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ABSTRACT

Consider a flow network having random arc capacities and having

associated with each node n a "supply-demand random variable" Y whose
rr J n

absolute value equals the supply available at the node when Y assumes a

non-negative value and the demand required by the node when Y assumes a

non-positive value. A fundamental problem is the computation of the re

liability R, that is, the probability that the random variables will as

sume values that permit a feasible flow. Upon adapting the graph theo

retic concepts of "cutnode" and "block," it is possible to identify a

"block-^module," an independent, non-trivial subnetwork that has one and

only one node (the "cutnode") connected to nodes outside the subnetwork.

The reliability of the network will increase by a known factor after a

"block-modular decomposition" that consists of a transformation of the

cutnode1s supply-demand random variable and the deletion of the remain

der of the block-module. Provided the original network possesses at

least one block-module, R can be determined from a sequence of block-

modular decompositions that reduce the original network to a single node

whose reliability is easily computed.

Research sponsored by the Department of Energy, Electric Energy System
Division, Contract EC-77-S-01-5105.
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1. INTRODUCTION

For the purposes of this paper, a stochastic transportation net

work is a flow network having random arc capacities and having associ

ated with each node n a supply-demand random variable Y whose absolute

value equals the supply available at the node when Y assumes a non-

negative value and the demand required by the node when Y assumes a

non-positive value. An important application of stochastic transporta

tion networks, and one that motivated their consideration in this paper,

is their use in models of electrical power networks.

The range of a random variable is a set consisting of values the

random variable assumes with non-zero probabilities. The range of a

random arc capacity is assumed to be a finite set of non-negative inte

gers, and the range of a node's supply-demand random variable is assumed

to be a finite set of integers. In general, then, the range of a node's

supply-demand random variable may include both positive and negative in

tegers so that the node may supply units in some realizations of the net

workand demand units in others. Based on the range of its supply-demand

random variable Y , a node n is referred to in one of four ways: source,
n

sink, intermediate node, or random source-sink. In particular, if the

range of Y consists solely of a single value v (i.e., Yn is a constant),

the node is a source if v > 0, a sink if v < 0, and an intermediate node

if v « 0; however, if the range of Y consists of at least two values,

node n is a random source-sink. Reference is made to two special types

of random source-sinks; a random source (random sink) is a random

source-sink whose range includes only non-negative (non-positive) inte

gers .
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It is assumed that the joint probability mass function of the

random variables of the network is known. The exact degree to which

independence must be assumed is discussed briefly later in this intro

duction and in greater detail in Sections 4 and 5.

Given a realization of the stochastic transportation network, the

realization is feasible (infeasible) and the network functions (fails)

if a (no) flow exists satisfying the following constraints: (i) the

flow in each arc is no greater than the value assumed by its random arc

capacity, and (ii) for each node n with Y assuming a value v, the flow

out of node n minus the flow into node n is at most v when v ^ 0 and

equals 0 when v = 0. The fundamental problem is the computation of the

reliability, that is, the probability that the random variables will as

sume values such that the stochastic transportation network functions.

A special class of stochastic transportation networks is that in

which every arc capacity is a binary random variable, one node is a

source having a supply of 1, one node is a sink having a demand of 1,

and all other nodes are intermediate nodes. The literature refers to

such networks by a variety of names; binary reliability networks is used

herein.

As the bibliographies in [12] and [13] illustrate, there exists an

extensive literature treating binary reliability networks. However,

despite the importance of the problem, the literature treating the most

general stochastic transportation network is scanty. The state-of-the-

art is best represented by the algorithm of Doulliez and Jamoulle [6]

which computes the reliability of a stochastic transportation network by

efficiently partitioning the set of all possible network realizations.

The algorithm as presented in [6] assumes that each node of the network
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is either an intermediate node, a sink, or a random source; however, in

light of the procedure of Section 4 of this paper for eliminating random

source-sinks, the algorithm can be applied to the most general stochastic

transportation networks. An earlier algorithm of Doulliez [5] and a

later algorithm of Pang and Wood [11] are similar to [6] but not as

efficient.

A technique long used in analyzing binary reliability networks is

modular decomposition (cf. [2] and [3]). Intuitively, modular decompo

sition reduces computational effort by first identifying a complex but

specially structured subnetwork whose random variables are independent

of the random variables outside the subnetwork and then replacing this

complex subnetwork with a simpler subnetwork. This paper demonstrates

that the technique of modular decomposition is also useful in analyzing

stochastic transportation networks. After Section 2 introduces some ad

ditional notation and definitions, Sections 3 and 4 develop two types of

modular decompositions: series-parallel-modular decomposition and

block-modular decomposition. Section 5 explains the relationship be

tween block-modular decomposition and the graph theoretic concepts of

"cutnode" and "block", and Section 6 describes an algorithm used in

block-modular decomposition. Finally, Section 7 discusses both computa

tional aspects of block-modular decompositions and areas for future re

search.

2. ADDITIONAL NOTATION AND DEFINITIONS

The concepts of undirected arc, path, cut, and flow have their

usual meanings (cf. [7], pp. 2-10). All arcs are undirected; nodes are

adjacent if an arc of the network connects them, and an arc is incident
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to the two nodes it connects. An arbitrary indexing of the arcs of the

network permits reference to the arc connecting node i and node j and

having index k in one of two ways: arc (i,j) or arc k.

Given a network N, the subnetwork defined by a set of nodes S

consists of the nodes of S and every arc of N incident to a pair of

nodes both in S. The subnetwork is proper if it is not N itself and is

nontrivial if it contains more than one node.

