Copyright © 1978, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission.

an intuitive derivation of a realization

by

C. A. Desoer and E. L. Lo

Memorandum No. UCB/ERL M78/87
15 December 1978

ELECTRONICS RESEARCH LABORATORY
College of Engineering
University of California, Berkeley
94720

C. A. Desoer and E. L. Lo

> Department of Electrical Engineering and Computer Sciences
> and the Electronics Research Laboratory
> University of California, Berkeley, California 94720

ABSTRACT

This memorandum presents an intuitive derivation of the minimal realization of $G(s) \in \mathbb{R}(s)^{n_{0} X_{i}}$ based on singular value decomposition. The original work is due to P. Van Dooren, et al.

I. Introduction

The problem of constructing a minimal realization of a given matrix of rational functions has been studied in literature, but the numerical aspects of the suggested procedures have rarely been considered. Van Dooren has proposed a numerically stable algorithm for constructing a minimal realization [1]. This paper, based on Van Dooren's result, gives an intuitive insight in such a realization, and gives a simple proof of minimality.

It is well known that if a strictly proper rational matrix is decomposed into the sum of the principal parts of its Laurent expansion at each of its poles, say

$$
H(s)=\sum_{i=1}^{p} H_{i}(s)
$$

then the direct sum of minimal realizations of each of the H_{i} 's is a minimal realization of H. Thus in section $I I$, we derive a minimal realization of a matrix of strictly proper rational functions with a pole of order 2. In section III, we prove that the proposed realization is minimal. In section IV, we generalize the method proposed in section II; by induction, we obtain a realization of a matrix of strictly proper rational functions with a single pole of arbitrary order.

To illustrate the spirit of the method, we consider the simple problem of the minimal realization of a matrix with a first order pole.

Let $G(s)=N_{1}^{(1)} /(s-\lambda)$ where $N_{1}^{(1)} \in \mathbb{C}^{n_{0} \mathrm{xn}_{i}}$.
Perform a singular value decomposition on $N_{1}^{(1)}$:

$$
N_{1}^{(1)}=U^{(1)} \Sigma^{(1)} V^{(1) *}
$$

where $U^{(1)} \in \mathbb{C}^{n_{0} \mathrm{xn}_{0}}, V^{(1)} \in \mathbb{C}^{\mathrm{n}_{\mathrm{i}} \mathrm{xn}} \mathrm{i}$ are unitary and

$$
\Sigma^{(1)}=\operatorname{diag}\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{\rho_{1}}, 0,0, \ldots, 0\right) \in \mathbb{R}^{n_{0} \mathrm{xn}}{ }_{i} . \text { Let } \rho_{1}:=\operatorname{rank} N_{1}^{(1)} .
$$

Let $U_{\rho_{1}}^{(1)}$ and $V_{\rho_{1}}^{(1)}$ denote the first ρ_{1} columns of $U^{(1)}$ and $V^{(1)}$, resp. Let $\sum_{\rho_{1}}=\operatorname{diag}\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{\rho_{1}}\right)$; then

$$
N_{1}^{(1)}=U_{\rho_{1}}^{(1)} \Sigma_{\rho_{1}}^{(1)} V_{\rho_{1}}^{(1)}
$$

Since B and C have both rank ρ_{1},

$$
\begin{aligned}
& \operatorname{rank}[s I-A i B]=\rho_{1}, \quad \forall s \in \mathbb{C} \\
& \operatorname{rank}\left[\frac{s I-A}{C}\right]=\rho_{1}, \quad \forall s \in \mathbb{C}
\end{aligned}
$$

Hence the realization is completely controllable and observable, hence minimal.
II. Minimal realization of a pole of order 2 .

