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ABSTRACT

We study the fundamental properties of feedback for nonlinear,

time-varying, multi-input, multi-output,distributed systems. The

classical Black formula is generalized to the nonlinear case. Achievable

advantages and limitations of feedback in nonlinear dynamical systems

are classified and studied in five categories: desensitization,

disturbance attenuation, linearizing effect, asymptotic tracking and

disturbance rejection, stabilization. Conditions under which feedback is

beneficial for nonlinear dynamical systems are derived. Our results show

that if the appropriate linearized inverse return difference operator is

small, then the nonlinear feedback system has advantages over the open-

loop system. Several examples are provided to illustrate the results.

Research sponsored by the National Science Foundation Grant ENG76-84522
and the Joint Services Electronics Program Contract F44620-76-C-0100.
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I. INTRODUCTION

Feedback is one of the most important engineering inventions.

Historically [1], some third century B.C. water clocks may be

viewed as primitive feedback devices. Some more definite feedback

systems such as furnace temperature regulators, float regulators,

windmills, etc. were invented between 16th and 18th century. However,

it is only at the turn of the 19th century, when James Watt invented the

steam engine governor, that the concept of feedback began to be appreciated

and used by engineers. Attempts to understand and to analyze the associ

ated stability problems brought by feedback were then made by several

pioneers, e.g. Airy, Maxwell, Lyapunov, Routh, Hurwitz, Vyschnegradskii, etc

Up to the 1920's, feedback devices were predominantly mechanical regulators

whose primary objective was to reduce the regulated error to zero. The

need of long distance telephony in the 1920's [2] resulted in the

crucial invention of the negative feedback amplifier by H.S. Black [3,4].

Black's major invention was to conceive the benefits of feedback resulting

from a high forward-path gain: he fed the output back to the input stage;

he showed that by using a high gain in the forward path, one obtains

an amplifier which is 1) more linear than the vacuum tubes in the forward

path, 2) insensitive to variations in the vacuum tubes in the forward

path, and 3) insensitive to noise injected at the output stage. Depend

ing on the applications, the requirements on negative feedback amplifiers

and on mechanical regulators may be quite different. Nevertheless,

during World War II, the need of very accurate servomechanisms for

anti-aircraft defense brought them together. It is our opinion that

there is a unified underlying discipline of feedback: different applica

tions emphasize different aspects of that discipline.
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In practice, feedback is indispensable in many system designs

because of 1) uncertainties: typically, incomplete knowledge of the plant

due to plain ignorance or to the inordinate cost of measurements;

unpredictable environmental effects; manufacturing tolerances; changes

in the characteristics due to ageing, wearing, loading,...; etc., and 2) the

use of inherently unstable plants, e.g. rockets, some chemical reactors,

nuclear reactors, some advanced design airplanes,..., etc. The effective

ness of feedback in coping with uncertainties was actually illustrated in

the process of Black's invention of the negative feedback amplifier [4]:

he realized that an "open-loop" cancellation scheme is impractical

(because it requires the two "paths" track each other) and he eventually

conceived the negative feedback amplifier. Moreover, Black's paper [3]

exhibited many of the achievable advantages of feedback such as desensi-

tization and disturbance attenuation.

Even though most of the existing expositions of the effects of

feedback are essentially based on transfer functions calculations (thus

necessarily restricted to the linear time-invariant case only), we believe

that the benefits of feedback are the consequence of two facts: first,

a topological structure - the loop; second, an order of magnitude

relation (in the context of Black's classical paper [3], it reads |$u| >> 1)

which is independent of the linearity requirement. Pursuing this point

of view, we derive below the basic properties of feedback in a much more

general framework: we make full use of the recent developments in the

input-output formulation of nonlinear, distributed, time-varying, multi-

input, multi-output systems (see e.g. [5,6,7,8]). Such formulation

allows for unstable, continuous-1ime as well as discrete-time subsystems;

this is achieved by using causality and the technique of extended spaces,
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i.e. considering only the time interval [0,T], with T finite but arbitrary.

After introducing the notation and the general framework, we generalize,

in section II, the classical Black formula to nonlinear, distributed, time-

varying, multi-input, multi-output systems. Our generalized Black for

mulas clearly show that the properties of feedback are independent of the

linearity assumption. In section III, we demonstrate, for the general non

linear system described in section 1.2, the advantages and limitations

of feedback in desensitization, disturbance attenuation, linearizing effect,

asymptotic tracking and disturbance rejection, and stabilization.

1.1 NOTATION

Let E. ((C) denote the field of real (complex, resp.) numbers. Let

IN denote the set of non-negative integers. Let $ denote the set of

non-negative rational numbers. Let 1R+ denote the non-negative real
o

line [0,»). Let <D denote the open right-half complex plane.

Let ]R[s] (R(s)) be the set of all polynomials (rational functions, resp.)

in s with real coefficients. Let EpXq (CpXq, H[s]pXq, H(s)pXq) denote

the set of all p*q matrices with elements in R ((C, R[s], ]R(s), resp.).

Let 3p(s) denote the degree of p(s) GR[s]. Let 0^ CH+ be the set of

time instants at which various signals of interest are defined: typically,

°3 = K. for the continuous-time case, ^7= U for the discrete time case. Let

^ be a normed (seminormed) space of functions mapping £T into some

vector space 1f% (typically, V=Rn, 171 =L^, L* or ^»'C' etc*)-
Associated with the normed (seminormed) spaced is the extended normed

(seminormed) space yn defined by ^ := {f:3"->^| VTG^T, |f|T<»},

where |f| := |f_|, fT is obtained from f by a projection map P ,more

In describing the feedback system under consideration, we adopted the
control terminology, i.e. the power stage of the amplifier is called the
plant; the preamplifier is called the compensator; etc. We trust that
this will cause no great inconvenience to feedback amplifier enthusiasts.
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rf(t), t < T
precisely, f„, := P_f is defined by f (t) =\ ,for t, TG tT . Let

l~i i ^0 , t > T
P,^ denote the class {P f|f eTJM. Let H: 17) -+jft ; H is said to be

causal iff PTHPT =PTH, VT G£T [8, p.38-39]. "Nonlinear" means "not

necessarily linear". ":=" means "is defined by", "u.t.c." means "under

these conditions". Operators, i.e. maps from m into 7^, are labelled

by boldface symbols (e.g. G,K,F,...). Let |-|2 denote the J^-norm on I .

Let C1 denote the class of continuously differentiable maps [19, pp. 172].

1.2 GENERAL FRAMEWORK

We will consider the nonlinear, feedback system S shown in Fig. I.l,

where

G: <U -*• U , is a nonlinear, causal operator representing (I.l)
~ e <Te

the plant,

K: <<? •+ U , is a nonlinear, causal operator representing (1.2)
~ e e

the compensator,

F: 1L •*•/?, is a nonlinear, causal operator representing (1.3)
- Te e

the feedback,

r E & , is the system input, (1.4)

u E 1JL , is the plant input, (1.5)

y E 4L , is the system output, (1.6)

e E £ , is the error signal, (1.7)

£ , f/ , qi are extended normed spaces, unless otherwise (1.8)

stated.

We shall assume that

(I+FGK)"" is a well-defined nonlinear, causal operator (1.9)

mapping from ^ into & .
e e
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Note that the closed-loop input-output map Hyr: r+y is given by

GKd+FGK)"1.

II. BLACK'S FORMULA GENERALIZED

« H.S. Black's invention of the negative feedback amplifier was

based on the following analysis [3]: consider the feedback system S

shown in Fig. I.l; let GK and F be specialized into the scalar transfer

functions y and 3, respectively, then the closed-loop input-output

. (2)
transfer function is

h ..-M-.I.-Sl.
yr * 1+fti 3 i+3y

= Iri L_i (ii.l)
3L i+3yJ

~ I (ii.2)
~ 3

for those frequencies where |3ul » 1. (II.3)

Black's crucial observation is that for those frequencies where

|3y| » 1, or equivalents |l+3y| » 1, the output y*- r, i.e., the

closed-loop input-output transfer function is essentially independent

of y and is essentially «?P.r1f1ed bv 3- So the recipe is: 3 is speci

fied by the desired h and the forward path gain y is made as large as

possible to achieve (II.3).

Equations (II.1)-(II.3) summarize Black's fundamental observation.

We note that it is valid because 1) there is a loop structure, and 2) the

<-- loop gain |&y| is large. This reasoning can be greatly generalized to

the case of nonlinear system S shown in Fig. I.l. Note that in the

In the single-input single-output, linear, time-invariant case,
y3 = 3y; however, if any one of these three conditions fails, one must
write 3y. We do so to be self-consistent.
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linear, time-invariant case, we only have to consider the sinusoidal in

puts within some frequency band of interest and the corresponding sinu

soidal steady-state response. But in the nonlinear case, we have to

formulate the condition in terms of inputs of interest, e.g., sinusoids

of various frequencies and amplitudes, step, ramp, parabolas, etc.

Theorem II.1: (Black's formula generalized: soft version)

Consider the nonlinear, feedback system S shown in Fig I.l and

described by Equations (I.l)-(1.9). Let (\. C (ft be the set of inputs
q ,e e

of interest. U.t.c. if, for T sufficiently large,

Id+FGK)"^!- « |rL, Vr e P (II.4)
' ~ —• T ' 1 d,e

then, asumptotically

F H - I on (R, (II.5)
- ~yr - M,e

in the sense that, for T^ J sufficiently large,

|r -FHyr r|T « |r|T, Vr E(R^ (II.6)

Proof:

Since F, G, K are nonlinear, we have

H = GKd+FGK)"1.
~yr

Apply the nonlinear operator F on the left to both sides of this equation:

F H = FGK(I+FGK)_1~ ~yr ~--N~ '

= I - (I+FGK)"1
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Hence for all rE fl^

r -FH r= (I+FGK)"^
- ~yr ~ ~~~

Now let r E <R C P and let T E J be large, then, using (II.4),
d,e e

|r -FHyrr|T =|(I+FGK)_1r|T « |r|T

and (II.5) follows. Q.E.D.

Remarks II.1: a) (II.5) says that the feedback system H followed by

F behaves approximately like an identity operator as far as the inputs

of interest are concerned. Equivalently, F is an approximate left-inverse

of H on ^ , ; thus, on (R, , H is essentially independent of G and
~yr d,e d,e ~yr

is essentially specified by F. (The left inverse is the one of interest

because any_ operator P: V. -*• Vhas a right inverse Q in the sense that

there always exists a Q such that PQ = Id where Jd denotes the identity

restricted to P(W)).

b) Consider G perturbed into G; call H the resulting closed-loop

input-output map. If Gsatisfies (II.4), then FH -I, on ^d>e; i.e.,

on (R , H is insensitive to the plant perturbations. This, however,
d,e' ~yr

does not assert that the relative change in H will be much less than

that in G; it simply asserts that changes in G have little effect on H .

