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Abstract

We present an algorithm based on Newton's method and a systematic

enlargement of a feasible region for solving finitely, systems of non

linear inequalities. The method depends crucially on the superllnear

rate of convergence of Newton's method.
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1. Introduction

An examination of the engineering literature (see for example [1])

shows that not infrequently the designer is not so much interested in

optimizing performance, as in meeting specifications. Generally, such

specifications can be expressed as a system of differentiable inequalities

gi(x) < 0, j = 1,2,...,m (l.D

which describe a set with a nonempty interior. An important special case

in which a designer needs to solve a system of inequalities arrises in pro

blems of design centering, tolerancing and tuning (see [2]) [3]). In such a

problem, a designer is required to minimize some performance index, subject

to constraints on the form

max min max C (x,w,x) <_ 0,
<oQ2 t^T j€J

where x is the design vector (including tolerance and tuning range as compo

nents), a) is a tolerance parameter and t is a tuning parameter. The optimiza

tion yields a nominal design x and the manufacturing process produces in a

certain tolerance realization, w £ ft. Should measurements show that

max c (x,w,0) > 0, it now becomes necessary to compute a value x £ T, for the

& i . . .
tuning parameter, such that max r,J(x,u>,x) _< 0. Normally, T has a simple

description of the form T = {x|g3(x) <_ 0, j = l,2,...,m } and hence the

required x can be computed by solving a system of inequalities of the form
j+m_ A .

(1), with g 1(x) = cJ(x,w,x) for all j£J.

Now, as it is well known, under certain conditions, it is possible to find

a solution to such a system of inequalities in a finite number of iterations

by means of any one of the existing feasible directions algorithms (see [7])



Unfortunately, feasible directions algorithms are rather slow and the ques

tion arises whether it is not possible to adapt a faster method, such as

the Newton method described in [ 4,5 ] to find a solution to (1.1) in a

finite number of iterations. In this paper we obtain an affirmative answer

to this question. Our scheme is based on applying Newton's method for a

controlled number of iterations Z. to a progression of inequalities:

gj(x)+ei<0, j=1,2,...,m (1.2)

with e. \ 0 and £#l1 > £., and on the fact that under certain assumptions
l l+l l r

Newton's method converges quadratically.

2. The Algorithm

Consider the problem of finding a point x satisfying

g(x) < 0 (2.1)

where g: ]R -»• H is three times continuously differentiable. The first of

the following assumptions is imposed by our desire to use Newton's method

(see [ ]), while the second one is required to make finite solution of

(2.1) possible. We shall use the notation m = {l,2,...,m}.

Assumption 2.1. For any x£ ]Rn , 0 f co VgJ (x) where
jGl(x)

I(x) = {jEm|gj(x)> 0} (2.2)

(i.e. the gradients VgJ(x), j E I(x) satisfy the Robinson LI condition [6 ]).

D

Assumption 2.2. There exists an x such that g(x) < 0. D



Let

V = (1,1,...,1)TE ]Rn (2.3)

and let e > 0 be arbitrary. Let

g£(x) = g(x)+ev (2.4)

and let g (x), be defined by

[gc.(x)jj =max{g^(x),0}, jEm (2.5)

Now, since by Assumption 2.2 there exists an x such that g(x) < 0, it

is clear that there exists an £ > 0 such that for all e E [0,e], there

exists an x such that g (x ) < 0. If we knew such an e E (0,e],,we could

/\

apply the following version of Newton's method described in [5 ] to find x£

(under the heading restoration iteration function a).

Algorithm 2.1 (Newton Method -MP Version [5 ]).

Parameters: a E (0,1/2), $ E (0,1), L » 1.

Data: x

Step 0: Set i = 0.

Step 1: Solve the QP for v.