We consider a matrix of rational functions $G(s) \in \mathbb{R}^{n_{0} x_{i}}$, where $G(s)$ is strictly proper. Let $G(s)$ has a single pole λ of order 2 , hence we write $G(s)$ as

$$
\begin{equation*}
G(s)=\frac{N_{2}^{(2)}}{(s-\lambda)^{2}}+\frac{N_{1}^{(2)}}{s-\lambda} \tag{1}
\end{equation*}
$$

where $N_{2}^{(2)} \in \mathbb{C}^{n_{0} \mathrm{xn}} \mathrm{i}, N_{1}^{(2)} \in \mathbb{C}^{\mathrm{n}_{\mathrm{o}}^{\mathrm{xn}} \mathrm{i}}$.

It is clear that to realize the second order term $\frac{\mathrm{N}_{2}^{(2)}}{(\mathrm{s}-\lambda)^{2}}$ requires at least $2 \cdot$ rank $N_{2}^{(2)}$ integrators. Then making maximum use of these 2.rank $\mathrm{N}_{2}^{(2)}$ integrators with some additional integrators, we will realize the $\operatorname{term} \frac{\mathrm{N}_{1}^{(2)}}{\mathrm{s}-\lambda}$.

To determine the rank of $N_{2}^{(2)} \in \mathbb{C}^{n_{0} \mathrm{xn}_{\mathrm{i}}}$, we perform a singular value decomposition (abbreviated by SVD) on $\mathrm{N}_{2}^{(2)}$ and obtain

$$
\begin{equation*}
N_{2}^{(2)}=U^{(2)} \Sigma_{V}^{(2)} V^{(2) *} \tag{2}
\end{equation*}
$$

where $U^{(2)} \in \mathbb{C}^{n_{o} \mathrm{xn}_{0}}$ is unitary; $V^{(2)} \in \mathbb{C}^{n_{i} x n_{i}}$ is unitary;

$$
\begin{aligned}
& \Sigma^{(2)} \in \mathbb{R}^{n_{0} \mathrm{xn}_{i}} ; \Sigma^{(2)}:=\left[\begin{array}{ll:l}
\sigma_{1}^{(2)} \bigcirc 0 & \bigcirc \\
\hdashline \sigma_{\rho_{2}}^{(2)} & \bigcirc \\
\hdashline \sigma_{1}^{(2)} \geq \sigma_{2}^{(2)} \ldots \geq \sigma_{\rho_{2}}^{(2)}>0 .
\end{array} \quad\right. \text { with }
\end{aligned}
$$

Hence

$$
\operatorname{rank} N_{2}^{(2)}=\rho_{2} .
$$

Partitioning both $\mathrm{U}^{(2)}, \mathrm{V}^{(2)}$ as follows, we obtain

Let's define

$$
\Sigma_{\rho_{2}}^{(2)}:=\left[\begin{array}{cc}
\sigma_{1}^{(2)} & \bigcirc \\
\ddots & \\
\bigcirc & \sigma_{\rho_{2}}^{(2)}
\end{array}\right]
$$

With the notations defined in (3) and (4), Eq. (2) is rewritten as

$$
\begin{equation*}
\mathrm{N}_{2}^{(2)}=\mathrm{U}_{\rho_{2}}^{(2)} \Sigma_{\rho_{2}}^{(2)} \mathrm{v}_{\rho_{2}}^{(2) *} \tag{5}
\end{equation*}
$$

Remark: If $N_{1}^{(2)}=0$, using (5), a minimal realization of $G(s)$ is immediate:

$C:=\underset{\sim}{\left[\begin{array}{l}\mathrm{U}_{2}^{(2)} \Sigma_{\rho_{2}}^{(2)}\end{array}\right.}$

By inspection, $\forall s \in \mathbb{C}, \operatorname{rank}[s I-A \vdots B]=2 \rho_{2}$ and $\operatorname{rank}\left[\frac{s I-A}{C}\right]=2 \rho_{2}$, hence the realization is minimal.
Let $\underset{\sim}{u} \in \mathbb{R}^{n_{i}}$ denote the input. Let

$$
\begin{array}{r}
\rho_{2}^{\uparrow} \tag{6}\\
\downarrow \\
\mathbf{n}_{\mathbf{i}}-\rho_{2}^{\uparrow} \\
\downarrow
\end{array}\left[\begin{array}{l}
\underline{v}_{\rho_{2}} \\
\underset{\mathbf{v}_{2}-\rho_{2}}{ }
\end{array}\right]:=v^{(2) *} \underset{\sim}{u}
$$