The exact relation between the relative change in H and the relative

change in G is given by Equation (III.7) below and discussed in Remarks

III.l.

c) (II.5) is a soft version of Black's formula (II.2). To obtain

H - F requires some additional assumptions. This is done in
~yr

r1

Theorems II.2 and II.3 below.
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Note that eqn. (II.1) gives the exact relation

h -I = - I.—L- (II.7)

As feedback designers know (see e.g. [9]), it is often advantageous to

write this equation in terms of the "inverse loop-gain"

h 1 l-JSUii. (U.8)
*r e ei+(Bu)_1

Theorem II.2 below generalizes Black's result to the nonlinear case:

an estimate of the difference H r - F r is obtained under the condition
~yr

that the "inverse loop-gain" is small for the class of inputs of

interest. Note the similarity in form between the right-hand sides of

eqn. (II.7) and eqn. (II.9) below.

Theorem II.2 (Generalized Black's formula)

Consider the nonlinear, feedback system S shown in Fig. I.l and

described by eqns. (I.l)-(I.9). Let /? C ^ be the set of inputs of

interest. Suppose that

(al) VT E^, PT^ is a Banach space;

(a2) F" :^ -*• tJL and (FGK)"~ :# -»• # are well-defined nonlinear,

causal maps;

-1 - ~-.,nur.-(3)

-1

(a3) (FGK) is continuous on^«, and for each r E ^,, ,
c d,e

zn+l := r" (??5} Zn Ey^(^d,e) C ^e» Where Z0 =r> n€M»
and /V(/^ , ) denotes a neighborhood of tf{ in & .

CIy G Q %" c

(3)
An operator N is continuous on an extended space # iff VT E^T, N is

continuous on P~£ . e
~T^e
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U.t.c. if

iF^Cr-e)-*"1^
(i) X(F"±) := sup — r-r-^ < °° ;

r£/?, , TEST ' 't
e := (I+FGK) r
eT^0

(ii) for each T E tT,

_, ((FGK)"^ -(FGK)_1r2lT
YT[(FGK) L] := sup lr ~T~ < 1 >rrr2€^ ) lrlr2lT

rl,T'* r2,T
then, for each T E tT,

|(FGK) ^L
|H r-F r| < X(F X)—f^ 35- , Vr Eg (n.9)~yr ~ T - 1-YT[(FGK) X] d'6

In particular, if for TG^ sufficiently large,

VqGK)"1] <<: * (11.10)
and n

1 lF rlT| (FGK)"^! « ~ .-, , Vr e ^ (11.11)i X(F i^ a,e

then asymptotically,

H * F"1 on £, (11.12)
~yr ~ d,e

in the sense that for T E^f sufficiently large,

|H r-F^rl « |F_1rL ,Vr E tf . (11.13)
1~yr ~ 'T '~ 'T d,e

Proof of Theorem II.2: see Appendix.

Remark II.2: Note that the classical Black condition that |3y| » 1

(which is achieved, in design, with |y| » 1) is a sufficient condition

for the approximation (II.2). Thus one may want to pursue the idea of
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small inverse forward path gain (large |y| in the single-input single-

output case) as follows: assuming the existence of the required inverses,

from

H = GK(H-FGK)"1 (11.14)
~yr

we obtain

H_1 = (I+FGK)(GK)"1
~yr - ~— —

=F+(GK)_1 (11.15)

This formula is the generalization to the nonlinear case of the well-

known corresponding relation with matrix transfer functions [9, p. 121].

If we assume that Vy E 1L , the set of outputs of interest, and for

TG^T sufficiently large

|(GK)"1y|T « |Fy|T (11.16)

then, asymptotically

in the sense that for T E^T sufficiently large, |h y-Fy| « |Fy| ,

Vy E ii, . Note, however, since F and H are nonlinear, eqn. (11.17)
J «d,e ~ -yr

-1 rt
does not imply that H - F . a

~yr

Going back to the Black formula (II.1), we note that the approxima

tion (II.2), h - -r, ±s valid as long as
yr 3

h (11.18)« -^
13 l+3y • •3

Theorem II.3 below generalizes this condition to the nonlinear case:

eqn. (11.18) should be compared with the condition (ii) of Theorem II.3 below,
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Theorem II.3:

Consider the nonlinear, feedback system S shown in Fig. I.l and

described by eqns. (I.l)-(1.9). Let (^ e C ^ be the set of inputs of

interest. Suppose that F~ : 0? •+ il is a well-defined nonlinear, causal

map.

U.t.c. if

(i) X(F"1) := sup — r-r-Z < « J
rEtf , TE^ le>T

d,e' _
e := (I+FGK) r

T

(ii) for T EtT sufficiently large,

A(F"1)-|(I+FGK)"1rL « l^rL, Vr EQ
~ ~ ~~,~ 'i '~ 'i a,e

then, asymptotically,

H - F"1 on R. (11.19)
~yr vd,e

in the sense that for T E^T* sufficiently large,

l5yrr"lflr|T « |F_1r|T, Vr E^ (11.20)

Proof of Theorem II.3: see Appendix.

Corollary II.3.1 (Linear time-invariant case)

Consider the feedback system S shown in Fig. I.l and described by

eqns. (I.l)-(I.9). Let the operators G, K, and F be linear, time-invariant

and represented by transfer function matrices G(s), K(s) and F(s),

respectively. Let ^, C <# consist of all sinusoidal inputs with
d,e e

frequencies in some interval Q C ]R. Suppose that

(al) F : ^ -> y, is a well-defined causal map;

(a2) the closed-loop system is exp. stable, i.e. the impulse response
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of the transfer function H : r -> y is bounded by a decaying
~yr

exponential.

-1 no
U.t.c, if VU) E ft, Vy E range[F(jw) ] C c

l[(I+GKF)(ju))]""1y| «|y| , (11.21)

then

H (ju)) * F(j(D) 19 Vw E ft (11.22)
yr

in the sense that Vr E c

|H (jaOr-Fau))"1^ « iFCjco)"^!, VU) E ft (11.23)

Proof of Corollary II.3.1; see Appendix

Remark II.3.1: If we use the I -norm in <E , condition (11.21) is satis-

(4) -1
fied if the largest singular value of [(I+GKF) (jto)] is much smaller

than 1, for all w E ft.

Comments on Theorems II.2 and II.3:

(a) Theorems II.2 and II.3 conclude that, under suitable conditions,, the

output y-Hyrr is, asymptotically (i.e. for large T), approximately equal

to F r over the inputs of interest within small relative error. Thus

eqns. (11.12) and (II.19) are complete generalizations of the Black formula

(II.2) to the nonlinear, time-varying, multi-input, multi-output, distrib

uted systems S shown in Fig. I.l and described by eqns. (I.l)-(1.9).

(b) Typically, #, , the set of inputs of interest, consists of sinusoids

of various frequencies and amplitudes, or steps, ramps, parabolas, etc.,

of various magnitudes.

(c) Note that the extended spaces framework allows us to treat the case

(4) f~ n*n
If Ac C , the largest singular value of A is the square root of the

largest eigenvalue of A*A, where A* denotes the complex conjugate of A; it
is also the %^-induced norm of the linear map A: C -*• <Cn.
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where some of the operators G, K, F may be unstable and to state asymptotic

conditions such as eqns. (11.10), (11.11).

(d) It is the nonlinearities of the maps G, K, F which forces us to use

the incremental gain (e.g. Ym[(FGK)~ ] in theorem II. 2), or Lipschitz

constants (e.g. X(F_1) in theorems II.2 and II.3), over appropriate sets,

to obtain our estimates. In the linear case, one would use the induced

norms of the corresponding maps over appropriate sets.

(e) Theorems II. 2 and II. 3 have important design implications: Given a

plant G, we first choose F such that, over the inputs of interest, F is

asympotically the desired input-output map. Next we choose the compensa

tor K so that the conditions of theorem II.2 (or of theorem II.3) are

satisfied. Then, asymptotically, the closed-loop input-output map H„r is

close to F over the inputs of interest as we desired.

(f) Note that F~ can be nonlinear. A simple well-known example of

realizing a nonlinear map by a feedback system (with large forward-path

gain) is the logarithmic amplifier shown in Fig. II.1 Recall that node (2j

is a virtual ground, and that the diode operates at currents much larger

than its saturating current I , thus F : iD »—• vQ is given by

V0 ="VD ' "VT ln (iD/ls) * HenCe V0 ~"VT ln [vi/(RiV]'

Examples:

To illustrate the implication of the generalized Black formula on

nonlinear dynamical systems, we present the following two examples:

Example II.1 (Nonlinear, single-input single-output dynamical system)

Consider the nonlinear, feedback system S shown in Fig. I.l, where

5xlQ8
G is characterized by a rational transfer function « t~

(s+l)(s+10J)(s+10H)
followed by a nonlinear memoryless map <J>(*) with <J>(') e C described by
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il+AlfIL2- z~3
30 ^30' 18.75

4>(z) =< 0.8z

n Q z+0.5 _ 0
0.8e -1.2

, z > 0.5

, |z| < 0.5

, z < -0.5

(11.24)

K and F are characterized by constants k and 1, respectively. The closed-

loop system and the characteristics of the nonlinearity <}>(•) are shown in

Fig. II.2 and Fig. II.3, respectively. By theorem II.2 (or theorem II.3),

if k becomes large, then, asymptotically, the output y of the closed-loop

system will be approximately equal to the reference signal r(#) (since

F~ = 1 in this case). Fig. II.4 -Fig. II.6 show the system output y(#),

the error signal e(»)»and z(»), the input to the nonlinearity $(•), in tne

"steady state" for different values of k while the closed-loop system is

driven by r(t) = sin lOt. The effect due to high forward-path gain in a

feedback system is clearly illustrated by Fig. II.4. Note that the high

forward-path gain distorts z(*)> the input to the nonlinearity <J>("), so

that asymptotically, the output y(») is approximately equal to sin lOt.

Example II.2 (Nonlinear, multi-input, multi-output, dynamical system)

Consider the nonlinear, feedback system S shown in Fig. I.l, where

G is characterized by a rational function matrix

8
5x 10

8
lx 10

L(s) =
(s+1) (s+103) (s+104) (s+1) (s+103) (s+104)

5x 10 5x10
8

(s+1) (s+103) (s+104) (s+1) (s+103) (s+104) _

followed by a nonlinear memoryless C map $(•) described by

<K ) =

with

(1 +0.2 tanhz )«v(zx)

(1+0.2 tanhz )*v(z )_j

-15-
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V(z) :- j* - n-r-^nr '" '"' (H.27), if |z| < 0.5

sgn z»[|+̂Zl"43/7"] ,if |z| >0.5 ,

K and F are represented by the constant matrices kl and I, resp., both

in I .