"Random variable" and "probability mass function" are denoted by

"r.v." and "p.m.f.", respectively; r.v.'s and p.m.f.'s denote their

plurals. A r.v. of a stochastic transportation network is an indepen

dent r.v. if it is statistically Independent of all other r.v.'s of the

network. A subnetwork of the stochastic transportation network is an

independent subnetwork if all its r.v.'s are statistically independent

of the r.v.'s outside the subnetwork, even though they may have arbi

trary dependence among themselves.

Given a stochastic transportation network having reliability R,

another network having reliability R* is c-equivalent, where c is a

known constant, if R = cR*. In cases where c=l, c-equivalent is short

ened to equivalent.

Given a subset S of a set T having a finite number of elements, S

denotes its complement in T, |s| denotes its cardinality, and Pr[S] de

notes its probability under some probability measure defined over T. A

partition {S,} of S consists of disjoint subsets of S whose union equals

S.

If every node i in a set S of nodes has a value v(i) associated

with it, v(S) equals I. gv(i). For example, if the v(i) denotes the

supplies (demands) at a set S of sources (sinks), then v(S) equals the
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total supply (demand) within the set. Given two subsets of nodes S and

T, (S,T) denotes the set of all arcs connecting a node of S to a node

of T. If every arc (i,j) of the subset (S,T) has a value v(i,j) asso

ciated with it, v(S,T) equals ^(1j)e(s T)v(i,j). For example, if the

v(i,j) denotes the capacities of the arcs of a cut (S,S), v(S,S) equals

the capacity of the cut.

3. SERIES-PARALLEL-MODULAR DECOMPOSITION

Given a path between two nodes r and s, the Interior nodes are

all nodes of the path except r and s. A series-module (s-module) is a

path between two nodes r and s that satisfies four conditions: (i) the

path contains at least one interior node, (ii) every interior node is

an intermediate node, (iii) every interior node of the path is adjacent

only to other nodes of the path, and (iv) the n>2 arc capacities

Xlt X2,...,X of the path are independent of all other r.v.'s of the

network. An equivalent network results from the replacement of the

arcs of the s-module by a single arc from r to s having capacity

min[X-jX^,...,X 1. Hereafter, s-modular decomposition refers to such a

replacement.

A parallel-module (p-module) is a subnetwork consisting of a pair

of nodes r and s joined by n > 2 arcs whose capacities Xi,X2,...,Xn are

independent of all other r.v.'s of the network. An equivalent network

results from the replacement of the p-module by a single arc from r to

s having capacity Xx+X2+...+X . Hereafter, p-modular decomposition re

fers to such a replacement.
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A subnetwork is a series-parallel module (s-p-module) if it can

be reduced to a pair of nodes joined by a single arc through a sequence

of s-modular and p-modular decompositions. Hereafter, s-p-modular de

composition refers to such a reduction. The concept of s-p-modular de

composition as used here is a straightforward adaptation of a similar

concept long used in the analysis of binary reliability networks and

first defined by Bodin [4]. Both an s-module and a p-module are special

cases of an s-p-module; Figure 1 contains a more complex s-p-module.

Hereafter, it is assumed without loss of generality that the

original network under consideration contains no s-p-modules. This as

sumption simplifies both notation and computation.

4. BLOCK-MODULAR DECOMPOSITION

The 10-node, 15-arc transportation network of Figure 2 serves as

an example throughout this section. Nodes 1, 6, and 10 are sources,

each having a supply of 20 units; nodes 2, 3, 5, 7, 8, and 9 are sinks,

each having a demand of 5; node 4 is the only intermediate node. The

t ii

random arc capacities are independent and denoted by X., X., and X..

for 1 < j < 5, where each X takes on with equal probability one of the

t "

two values indicated in Figure 2 and where X., X,, and X. are identi-
J j J

cally distributed. Thus, the transportation network will be in one of

215 equally likely states.

A block-module (b-module) is an independent, proper, and nontriv-

ial subnetwork containing one and only one node (referred to as the cut-

node) adjacent to nodes outside the subnetwork; a minimal block-module

is a b-module containing no proper subnetworks that are also b-modules.
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For example, in the network of Figure 2, the subnetworks defined by the

three sets of nodes {1,2,3,4}, {4,5,6,7}, and {4,8,9,10} are three iden

tical minimal b-modules all having node 4 as a cutnode; although the

subnetwork defined by the set of nodes {1,2,3,4,5,6,7} is a b-module,

it is not a minimal b-module. An explanation of the relationship of

block-modules to the graph theoretic concepts of "cutnode" and "block"

is delayed until Section 5.

In order to simplify the discussion, it is assumed hereafter that

a b-module possesses two additional characteristics: (i) the cutnode

is an intermediate node, and (ii) the b-module contains no random

source-sinks. As will now be shown, these assumptions are made without

loss of generality. If (i) is not true, an equivalent network results

from rerouting all arcs of the b-module incident to the cutnode n into

a new artificial intermediate node n' and then connecting n' and n by

an artificial arc having infinite capacity; node n' then serves as the

new cutnode for the b-module. Hereafter, such a procedure is referred

to as inserting an artificial intermediate node n' into the subnetwork

at the node n. If (ii) is not true,1 there exists a random source-sink)

n with a supply-demand r.v. Y that can take on at least two values k

for -d < k < s where d > 0 and s > 0. An equivalent network with one

less random source-sink results from changing node n into a sink with a

constant demand of d, adding a new node n' having a constant supply of

s + d, and adding a new arc (n',n) having a random capacity xn " Yn + a»

When X = k + d for 0 < k < s, node n effectively becomes a source of k
n . — —

units since n' is able to supply the demand of d at n and still serve

as a source of k units for the remainder of the network. Similarly,

when X = k + d for -d < k < 0, node n effectively becomes a sink for
n — —
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-k units since only d + k of its demand of d can be supplied by n'.