To construct a realization intuitively, consider

$$
\begin{aligned}
& G(s) \underset{\sim}{u}=\left[\frac{\left.{\underset{N}{2}}_{(2)}^{(s-\lambda)^{2}}+\frac{N_{1}^{(2)}}{s-\lambda}\right] v^{(2)} \cdot v^{(2) *} \underset{\sim}{u}}{}\right. \\
& =\left[\frac{N_{2}^{(2)} v^{(2)}}{(s-\lambda)^{2}}+\frac{N_{1}^{(2)} v^{(2)}}{s-\lambda}\right]\left[\begin{array}{l}
v_{\rho_{2}} \\
-\cdots- \\
v_{n_{i}-\rho}
\end{array}\right]
\end{aligned}
$$

Using the partition of $\mathrm{V}^{(2)}$ from Eq. (3), we obtain
$G(s) \underset{\sim}{u}=\frac{{\underset{N}{2}}_{(2)}^{v_{\rho_{2}}}}{s-\lambda} \cdot \frac{I_{\rho_{2}}}{s-\lambda}{\underset{\sim}{\rho_{\rho}}}+\frac{N_{1}^{(2)} V_{{\underset{n}{i}}^{(2)}}^{s-\lambda}}{v_{n_{i}-\rho}}+N_{1}^{(2)} V_{\rho_{2}}^{(2)} \frac{I_{\rho_{2}}}{s-\lambda}{\underset{\sim}{\rho}}_{2}$
Let us use ρ_{2} integrators to realize

$$
{\underset{\sim}{\rho_{2}}}:=\frac{I_{\rho_{2}}}{s-\lambda} v_{\rho_{2}}
$$

then the realization of the third term of (7) is immediate:

$$
\frac{\mathrm{N}_{1}^{(2)} \mathrm{V}_{\rho_{2}}^{(2)}}{\mathrm{s}-\lambda}{\underset{\sim}{\rho}}^{\mathrm{v}_{2}}=\mathrm{N}_{1}^{(2)} \mathrm{V}_{\rho_{2}}^{(2)} \cdot \underset{\sim_{\rho}}{\mathrm{x}} .
$$

$$
\begin{aligned}
& \underset{\sim}{z}:=\frac{N_{2}^{(2)} V_{\rho_{2}}^{(2)}}{s-\lambda} \underset{\sim}{x} \rho_{2}+\frac{N_{1}^{(2)} V_{n_{i}-\rho_{2}}^{(2)}}{s-\lambda} v_{n_{i}-\rho_{2}}
\end{aligned}
$$

where

$$
N_{1}^{(1)}:=\left[\begin{array}{ll:l}
N_{2}^{(2)} & v_{\rho_{2}}^{(2)} & N_{1}^{(2)} \tag{9}\\
V_{n_{i}}^{(2)} \\
\hdashline & & \rho_{2}
\end{array}\right]
$$

The minimum no. of integrators required for realizing (8) is $\rho_{1}:=\operatorname{rank} N_{1}^{(1)}$. To determine ρ_{1}, we perform a singular value decomposition on $\mathrm{N}_{1}^{(1)}$ and obtain

$$
\begin{equation*}
N_{1}^{(1)}=U^{(1)} \Sigma^{(1)} V^{(1)} \tag{10}
\end{equation*}
$$

where $U^{(1)} \in \mathbb{C}^{n_{0} x_{0}}$ is unitary, $v^{(1)} \in \mathbb{C}^{n_{i} x n_{i}}$ is unitary; $\Sigma^{(1)} \in \mathbb{R}^{n_{0} x_{i}}$
with $\sigma_{1}^{(1)} \geq \sigma_{2}^{(1)} \ldots \geq \sigma_{\rho_{1}}^{(1)}>0$.
Partitioning both $U^{(1)}, V^{(1)}$ as follows, we obtain