9 3gc(x.)
mindlvir g (x)+ £, 1 v<0} (2.6)

• £ i ox =

8g£(xi)
Step 2: If v. exists and llv.II < L, set h. = v.. Else set h. = 7: g^.(x,).

c— 1 1 — ' 1 1 i 9x°£i +

(i.e. set h. =- |̂"gE:^i)+ll2).
Step 3: Compute the smallest integer k _> 0 such that

Hgc(x.+$kh.) J|2<(l-2a3k)Ilgc(x.),||2 (2.7)
C.1 XT LIT
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Step 4: Set x ±=x. +3kh±, set i=i+1 and go to step 1. Q

We now collect from [4,5], the relevant results of this method.

Theorem 2.1: Suppose that Assumption (2.1) is satisfied and that £ E (0,£J

(i.e. there exists an x such that ge(x£) < 0).

a) If Algorithm 2.1 constructs a bounded sequence {x^, then x± + x£

as i -*- °°, satisfying g£(xe) < 0.

b) For any compact set U, there exists an M E (0,°°), depending only
3g (X) rv , v

on the values of the matrix —|^— = 8^*; (and hence independent of £) for

x E U, such that if for some i , x E U and Mtlg (x ) 11 < 1, then for allu iQ t iQ -p

i > i x. E U and hence x. -> x E U as i -> «>. Furthermore,

(i-V

'vJ^! (2-8)

holds, with

6 E (0,Mllgc.(x. )Jl) (2-9)

c) If £ ^ (0,£] (i.e., with i|> (.) defined as in (2.10) below,

min \b (x) > 0), then x. + x as i -*-«>, a minimizer of -r-llg (x) II . E
Te ie z e +

xEm11

Now, let

* (x) ^ max g*(x) (2.10)
£ jEm

and

6 max(0.tlj fx^> (2.H)ip (x)^ = max{0,t|; (x)}
£ T C

Then we have
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r^OO = ^(x) +£ (2.12)

and, by the relation between L and L„ norms
oo 2

-^llg£(x)+ll <^£(x)+ <||g£(x)+|| (2.13)
VXD.

Now, suppose that the conditions of Theorem 2.1 apply, that e E (0,e), and

that {x.} is a sequence constructed by Algorithm (2.1), converging to x .

Then, since ^ (x) is locally Lipschitz continuous, with constant L, say, in

any compact neighborhood of x , and ty (x ) = 0, we obtain

T0(x±) +£ = Ye(Xi) <Te(xi)+-r£(xe)+ <Lllx^ll for all i (2.14)

and hence, since g (x.) -»• 0, there exists an iQ such that by (2.8) and (2.14)

%(\) 1-e+^e for a11 ±>S (2'15)

that is,

max g^x.) < 0 (2.16)
jEm

for all i 2l in such that

-£+^Sll0<0 (2.17)
M £ —

This shows that if we knew a correct value for £, we would find a feasible

point x satisfying g(x) < 0 very rapidly. Thus, our attention must be

directed towards constructing a procedure for finding a satisfactory £. We

note in (2.17) that if we decrease £ suitably slowly, then because of the

L i_i0
rapid decline of the term 776 . we should be able to find a satisfactory £

r M £
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and still achieve (2.16) in a finite number of iterations. Next, we note

that Algorithm 2.1 minimizes —[|g (x)+|| . Since there is an x such that

g(x) < 0, it follows that Algorithm 2.1 computes an x such that, because

of (2.12),

X(xe)+]2lin8e(xe)+ll2<fc2 (2.18)

i.e.

ty (i ) < Jme (2.19)

Hence,

*0(5e) +£ =r£(x£) <.£(x£)+ <v^e (2.20)

As a result, if Algorithm 2.1 is initialized at x , then for any y E (0,1),

there exists a finite i such that

^(x^-04-De <Y[ipQ(x0)-(^l)£] (2.21)

i.e.

*0(x±) <Yr0(x0)+(1-Y)(^l)£ (2.22)

The above observations form the basis for the algorithm below.

Algorithm 2.2.

Parameters: aE(0,|), 3E(0,1), L» 1, YrY2 e(0,1), 6E(0,1), a
00

sequence of integers {A,}v=n such that £VA1 > £v for all k.

