

"L/.1:" »

"cmp r.l,r.2";
"cmp $A:.1,**.2";
"cmp **.1,$*.2";
"cmp $A:.l,*.2(r.2)";
"cmp *.l(r.l),$*.2";
cmp $*.l,r.l";

"cmp r.l,$*.l";
"cmp r.l,**.l";
"cmp *A:.l,r.l";
"cmp A:.l(r.l),r.2";
cmp r.l,*.2(r.2)";

"jbr L/.1";
"jit L/.1";

"jgt L/.1";
"jeq LIT;
"jle L/.l";
Jge L/.1";

"jne L/.1";

"neg r.V;
"bit r.2,r.l";
"bit r.l,r.2";
"bis r.2,r.l";
"bis r.l,r.2";
"xor $l,r.l";

121

Appendix B: IBM 370 TMDL Description

$optionsstatesets,tables,items,loops;

Sregisters
Sallocatable {cc,r2,r3,r4,r5,r6,r7,r8,r9,rl0,rll,rl2};
Sdedicated {r0,rl,rl3,rl4,rl5};

Ssymbols

$variables
r = r0,rl,r2,r3,r4,r5,r6,r7,r8,r9,rl0,rll,rl2,rl3,rl4,rl5;
d = <r2,r3>,<r4,r5>,<r6,r7>,<r8,r9>,<rl0,rll>;
e = r2,r4,r6,r8,rl0;
o = r3,r5,r7,r9,rll;
c = cc;

Sterminals

k: 0,4095;
a binary; + binary; - binary; * binary; / binary; } unary; := binary;
j unary; ? binary;
< binary; > binary; < binary; "£ binary; 5* binary; = binary;
& binary; | binary; ! unary; m unary;

instruct!

r.2:

ons

= (1 a k.l r.l)
r.3: := (t a a k.l r.l r.2)
r.3::= (f a k.l a r.l r.2)
r.3::= (\ a r.l a k.l r.2)
r.2::= (t r.l)

r.l ::= (k.l)
r.2::= (a k.l r.l)
r.3::= (a a k.l r.l r.2)
r.3::= (a k.l a r.l r.2)
r.3: := (a r.l a k.l r.2)

X :: = (:= a k.l r.l r.2)
X :: = (:= a a k.l r.l r.2 r.3)
X :: = (:= a k.l a r.l r.2 r.3)
X :: = (:= a r.l a k.l r.2 r.3)
X :: = (:= r.l r.2)

r.l ::= (+ r.l r.2)
r.2 ::= (+ r.l r.2)
r.2 ::= (+ 1 a k.l r.l r.2)
r.l ::= (+ r.l f a k.2 r.2)
r.l ::= (a r.l r.2)
r.2 ::= (a r.l r.2)
r.2 ::= (a } a k.l r.l r.2)
r.l ::= (a r.l \ a k.2 r.2)

"L r.2,k.l(r.l)n;
"L r.3,U(r.l,r.2)";
"L r.3,A:.l(r.l,r.2)";
"L r.3,^.l(r.l,r.2)";
"L r.2,0(r.D";

"LA r.l,^.l";
"LA r.2,^.l(r.D";
"LA r.3,k.l(r.l,r.2)n;
"LA r.3,k.l(r.l,r.2)n;
"LA r.3,k.l(r.l,r.2)n;

"ST r.2,k.l(r.l)n;
"ST r.3,/t.l(r.l,r.2)";
"ST r.3,it.l(r.l,r.2)";
"ST r.3,fcl(r.l,r.2)";
"ST r.2,0(r.D";

"AR r.l,r.2";
"AR r.2,r.l";
"A r.2,k.l(r.l)n;
"A r.l,k.2(r.2Y;
"AR r.l,r.2";
"AR r.2,r.l";
"A r.2,k.l(r.lY;
"A r.l,k.2(r.2Y;

:22

*

r.l ::= (- r.l r.2)
r.l ::= (- r.l | a k.2 r.2)

e.l ::= (r.l)
r.l ::= (e.l)
r.l ::= (o.l)
d.l ::= (e.l)
d.l ::= (o.l)
r.l ::= (d.l)

d.l ::= (* e.l r.l)
d.l ::= (* r.l e.l)
d.l ::= (* e.l | a k.l r.l)
d.l ::= (* T a k.l r.l e.l)

o.l ::= (/ d.l r.l)
o.l ::= (/ d.l] a k.l r.l)

r.l := (& r.l r.2)
r.2 := (& r.l r.2)
r.l := (& r.l f a k.2 r.2)
r.2 := (& 1 a k.l r.l r.2)

r.l := (| r.l r.2)
r.2 := (| r.l r.2)
r.l := (|r.l t a k.2 r.2)
r.2 := (|| a k.l r.l r.2)

r.2 ::= (! r.l)

r.2 ::= (m r.l)

X::= (J r.l)
X ::= (j a k.l r.l)

c.1 ::= (? r.l r.2)
c.1 ::= (? r.l] a k.2 r.2)

X ::= (< r.l c.1)
X ::= (< a k.l r.l c.1)

X ::= (> r.l c.1)
X ::= (> a Ar.l r.l c.1)

X ::= « r.l c.1)
X ::= « a k.l r.l c.1)

X ::= (> r.l c.1)
X ::= (> a k.l r.l c.1)

X ::= (^ r.l c.1)
X ::= (* a k.l r.l e.l)

"SR r.l, r.2";
"S r.l,A:.2(r.2)";

"LR e.l,r.l";

"SLDL e.l,32";
"SRDA o.l,32";

"MR e.l,r.l";
"MR e.l,r.V;
"M e.l,A:.l(r.l)";
"M e.l,k.l(r.lY;

"DR d.l.l,r.l";
"D d.l.lyk.l(r.lY;

"NR r.l,r.2";
"NR r.2,r.l";
"N r.l,k.2(r.2Y;
"N r.2,k.l(r.lY;

"OR r.l,r.2";
"OR r.2,r.l";
"0 r.l,^.2(r.2)";
"0 r.2,^.l(r.D";

"NOT r.2,r.l";

"LCR r.2,r.l";

"BCR 14,r.l";
"BC I4,k.l(r.l)n;

"CR r.l,r.2";
"C r.l,^.2(r.2)";

"BCR 4,r.l";
"BC 4,A:.l(r.l)";

"BCR 2,r.l";
"BC 2,A:.l(r.l)";

"BCR 12,r.l";
"BC 12,A:.l(r.D";

"BCR 10,r.l";
"BC 10,^.1 (r.l)";

"BCR 6,r.l";
"BC 6,^.1 (r.l)";

23

n-

X ::= (= r.l c.1)
X::= (= ak.l r.l c.1)

r.l ::= (A:=0)

Send

"BCR 8,r.l";
"BC •8,JU(r.i)";

"SR r.l,r.l";

124

S

5

	Copyright notice 1978
	ERL-78-9 (1 of 2)
	ERL-78-9 (2 of 2)