We further partition $v_{\rho_{1}}^{(1)}$ as follows:

We define

$$
\Sigma_{\rho_{1}}^{(1)}:=\left[\begin{array}{llll}
\sigma_{1}^{(1)} & & \tag{13a}\\
& \sigma_{2}^{(1)} & \\
& \ddots & \\
& \ddots & \\
& & \sigma_{\rho_{1}}^{(1)}
\end{array}\right]
$$

and

$$
\begin{equation*}
\rho_{1}:=\operatorname{rank} N_{1}^{(1)} \tag{13b}
\end{equation*}
$$

With the notations defined in (11), (12), (13), Eq. (10) is written as

$$
\begin{align*}
\mathrm{N}_{1}^{(1)}=\mathrm{U}_{\rho_{1}}^{(1)} \Sigma_{\rho_{1}}^{(1)} \mathrm{V}_{\rho_{1}}^{(1) *} & =\left(\mathrm{U}_{\rho_{1}^{(1)} \Sigma_{\rho_{1}}^{(1)} \mathrm{v}_{\rho_{1}}^{(1) *}}\right)\left(\mathrm{v}_{\rho_{1}}^{(1)} I_{\rho_{1}} \mathrm{~V}_{\rho_{1}}^{(1) *}\right) \\
& =\mathrm{N}_{1}^{(1)} \mathrm{V}_{\rho_{1}}^{(1)} \mathrm{I}_{\rho_{1}} \mathrm{~V}_{\rho_{1}}^{(1) *} \tag{14}
\end{align*}
$$

and Eq. (8) becomes

This shows that $\underset{\sim}{z}$ can be realized by ρ_{1} integrators. We define

$$
{\underset{\sim}{\mathrm{x}}}_{1}:=\frac{\mathrm{I}_{\rho_{1}}}{s-\lambda}\left[\begin{array}{l:l}
\hat{\mathrm{v}}_{\rho_{1}}^{(1) *} & \underset{\mathrm{v}_{1}}{(1) *}
\end{array}\right]\left[\begin{array}{l}
\underset{\sim}{\mathrm{x}_{\rho}} \tag{16}\\
\hdashline \underset{{\underset{n}{n}}^{v}}{ } \\
\hdashline \underset{2}{ }
\end{array}\right]
$$

Remark: Since $N_{1}^{(1)}:=\left[\begin{array}{l:l}N_{2}^{(2)} \mathrm{V}_{\rho}^{(2)} & \mathrm{N}_{1}^{(2)} \mathrm{V}_{\mathrm{n}_{\mathrm{i}}-\rho_{2}}^{(2)}\end{array}\right]$ from (9),
$\rho_{2}:=\operatorname{rank} N_{2}^{(2)}=\operatorname{rank} N_{2}^{(2)} \mathrm{V}_{\rho_{2}}^{(2)} \leq \operatorname{rank} N_{1}^{(1)}=: \rho_{1}$.
ロ

Based on the above analysis, $G(s)$ is realized by the following block diagram.

Hence, a realization $\{A, B, C\}$ is given as follows:

$$
\begin{aligned}
& C:=\left[\begin{array}{l:l}
\\
N_{1}^{(1)} V_{\rho_{1}}^{(1)} & N_{1}^{(2)} V_{\rho_{2}}^{(2)}
\end{array}\right] \begin{array}{c}
n_{0}^{\uparrow} \\
n_{0}
\end{array} ; \\
& \text { with } \underset{\sim}{x}:=\left[\begin{array}{l}
{\underset{\sim}{x}}_{\rho_{1}} \\
-- \\
{\underset{\sim}{x}}_{2}
\end{array}\right]
\end{aligned}
$$

Remark: The $\rho_{1} \times n_{i}$ matrix $\stackrel{V}{V}_{\rho_{1}}^{(1) *} \cdot \underbrace{(2) *}_{\mathrm{n}_{\mathrm{i}}-\rho_{2}}$ is the product of a $\rho_{1} \times\left(n_{i}-\rho_{2}\right)$ by a ($\left.n_{i}-\rho_{2}\right) \times n_{i}$ matrix.

