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ABSTRACT

This memorandum presents an intuitive derivation of the minimal
n xn.
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I. Introduction

The problem of constructing a minimal realization of a given matrix

of rational functions has been studied in literature, but the numerical

aspects of the suggested procedures have rarely been considered.

Van Dooren has proposed a numerically stable algorithm for constructing

a minimal realization [1]. This paper, based on Van Dooren1s result, gives

an intuitive insight in such a realization, and gives a simple proof of

minimality.

It is well known that if a strictly proper rational matrix is decomposed

into the sum of the principal parts of its Laurent expansion at each of its

poles, say

P

H(s) = £ H (s)
i=l x

then the direct sum of minimal realizations of each of the H^s is a minimal

realization of H. Thus in section II, we derive a minimal realization of a

matrix of strictly proper rational functions with a pole of order 2. In

section III, we prove that the proposed realization is minimal. In

section IV, we generalize the method proposed in section II; by induction,

we obtain a realization of a matrix of strictly proper rational functions

with a single pole of arbitrary order.

To illustrate the spirit of the method, we consider the simple problem

of the minimal realization of a matrix with a first order pole.
... n xn,

Let G(s) =N^1}/(s-X) where N*1' Gffi° .
(1)

Perform a singular value decomposition on ^ :

N(D . nUViV"*

where U(1) 61° °, VU) GC1 are unitary and
n xn. (i)ZW =diag(Va2,...,ap ,0,0,...,0) Gm° *. Ut Pj <• rank ^ .
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Pi

r(D ,<DLet Ux"' and V(1) denote the first p± columns of U and V resp,

Let Z = diag(a.,a0,...,a ); then

(1) = U(1)E(1)V(1)

u(1)i(1)
pl pl

pl pl pl

x

~pir

£ s-X S

A := XI

V
(1)

C := u(1)z(1)
pl pl

Since B and C have both rank p^,

rank[sI-AiB] = q±9 Vs e 0

rank
[sI-A
L""cj

= Pl, VsG(K

A D

V
(D* = : B

Hence the realization is completely controllable and observable, hence

n

minimal.

II. Minimal realization of a pole of order 2.

n xn.

We consider a matrix of rational functions G(s) £ 3R , where

G(s) is strictly proper. Let G(s) has a single pole X of order 2, hence

we write G(s) as

42) 42)
G(s) = ~r +

(s-X)
2 s-X

/ON n xn. /0x n«xn4
where N<2) 6 <D ° \ N<2) 6 I ° \
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N
(2)

It is clear that to realize the second order term j requires
(s-X)Z

(2)
at least 2Tank N~ integrators. Then making maximum use of these

(2)2*rank N^ integrators with some additional integrators, we will realize

N
(2)

the term
s-X *

(2) noxniTo determine the rank of N* € G , we perform a singular

(2)
value decomposition (abbreviated by SVD) on N„ and obtain

„(2) . „<2>E<2)V<2)*

/0v n xn

where U(2) e <c ° ° (2) nimi
is unitary; V € <C is unitary;

(2)
n xn

ZK ' £ 3R ; Z° i. Tm ..
M2) o

O
a<2) >a<2) ... >a(2) >0.1-2 - P2

Hence

(2)
rank N» = p2'

o

OJ

Partitioning both IT ,V^ as follows, we obtain

with

*-p2+ ^VP2^
^-p.-)- -t-n^-p2">-

U
(2)

Let's define

.(2) .=

U
(2)

U
(2)

VP2

f >o

o

~1

• (2)

p2

V
(2)

V
(2) r(2)

n±-p2 n.
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With the notations defined in (3) and (4), Eq. (2) is rewritten as

N(2) . D(2)z(2)v(2)* (5)

P2 P2 P2

Remark: If N(2) = 0, using (5), aminimal realization of G(s) is immediate:

A :=

C :=

XI

o

„<2)E<2)
p2 P2

+ P2-

VI

XI

2J

o n

-<-n. -*-

- x"i
o
,(2)*

LP2 J

= : B

By inspection, Vs £ <E, rank[sI-A:B] =

the realization is minimal.

ni
Let u S E. denote the input. Let

2p„ and rank

H2

i 2

v

-P.

v

~VP2L

:= V^ ; u

To construct a realization intuitively, consider

G(s)u =

'm<2> u(2)N2 +!L_|V(2) .v(2)*u
(s-X)

2 s-X

(2)v(2) (2)v(2)
-= X +

(s-X)
s-X

V

-p.