The closed-loop system, the characteristics of v(z), and the characteristics

of l+0.2tanhz are shown in Fig. II.7, Fig. II.8, and Fig. II.9, respec

tively. By theorem II.2 (or theorem II.3), if k is sufficiently large,

then, asymptotically, the output y of the closed-loop system will be

approximately equal to the reference signal r (since F = I in this case).

Fig. 11.10-Fig. 11.13 show the system output components y1(#), y^C*) and

the error signal components e (•), e„(»), respectively, for different

values of k E ]R while the closed-loop system is driven by the reference

signal r=f1! =[0 ^gin^t1*Fig' XI"10 and Fi§* II,3L1 show that aS
we increase the compensator gain k, the system output (vector) function

approaches to the reference signal r as if the closed-loop system was an

identity map despite the complicated couplings in the nonlinear plant G.

Fig. 11.14 and 11.15 show,for k = 40, a period of the steady-state trajec

tories of the system outputs, y(*), and of the nonlinearity inputs, z(»),

on the y-plane and z-plane, respectively. Note that the greatly distorted

trajectory of z(«) (due to the coupling and saturation effects of $(•))

, x •, , i r sin lOt Iproduces a system output y(-) very close to the reference signal Q osin 15*.

Consider the three large irregular lobes on the z(#) trajectory in the

2nd, 3rd and 4th quadrant of Fig. 11.15 which reach their peaks at time

instants t = 4.54, 4.90, 5.55 respectively. Observe that at those time

instants, at least one of the desired plant output component (y. = sin lOt,

y9 = 0.8sinl5t) reaches the peak of the negative cycle of sinusoidal

waves (see Fig. 11.10 and Fig. 11.11). Further observe that y and z ,

y and z_ are of same sign for all t since l+0.2tanhz > 0 and v(z) is
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•k

an odd function. Now at time t = 4.54, the desired plant output y-^(t) - .98.

y«(t) - -.70, thus v(z ) (v(z )) is required to operate in its positive

(negative, resp.) "saturation" region. Due to the negative value of Z-,

1+0.2 tanhz - 0.8. Consequently, (1+0.2 tanh z )v(z ) "saturates"

earlier than v(z ) itself and z is required to be a large positive number

so that y = (1+0.2 tanh z«)v(z ) will be approximately equal to the

desired value 0.98. This explains the large lobe on the trajectory of

z(0 in the 4th quadrant. Similar reasoning explains the other two large

lobes in the 2nd and 3rd quadrant.

III. ADVANTAGES AND LIMITATIONS OF FEEDBACK

Consider the nonlinear, feedback system S shown in Fig. I.l and

described by eqns. (I.l)-(I.9) which satisfies the conditions stated in

theorem II.2 (or theorem II.3), then asymptotically, the closed-loop

system input-output map H is approximately F . Thus we should expect

that the closed-loop system input-output map is insensitive to the varia

tions in the forward path map GK and that, if F is linear, the closed-loop

system is close to a linear system even though the forward path map GK

is highly nonlinear.

In the following, we show the advantages and limitations of feedback

for the nonlinear, feedback system S shown in Fig. I.l: section III.l

establishes the exact effect the plant perturbations on a closed-loop

input-output map and demonstrates the relations between desensitization

and the feedback structure, the perturbation on the feedback map F, and

the closed-loop stability; section III.2 establishes the exact effect of

various additive external disturbances on the closed-loop system output;

section III.3 defines a nonlinearity measure and then shows precisely

that feedback has a linearizing effect on a nonlinear plant; sections
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III.4 and III.5 briefly review the idea that feedback can achieve asymp

totic tracking and disturbance rejection, and stabilize unstable systems.

III.l DESENSITIZATION

One of the major reasons for using feedback in design is that feed

back can reduce the effect of the plant perturbations on the input-output

map. One way to quantitatively demonstrate the desensitization effect of

feedback is to compare a feedback design with a corresponding open-loop

design [10]: consider the nonlinear, feedback system S shown in Fig. I.l

and described by eqns. (I.l)-(1.9). Note that the closed-loop input-output

H .r^ y is given by GKd+FGK)"1. Also consider acomparison open-
f ^yr — ~ ~~~

loop system (shown in Fig. III.l) consisting of the same plant G preceeded

by acompensator KQ. Thus the open-loop input-output map Hy r'. r•-* yQ

is given by GKQ. Now if we select

KQ =KU+FGK)"1 , (III.l)

then for all system inputs r, y = yQ, i.e. the (nominal) open-loop input-

output map H : r •—• y„ is identical to the (nominal) closed-loop input-
~yor

output map H : r •—+ y. Consider now an arbitrary, not necessarily small,

perturbation AG on the plant G, then the plant G becomes G := G+AG; the

closed-loop (open-loop) system input-output map H (H ) becomes
i ~ ~~° ~ -1Hyr := Hyr+AHyr =GK<I+reK)-\<Hyor := 5y()r+A5y0r =% =&l**29 '

resp.). The perturbed closed-loop (open-loop) system is shown in Fig. III.2

(Fig. III.3, respectively).

Note that the changes of the closed-loop, and the open-loop system

input-output maps due to the plant perturbation AG are given by

AH := H -H = GKd+FGK)"1 -GKd+FGK)"1 (III.2)
~yr ~yr ~yr ~~ ~ — ~ ~~~

AH := H -H = GKn-GKn = AG-Kn = AG'Kd+FGK)"1 (III.3)~y0r ~yQr ~yQr ~~0 ~~0 ~ ~0

respectively.
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Theorem III.l below generalizes some of the results in [10,11,12]

and establishes the exact relation- between AH and AH , and thus makes~yr ~y0r'
precise the desensitization effect of feedback for nonlinear systems.

Theorem III.l (Desensitization effect of feedback)

Consider the nonlinear, feedback system S shown in Fig. I.l and

described by eqns. (I.l)-(1.9). Also consider the comparison open-loop

system shown in Fig. III.l. Let AH and AH denote the changes of the
~yr ~yor

closed-loop, and the open-loop system input-output maps due to the plant

perturbation AG, respectively. Assume that

(al) F: <%l + %& is linear;

(a2) the perturbed plant G satisfies (1.9), i.e. (I+FGK)"1 is a well-

defined nonlinear, causal map mapping & into 4? ;
e ve

(a3) GK: ^ +4± and (I+GKF)"1: U -»• U are C1 maps,

then

AHvr =1 [I+D(GK)-F]_1da-AH ,on f( (III.4)~yr jQ ~ _ _ .yor e

where the Frechet derivative [13, p. 32] D(GK) is evaluated at

(I+FGK)~ (r+aAr) with Ar := F-AH (r), rE# ,and a E [0,1].
~ ~yQr e

Proof of Theorem III.l: see Appendix.

When the map GK is linear, theorem III.l reduces to the following

well-known result [10; 11, p. 24-26].

Corollary III.1.1 (Linear case):

Under the conditions stated in theorem III.l, if in addition, GK is

linear, then
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AH = (I+GKF)"1«AH ,on ^ (III.5)
~yr ~y0r e

Proof of Corollary III. 1.1: Follows directly from the fact that D(GK) = GK,

when GK is linear.

Remarks III.l:

(a) Theorem III.l indicates that for a class of plant perturbations AG,

if Kand Fare chosen such that Vr E (f? (C ^),the class of inputs of

$ [I+D(GK)-F] ^a-AH (r)| « |AH (r) | (III.6)
~~ ~ ~y0 ~yo

then, for such inputs r(«), the change of output (AH (r)) in the feedback

system S caused by the plant perturbation AG is much smaller than the

corresponding change in the open-loop system. Thus, with appropriate

feedback design, the nonlinear closed-loop system can be made less vulnerable

to the perturbations on the plant and hence performs more closely to the

desired input-output map.

(b) Equation (III.4) makes precise the concept (built upon linear cases)

that if onemakes the (linearized) inverse return difference small, then

the closed-loop system is insensitive to the plant perturbations. Note

that eqn. (III.4) states precisely where D(GK) has to be evaluated and

along what path the linearized inverse return difference map should be

integrated.

(c) Differential sensitivity: suppose that G, H r are invertible, then

eqn. (III.4) implies that, since AH = AG-G~ 'GK(I+FGK)~ ,
~y0r ~ ~

AH "H"1 = I [I+D(GK)-F]"1da«AG«G"1 (III.7)
~yr ~yr JQ ~ ~~ -

For AG, hence Ar, sufficiently small, (III.7) can be approximated by
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AH -H'1 -[MXOO-Fl^-AG-G-1 (III-8)
~yr ~yr — ~

The map [I+DCGW-F]-1 is thus acomplete generalization of the classical
differential sensitivity function (for linear ttoe-invariant case, see,

e.g. [14,15] for single-input single-output case, [10] for multi-input
multi-output case; for some nonlinear case, see e.g. [11])-
(d) Consider the special case where G, K, Fare represented by some trans
fer function matrices G(s), K(s), F(s), respectively. To achieve desensi
tization with respect to the given plant G(s) by feedback, one may design

K(s) and F(s) so that the maximum singular value of the matrix

[I«(jM)K(ja3)F(jU)]"1 be much less than 1over the freguencv. band of
lnterest<5) Then, by Corollary III.l, |(AH^r)(J») 12 « I(AH^r) (») 12,
for any. (AH rr> (Ju» 6^° over the frequency band of interest. Note that
this requirement is not equivalent to the following: "over the frequency
band of interest, \\.(i«)\ » 1. Vi, where A^Jo.) is the i-th eigenvalue
of I+G(jo>)K(jM)F(ju»". Hence, in the linear, ttae-invariant, multi-input,

multi-output case, plotting the eigenvalue loci of I+5<]«)K<J<*)F<Ja»
with 03 as aparameter, although useful for stability studies [16,17],
does not have the same desensitization interpretation as in the single-

input, single-output case (see e.g. [14; 15, Chap. 11]).

Discussion:

A. ^sensitization -nH Redback Structure: We note that one feedback

structure is not necessarily superior to another one in terms of sensitivity
with respect to the plant. We compare the nonlinear, feedback system S
shown in Fig. I.l and described by eqns. (I.l)-(1.9) with the nonlinear,

multi-loop, feedback system shown in Fig. III.4 which consists of the

<5)Note that for any physical system, [ndCjuDKCJ^FCJw)]"1 +I••
|+co. Hence it is impossible to fulfill this requirement for all

U) € TR.
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same plant G and nonlinear, causal operators IL , K„, F and F^.