The procedure of constructing a realization $\{A, B, C\}$ of
$G(s)=\frac{N_{2}^{(2)}}{(s-\lambda)^{2}}+\frac{N_{1}^{(2)}}{s-\lambda}$ is summarized by the following algorithm:

Algorithm

Step 1 Perform the SVD of $\mathrm{N}_{2}^{(2)}$

$$
\mathrm{N}_{2}^{(2)}=\mathrm{U}^{(2)} \Sigma_{\Sigma}^{(2)} \mathrm{V}^{(2) *}=\mathrm{U}_{\rho_{2}}^{(2)} \Sigma_{\rho_{2}}^{(2)} \mathrm{V}_{2}^{(2)}
$$

where $\rho_{2}:=\operatorname{rank} N_{2}^{(2)}$ and $\mathrm{V}^{(2)}$ is partitioned as

Step 2 Define

$$
\begin{aligned}
& N^{(1)}:=\left[\begin{array}{l:l}
N_{2}^{(2)} V_{\rho_{2}}^{(2)} & N_{1}^{(2)} V_{n_{i}-\rho_{2}}^{(2)}
\end{array}\right] \underset{\downarrow}{n_{0}^{\dagger}} \\
& \leftarrow \rho_{2} \longrightarrow \longleftarrow \mathrm{n}_{\mathrm{i}}-\rho_{2} \longrightarrow
\end{aligned}
$$

and perform the SVD of $\mathrm{N}_{1}^{(1)}$

$$
N_{1}^{(1)}=U^{(1)} \Sigma^{(1)} V^{(1) *}=U_{\rho_{1}}^{(1)} \Sigma_{\rho_{1}} V_{\rho_{1}}^{(1) *}
$$

where $\rho_{1}:=\operatorname{rank} N_{1}^{(1)}$, and $\mathrm{V}^{(1)}$ is partitioned as

$$
\mathrm{v}^{(1)}=\left[\begin{array}{l:l}
\leftarrow \rho_{1} \rightarrow & \leftarrow \mathrm{n}_{\mathrm{i}}-\rho_{1} \rightarrow \\
\mathrm{v}_{\rho_{1}}^{(1)} & \mathrm{v}_{\mathrm{n}_{\mathrm{i}}-\rho_{1}}^{(1)}
\end{array}\right]_{\downarrow} \quad \begin{aligned}
& \mathrm{n}_{\mathrm{i}} \\
& \downarrow
\end{aligned}
$$

We further partition $\mathrm{v}_{\rho_{1}}^{(1)}$ as

Step 3 A realization $\{A, B, C\}$ of $G(s)$ is

$$
\begin{aligned}
& \longleftarrow \mathrm{n}_{\mathrm{i}} \longrightarrow
\end{aligned}
$$

$$
\begin{aligned}
& C:=\left[\begin{array}{l:l:l}
\\
N_{1}^{(1)} V_{\rho_{1}}^{(1)} & N_{1}^{(2)} V_{\rho_{2}}^{(2)}
\end{array}\right] \underset{n_{0}}{n_{0}}
\end{aligned}
$$

ロ
III. Proof of Minimality

We show that the realization $\{A, B, C\}$ given by Eq. (17) is minimal. Theorem Consider $G(s) \in \mathbb{R}(s)^{n_{o} x_{i}}$ given by (1). Then $\{A, B, C\}$ given by (17) is a minimal realization of $G(s)$.

Proof From the analysis of section II, it is clear that $\{A, B, C\}$ is a realization of $G(s)$. Hence the remaining task is to show minimality, or equivalently, to show that $\{A, B, C\}$ is completely controllable and completely observable.