Note that the elimination of the random source-sink does not require

that the supply-demand r.v. Y be independent.

The definition of a b-module motivates an attempt to replace the

b-module with a simpler subnetwork. Given a particular realization of

the random capacities of the arcs of a b-module, one of three cases may

occur: (i) the sources within the b-module not only can meet all de

mands within the b-module but also can "export" units via the cutnode

to the remainder of the network, (ii) the demands within the b-module

can only be met if it is possible to "import" units via the cutnode

from the remainder of the network, or (iii) the demands within the b-

module cannot be met, regardless of how many units can be imported via

the cutnode from the remainder of the network. Intuitively, then, with

respect to the remainder of the network, the b-module acts in one of

three ways: (i) a source, (ii) a sink with a demand that is possible

to meet, or (iii). a sink with a demand that is impossible to meet. As

will now be shown, a c-equivalent network results from changing the

cutnode from an intermediate node into a random source-sink and deleting

the remainder of the b-module from the network.

Consider a b-module N having cutnode n. N' denotes the subnetwork

of the original network defined by the cutnode n and all nodes not be

longing to the b-module N. (Actually, N' is itself a b-module.) S (T)

denotes the set of nodes in N that are sources (sinks); for any source

i, a(i) denotes its supply; for any sink i, b(i) denotes its demand.

Suppose N contains r arcs having indices l,2,...,r and random capacities

X=(Xi,X2,...,Xr); let ft+ <= {x|Pr[X=x] >0}. Xis the state vector of
the b-module, and fi+ is the state space of the b-module.
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Given a b-module N with cutnode n, N, for -« < k < « denotes a
k

transportation network identical to N except that n is now either a

source for k units if k > 0 or a sink for -k units if k < 0. For

-co <k<~, let H. = {xeft+|when X«x, N, functions but Nfe+1 fails};

when 0 < k < oq, H, is a set of states for which the sources within N

not only can meet all the demands within N but can also "export" at

most k units to N' via n; when -«> < k < 0, VL^ is a set of states for

which the demands within N can only be met if it is possible to "import"

at least -k units from N' via n. Let k m equal the maximum of zero
max

and the largest value of k for which H. is non-empty; similarly, let

k equal the minimum of 0 and the smallest value of k for which H. is
min n *•

non-empty. Note that 0<k^ <max [0,a(S)-b(T)] and -b(T) <kmin <0.

Finally, let H_w »{xerifjxeHk does not hold for kmln <k<k^}; that
is. H is a set of states for which the demands within N can never be

' —CO

met, regardless of how many units can be "imported" from N' via n.

It is clear that the subsets IL^ for k« -» and kmln <k <k^

are a partition of ft . In the remainder of this section, it will be

assumed that B^ and Pr[Hk] are known for k=-• and kmax <k<k^.

Section 6 contains an efficient algorithm for their computation.

For example, in the network of Figure 2, consider the b-module

defined by the subset of nodes {1,2,3,4}. As will be shown in Section 6,

H10 = {(5,15,0,0,10);(5,15,0,5,10);(5,15,5,0,10);(5,15,5,5,10)}

H5 = {(0,15,5,0,10);(0,15,5,5,10);(0,15,0,5,10);(5,15,5,5,0)}

H0 = {(0,15,5,0,0);(0,15,5,5,0);(5,15,0,0,0);(5,15,0,5,0);
(5,15,5,0,0)}

H.5 •' {(0,15,0,5,0);(5,0,0,0,10);(5,0,0,5,10);(5,0,5,0,10);
(5,0,5,5,10);(5,0,5,5,0)}

H_10= {(0,0,0,5,10);(0,0,5,5,10);(0,0,5,0,10)}
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H = {(0,0,0,0,0);(0,0,0,5,0);(0,0,5,0,0);(0,0,5,5,0);
(0,0,0,0,10);(0,15,0,0,0);(0,15,0,0,10);(5,0,0,0,0);
(5,0,0,5,0);(5,0,5,0,0)}.

Because each of the 32 possible state vectors is equally likely to oc

cur, Pr[H10] =|j, Pr[H5] =^ Pr£H<>l "^ PrfH-53 -%$> Pr[H_10] =^
and Pr[H_J -±&.

Since the entire network fails if X = x where xeH , conditioning
«»00

"it &
upon whether or not xeH results in R = R (l-Pr[H ]) where R is the

reliability of the entire network given xeH_ does not occur. Consider

the network obtained as follows: (i) change the cutnode from an inter

mediate node into a random source-sink having a supply-demand r.v. Y

for which Pr[H,]

Pr[Y = k] = -
n

i « r« T for k ^ < k < k1 - Pr[H ] min - - max
-•00

0 otherwise

and (ii) delete the remainder of the b-module from the network. Here

after, b-modular decomposition refers to such a procedure. It is clear

that b-modular decomposition results in new network having reliability

R*; that is, the new network is (1 - Pr[H-oo])-equivalent to the orig

inal network.