Suppose that the (nominal) closed-loop system input-output maps of

these two nonlinear, feedback systems are identical, i.e.

GKd+FGK)"1 =GK^I+F.GKJ'-SUI+F GK (I+F GK )~h.A'1 (III.9)

Now we have the following result.

Proposition III.2:

If GK, GK , K are linear, then eqn. (III.9) becomes

(I+GKF)_1GK =[I-WK (F fK^F^l"1*GK^ (III.10)

Proof of Proposition III.2: see Appendix.

With eqn. (III.10), the relation of the (differential) sensitivities

of the two feedback structures shown in Fig. I.l and Fig. III.4 is made

clear in the following remarks.

Remarks III.2;

(a) Suppose that, in addition, the maps F, F. and F_ are also linear;

then (I+GKF)"1 and [I+GK (F +K F )]" are the differential sensitivity

functions (see equn. (III.8)) of the feedback systems shown in Fig. I.l

and Fig. III.4, respectively. Thus eqn. (III.10) exhibits a relation

between these two differential sensitivity functions.

(b) In the special case where G, K, F are represented by some scalar

transfer functions, eqn. (III.10) reduces to

[l^(s)Ms)f(s)]-1 =k2(^)kl(s) (in<11)
[l+g(s)k2(s) .(f2(s)+k1(s)f1(s))]"1 k(s)

Hence, by appropriately designing k(s), k (s), k2(s), consistent with other

requirements, we can make the feedback system shown in Fig. I.l either more,
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„*

or less sensitive (to plant perturbations, over the frequency band of

interest) than the one shown in Fig. III.4.

(c) For a recent discussion of using lopal feedback to design an audio

power amplifier, see [42].

B. Desensitization and Feedback Perturbations

Proposition III.3 below derives the exact relation between the relative

change in the closed-loop system input-output map (due to perturbations on

the feedback F) and the relative change in the feedback F, thus makes clear

the tradeoff between the sensitivities of the closed-loop system with

respect to the plant and to the feedback.

Proposition III.3 (Desensitization and feedback perturbation)

Consider the nonlinear, feedback system S shown in Fig. I.l and described

by eqns. (I.l)-(1.9), where the plant G is perturbed and becomes G. Let the

feedback map F be perturbed and become F := F + AF. Let H := GK(I+FGK) :
~ ~yr — ~

K> •+% and S := GKd+FGK)"1 = H +AH : ^ -»• U be well-defined nonlinear,
e oe ~yr — ~ ~~~ ~yr ~yr e ye '

causal maps (thus AH includes the effect of plant and feedback perturbations)

Suppose that

(al) F: 4j. +<f?e is linear;

(a2) f" : <£e +<flL and H~r: ^ -*• ^ are well-defined, causal maps;

(a3) GK and (I+FGK)"1 are C1 maps.

Then

.s-i ,i* ,-^..,,-i,_.,...-iAH -H = {\ [I+D(GK)-F] <ia-l}-F -AF, on %L (III.12)~yr ~yr jQ ~ — ^ ~ ^ j-e

where the Frechet derivative D(GK) is evaluated at (I+FGK)"1(r+aAr) with

Ar := -AF«H rr, rE ^ and aE [0,1].
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Proof of Proposition III.3; see Appendix.

Remarks III.3:

(a) Note that if we choose to desensitize the closed-loop system with respect

to the plant G by making the inverse linearized return difference [J+D(GJp-F]

"small" over the neighborhood of £ , the class of inputs of interest, as is

J1 ~ "I[I+D(GK)«F] da-I - -I and by eqn. (III.12),
, , . o -

AH -H - -F -AF on %. := H #, . Thus, the relative change in H
~yr ~yr ~ ~ <jtf,e ~yr ^d,e ~yr

is approximately equal to the relative change in the feedback F; consequently,

the closed-loop system is insensitive to the plant perturbations but sensitive

to the feedback perturbations.

(b) In the special case where G, K, F are represented by some scalar transfer

functions, eqn. (III.12) reduces to the classical result: over the frequency
Ah /h

band of interest, if |l+g(jw)k(ju))f(jw) |» 1, then—y^/fyr --1.
(c) It is often advantageous to trade the insensitivity with respect to the

feedback map F for the insensitivity with respect to the plant G, since the

feedback F is usually operated at a low power level and hence can be built

with inexpensive, high quality components.

C. Desensitization and Instability

It is well-known (see e.g. [14, p. 141-143]) that, for most linear,

time-invariant, single-input, single-output feedback systems, the closed-loop

system stability requirement imposes an upper bound on the system loop gain, thus

the stability requirement limits the benefit of desensitization by feedback.

We show below that such a constraint still holds for a large class of linear,

time-invariant, multi-input multi-output systems.

Consider the feedback system S shown in Fig. I.l where K, G and F are represented
n.xn n xn. n xn

by kM GR X °, G(s) E m(s) ° 1, In En ° °, respectively where kE]R+. To
o
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achieve desensitization with respect to the given plant G(s) by feedback, we may

choose k E]R as large as possible so that the maximum singular value of the

matrix [I+kG(j(x))M]~1 be much less than 1 over the frequency band of

interest. However, stability considerations often impose an upper bound on

the allowable k's. More precisely, we have the following proposition.

Proposition III.4 (Desensitization and instability)

Consider the feedback system S shown in Fig. I.l, where K, G, F are

n xn noXni noXno
represented by kM G E ° , G(s) E r(s) ,I E ]R ., respectively, with

k > 0, and si—*det[I+k G(s)M] i constant. Assume that Vi = l,2,...,nQ,

and Vj = l,2,...,n.,

3[d±.(s)]- 3[n (s)] >3 (III.14)

n. . , n xn

where -r^1 is the (i,j) element of G(s) E]R(s) ° 1. Then, for k E m
d

sufficiently large, det[I+kG(s)*M] has C+-zeros with real parts which tends

to +°° as k -*- °°.

Proof of Proposition III.4: see Appendix.

Remarks III.4:

(a) Since det[I+kG(s)M] is equal to the ratio of the closed-loop sytsem

characteristic polynomial to the open-loop system characteristic polynomial

(see e.g. [18]), Proposition III.4 states a condition under which the closed-

loop system becomes unstable for k sufficiently large.

(b) When n = n =1, i.e., single-input single-output case, Proposition III.4
v ' i o

reduces to the classical result which can be easily proved by, e.g., the root

locus method (see e.g. [14, p. 141-143]).

^Recall that if for some (i,j), n± (s) =0, then 3n :=-«.
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III.2 DISTURBANCE ATTENUATION

All physical systems operate in some environment where they are subjected

to some "uncontrollable" disturbances. If we knew exactly these disturbances,

then we could program (in advance) the system inputs such that the effect of

these disturbances be cancelled out. However, in most real systems, there

is either no complete knowledge of such disturbances (temperature, wind,

wear, load changes, etc.) or the cost of measuring them and compensating

for them is prohibitive; hence such "open-loop" design based on cancellation

is not practical and we have to resort to feedback. The analysis below shows

exactly what feedback can achieve for disturbances attenuation.

Consider the nonlinear, feedback system S shown in Fig. I.l and described

by eqns. (I.l)-(I.9) but subjected to some additive external disturbances

as shown in Fig. III.5 where

d.(*) is the system-input disturbance,

d (•) is the plant-input disturbance,
O

d (•) is the system-output disturbance,
o —*

d_(«) is the feedback-path disturbance.

It is intuitively clear that, in general, an error-driven feedback

system such as the one shown in Fig. III.5 cannot attenuate the input dis

turbances d (•) and the feedback-path disturbance d.(«), since such feedback

systems cannot distinguish the system-input disturbance d.(») from the system input

r(») and the feedback path disturbance d (•) from the system output y(#).

As seen from Fig. III.5, the error signal £(•) is affected by the corrupting

signals d. and d ; hence e(«) cannot drive the plant as desired (in some cases,

judicious filtering may alleviate such problems). We expect that feedback can re

duce the effect of plant-input and system-output disturbances on the system output;
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indeed such effects could be modeled by some appropriate plant perturbations,

and their effect on the system output has been shown, in sec. III.l, to be

reducible by feedback.

The propositions below evaluate exactly the effects of the disturbances

d , d , d„, d on the system output y(-). Note that unlike the linear case,
i' o' f g

the effect of the disturbance d (a = i,o,f,g) on the system output y(-) is

not given by H , (d ), where H , : dw ^ y is calculated when r and all the
& J ~yd a ~yd_ ot

J a J a

other disturbances are set to zero.

Proposition III.5 (System-output disturbance, feedback-path disturbance

and feedback)

Consider the nonlinear, feedback system shown in Fig. III.5 and described

by eqns. (I.l)-(1.9). Let Gu := Gu+d and Fy := F(y+d ). Suppose that

(al) F: *IL + # is linear;

~ -1 1
(a2) GK and (I+FGK) are C maps.

U.t.c.

(i) if d ?S 0 and d = d = d = 0, then Vr E ^> ,
v o i g f *e

Ay := GK(I+FGK)_1(r)-GK(I+FGK)""1(r)

Jo
I+D(GK)«F] Wd (III.15)

o

~ x-1
where the Frechet derivative D(GK) is evaluated at (I+FGK) (r+aAr) with

Ar = F'd and a E [0,1].
~ o

(ii) if d £ 0, d ^0and d± =d =0, then Vr E^

Ay := GK(I+FGK)~*1(r) -GK(I+FGK)"1(r)
71={{ [I

JO ~
[I+D(GK)-F]"1da- l}«df (III.16)

where the Frechet derivative D(GK) is evaluated at (I+FGK)" (r+aAr) with

Ar = -F-d and a E [0,1].
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Proof of Proposition III.5: see Appendix.

Proposition III.6: (Plant-input disturbance and feedback)

Consider the nonlinear, feedback system shown in Fig. III.5 and described

by eqns. (I.l)-(1.9), where d. = d = d£ = 0. Let Gu := G(u+d ). Suppose
i o f g

that

(al) F: <U -*• ^ is linear;

(a2) GK, (I+FGK)"1 are C1 maps.

Then, Vr6^

Ay := GK(I+FGK)~1(r) -GK(I+FGK)_1(r)
_ - - -r

= {\ [I+D(GK)«F] xda}-[\ DG(u+3d )d&]-d (III.17)
Jo - ~~ ~ Jo - g 8

where the Frechet derivative D(GK) is evaluated at (I+FGK)" (r+aAr) with

Ar =F[G(u+d )-G(u)], u := Kd+FGK)"1,-, and aE [0,1].