To show complete controllability, we show that [sI-A!B] is full rank $\forall s \in \mathbb{C}$. Now by (17), $\forall s \neq \lambda,[s I-A ; B]$ is full rank. Now for $s=\lambda$, we have

$$
\begin{aligned}
& =\operatorname{rank}\left[\begin{array}{c:c:c}
\hat{\mathrm{v}}^{(1) *} & \bigcirc & \mathrm{v}^{(1) *} \\
\rho_{1} & \bigcirc & \rho_{1} \\
\hdashline \bigcirc & \mathrm{I}_{\rho_{2}} & \bigcirc
\end{array}\right] \\
& =\rho_{1}+\rho_{2} \quad \text { because } \mathrm{V}_{\rho_{1}}^{(1)} \text { is full rank and (12). }
\end{aligned}
$$

To show complete observability, we show that $\left[\begin{array}{c}\mathrm{sI}-\mathrm{A} \\ \hline \mathrm{C}\end{array}\right]$ is full rank $\forall \mathrm{s} \in \mathbb{c}$. Again by (17), $\forall s \neq \lambda,\left[\begin{array}{c}s I-A \\ -C \\ C\end{array}\right]$ is full rank. Now for $s=\lambda$, we have

$$
\begin{aligned}
& \leftarrow \rho_{1} \longrightarrow \leftarrow \rho_{2} \longrightarrow
\end{aligned}
$$

$$
\begin{aligned}
& \leftarrow \rho_{1} \longrightarrow+\rho_{2}-\longrightarrow \\
& =\operatorname{rank}\left[\begin{array}{c:c}
\longrightarrow & \hat{v}_{\rho_{1}}^{(1) *} \\
\hdashline N_{1}^{(1)} V_{\rho_{1}}^{(1)} & N_{1}^{(2)} v_{\rho_{2}}^{(2)}
\end{array}\right] \begin{array}{c}
\uparrow \\
\rho_{1} \\
\downarrow \\
\uparrow \\
n_{0}
\end{array}
\end{aligned}
$$

Now $N_{1}^{(1)} V_{\rho_{1}}^{(1)}=U_{\rho_{1}}^{(1)} \Sigma_{\rho_{1}}^{(1)}$ is of rank ρ_{1} because $\Sigma_{\rho_{1}}^{(1)}$ is square and of rank ρ_{1}, (see (13a)), and $U^{(1)}$ being unitary has its first ρ_{1} columns, namely $U_{\rho_{1}}^{(1)}$, forming an independent family. Consider now $\hat{\mathrm{V}}_{\rho_{1}}^{(1) *} \in \mathbb{C}^{\rho_{1} \mathrm{x} \mathrm{\rho}_{2}}$:

$$
\begin{aligned}
& \operatorname{rank} \hat{\mathrm{v}}_{\rho_{1}}^{(1) *}=\operatorname{rank}\left\{\mathrm{v}_{\rho_{1}}^{(1)^{*}}\left[\begin{array}{c}
\mathrm{I}_{\rho_{2}} \\
-\mathrm{O}
\end{array}\right]\right\} \text { by (12) } \\
& =\operatorname{rank}\left\{\Sigma_{\rho_{1}}^{(1)} \mathrm{V}_{\rho_{1}}^{(1) *}\left[\begin{array}{c}
\mathrm{I}_{\rho_{2}} \\
-\bar{O}
\end{array}\right]\right\} \quad \begin{array}{l}
\text { since } \Sigma_{\rho_{1}}^{(1)} \in \mathbb{C}^{\rho_{1} \mathrm{x} \mathrm{\rho} 1} \text { and is } \\
\text { of rank } \rho_{1}
\end{array} \\
& =\operatorname{rank}\left\{\Sigma^{(1)} V^{(1) *}\left[\begin{array}{l}
I_{\rho_{2}} \\
\\
\\
\hline
\end{array}\right] \quad\right. \text { by (10a), (11) and (13a) } \\
& =\operatorname{rank}\left\{U^{(1)_{\Sigma}^{(1)}} V^{(1) *}\left[\begin{array}{l}
I_{\rho_{2}} \\
-\bigcirc
\end{array}\right]\right\} \begin{array}{l}
\text { since } U^{(1)} \in \mathbb{C}^{n_{0} \mathrm{xn}_{0}} \text { and is rank } n_{0} .
\end{array} \\
& =\operatorname{rank}\left[\mathrm{N}_{2}^{(2)} \mathrm{V}_{\mathrm{\rho}}^{2} \mathrm{(2)}\right] \\
& \text { by (9) and (10) } \\
& =\operatorname{rank}\left[U_{\rho_{2}}^{(2)} \Sigma_{\rho_{2}}^{(2)}\right] \\
& =\rho_{2} \\
& \text { by (5) } \\
& \text { because } U^{(2)} \text { is unitary, hence } \\
& \operatorname{rank} \mathrm{U}_{\mathrm{\rho}}^{(2)}=\rho_{2} \text {. }
\end{aligned}
$$