B-modular decomposition will consist of an additional step in

those instances where the cutnode for the b-module is an artificial in

termediate node n' inserted into the original b-module at a random

source-sink n. In particular, an equivalent network results from chang

ing the supply-demand r.v. of n to Y + Y , and then deleting the node

n' and the arc (n',n) from the network.

Since a b-modular decomposition may create a new b-module in the

revised network, the number of b-modular decompositions that can be per

formed neet not be limited to the number of b-modules in the original
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network under consideration. Section 5 provides an upper bound on this

quantity.

Provided the original network under consideration contains at

least one b-module (and therefore two), there exists at least one se

quence of k > 1 b-modular decompositions that reduces the original net

work to a revised network N containing no b-modules. Section 7 dis

cusses the choice of such a sequence; for now, suppose it has made.

Let n denote a node of N whose supply-demand r.v. is independent. The

node that served as the cutnode for the Immediately preceding b-modular

decomposition is always one choice for n; for simplicity, it is assumed

hereafter that n is always this node. After inserting an artificial

intermediate node n' into the network at the node n, the node n' serves

as the cutnode for one last b-modular decomposition. The resulting

c-equivalent network consists only of the arc (n' ,n) and the two nodes

n and n' having supply-demand r.v.'s Y and Y ,, respectively; since

this simple network behaves like a single random-source sink having

supply-demand r.v. Y + Y ,, its reliability R equals Pr[Y + Y , > 0]

and is easily computed as R = £ Pr[Y , =k]Pr[Y > -k] where the summa-
n n —

tion is taken over all k for which Pr[Y , = k] > 0. Having been reduced

to a c-equivalent network consisting of a single node with reliability

R , the original network has reliability R=cR .

For example, one possible evaluation of the reliability of the

network of Figure 2 by a sequence of b-modular decomposition proceeds as

follows:

(1) The subnetwork defined by the set of nodes {1,2,3,4} serves as

the first h-module with node 4 serving as the cutnode. B-modular decom

position deletes all nodes and arcs of the b-module except node 4 and
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results in a c-equivalent network where node 4 is now a random source-

sink having a supply-demand r.v. Y,. From the values given above for

the PrH^], c=(1 -Pr[H_J) =|§ and Pr[Y4 =10] =|^, Pr[Y4 =5] =|j,
Pr[Y4 =0] =l^, Pr[Y4 --5] =|j, and Pr[Y4 =-10] =|j.

(2) The next b-module consists of the subnetwork defined by the

set of nodes {4,5,6,7} and node 4 again serves as the cutnode. This

time the b-modular decomposition involves two stages since node 4 is a

random source-sink. In the first stage, an artificial intermediate

node 4' is inserted into the b-module at node 4 in order to serve tem

porarily as the cutnode for a b-module identical to the one analyzed in

step (1). Deleting all nodes and arcs of the b-module except node 4'

(2? \2
— I-equivalent network where node 4' is now a random

source-sink having an independent supply-demand r.v. Y,, identi

cally distributed to Y.. The second stage of the b-modular decomposi

tion combines nodes 4 and 4' into a single random source-sink having a

supply-demand r.v. W, « Y, + Y., for which Pr[W, « 20] = TaT»

Pr[W4 =15] =Hf. Pr[W4 =10] =ff^, Pr[W4 -5] -fgy, Pr[W4 =0] =f^,
Pr[WA =-5] .8|_ ^ ._10] .66_ pr[W4 ._15] .3|_

Pr[W4 =-20] =jfy.
(3) Since the revised network contains no b-modules, the final

b-modular decomposition also involves two stages. In the first stage,

an artificial intermediate node 4' is again inserted into the network

at node 4 in order to serve temporarily as the cutnode for a b-module

identical to the one analyzed in step (1). Deleting all nodes and arcs

/22\3of the b-module except node 4' results in a I-^r\ -equivalent network

where node 4' is now a random source-sink having an independent supply-

demand r.v. W4, identically distributed to Y,. The second stage of the

-13-



b-modular decomposition combines nodes 4 and 4' into a single random

source-sink having a supply-demand r.v. W4 + W4tand having a reliabil

ity R* =Pr[W4 +W4, >0]; R* is easily computed as

R* "*k =-10,-5,0,5,10PrEW4' ' k]Pr<W4 i"k] *igftt-

Hence, the reliability R of the original network of Figure 2 is

p p* 6157R = cR =
32,768*

As another example, consider the network of Figure 3 that arises

when modeling the major electrical power transmission network serving

northern California. The arcs represent 500kV transmission lines and

the nodes represent generators and/or users of electricity. Whereas

"s/d" within a node indicates it is a random source-sink of the most

general type, "s" or "d" within a node indicate it is a random source

or a random sink, respectively. The p.m.f.'s of the network's random

arc capacities and random source-sinks are omitted here. The dotted

lines in the figure outline subnetworks N-, N_, N-, and N,. A broad

description of one possible sequence of b-modular decompositions that

can be used to compute the network's reliability follows:

(1) N- and N, are both b-modules in the original network; two

successive b-modular decompositions retain only the cutnodes N. and N_

share with N« and N~, respectively.

(2) The revised network consists only of the newly created b-

modules N_ and N« having a common cutnode; two successive b-modular

decompositions collapse this revised network into a single random

source-sink located at the common cutnode.

It is interesting to consider the use of a sequence of b-modular

decompositions to determine the feasibility of deterministic
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transportation networks; that ia, the special class of stochastic trans

portation networks in which every r.v. equals a known constant with

probability one. In such a network, the state space of a b-module

consists of a single state vector x. If xeH_ , the entire network must

be infeasible; however, if xeH, for k . < k < k , b-modular decompo-
' ' k min - - max

sition simply adds k to the cutnode's supply-demand constant and de

letes from the network all other nodes and all arcs of the b-module.