Proof of Proposition III.6: see Appendix.

Proposition III.7: (System-input disturbance and feedback)

Consider the nonlinear, feedback system shown in Fig. III.5 and

described by eqns. (I.l)-(1.9), where d = d = d£ = 0. Suppose that F, GK
g o f ~ —

and (I+FGK)" are C maps, then Vr E

Ay := GK(I+FGK)"1(r+d.) -GK(I+FGK)"1(r)
„~ ~ ~—< i — ~ —,

(D(GK)[I+DF'D(GK)]"1da«d. (III.18)
0 ~~ ~ ~ ~~ i

where the Frechet derivative D(GK) is evaluated at (I+FGK) (r+ad ) and DF

is evaluated at GK[I+FGK]"1(r+ad )with aE [0,1].

Proof of Proposition III.7: Follows directly from Taylor's expansion theorem

[19, p. 190].
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Comments on Propositions III.5-III.7:

(a) Eqns. (III.15)-(III.18) show exactly how feedback can reduce the effects

of various external disturbances on the system output. Note that, by eqns.

(III.15) and (III.16), simultaneous disturbance attenuation of dQ and df is,

in general, impossible.

(b) In the special case that G, K and F are linear, the effects of the dis

turbances d , d-, d , d. on the system output reduce to (I+GKF) d ,
o r g l ** °

[(I+GKF)"1-!]d, (I+GKF)~1Gd and GK(I+FGK)~ d., respectively. Note that in

this case, those disturbance-output maps are related by, with obvious

notation

HJ = I+H , =I-H,KF = I-H,F (III.19)„ydo ~ ~ydf ~ ~ydg~~ ~ -yd^

(7)
III.3 LINEARIZING EFFECT [20]v '

It is often required that the map from the system input to the system

output is as linear as possible, e.g. HiFi amplifiers, telephone repeaters,

measuring instruments, pen recorders, etc. How to design such a system which

uses some inherently nonlinear plant is an important problem. From the

discussion in section II, we know that if the feedback map F is linear and

if the inverse loop gain is small, then the closed-loop system input-output

map will be close to a linear map. Thus we expect that feedback has a

linearizing effect on an otherwise nonlinear system. To make this idea

precise, we first introduce the concept of nonlinearity measure.

A Nonlinearity Measure

Let tL be an extended normed (input) space. Let ^ be an extended semi-

semi-normed (output) space. Let 41 = i®'> *Ue + 7L\ >N is causal, nonlinear}

The resul

A. N. Payne.

The results of this section were obtained with the collaboration of
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Let JL =(L: °U +V lL is causal, linear}. Now consider NE 9) and Yc 11^
a set of inputs of interest. Intuitively, the degree of nonlinearity of N,

when N is driven by u E V, may be measured by the error |Nu - Lu| for u E V,

where L EX is a "best" linear approximation of N over V. More precisely,

we introduce the following definition.

Definition III.8 (Nonlinearity measure)

Let N E 91, VC 1L and TG^T. The nonlinearity measure of N over If

with respect to T is the non-negative real number defined by

6 (N,<?/) := inf sup |Nu-Lu| • (III.20)
T ~ LE£ uE^ - ~ T

Remarks III.8:

(a) L £<£ is thus said to be a best linear approximation of N over V iff L

is a minimizer of (III.20), i.e., S (N,V) = sup |Nu - L*u| .
T " uET T

(b) In the case where ^ is a seminormed space, we then have the nonlinearity

measure of N over ¥ with respect to sup£T (typically, sup3^ = °°) and eqn. (III.20)

becomes <5(N,ty) = inf sup |Nu-Lu| .
L€£ uE^ - -

(c) The well-known describing function (see e.g. [21,22]) is the best linear

approximation of a nonlinear operator with respect to our nonlinearity measure

(III.20) provided that 1/', the class of inputs, is suitably defined. Recall

that the criterion which the describing function method uses to find a best linear

approximation L of a nonlinear system N is to minimize the mean square error

T([(?u:
T-*°° JO
u(t) = asinwt, a > 0, u> > 0, and thus L depends on the parameters a, u) . To

lim — I [(Nu)(t)-(Lu)(t)] dt over a class of inputs u(«) (usually

see the relation between the describing function and our nonlinearity measure,

let a > 0, 03 > 0 be given, let *V be the singleton {a sin u)t} and
n_ r\ (9K\

%^ = (y(*): IR, +TR. |y(') is asymptotically periodic } be equipped with

A function y(»): 3R -*- ]Rn is said to be asymptotically T-periodic iff
y(') = yT^*)+y (*)> where yT(') is a T-periodic function and y (t) tends to
0 as t -»• °°.
n
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the semi-norm |y| := [lim ^[|y(t)|2dt]1/2, then abest linear approximation
T-x» Jo

to the nonlinear system N according to our definition III.8 is a minimizer

of lim- \ [(Nu)(t)-(Lu)(t)]-2dt which is precisely the describing function
x-M» Jo ~ ""

of N with respect to the inputs u(t) = asinwt. Note that in this case,

the minimizer of (III.20) (i.e. the describing function of N with respect to

u(*)) is parametrized by a and a).

(d) With the framework of extended spaces, we can discuss the nonlinearity

measure of a nonlinear system over a bounded time interval, say, [0,T].

Note that a nonlinear system N may have its nonlinearity measure 6^,(8,1/) = 0,

VT < T* E Zl, but 6_,(N,^) $ 0 for T > T*, simply because N is operating

within the linear range of its characteristics before time T .

(e) At the cost of some complication, the class of nonlinear operators

under consideration can be extended to include the nonlinear dynamical

relations.

(f) Other nonlinearity measures may be defined, e.g., we can define

|Nu-Lu|
6 (N *V) = inf sup —r—t—- . Note that such nonlinearity measure does
T ~' LE* uEY Iu't

uT^0
satisfy all the remarks mentioned above and all the properties stated below.

However, we have not been able to obtain results similar to the Theorem III.14

below.

Properties of the Nonlinearity Measure 6 (N,tO

Proposition III.9:

If N2 =N1 +L1 for some L^ E£, then ^(N^ =V^*^* OT E^
V^C^.

e

Proposition III.10:

If V± C^ Ctte, then 6T(N,fT1) <6T(N,^), VT eX
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Proposition III.11:

Suppose that VT E Q-; PJjL is a normed space.and that NO = 0. U.t.c. if

N is Frechet differentiable^ at 0, then VT £ "3,

0 < 6f_(N,B_(0;e)) < _sup |Nu-DN(0)«u| + 0, as 3+ 0 (III.21)
~ T~ T uEBT(0;$) - -

where B (0;$) := {uE U. ||u| <3} and DN(0) denotes the Frechet derivative of

N at 0.

Proposition III.12:

Let ifC<U. be the set of inputs of interest. If for some L E J-,
e

Nu =Lu, Vu EV, then 6T(N,W =0, VT E ^p In particular, if NEX,
then 6„(N,V) = 0, VT E #, Vt^C ^

J. ~ e

Proposition III.13:

Let t^CW be the set of inputs of interest. Let £ be specialized into
e

the class of continuous, ' linear, causal operators mapping 1l^ into 2^.

Suppose that

(al) VT E3% PJ/ is a Banach space;

(a2) VT eST, VCU is bounded, i.e. sup |u| < °°;
e uEV L

(a3) VT E^, 33 >0 such that VD BT(0;3) := {uE^J |U|T< 3>.

U.t.c. if for some TE3% &T(H,ir) = 0, then, ^L* ^ £such that

|Nu-L*u|T = 0, Vu E V. (III.22)

Proofs of Propositions III.9-III.13: see Appendix.

^N E<$£ is said to be Frechet differentiable at xiff VT EO^, ]?TN is Frechet
differentiable at x.

^10^L E^ is said to be continuous iff VT E3% PL is continuous, i.e. VT E^,

IlIt := sup lui K °°-- L ue^ |u't

|u|T?i0 -32-



Comments on Propositions III.9-III.13:

(a) Proposition III.9 states the obvious fact that if two nonlinear, causal

operators differ by a linear causal operator, then they must have the same

nonlinearity measure. It is also intuitively clear, from a perturbational

viewpoint, that if a linear, causal operator is subject to some nonlinear

causal perturbation, then the nonlinearity measure of the perturbed nonlinear,

causal operator must be the same as that of the nonlinear perturbation.

(b) Proposition III.10 emphasizes the fact that the nonlinearity measure

depends on the class of inputs we are considering: the larger the class of

inputs we consider, the greater the nonlinearity measure of operator N.

(c) Proposition III.11 is another way of stating the well-known fact that

(since NO = 0) the best local linear approximation of a Frechet differentiable

nonlinear operator N at the operating point 0 is the Frechet derivative of N

at 0. Note that by eqn. (III. 21), 6T(N,B~T(0;3)) + 0 as $-> 0, i.e. N behaves

locally like a linear operator as we expected.

(d) Proposition III.12 states that 6 (N,^ satisfies the natural requirement

for a nonlinearity measure, namely, if N behaves as a linear causal operator

over the class of inputs IT in the time interval [0,T] C^, then 6(],(N,(&r) = 0.

(e) With some mild technical assumptions, proposition III.13 establishes

the following desirable property of 6T(N,^): if 6T(N,r) = 0, then N

behaves like a linear, causal operator over If in the time interval [0,T] C^T.

Note that if 6T(N,^0 = 0, then 6 (N,T) = 0, VT' <_ T.

Linearizing Effect of Feedback

With the nonlinearity measure defined in eqn. (III.20)»we now can make

precise the idea that feedback has a linearizing effect on an otherwise

nonlinear system.

Note that the nonlinearity measure defined in (III.20) allows us to compare

nonlinear systems by their degree of nonlinearity. However, a meaningful
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comparison requires careful choice of the sets of inputs since the nonlinear

ity measure depends on the set of inputs we are considering. From an engi

neering point of view, we are interested in comparing systems which produce

desired outputs (e.g., signals within certain frequency band or dynamical

range). Hence in the following discussion of the linearizing effect of

feedback, we shall compare the nonlinearity of measure of a nonlinear plant

and of a feedback system which includes such a plant; we shall choose a set

of inputs for each system so that both systems produce the same set of

desired outputs.