Hence

$$
\operatorname{rank}\left[\begin{array}{c:c}
\longrightarrow & \hat{V}_{\rho_{1}}^{(1) *} \\
\hdashline \mathrm{~N}_{1}^{(1)} \mathrm{V}_{\rho_{1}}^{(1)} & N_{1}^{(2)} \mathrm{V}_{\rho_{2}}^{(2)}
\end{array}\right]=\rho_{1}+\rho_{2}
$$

and the pair (C, A) of (17) is observable.
IV. An induction step for the realization of a pole of order $\ell>2$.

We have constructed a minimal realization of a matrix of rational functions with a single pole of order 2. We now consider a matrix of
rational functions with a single pole of order $\ell>2$:

$$
\begin{equation*}
G(s)=\frac{N_{\ell}^{(\ell)}}{(s-\lambda)^{\ell}}+\frac{N_{\ell-1}^{(\ell)}}{(s-\lambda)^{\ell-1}}+\ldots+\frac{N_{1}^{(\ell)}}{s-\lambda} \tag{18}
\end{equation*}
$$

where $N_{i}^{(\ell)} \in \mathbb{C}^{\mathrm{n}_{\mathrm{o}}^{\mathrm{xn}} \mathrm{i}} \quad \forall i \in\{1,2, \ldots, \ell\}$.
The induction assumption is that we have a method for a minimal
realization of any matrix of rational functions with a single pole of order $\ell-1$; we denote it by $\left\{A^{(\ell-1)}, B^{(\ell-1)}, C^{(\ell-1)}\right\}$. We now construct a realization $\{A, B, C\}$ of the $G(s)$ of (18) in terms of $\left\{A^{(\ell-1)}, B^{(\ell-1)}, C^{(\ell-1)}\right\}$. We perform a singular value decomposition on $N_{\ell}^{(\ell)}$ and obtain

$$
\begin{align*}
N_{\ell}^{(\ell)} & =U^{(\ell)} \Sigma^{(\ell)} V^{(\ell) *} \tag{19}\\
& =U_{\rho_{\ell}}^{(\ell)} \Sigma_{\ell}^{(\ell)} V_{\ell}^{(\ell) *} \tag{20}
\end{align*}
$$

where $\rho_{\ell}:=\operatorname{rank} N_{\ell}^{(\ell)}$.
As in (7), we obtain

$$
\begin{align*}
& +N_{1}^{(\ell)} V_{\rho_{\ell}}^{(\ell)} \cdot \frac{I_{\ell}}{s-\lambda}{\underset{\rho}{\rho}}_{\ell} \tag{22}
\end{align*}
$$

where we defined

Note that (21) includes ℓ terms and that the use of the variables ${\underset{\sim}{v}}_{\rho_{\ell}}$ and ${\underset{\sim}{n_{i}}{ }^{-\rho_{\ell}}}$, (defined in (23)), creates $2 \ell-1$ terms in (22). (Indeed the first term of (21) leads to only one term in ${\underset{\sim}{\rho_{\ell}}}$.)