5. RELATIONSHIP OF BLOCK MODULES TO GRAPH THEORETIC CONCEPTS

This section may be omitted with little or no loss in continuity;

it assumes an understanding of the following graph theoretic concepts as

defined by Harary [9, pp. 8-37]: connectivity, component, degree of a

node n (denoted by deg n), union of two or more networks, removal of a

node n from a network N (denoted by N-n), tree, endnode (or leaf) of a

tree, branch at a node of a tree, cutnode, nonseparable network, block,

and block-cutnode tree. In this section, the last four of these con

cepts are adapted to apply to stochastic transportation networks and

then used to describe b-modular decomposition.

Given a subnetwork N of a stochastic transportation network N* and

a node n of N* not in N, N + n denotes the subnetwork N augmented by the

node n and every arc of N* connecting n to a node in N. A node n of a

stochastic transportation network N* is a cutnode if it satisfies two

conditions: (i) the supply-demand r.v. Y is independent; (ii) N* - n

consists of components N-,N2,...,N where p > 2 and the union of some

proper subset of the set of subnetworks {Nj+n^-Hi,. ..,N +n} is inde

pendent. Intuitively, a cutnode divides the network into independent
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subnetworks having only the cutnode in common.

A subnetwork of a stochastic transportation network is nonsepar

able if it is connected, nontrivial, independent, and contains no cut-

nodes. A block is a maximal nonseparable subnetwork; that is, a block

is a nonseparable subnetwork that is not a proper subnetwork of any

other nonseparable network.

Let g-cutnode and g-block denote the graph theoretic definitions

cutnode and block as distinguished from the definitions just given for

stochastic transportation networks. Given a stochastic transportation

network N*, let B.,B9,...,B (Bj.B' ... ,B') denote the m blocks
jl £• m j. z p

(p g-blocks) of N*. It is well known that B,V»B',..., B' is a divi-
12 p

sion of N* into p subnetworks having two properties: (i) every arc of

N* is in one and only one g-block, and (ii) every node that is not a

cutnode is in one and only one g-block. It is easy to see that a simi

lar statement is true for the cutnodes and the blocks B-,B0,...,B . In
12 m

general, the set of cutnodes is a subset of the set of g-cutnodes and

each B. (1 < i < m) is the union of one or more of B',B',..,,B'; how-
i — — 1 2 p

ever, if every g-cutnode has an independent supply-demand r.v. and every

g-block is independent, a node is a cutnode if and only if it is a g-

cutnode, and a subnetwork is a block if and only if a g-block.

The block-cutnode tree of stochastic transportation network has a

definition identical to that in [9, p. 36]. Briefly, the block-cutnode

tree contains a node corresponding to each cutnode of N* and a node cor

responding to each block of N* with two nodes adjacent if and only if

one node corresponds to a cutnode and the other corresponding to a block

containing that cutnode.
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B-modular decomposition can now be described in terms of the cut-

nodes, blocks, and the block-cutnode tree of the stochastic transportation

network under consideration. In particular, a minimal b-module cor

responds to a leaf of the block-cutnode tree and a nonminimal b-module

having cutnode n corresponds to a union of at most [(deg n) - 1] branches

at the node corresponding to n in the block-cutnode tree. Thus, repeated

b-modular decompositions correspond to repeatedly "pruning" the block-

cutnode tree. The number of blocks in the network is an upper bound on

the number of b-modular decompositions that can be performed in comput

ing the reliability. This upper bound is achieved during a reduction of

the original network to a single node through a sequence of minimal b-

modular decomposition; for such a decomposition, the weakest set of as

sumption about the r.v.'s of the network are: (i) every cutnode has an

independent supply-demand r.v., and (ii).every block is independent.

An algorithm in Aho, Hopcroft, and Ullman [1] computes a graph's

g-cutnodes and g-blocks (called articulation points and biconnected com

ponents therein) in a number of steps proportional to the number of arcs

in the network. The algorithm is easily adapted to compute the cutnodes

and blocks of a stochastic transportation network.

6. PARTITIONING THE STATE SPACE OF A BLOCK-MODULE

Consider a b-module N having a cutnode n, a set S of sources with

supplies a(i) for i £ S, a set T of sinks with demands b(i) for i G T, a

state vector X« (X-,X2, ...,X ), and state space ft . This section develops

an algorithm for constructing the partition {H, } of ft needed to perform

a block-modular decomposition. The algorithm is based on a decomposition
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principle developed by Doulliez and Jamoulle in [6].
»

6.1 Overview of the Algorithm

Given vectors m = (m-.nu,. ..,m ) and M = (M-,M_,...,M ) having

integer-valued components, the interval having lower endpoint m and upper

endpoint M (denoted by [m,M]) is the set of vectors x = (x ,x ,...,x )

having integer-valued components for which m, < x. < M. for 1 < j < r.
j — J — j "" ~

Let ft = [L,U] denote the smallest interval containing ft , where the size

of an interval is measured by its cardinality. Such a ft always exists

since ft is a finite set of vectors all having integer-valued components.