Consider the nonlinear feedback system S shown in Fig. I.l and described

by eqns. (I.l)-(1.9), except now that

(III.23)
%

is an extended seminormed space

Let <2>, C# be the set of desired outputs. Let rt, C$
</d,e 'e d,e €

be the set of system-inputs r(«) such that H r^ = %d e'

Let V, E *U be the set of plant-inputs u(') such that
d,e e

~ d,e *d,e

Now we have the following theorem:

"^

(III.24)

J

Theorem III.14 (Linearizing effect of feedback)

Consider the nonlinear, feedback system S shown in Fig. I.l and described

by eqns. (I.l)-(1.9) and (III.23)-(III.24). For some T E ^, let L* E £

be a best linear approximation to G, i.e.

6t(G'^ J = SUP |Gu-L*u|
1 ~ d,e uE*/ "" ~b L

d,e

(III.25)

Assume that F: V -*- # and K: £( "** ^C are linear> causal and that the linear

map (I+L KF) has a causal inverse, then
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WW - p'ST(S-%.e) (III-26)

where H := GK(I+FGK)~ is the closed-loop input-output map and
~yr — ~ ~~~

Kl+L^KF)"^^
p := sup 1—I (III.27)

yT^o

withi := (S-^d,e-

Proof of Theorem III.14: see Appendix.

Remarks III.14:

(a) In a design problem, given some G E ^ together with its best linear

approximation L over H. with respect to some TGX if one designs K, F
~G ii, e *" "*

such that p be much less than 1, consistent with other requirements, then

by eqn. (III.26), 6(n ,ft, ) « «-,(G, UA ), i.e. for the class of inputs under

consideration and for the time interval of interest, the closed-loop system

is much closer to a linear system than G itself. This result clearly

exhibits the linearizing effect of feedback.

(b) Note that p is defined via the inverse linearized return difference

"k —1

operator (l+L_KF) (when we break the loop after the plant G): since
~ -G— •"

the nonlinear plant G can be thought as a linear plant LG being subject to

some nonlinear perturbation G-L* and we know that (see eqn. (III.8)or [43]) as a
—————^— ~ ~o

first order approximation, the effect of a nonlinear perturbation on the otherwise

linear closed-loop system is reduced by the factor (I+LgKF) by feedback.

(c) If L*, K, F are linear and time-invariant, thus represented by transfer

function matrices L*(ja)), K(jw) , F(jco) , respectively) ,then p « 1 if the

* -1maximum singular value of [I+L|;(ja>)K(ju))F(ja>) ] is small over the frequencies

of interest.
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Example III.l (Single-input single-output memoryless system)

Consider the nonlinear, feedback system S shown in Fig. I.l, where G is

characterized by the piecewise-linear function shown in Fig. III.6, K and F

are represetned by constant gains 10 and 1, respectively. It is easy to

show that the closed-loop input-output map H is characterized by the

piecewise-linear function shown in Fig. III.7. Now let us consider the case

where U. = (y('): 1R+3R M^l0-8}* then the corresponding U^ e= (u(-):

]R -Kr| lul^fl.2} and ft. ={r: :R++IR| W\m± 0.92}. Astraightforward minmax

calculation shows that the best linear approximation L of G is a constant

gain of 0.6 and the nonlinearity measure of G is ^(G,^ e) = 0.12, VT E^;

more precisely, S„(G9fjL J = SUP |Gu-0.6u| = 0.12. Similarly,
T - d'e uE^j e-

6T(H ,^>e) = sup iH^r-frl^ =±f- ,VT E^. Thus the nonlinearity
rE^L ^ 1

measure of G has been reduced by 7 by feedback. Note that p = YToT6xlO = 7'

i.e. for this example, the equality holds in eqn. (III.26). The best linear

approximations of G and H are shown, by the broken lines, in Fig. III.6

and Fig. III.7, respectively. To further illustrate the linearizing effect

of feedback, we drive the nonlinear plant G with u = 1.2sinwt and the closed-

loop system GK(I+FGK)~ with r = 0.92 sin u)t. The corresponding (open-loop

system) output y_ and the (closed-loop) output y are shown in Fig. III.8.

In general, it is quite difficult to calculate the nonlinearity measure

6 of a nonlinear dynamical system and to obtain the best linear approximation

of such a system. However, for a given nonlinear plant G, we may illustrate

the linearizing effect of feedback by computing the closed-loop system output

with respect to several different compensator gains while the closed-loop

system is driven by some test signals. Examples II.1 and II.2 in section II

clearly exhibit the linearizing effect of feedback on nonlinear dynamical

systems. Note that the higher the compensator gain is, the more linear the
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closed-loop system appears to be as we expected from the result of theorem

III.14 (since p defined in eqn. (III.27) decreases as the gain of K increases).

III.4 ASYMPTOTIC TRACKING AND DISTURBANCE REJECTION

One important application of feedback in control is the servomechanism

design which aims at asymptotic tracking and asymptotic disturbance rejection.

Let us consider the asymptotic tracking problem. From the discussion of

generalized Black's formula in sec. II, we know that if we let F*= I in the

nonlinear, feedback system S shown in Fig. I.l and if we make the "forward-path

gain" sufficiently large, then, asymptotically, the output y(«) will be

approximately equal to the system input r(«). Thus we might intuitively

guess that we can obtain perfect asymptotic tracking, i.e. zero steady state

error, by requiring the "forward-path gain" be infinite at the frequency of

the system inputs. This turns out to be correct. Indeed in the classical

servomechanism design [23], an integrator is required in the compensator in

order that the system output track step signals with zero steady-state error.

For multi-input, multi-output systems, such a design principle has also been

proven to be correct for linear (see e.g. [24,25,26]) as well as nonlinear

cases (see e.g. [27]).

III.5 STABILIZATION

Stability is a primary concern of engineers since an unstable system

is obviously useless. However, there are many inherently unstable systems

such as rocket booster systems, nuclear reactors, some chemical reactors,

etc. which are useful in practice and hence must be stabilized. Note that

any open-loop stabilization scheme is doomed to failure in practice because

it is based on some kind of cancellation which will eventually fail as a
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result of changes in element characteristics, effects of environment, etc.

Hence feedback seems to be the Only way out.

Many researchers have studied the use of feedback in stabilizing unstable

systems. For lumped, linear, time-invariant systems, it has been shown that

a constant state feedback (see e.g. [28,29]) or a dynamical output feedback

(see e.g. [30]) can stabilize an unstable system; recently, Youla et. al.

[31] gave a characterization of all stabilizing feedback controllers. For

lumped, linear, time-varying systems, a time-varying state feedback can be obtained

(see e.g. [32,38,39,40,41]) to- stabilize an unstable system. For distributed,

linear, time-invariant systems, state feedback can also stabilize unstable

systems (see e.g. [33;34, chap. 14]). In contrast to linear cases, little

is known about the nonlinear case except for some limiting cases. It

should also be pointed out that little is known about how to proceed with

the design of a, say, state feedback, stabilization scheme so that the

resulting closed-loop system stability is very robust with respect to changes

in the plant and/or the feedback map. In this aspect, for the linear time-

invariant case, singular value analysis has provided some valuable informa

tion (see e.g. [44]).

IV. CONCLUSION

This paper has treated the fundamental properties of feedback for

nonlinear, time-varying, multi-input, multi-output, distributed systems. We

observed that the classical Black formula does not depend on the linearity

nor the time-invariance assumptions; we used the input-output description

of nonlinear systems to actually generalize Black's formula to the nonlinear

case (Theorems II.1 to II.3). Our analysis then established achievable

advantages of feedback, fainiliar to feedback engineers, for nonlinear systems
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(section III): theorem III.l showed the exact relation between the changes

in the open-loop and closed-loop input-output maps caused by nonlinear, not

necessarily small, plant perturbations; propositions III.5-III.6 calculated

the exact effect of various additive external disturbances on the output of

anonlinear system; theorem III.14 related the nonlinearity measure of a

nonlinear plant and that of a feedback system including such a plant;

sections III.4 and III.5 briefly reviewed the use of feedback to achieve

asymptotic tracking and disturbance rejection, and to stabilize unstable

plants, while references are given for more detailed discussion. These

results showed precisely how to achieve desensitization, disturbance attenua

tion, linearizing, asymptotic tracking and disturbance rejection by feedback

in nonlinear systems.

The benefits of feedback do not come without limitations or tradeoffs

as propositions III.2-III.5 showed: proposition III.2 showed the relation

between desensitization and feedback structure; proposition III.3 showed the

tradeoff between the sensitivities of a nonlinear, feedback system with

respect to the perturbations on the plant and on the feedback map; proposi

tion III.4 showed that stability requirements restrict the achievable desen

sitization effect by feedback; proposition III.5 showed the tradeoff between

the output disturbance attenuation and the feedback-path disturbance attenua

tion. Note that, due to the lack of appropriate language and tools, we did

not discuss the tradeoff between the gain and bandwidth. Consequently, we

did not explore the limitations on the benefits achievable by feedback

imposed by the plant with fixed gain and and bandwidth (in the context of

the Bode design method [45], the gain-bandwidth of a given active device

imposes an upper bound on the return difference over aspecified bandwidth).

-39-



Also note that we have only treated deterministic systems, i.e. no stochas

tic models were introduced for noise, perturbations, element variations,

etc. Thus, in particular, we did not mention the well-known limitation on

compensator gain caused by noise.