VP2

sI-A

(2)
Using the partition of V from Eq. (3), we obtain

-5-

= 2p„, hence
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N(2)V I Ni(2>V(2> I2 P2 P2 1 n -p2 (2) (2) P2
G(S)U = T^ -—TV + r^=£ V + NrV^ —4- V

s-X s-X ~p, s-x ~ni"p2 •*• p2 e~x ~p:

Let us use p? integrators to realize

~P2 s-X ~p2

then the realization of the third term of (7) is immediate:

r(2)„(2)

(2)v(2)
1 p2 ,-, .r-^- v = n; 'V" ' • X
s-X ~p„ 1 p£ "^2

In terms of x and v , the first two terms of (7) become
~p2 ~ni"p2

N(2)v(2) N<2V2>
2 p9 _± L

z := ^-x + : v
s-X ~p(

•a [»;" 1

where

x
~P.

s-X ~ni~p2

V

~ni"p2

N(D :=rNf>vf>iNfV2>l1. \ji p2 ; 1 nt-p2 j

The minimum no. of integrators required for realizing (8) is

p := rank N-^ . To determine px, we perform asingular value
1 •*•

decomposition on n!" and obtain

n(d . D<i)E<i)v(i)

(7)

(8)

(9)

(10)

n xn
. . n xn

where IT ' ^ <E ° ° *
n.xn

(1)is unitary, V(1) €E <E i iis unitary; E^ e m o i
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(« .-

i°i o
•

1 •

1
o

I o •o J
with a <« >a<X) ... >a(1) >0.

1 - 2 - P-

Partitioning both U(1), V(1) as follows, we obtain

U
(1) _ „<!> !U(1)

pi ! Vpi

-HP^'^^-P^

We further partition V; as follows:
Pl

«- Pi -»•

(i) _

\2Lpij
We define

(1)

CD o
(1) .=

(1)

and

p := rank N(1)

XD _

-7-

r
XD ,d)

nrpi
n.

i

-s-p^ -e-n^-p^

(10a)

(11)

(12)

(13a)

(13b)



With the notations defined in (11), (12), (13), Eq. (10) is written as

N<X> =U(1)S(1>V(1)*=/u(1>E(1>V(1)*Uv(1)I V<"
pl pl Pl Pl Pl Pl pl Pl pl

(1>v(1)i v(i)
1 p PX PX

and Eq. (8) becomes

1 P-

pl
s-X

V(1)*i
Lpi ! pl _

r n
X

~p2

V

_"VP2 _

This shows that z can be realized by p1 integrators.

We define

x

~P- s-X

A(i)*.; v(d*

Lpl i pl .

X

-p.

V

L'Vp2.

Remark: Since N CD .= ;(2)v(2)j (2)v(2) 1
Jl P2 , 1 n±-P2 |from (9),

P2 := rank N<2) =rank N^2)V*2) <rank N*1* =: p±.
Based on the above analysis, G(s) is realized by the following block

diagram.
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Algorithm

(2)Step 1 Perform the SVD of N^

N(2) = <2> <2) <2)* =^2)^(2)^2)
2 P2 P2 P2

where p„ := rank N^ and V( 'is partitioned as
^p2- ^-n.-P2-v

V
(2)_ (2)

Step 2 Define

N(1) :

VP2
n.

N(2)v(2)
2 P2

(2)v(2)
1 n.-P2

«- P,

(1)
and perform the SVD of N.

N(D . u(i)E(i)vd)*. yd), vd)

VP2—*

Pl Pl Pl

(1)

n

r(Dwhere p := rank N£ }, and Vv ' is partitioned as

V
(1) _

*• Pj* * nj-Pj*
-1

v(l)
pl

V(D
Vpi

i

n.
X

We further partition V as
pl

V
(1)

n±-P2

-f-o_ -»•

$(»
pi

v(l)

♦ LPlJ
Step 3 A realization {A,B,C> of G(s) is
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A :=

C := N(1)V(1)
1 Pl

= : B (17)

III. Proof of Minimality

We show that the realization {A,B,C} given by Eq. (17) is minimal.

n xn.

Theorem Consider G(s) € m(s) ° X given by (1). Then {A,B,C} given by

(17) is a minimal realization of G(s).

Proof From the analysis of section II, it is clear that {A,B,C} is

a realization of G(s). Hence the remaining task is to show minimality,

or equivalently, to show that {A,B,C} is completely controllable and

completely observable.

To show complete controllability, we show that [sI-A|B] is full

rank Vs € <D. Now by (17), Vs i X, [sI-A-B] is full rank. Now for s = X,

we have

rank[XI-A:B] = rank

= rank

+*!+ <-Pf n.
i

o
iAm* ,v(i)* m*
'V V

O
«- p -• «-

nj(D*i ^(d*v(2)*
pl ! Pl ni"P2

O
•n

(2)*

2

-11-
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rank[XI-A|B] = rank

A(D*

pl

| V(i)*v(2)*
pl ni_p2 pi i o

i

o v(2)*
p2 J

OJv<2>
. w(2) c "i^i

since V € (C

is of rank n,

$<D*'p^IO
rank

V(1)*
pl

oo I
I p.

pl + p2
because V is full rank and (12).

sI-AI

- C

Tsl-A

To show complete observability, we show that |
C J

Again by (17), Vs ^ X,

is full rank Vs e? Ij.