The algorithm in this section constructs a partition {G, } of ft, where

G. is defined by replacing ft by ft in the definition of H, . Clearly,

VLy, «Gfc Oft+ and Pr [R^] =Pr [Gfe] for all k.
It is helpful to think of the algorithm as a branching process that

produces a rooted tree. The root of the tree corresponds to ft and every

other node of the tree corresponds to an interval contained in ft. Branch

ing from a node corresponds to partitioning the interval into several

smaller intervals. At the end of each iteration of the algorithm, the

leaves of the tree correspond to a partition of ft into Intervals.

Associated with each interval is a label k; if k _> 0, the cutnode n

is considered to have a demand of k units, and, if k <_ 0, n is considered

to have a supply of-k units. An interval I with label k is either

fathomed or unfathomed. If I has label k and is fathomed, I C G, and no

further branching from I is necessary; that is, I will correspond to a

leaf in the final tree produced by the algorithm. If I has label k and

is unfathomed, although IHG. =» <J> for j > k, further branching is

necessary to determine if I n G, is non-empty.
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Since Gfe = <J> for k > a(S) - b(T), ft is given the label a(S) - b(T)

at the algorithm's initialization; as indicated by the flow chart of

Figure 4, each iteration of the algorithm consists of examining an

interval I and, depending upon whether or not I O G, • $, either reducing

its label or partitioning it into one fathomed interval and several un-

fathomed intervals. Subsections 6.2-6.5 provide the details of the sub

routines summarized in the flow chart, Subsection 6.6 discusses sensiti

vity analysis and modifications to the algorithm, and Subsection 6.7

contains an example.

6.2 The Feasibility Subroutine

Given the interval chosen is

I- [(m^rn^...,!^);^^,...^)]

having label k, execute the following steps:

(a) Augment the b-module by joining each source i^S to a common

fictitious source s with an arc (s,i), by joining each sink i 6 T to a

common fictitious sink t with arc (i,t), and by joining the cutnode n to

both the fictitious source s and sink t with arcs (s,n) and (n,t).

(b) Define the arc capacities c(-) or c(«,«) of the augmented

network as follows:

c(j) = M for 1 <. j < r,

c(s,i) - a(i) for 1 € S,

c(i,t) = b(i) for 1ST,

c(s,n) « max(-k,0) and c(n,t) • max(k,0)
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(c) Determine the max-flow from s to t in the augmented network

using the Ford-Fulkerson labeling method [7, pp. 17-19] suitably modified

to handle undirected arcs (cf. [7, p. 23] or [10, pp. 224-228]). For

1 _< j <. r, denote the flow in arc j by f.. Also, denote the min-cut by

(P,P); upon termination of the Ford-Fulkerson algorithm, P equals the

set of labeled nodes, and P equals the set of unlabeled nodes.

(d) It is well-known (cf. [7, pp. 38-39}) that the deterministic

transportation network having arc capacities M. for 1 <. j <. r and having

a supply of a(i) at i£S, a demand of b(i) at i^T, and either a supply

of -k at n if k < 0 or a demand of k at n if k > 0 is feasible if and

only if the max-flow in the augmented network equals c(T,t) + c(n,t), or

equivalently, (T U n,t) is a min-cut. Hence, the interval I contains

feasible points if and only if the max-flow in the augmented network

equals c(T,t) + c(n,t).

6.3 The Partitioning Subroutine

Given the max-flow of c(T,t) + c(n,t) from s to t in the augmented

network defined in the Feasibility Subroutine, execute the following

steps:

(a) Let v = (v-,v_,...,v ) where v = max(f ,m ) for 1 <. j £ r.

(b) For 1 £ j <. r, define F.

as the minimum possible flow on arc j given that the max-flow flow from s

to t in the augmented network must equal c(T,t) + c(n,t). Then define

v = (v,,v0,...v ) where v. = max(F.,m.). Note that v = v = m if
12r j Jj jjj

f. < m. and that v. = v° = M. if arc j is a member of min-cut obtained
j ~ j jjj

in part (c) of the Feasibility Subroutine. Thus, if either f. < m. or

arc j belongs to the min-cut, v. can be determined immediately. However,
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if either of these two cases does not occur, F. must be computed prior

*

to determining v.. The Ford-Fulkerson labeling method provides a con

venient means for computing F,. Suppose the direction of the flow In

arc j is from node i to node k. Start the labeling process at node i

and attempt to label node k; the only modification is that node k

cannot be labeled directly from node i even if f. < M,. If a break

through of value e occurs, increase by e the flow in each forward arc of

the flow augmenting path, decrease by e the flow in each reverse arc

of the flow augmenting path, and decrease by e the flow in arc j. Thus,

the value of the max-flow is unchanged but the flow in arc j has been

reduced by e. Repeat the labeling process until a breakthrough is

is impossible. At termination, F is the current value of the flow in

arc j. (Actually, since v. = max(F ,m ), the algorithm can be terminated

if the flow in arc j decreases to m. or lower.)

(c) Partition the interval I Into the intervals A,B1,B2,..,,Br,

Cl,C2,#",,Cr where

A= [(v°,V2,...,v°);(ML,M2,...,Mr)]

and, for 1 <_ j <_ r,

Bj =[(v1,v2,... ,v ,m ,m,... ,mr);(M^M^ ... jMj^.Vj-I.M.^,.••»Mr) 1

C. «[(v°»v2»•••,vj-l,vj ,vj+l' *' *,vr^'(M1,M2*""' ,Mj-l,Vj""1,Mj+l*'****V*

it 5fc O
Note that B = <k if v = m. and C. = <f> if v. « v . It is easy to show

j j j j j J

that these subsets are indeed a partition of I, especially upon noting

that {B,, 1 < j < r} is a partition of
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B = {x G l|x < v for at least one j},

{C4> 1 .£ J* £ r* ls a partition of

C = {x £ 11 x, ^ v, for 1 <. k £ r and x. < v for at least one j},
k k 3 j

and {A,B,C} is a partition of I. If additional details are needed,

consult [6].