In clarifying the features of nonlinear systems that are required for

feedback to be advantageous, this paper will help engineers obtain better

understanding of nonlinear, feedback systems.
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APPENDIX

Proof of Theorem II.2:

Note that

H := GK(I+FGK)"1 -,
„yr

= F~1FGK(I+FGK)~ (since F is invertible)

=F~1FGK[(H-(FGK)~1)(FGK)]~1 (since FGK is invertible)

= F"1[I+(FGK)"1]"1 (A-1)

To estimate H r for r G ^, , we consider first z := [I+(FGK) ] r.
~yr d,e ~

To obtain for any TG^, zT, note that r = [I+(FGK)~ ]z, hence

z = r -(FGK)"1z . Now the Lipschitz constant [13, p. 63] of the right

hand side, over/C (L ), is y_[(FGK)~ ] < 1. By assumption (a3), the
d,e l ~~~

successive approximations starting with z^ =rremain in >l/(^d>e) forever;

since the contraction constant is < 1, we have that

|(FGK) 1rl
z-rL <

T ^V^GK)"1]

Thus, for each T G^T*,

|H >F"1r|. = |F~1(r-e)-F ^
1~yr ~ T '-- -

= |F 1[H-(FGK)"1]~1r-F"*1r|

(A.2)

T

<X(F~1)|[I+(FGK)"1]"1r-r|T (by assumption (i))

< X(F_i) — ^- (by (A.2))

In particular, if eqns.. (11.10) and (11.11) hold, i.e. for T G £7 sufficiently

large,
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-lr| «_^l_Ll and y[(FGK)"1] « 1(FGK)
X(F X)

then for T G^T sufficiently large,

|H r-F^rl « ^ \ »If^ ,Vr G£ . Q.E.D,
yr ~ i-y*!?? i

Proof of Theorem II.3:

Since F is invertible, we have, from Fig. 1.1,

y = H r = F (r-e)
J -yr

Hence, for TG3" sufficiently large, Vr G^e>

iH^r-F"^^ = |F i(r-e)-F \|T
-yr

< X(F'"1)|eL (by assumption (i))

=X(F"1)|(I+FGK)"1r|T
« |F""^r| (by assumption (ii)) Q.E.D,

Proof of Corollary II.3.1:

Consider the system S in the sinusoidal steady state (since the

closed-loop system is exp. stable by assumption (a2)) with input

r-exp(joot) and error e«exp(ju)t), where r, eG <En. Then, by linearity

of F(ju)),

H (jw)r =F(jO))"1(r-e) =F(jO))_1r -F(ja))" e

Thus

H (j(D)r-F(ja)) Xr = -F(jO))"" e
yr

= -F(jw)"1[(I+FGK)(jo))]" r

= -[(I+FGK)F](jw)~1r
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Hence

= -[F(jcj)(I+GKF)(ja))]~ r (by linearity of F(ja)))

= -[(I+GKF)(jaj)]"1F(jai)"1r

,H r(ju>)r-F(ja>) M =|[(I+GKF) (jw)] Vjw)"1^
« |F(ja))"1r| (by assumption (11.21)) Q.E.D.

Proof of Theorem III.l:

AH := H -H
-yr ~yr -yr

= GKd+FGK)"1-GKd+FGK)"1

= GKd+FGK)"1 - GKd+FGK)"1 +GKd+FGK)"1 - GKd+FGK)"1

= GKd+FGK)"1-GKd+FG^^tl-F-AG-Kd+FGK)"1]"1

+ AG«K(I+FGK)"1 (since F is linear) (A. 3)

Evaluating eqn. (A.3) at r6£, we have

AH (r) = GKd+FGK^rhGKd+FGK) 1(r+Ar)+AH (r) (A.4)-yr ~yQr

where

r+Ar := [I-F-AG«K(I+FGK)~1]~1(r) (A.5)

Since, by assumption, H = GK(I+FGK) is a C map, we can evaluate

AH (r) by the Taylor's expansion theorem [19, p. 190] and obtain

AH
-yr

fl - - _!
(r) = -\ D[GK(I+FGK) ](r+oAr)-Arda+AH (r)

Jo ~yor
fl - - _i

= -\ D(GK)'[I+F«D(GK)] -Arda +AH (r) (A.6)jQ — - - — -yQr

where the Frechet derivative D(GK) is evaluated at (I+FGK)" (r+oAr).

Note that eqn. (A.5) implies that

Ar = {[I-F-AG«K(I+FGK)"1]"1-I}(r)

= F«AG-K(I+FGK)~1[I-F-AG«K(I+FGK)"1]"1(r)
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= F•AG«K-(I+FGK) (r)

= F-AH (r)

Thus eqn. (A.6) becomes

r1 - ~ -i
AH (r) = -\ D(GK)»[I+F«D(GK)] -F-AH (r)da + AH (r)
~yr J0 ~~ yo ~yo

f1 - _i
= -1 D(GK)-F[I+D(GK)«F] da-AH (r)+AH (r)jq _ ,. - — - -yQr -yQ

(since F is linear)

f1 -1
= 1 {l-D(GK)-F[I+D(GK)«F] }da-AH (r)

JQ ~y0

Jo
I+D(GK)-F]"1da«AH (r) (A.7)-yQr

Eqn. (A.7) is true, VrGiJ, thus eqn. (III.4) follows. Q.E.D

Proof of Proposition III.2:

Note that

GK(I+FGK) 1 = (I+GKF) 1GK (since GK is linear)

and that

GK_(I+F GK9)"1K1[I+F GK (I+F GK )_1K ]_1
= GKQ(I+F GK9)_1[I+K F GK (I+F GKj"1]"1^ (since K is linear)

= [I+GK_ (F0+K. F. )]"1GK9K (since GK is linear)

Thus eqn. (III.10) follows from eqn. (III.9). Q.E.D.

Proof of Proposition III.3:

AH := GKd+FGK)"1 - GKd+FGK)"1
-yr

= GK(I+FGK)"1[I+AF«GK(I+FGK)~1]"1-GKd+FGK)"1 (A.8)
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Evaluating eqn. (A.8) at r G& , we have

AH r = GK(I+FGK) X(r+Ar) - GK( I+FGK) 1(r) (A.9)
~yr

where

r+Ar := [I+AF-GK(I+FGK) ]" r (A.10)

Since, by assumption (a3), GK(I+FGK)~ is a C map, we can evaluate

AH r by the Taylor's expansion theorem and obtain
-yr

f1 -1AH r = I D(GK)»[I+F-D(GK)] dcrAr (A.11)
-y* Jo

where the Frechet derivative D(GK) is evaluated at (I+FGK)" (r+aAr), and

DF = F since F is linear.

Note that eqn. (A.10) implies that

Ar = {[I+AF.GK(I+FGK)~1]"1-I}r

=-AF«GK(I+FGK)"1[I+AF-GK(I+FGK)"1]"1r

= -AF«GK(I+FGK)" r

= -AF-H r
- -yr

Thus eqn. (A.11) becomes

f1 - - _i
AH r = -1 D(GK)«[I+F-D(GK)] dcfAF-H r (since F is linear) (A.12)~yr JQ — - - — ~ ~yr

C1 - - -i -l
= -1 D(GK)»[I+F«D(GK)] Fda«F •AF-H r (since F is invertible)JQ — - - — - ^yr

r1 ~= -l D(GK)F-[I-
J0 ~

•i

I+D(GK)-F] 1da*F"1«AF«H r (since F is linear)
—— — — ~ —yr ~

[I+D(GK)«F]"1da-l}«F~1-AF«H r
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i.e.

r1 -l i ~AH = {1 [I+D(GK)F] \ia-l}«F -AF-H , on G
~yr J0 - - - - -yr <•«

Since H is invertible, we have
-yr

AH -H"1 = {( [I+D(GK)F]"1da-l}-F"1«AF , on U Q.E.D.
~yr ~yr J0 ~ — ~ - ~ »e

Proof of Proposition III.4:

For completeness, we first state an algorithm [36] which determines

the asymptotic behavior of the zeros of a polynomial. This algorithm is

a direct application of the Newton's diagram (or known as the method of

Puiseux, see e.g. [35, p. 105]).

Algorithm:

Data: Polynomial P(s,k) = /Jao(k)s G^[s]

where, for I = 0,1,2,...,n

mo

a £ 0 , and a„ ^ 0 , V0 < & < n-1 such that m« > 0
nm x,mn — — * .

n &

Step 1: Find i G N, and T , q G Q , 0 < p < i,where i, T 's, q 's are

such that

(i) i is the largest integer such that 0 = T_ < T. < ••• < T.;

(ii) q = max{m_,m.,...,m };
o u 1 n

(iii) for 0 < p < i,

m. < q -A*T , V0 < I < n
I - p p - -

with equality holds for at least two Vs;

(iv) if I (I ) is the smallest (largest) I such that m0 = q -A#T , then
-p p *> P P

£,_=£, for p = 0,1,...,i-1. (The procedure of finding i, T 's, q 's
—p+1 p P P
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can be best illustrated graphically by the modified Newton's diagram

shown on Fig. A.l.)

Step 2: For each 0 £ p £ i, form the polynomial

(J> (z) = Y) a0 zl (A.13)
AEUUt +m =q } * £

1 P A P

Step 3: Calculate the zeros of <J>n and denote them by z , j = l,2,...,n

Calculate the nonzero zeros of (j) , 1 £ p £ i, and denote them by z ,

3 = 1,Z,...,n .

Step 4: As |k| -»• °°, the n zeros of the polynomial P(s,k) behaves as

T

z kP , j= l,2,...,np , p= 0,1,2,...,i

where n >. 1, for 1 £ p £ i, and x_>n = n •

Now we can apply this algorithm to prove Proposition III.4. Without

loss of generality, we only have to prove the case where n = n. and

M = I . Note that

o

det[I+kG] = 1 + k[trace G(s)]

2
+ k [Z principal minors of G(s) of order 2]

+ • •• + k det G

..•det G]

x> J

-~r—[ II d.,+ka.(s)+k2a0(s) +••• +kma (s)]
i.j id i>J

where a (s) G]R[s], j = l,2,...,m.
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Let 3[ n d J =n. Since, by assumption, 3d "9n .> 3, Vi,j - 1,2,...,m,
ij lj J J

we have that* 3[a. (s)] £ n-3j, j= 1,2,...,m. Hence with i defined in

Step 1 of the algorithm above,

(j>.(z) = zn+ot1Qzn"3 +"- » 3 >3 ,

where (J).(z) is defined in (A.13).
o

Now we claim that (J).(z) has <C+-zeros. To see this, consider some

e > 0 sufficiently small; apply the Routh test (see e.g. [37]) to the

polynomial <J).(z+e). Since 3 > 3, the first column from the left in the
o

Routh array contains strictly negative numbers, thus (J>i(z) has <C+-zeros.
TiHence as k -*• °°, det[I+kG] has zero behaves as z±k with z± G <C+ and

T > 0. Q-E-D-
i

Proof of Proposition III.5:

(i) By definition, Gu := Gu+d . Then, by eqn. (III.4) (of Theorem III.l),

we have that

f1 ~ 1Ay = AH (r) = 1 [I+D(GK)«F] dcfd. (since AH (r) = d )-yr JQ - — - 0 -yQr u

1 i[I+D(GK)«F] Xda«dn (since D(GK) = D(GK))•j;
where the Frechet derivative D(GK) is evaluated at (I+FGK)" (r+aAr) with

Ar = F-AH r(r) = F«dQ.

(ii) By definition, Fy := F(df+y) =Fdf +Fy (since F is linear). Then

AF«y = (F-F)y =F«df (A.14)

Thus, following the proof of Proposition III.3, in particular, eqn. (A.12)

we have that
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f1 -1 ~Ay = -I D(GK)[I+F«D(GK)] da«AF«y (since D(GK) = D(GK))
Jo ~~ ~ ~ ~~

f1 -1= -1 D(GK)[I+F«D(GK)] Fda-df (by eqn. (A.14))

f1 -1= -1 D(GK)«F[I+D(GK)»F] da«d_ (since F is linear)
Jo f

={[ [I
J0 ~

I+D(GK)«F] 1da-l}*df

where the Frechet derivative D(GK) is evaluated at (I+FGK)" (r+oAr) with

Ar = -AF-H r = -AF-y = -Fdr and a G [0,1]. Q.E.D.