We use ρ_{ℓ} integrators to realize

$$
\stackrel{x}{\sim}_{\ell}:=\frac{\tilde{I}_{\ell}}{s-\lambda}{\underset{v}{\rho_{\ell}}}
$$

then the realization of the last term of (22) is immediate.
In terms of ${\underset{\sim}{\rho}}_{\ell}$ and ${\underset{\sim}{n_{i}}}^{\mathrm{v}^{-\rho}}{ }_{\ell}$, the first ($\ell-1$) terms of (22) become

$$
\begin{align*}
& +\frac{\left[N_{1}^{(\ell-1)}\right]}{s-\lambda}\left[\begin{array}{c}
{\underset{\sim}{\rho_{\rho}}} \\
\left.-{\underset{n}{n_{i}-\rho_{\ell}}}^{l}\right]
\end{array}\right] \tag{24}
\end{align*}
$$

where $N_{i}^{(\ell-1)}:=\left[N_{i+1}^{(\ell)} \mathrm{V}_{\ell}^{(\ell)} \mathrm{N}_{\mathrm{i}}^{(\ell)} \mathrm{v}_{\mathrm{n}_{\mathrm{i}}-\rho}^{(\ell)}\right] \quad \forall i \in\{1,2, \ldots, \ell-1\}$. By the induction assumption, $\left\{A^{(\ell-1)}, \mathrm{B}^{(\ell-1)}, \mathrm{C}^{(\ell-1)}\right\}$ is the minimal realization of (24), we realize $G(s)$ of (18) by the following block diagram.

where $B^{(\ell-1)}$ is partitioned as follows:

$$
\begin{aligned}
B^{(\ell-1)}= & {\left[\begin{array}{l:l}
\hat{B}^{(l-1)} & \mathrm{B}^{(\ell-1)}
\end{array}\right] } \\
& \leftarrow \rho_{\ell} \rightarrow
\end{aligned}
$$

Hence a realization $\{A, B, C\}$ in terms of $\left\{A^{(\ell-1)}, B^{(\ell-1)}, C^{(\ell-1)}\right\}$ is given as follows:

$$
\begin{align*}
& A:=\left[\begin{array}{l:l}
A^{(\ell-1)} & \hat{B}^{(\ell-1)} \\
\hdashline \bigcirc & \lambda I_{\rho_{\ell}}
\end{array}\right]\left[\begin{array}{c:c}
\mathrm{B}^{(\ell-1)} \cdot \mathrm{V}_{\mathrm{n}_{i}-\rho_{\ell}}^{(\ell) *} \\
\hdashline \mathrm{~V}_{\ell}^{(\ell)^{*}}
\end{array}\right]=: B \tag{25}\\
& C:=\left[\begin{array}{ll}
\mathrm{C}^{(\ell-1)} & \mathrm{N}_{1}^{(\ell)} \mathrm{V}_{\rho_{\ell}}^{(\ell)}
\end{array}\right]
\end{align*}
$$

The realization of $\mathrm{G}(\mathrm{s})$ of Eq. (18) is then obtained iteratively.
For a proof of minimality, refer to [1].

v. Conclusion

Based on Van Dooren's work [1], in section II, we obtain intuitively a realization of a matrix of rational function with a single pole of order 2; we then prove the minimality. In section IV, by an induction
step, we obtain a minimal realization of the matrix of rational functions with a single pole of order $\ell>2$.

Acknowledgement

The authors wish to thank Dr. Y. T. Wang, and Mr. Victor H. Cheng for their stimulating discussions.

REFERENCES

[1] P. Van Dooren and P. Dewilde, "State-Space Realization of a General Rational Matrix: A Numerically Stable Algorithm," Proceedings of the Twentieth Midwest Symposium on Circuits and Systems, Texas Tech University, 25-27 August 1977, p. 773-781.