(d) Given the definition of v and the fact that x _> v for all

x G A, it is clear that A C G, ; hence, assign the label k to interval A

and consider it fathomed. Given the definition of v. and the fact that

x < v for all x € B , it is clear that B O G, • <f>; hence, assign the

* o
label k-1 to B. and consider it unfathomed. Because x ^ v and x. < v

for all x G c., assign the label k to interval C. but consider it

unfathomed.

6.4 The Label Reduction Subroutine

If the Feasibility Subroutine determines that the interval I contains

no feasible points, execute the appropriate step below:

(a) If n € P, reset the label of I to -«> and consider I fathomed.

(b) If n G P, reset the label of I to k-D where D is defined as

the amount the max-flow in the augmented network falls short of

c(T,t) + c(n,t).

The justification for the above steps will now be provided.

It is well-known (cf. [7, pp. 38-39]) that P - t is a subset of

nodes in the transportation network for which the difference between the

net demand within the subset and the total capacity of all arcs

entering the subset is the strictly positive amount D, thus violating a
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necessary condition for feasibility in the theorem due to Gale [8]. In

particular, one of the following must hold:

(1) If n e P, then

b(T n?)- a(S np). c(P-s,P-t) « D > 0.

In this case, step (a) is appropriate since the excess net demand in P - t

can never be satisfied, regardless of the degree to which the boundary node

n can serve as a supply.

(2) If n e p, then

b(T n P) + k - a(S n?)- c(P-s,P-t) » D > 0.

In this case, step (b) is appropriate since if k were reduced by at least

D, the interval I might then contain some feasible points. If k > 0 (k<0),

reduction of k is equivalent to decreasing the demand (increasing the

supply) at the cutnode.

6.5 The Termination Subroutine

When all existing intervals have been fathomed, execute the follow

ing steps:

(a) For each interval I, compute Pr{I}. If the arc capacities are

independent,

/ Mr / nj
Pr{I} =

j

It I Y Pr{X.=x.}J;

if not, use the joint p.m.f. of X to compute

M, M0 M
12 r

Pr{I} - £ 2 ••• E Pr{X = (x1,x2,...,xr)}.
V"! x2=sm2 xr=imr
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(b) For k = -«> and -b(T) < k < a(S) - b(T), G, is simply the union
— *— k

of the non-overlapping intervals having label k. Hence, compute Pr{G } by

Pr{G, }= J2 Pr{I}.
{ill has label k}

6.6 Sensitivity Analysis and Modifications to the Algorithm

As long as L and U remain unchanged, sensitivity analysis requiring

only changes in the joint p.m.f. of X is easy to perform since it will

not affect the partition {G^} produced by the algorithm, even though

Pr{G. } may change for some values of k. However, this property may be

obtained at the expense of additional and perhaps significant computation

time if many intervals I result for which Pr{I} « 0. Hence, in some

cases (e.g., when |ft | is significantly less than |ft|), it will probably

be more beneficial to reduce computational effort by insuring inductively

r o,
that Pr{I} > 0 for each interval I. More specifically, if Pr{X. = v.}

= 0 (Pr{X. = v.} = 0) after defining v. (v.) in the Partitioning Subrou-

o *
tine, redefine v. (v.) by increasing it until a value v. is reached for

which Pr{X. = v.} > 0. Then, given v° and v , if Pr{X. « v. - 1} = 0,
j j j J

(Pr{X. = v, - 1} = 0), instead of using v° - 1 (v.-l) in the Partitioning
3 j j j

Subroutine as the j-th component of the upper limiting state space de

fining the interval C. (B.), use the largest value v, less than v.-l

(v.-l) for which Pr{X = v } > 0. Hereafter, this modification of the

algorithm will be referred to as Modification A. Although the modified

algorithm will no longer produce a partition of ft, the subsets will still

be non-overlapping and their union will include each x £ ft . Note also

that the subsets produced by the algorithm with Modification A are insensi

tive to changes in the joint p.m.f. of X provided ft remains unchanged.
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Changes in the joint p.m.f. of X affecting L and U can frequently

be analyzed without applying the algorithm to the entire revised state

space. For example, suppose that after considering the state space

ft = [L,U], sensitivity analysis leads to a revised state space

ft = [L,U+A] where A « (A^^,.. .,A ) and A^ 0. Since ft can be partitioned

into the non-overlapping intervals {ft,I-I2,... ,1 } where, for 1 <_ j <_ r,

Ij = [(LlfL2f... ,Lj_1,Uj+l,Lj+1,... ,Lr) ;(U.^,... ,Uj_1,Uj+Aj ,... ,Ur+Ar) ],

revision of Pr{IL} is possible upon application of the algorithm to each

I for 1 _< j j< r. Note that I = $ if A • 0.

*

Changes resulting in a revised state space of the form ft = [L,U-A],

* *

ft « [L+A,U], or ft = [L-A,U] can be treated in a similar manner. How

ever, changes resulting in simultaneous increases and decreases in U and/

or L are more difficult to handle; rather than reapplying the algorithm

*

to ft , it may be possible to treat such changes more efficiently by view

ing them as a sequence of changes of the four types just discussed.