Data: z E ]Rn, £ > 0.

Step 0: Set k = 0.
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Step 1 If ^n(z, ) < 0, stop. Else set i = 0, x_ = z , e = e
0X k

Solve QP (2.6) for v..

0

Step 2

Step 3

Step 4

If v,, exists and Hv.ll < L, set h. = v.. Else set h.
i i — l i i

Compute the smallest integer j >_ 0 such that

8g(x.)

—ST-8e(xi)+'

llg^x.+B^^H <(l-2aSj)llge(x.)+[|2

Step 5: Set x - = x +$Jh..

Step 6: If i _> JL and

VW <Y1*0<V+(1-Yl)(,C-1)ek

(2.23)

(2.24)

Set z - = x , £ = Y2ek» set k = k+l and g° to steP 1* Else, set

i = i+1 and go to step 2. D

Lemma 2.1: Suppose that Algorithm 2.2 constructs an infinite sequence {z }.

Then any accumulation point z of {z^} satisfies ^Q(z) £ 0 (i.e. g(z) < 0).

Proof: By construction, the sequence {z, } satisfies (see (2.24))

^0(zk+l) -YlW +d-Y1)(^-De0Y2» k=0,1,2,...

Since Y-,»Y2 G (°»1)» it: follows from (2.25) that

lim ^Q(zk) < 0

and hence, if z is an accumulation point of {z, }, then i^Q(z) _< 0.

(2.25)

(2.26)

D

Theorem 2.2: Suppose that Assumptions 2.1 and 2.2 are satisfied. If

Algorithm 2.2 constructs a bounded sequence, {z } then there is a finite

index s > 0 such that g(z ) < 0.
— s =

Proof: Suppose, for the sake of contradiction that Algorithm 2.2 constructs
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an infinite, bounded sequence {z,}. Then, by Lemma 2.1, there exists a

subsequence, indexed by K C {0,1,2,...} such that z -»- z, with ij>n(z) _< 0.

Hence, since e, -*• 0 as k -*• », there exists a kfl E K such that, for all k E K,

k _> k , the set {x|ij> (x) £ 0} ^ <f> and, with Mas in Theorem 2.1(b),

ll8£, (zk>+" ±^e, (zk>+ ± A(*0(8k)++ek) <S (2'27)

Thus if x is the limit of the infinite sequence {x.} generated by algo-
ek

rithm 2.1 when it has been initialised at x~ = z, , with k _> k~, then

Ilzk+i-\ '4^ (2-28)

for all k G K, k 1 k0, where <5 E (0,Mllg (z ) II) .
£k Ek k

Since {xlg (x) < 0} ^ Tt it follows that \|/ (x ), = 0 so that
ek - ek ek +

k k k

^••kti-v <2-29>
k

for k >. k_, where L, is the Lipschitz constant associated with a compact set

containing the bounded sequence {x.} initiated at x_ = z, . Since for each

k E K, k >k , the sequence {x.} is contained in a sphere of radius at most

1/Mcentered on x , and since the sequence {z,} is bounded, it follows that
£K *

the collection {L, } of Lipschitz constants can be bounded from above by an

overall constant L. Thus from (2.28) and (2.29), it follows that

VW ±w\ +16\ • (2-30)
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for all k E K. k > kn, where & E (0,MJIg (z ),H). Now, by Lemma (2.1),
U Ek •\ k

^0(Zk)+ + Oask + «, k E K and by (2.13)

•g,(zk>+11 <^<Vzk)T+ek) <2'31>

Consequently, Hg (z, ) II -^ 0 as k •»• », k E K, which shows that 6 •>• 0 as
\ * + ek

k -»• «, with k E K. Hence, since JL -*• «>, there exists a k_ j^ kn, k. E K such

that

k L ^1
VW±-Vi1+m< ±° (2-32)

kl
But then the algorithm must have stopped in Step 1 for k = k.+l and hence

{z,} cannot be infinite. This completes our proof. Q
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