' )
is full rank. Now for s = X, we have -

XI-Al
rank = rank

L C J

= rank

_pi

o

(l)v(l)
-1 pl

A(D*

pl

o
(2)v(2)
1 P2J

« TAT(D*

o ;s;

(l)vd)l N(2)v(2)
1 P1 I 1 P2

t
n

n

(1)Now N^M1^ =U^M1^ is of rank p. because Z^ is square and of rank
1 Q1 P± P1 1 Pi

p , (see (13a)), and U being unitary has its first p^ columns, namely

P1XP2
U , forming an

Pl

A(l)* czindependent family. Consider now V ^ C

-12-



A(D*
rank Vv J

pl

Hence

rank

rank jvf^

V1
M2

LOJ

rz(iyi)<
< pi pi

=rankfz(1)V(1^

= rank

by (12)

w2

LOJ

i n
p2

.0-

=rank)U(1)Z(1)V(1)*

rank[N<2V2)]
1 P2

rank[U<2V2>]
P2 P2>

= P-

o
I A

(D*

; pi

Lo.

(i) pixpi
since Zv ' € <C and is

of rank p.

by (10a), (11) and (13a)

. . n xn

since IT ' G (C ° ° and is

of rank n .
o

by (9) and (10)

by (5)

(2)
because U is unitary, hence

(2)
rank Uv = p0.

P« 2
w2

(1)V(D „(2)v(2)
.-1 pl ! X P2.

" Pl + P2

and the pair (C,A) of (17) is observable.

IV, An induction step for the realization of a pole of order I > 2.

We have constructed a minimal realization of a matrix of rational

functions with a single pole of order 2. We now consider a matrix of

-13-



rational functions with a single pole of order £ > 2:

G(s) =
N
U)

N
U)
£-1

9 5.-1
(s-X)56 (s-X)* X

N
(A)

+ ...+
s-X

(18)

, v n xn.

where N^; G (E ° X Vi e {1,2,... ,£}.

The induction assumption is that we have a method for a minimal

realization of any matrix of rational functions with a single pole of

(£-1^ (2,-1} (£-1)
order £-1; we denote it by {Av ,BV ,CV '}. We now construct a

(£-1) (£-1) (&-1)
realization {A,B,C} of the G(s) of (18) in terms of {A ,B ,C }.

We perform a singular value decomposition on N and obtain

NW . n(t)j.(«v(«*
£

= uwia)vU)*
p£ p£ p£

where p := rank N .

As in (7), we obtain

G(s)u =
N

w
N
u)

_(s-X)£ (s-X)*"1

4-

(s-X)
£

(s-X)
£-1

N
(A)

(s-X)
V<«V(£)*u

+ ...

NWVU)
1

(s-X) _

NU)VW
1-1 n -pt

VP£

NU)VW
s.

b-X \ +(s-x)*"1 \~°l(sV1

,(OvC*> («VC«
1 Vi

+

(s-X)4"2 S"X ~P*
+ ...+

s-X
V

»(«v(« . -If. v
1 P£ s-X ~p.

-14-
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where we defined

V

-pfl

-*

Vp £

— __

VP£

:- VW\ (23)

Note that (21) includes £ terms and that the use of the variables v and

, (defined in (23)), creates 2£-l terms in (22). (Indeed the
-n-p

first term of (21) leads to only one term in v .)
H£

We use p integrators to realize

x
~P s-X ~p
'£ ** '" "£

then the realization of the last term of (22) is immediate.

In terms of x and v , the first (£-1) terms of (22) become
~PA ~nrp£

[N(*-1}]
z :=

(s-X)
£-1

[Nf-1}]
"""s^X

,(*-!)'p.i+^« ]r»f
£

~nrp£

x

~P

V

VP£

(s-X)
£-2

"nrp£

+ ...

(24)

where N(^1} := [N^VWiNf£)VWD ] Vi S{1,2,... ,£-1}. By the
wne i l+l Pj ; 1 ni""P£

induction assumption, {AU"1) ,B(^1) ,ca"1)}is the minimal realization
of (24), we realize G(s) of (18) by the following block diagram.
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r =niT ir

G(s)u

a c«-i) fr (s.-a"-11)1 v(M) I

3 g«-l)
TfZ

II JJnr/>(
v(n

V
(1)

Pi

„(«., (t)
<^

-/>{

I
*>l

s-X
d

J IT
^i

I1 JJL'Jbzn-d- IL_
C (sI-A)"1

where B^"1^ is partitioned as follows:

B

B
(4-1) _ A(£-l) ; V(£-D

"P£ "

Hence arealization {A,B,C} in terms of {A(*"1} .B^"1* ,C(£-1}} is given

as follows:

v(£-l) mv(£)*

A :=

A(£-l) , A(£-l) nrp£

w*

= : B

U

O i XV V
(25)

C:= [c^ |H<»V<»J
The realization of G(s) of Eq. (18) is then obtained iteratively.

For a proof of minimality, refer to [1].

V. Conclusion

Based on Van Dooren's work [1], in section II, we obtain intuitively

a realization of amatrix of rational function with a single pole of

order 2; we then prove the minimality. In section IV, by an induction

-16-



step, we obtain aminimal realization of the matrix of rational functions

with a single pole of order £ > 2.
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