Let N' denote the subnetwork of the original network defined by the

cutnode and all nodes not belonging to N. Assume without loss of gener

ality that N' contains no random source-sinks. Let S' (Tf) denote the

set of nodes of N' that are sources (sinks); for any source i, a(i)

denotes its supply; for any sink i, b(i) denotes its demand. The parti

tion of ft produced by the above algorithm is insensitive to all changes

made within N1; however, this peoperty is obtained at the expense of

computation time that would be unnecessary if it were known with cer

tainty that a(S') and b(T') would remain constant regardless of the sensi

tivity analysis conducted in N' and that b(T') < a(S) - b(T) or

a(S') - b(T') < b(T). In particular, the following modifications result
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in a reduction in computational effort: (i) if b(T') < a(S) - b(T),

assign the label b(T') to ft at the initialization step and (ii) if

a(S') - b(T') < b(T), fathom an interval when its label falls below

b(T') - a(S') in part (d) of the Partitioning Subroutine or part (b) of

the Label Reduction Subroutine.

6.7 An Example

Figure 5 contains the tree produced by the algorithm when it is

applied using Modification A to the subnetwork of Figure 2 defined by

the set of nodes {1,2,3,4}. Within a node of the tree, the second and

third lines contain the interval's upper endpoint M and lower endpoint

m, respectively; the first line of node contains the interval's initial

label and any subsequent changes (denoted by -*-) . The remainder of

Figure 5 is self-explanatory. Examination of the intervals corresponding

to leaves of the tree confirms the partition {H,} given in the example

of Section 4.

7. CONCLUSION

Provided the stochastic transportation network under consideration

contains at least one block-module, block-modular decomposition is an

alternative to existing methods for computing the network's reliability.

Instead of computing the reliability of one large network, it is possible

to analyze a sequence of smaller subnetworks. Block-modular decomposi

tion is particularly useful in the analysis of large electrical power

networks.

A computer code implementing block-modular decomposition is under
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development. Upon its completion, experiments will provide empirical

answers to the following questions:

(1) In comparison to existing methods, when does a sequence of

block-modular decompositions result in a significant reduction in compu

tation time?

(2) In performing a sequence of block-module decompositions that

reduce the original network to a single node, are there heuristic rules

for selecting the next block-module if the objective is to minimize the

total computation time? (For example, one possibility is to always

select the minimal block-module whose state space has the smallest

cardinality.)

-27-



REFERENCES

[1] Aho, A. V., Hopcroft, J. E., and Ullman, J. D., The Design and

Analysis of Computer Algorithms, Addison-Wesley, Reading, Mass.,

1974, pp. 179-187.

[2] Birnbaum, Z. W. and Esary, J. D., "Modules of Coherent Binary

Systems," SIAM Journal of Applied Mathematics, Vol. 13, No. 2

(June 1965), pp. 444-462.

[3] Bodin, L. D., "Approximations to System Reliability Using a Modular

Decomposition," Technometrics, Vol. 12 (May 1970), pp. 335-344.

[4] Bodin, L. D., "The Catalogue Ordering Problem," Technical Report

ORC 67-39, Operations Research Center, University of California,

Berkeley, Ca. (1967).

[5] Doulliez, P., "Probability Distribution Function for the Capacity

of a Multiterminal Network," Revue Francaise d'Automatique, Infor-

matique et Recherche Operationnelle, Vol. 1 (1971), pp. 39-49.

[6] and Jamoulle, E., "Transportation Networks with Random

Arc Capacities," Revue Francaise d'Automatique, Informatique et

Recherche Operationelle, Vol. 3 (November 1972), pp. 45-59.

[7] Ford, L. R. and Fulkerson, D. R., Flows in Networks, Princeton

University Press, Princeton, New Jersey, 1962.

[8] Gale, D., "A Theorem on Flows in Networks," Pacific Journal of

Mathematics, Vol. 7 (1957), pp. 1073-1082.

[9] Harary, F., Graph Theory, Addison-Wesley, Reading, Mass., 1969.

[10] Hillier, F. S. and Lieberman, G. J., Operations Research, Holden-

Day, Inc., San Francisco, Ca., 1974.

-28-



[11] Pang, C. K. and Wood, A. J., "Multi-area Generation System Relia

bility Calculations," IEEE Transactions on Power Apparatus and

Systems. Vol. PAS-94, No. 2 (March/April 1975), pp. 508-517.

[12] Shogan, A. W., "Sequential Bounding of the Reliability of a Sto

chastic Network," Operations Research. Vol. 34, No. 6 (November/

December 1976), pp. 1027-1044.

[13] Shogan, A. W., "A Decomposition Algorithm for Network Reliability

Analysis," Networks, Vol. 8, No. 3 (1978), pp. 231-251.

-29-



Figure 1



X, =Oor5 X9 = 0 or 15

Figure 2



N

N

N

N

Figure 3



INITIALIZATION

The only interval is the entire state apace Q; it is
unfathomed and has a label equal to the excess
of supply over demand.

Select any unfathomed interval I.

FEASIBILITY SUBROUTINE

Given its current label, does I contain any
feasible points?

No

PARTITIONING SUBROUTINE

Partition I into one fathomed
Interval and possibly several
unfathomed intervals.

LABEL REDUCTION SUBROUTINE

Determine if I can be fathomed; if
not, reduce its label until feasi
bility can no longer be ruled out.

K

1
f w

Have all existing intervals been fathomed?

1
TERMINATION SUBROUTINE

For any k, Pr{G.} can now be computed.

Figure 4
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