Proof of Proposition III.6:

By definition, Gu := G(u+d ). Then by eqn. (III.4) (of Theorem III.l)

we have that

•j1
Jo

Ay = I [I+D(GK)-F] ^-[GCu+d )-G(u)]
— - - g —

(since AH (r) = G(u+d )-G(u), where u = K(I+FGK) .r)
~y0r - g -

f1 ~ -1 f1= {l [I+D(GK)-F] da}«{! DG(u+$d )d6}»d
Jo ~ - ~ Jo - g 8

where the Frechet derivative D(GK) is evaluated at (I+FGK) (r+oAr) with

Ar = F[G(u+d )-G(u)], u := K(I+FGK)_1r, and a G [0,1]. Q.E.D.
- - g -

Proof of Proposition III.9:

6T(N9,tO := inf sup |N u-Lu|
1 L LGoC uG^ ~Z ~ l

= inf sup |N_u+L_u-Lu|
LG£ uGV ~i ~l ~

= inf sup |N u-L'u|
L'G£ vf=V ~L ~ L

=: 6T(NlfV) , VTGtf, Vl/CU . Q.E.D.
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Proof of Proposition III.10:

6n,(N,Vn) := inf sup jNu-Lul
T~ L USsC uG^ - ~

£ inf sup |Nu-Lu|T (since ^ C ^ C <fc)
LGct uG^

=:6T(N,^2) , VTG^ . Q.E.D.

Proof of Proposition III.11:

Note that DN(0) G <£. Hence

0£ 6_(N,B_(0;3)) £ sup |Nu-DN(0)u| (A.15)
T~ T uGBT(0;g) ~ -

By the definition of Frechet derivative, we know that for any £ > 0,

36 >0 such that |Nu-DN(0) -u| £ e|u|T» V|u|T £ 6. Hence as 3+ 0,

the right-hand side of eqn. (A. 15) tends to zero and 6T(N,B"T(0;3)) + 0.

Q.E.D.

Proof of Proposition III.12:

Let fC %. If, for some L G /, Nu = Lu, Vu G ^ then Lisa minimizer of

sup |Nu-Lu| ,VT e&, and 6 (N,fO = 0, VT G^. In particular, if NG<£,
v£V " ~ T
then N is a minimizer of sup |Nu-Lu| , VT GST, W C tl hence 6 (N,^) = 0,^v - - 1

VT G^, WCU . Q.E.D.
e

Proof of Proposition III.13:

By assumption, for some T G y,

6 (N,^) := inf sup |Nu-Lu| = 0 (A.16)
T ~ LG* vEV ~ ~ X

Thus for this T, there exists a sequence (L.) .=Q C<^ such that

sup |Nu-L.u| -> 0, as i -> 00 (A. 17)
uG^ ~ -1
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or
equivalents, for any ^ >0, there exists m± >0such that

sup |Nu-L±u|T <ex ,Vi >m1 (A'18)
uGV

for any e>0, if we let e± =^ and choose the corresponding mi >0
Now

such that (A.18) holds, then

Note

|L -L L =h sup |L.u-L,uL (by definition of the induced norm,
'~i ~j'T 3 ii =^ ~i ~J L With 3 defined in assumption (a3))

<|- sup |L.u-L u| (by assumption (a3))
— B *—- - ~i ~1 1

<^-[sup |Nu-L,u| +sup |Nu-L u| ]
~~ P uGtf ~ uGV ~ ~J

<1. 2e = e , Vi,j >m (by (A.18) and the choice of n^)
— 3 1 •*•

Thus (L.)°°_n is aCauchy sequence in 0^>l*lT)"

Note that for each TG^, <*T*> HT> is a Banach space with the

usual induced norm since, by assumption (al), P^ is a Banach space.

Hence there exists L* G«£ such that

PL. -^ P,L* (A-19>
-T-i ~T~

i-L*u|T £ |Nu-L.u|T + |L.u-L*u|T

< sup |Nu-L.u| + sup |L u-L*u|
~ uG^ ~ ~x L uG^ -1 ~

< sup |Nu-L,u|_ + |L -L*| -sup |u| ,
~ uG^ - -1 T -1 ~ * uG</

Vi (A.20)

By (A.18), (A.19) and the assumption (a2) that sup |u| <°°> the right-
uGtr

hand side of eqn. (A.20) tends to zero as i•*• °°. Hence iNu-L^I^ =0,

VuG^. Q-E-D-
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Proof of Theorem III.14:

Let L be a linear, causal operator such that the linear operator
-G

v-1 .L := L K(I+FLJt) is well defined and causal. Then
-yr ~G~ - ~~G-

H r-L r=GK(I+FGK)"1r -LpK(I+FL_K)"1r
-yr -yr ~~ - ~~~ ~g~ ~ ~~g~

=GK(I+FGK)"1r -L„K(I+FGK)""^r
.... .. ~~~ ~G~ ~ ~~-

+ L0K(I+FGK)"1r -LpK(I+FLrK)~ r

= (G-L_)u
— — \j

+LJCd+FL^r^d+FLJO - (I+FGK)] (I+FGK) -1r
~G~ G~ - ~~G~ - ~~~ — ~~~

(since F, Ln, K are linear and u = K(I+FGK)" r)

=(G-Lju +L0K(I+FLnK)"1F(Lp-G)K(I+FGK)"1r (since F is linear)

= (G-Lju -L^K(I+FL^K)"1F(G-Lp)u (since F,L ,K are linear)
— ~G — G~ ** -~G~ — - — vj vt

= [I-L^KF(I+L0KF)"1](G-L_)u (since Fis linear)
~ •*G~ - - - G~ - - - G ~

= (I+Lr,KF)"1(G-Lr)u (A.21)
— ~ G— — — - G

Thus

|H r-L r| = |(I+Lr,KF)"1(G-Lr)u
1-yr -yr 'T ' - -G-~ - ~g

|(I+LpKF) 1(G-Lp)u|

provided that P (G-L )u t 0.
T ~ ~GJ

,t, jl JL *1 JU

On letting L : = LJC(I+FLJK)~ , where L_ is defined in eqn. (III.25),
~yr ~G~ - --G~ ~G

we have, from eqn. (A.22)

d,e

i * i
< sup H r - L r- ^ '-yr ~yr 'T

d,e
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|(I+L*KF) Xy|It
< sup

|y|T

= p. 6T(5'\,e)

sup |Gu - Lru|

d,e

(A.23)

where i := (G-L )ft, and p is defined in eqn. (III.27). Note the last

inequality follows since when re^d »the corresponding

u := Kd+FGK)"^ ^°U, . Q.E.D.
~ d,e
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FIGURE CAPTIONS

Fig. 1.1: Nonlinear, feedback system S under consideration.

Fig. II.1: An example realizing a nonlinear input-output map using

nonlinear feedback and a large forward-path gain: the

logarithmic amplifier.

Fig. II.2: A nonlinear, single-input, single-output, dynamical system

illustrating the generalized Black result.

Fig. II.3: Characteristics of the nonlinearity <J>0) in tne nonlinear,

feedback system shown in Fig. II.2.

Fig. II.4: System outputs of the nonlinear, feedback system shown in

Fig. II.2 when the system input is r(t) = sin 10t and the

compensator gain is k = 1, 10, 20 and 40, respectively.

Fig. II.5: Error signals of the nonlinear, feedback system shown in

Fig. II.2, when the system input is r(t) = sin lOt and the

compensator gains are k = 10, 20 and 40, respectively.

Fig. II.6: The input to the nonlinearity (J>(*) of the nonlinear, feedback

system shown in Fig. II.2, when the system input is

r(t) = sin lOt and the compensator gains are k = 1, 10, 20

and 40, respectively.

Fig. II.7: A nonlinear, multi-input, multi-output, dynamical system

illustrating the generalized Black result.

Fig. II.8: Characteristics of the odd function v(«).

Fig. II.9: Characteristics of l+0.2tanhx, x _> 0.

Fig. 11.10: System output y,(*) of the nonlinear, feedback system shown

in Fig. II.7 when the system inputs are r (t) = sin 10t,

r?(t) = 0.8sinl5t and the compensator gains are k = 1, 10,

20 and 40, respectively.
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Fig. 11.11: System output y2(0 of the nonlinear, feedback system shown

in Fig. II.7 when the system inputs are r^t) = sin lOt,

r (t) = 0.8sinl5t and the compensator gains are k = 1, 10,

20 and 40, respectively.

Fig. 11.12: Error signal e (•) of the nonlinear, feedback system shown

in Fig. II.7 when the system inputs are r^t) = sin 101,

r (t) = 0.8sinl5t and the compensator gains are k - 10, 20,

and 40, respectively.

Fig. 11.13: Error signal e?(°) of the nonlinear, feedback system shown

in Fig. II.7 when the system inputs are r.(t) = sin 10t,

r (t) = 0.8sinl5t and the compensator gains are k = 10, 20

and 40, respectively.

Fig. 11.14: One period of the steady state trajectory of the system

output y(#) of the nonlinear, feedback system shown in

Fig. II.7 when r (t) = sin lOt, r2(t) =0.8sinl5t and k = 40

Fig. 11.15: One period of the steady state trajectory of the input to

the nonlinearity $(•) of the nonlinear, feedback system

shown in Fig. II.7 when r (t) = sin lOt, r2(t) = 0.8sinl5t

and k = 40.

Fig. III.l: A comparison open-loop system for (comparative) sensitivity

analysis.

Fig. III.2: The perturbed closed-loop system: the plant G becomes G.

Fig. III.3: The perturbed open-loop system: the plant G becomes G,

the precompensator K^ remains unchanged.

Fig. III.4: The nonlinear, multi-loop feedback system for studying the

relation between desensitization and feedback structure.

Fig. III.5: Nonlinear, feedback system S subjected to additive external

disturbances.
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Fig. III.6: Characterizations of the nonlinear plant G and its best

linear approximation L* (in broken lines).
—G

Fig. III.7: Characterizations of the closed-loop system H and its best

linear approximation (in broken lines).

Fig. III.8: Outputs of the nonlinear plant G, yQ, and the closed-loop

system H , y, when the plant input u(t) = 1.2sino)t and the

closed-loop system input r(t) =0.92 sinu)t.

Fig. A.l: Modified Newton's diagram for finding the parameters i,

T 's, q 's.
P P
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