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ABSTRACT

The problem of determining row and column permutations to transform

., a nongingular (not necessarily symmetric) matriz to a minimum k k-bordered
difficult) problem by treating an equivalent bipartite graph problem
— determine a minimum essential dumbbell set. A (sequential, rather
than backtrack oriented) algorithm is described by which to obtain a
minimal (local minimum, rather than minimum) essential dumbbell set,
hence, also a minimal k k-bordered lower triangular form of a matrix.
The performance of an APL realization of the algorithm i8 illustrated

and data to justify an embedded heuristic is provided.
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I. INTRODUCTION
In the analysis of a large scale system, such as an electrical
network, it is usually advantageous to take account of such a systen's

structure. This structure is manifested by the equations describing

the mathematical model of the physical system and can (usually) be exploited

by a reordering of the equations and variables. One structure, made
manifest as a k-bordered lower triangular Jacobian matrix of the re-
ordered equations, has been recently exploited.+ This is the case in
algorithms developed to solve sets of nonlinear equations [1], to solve
linear programming problems [2], (with tearing methodologies) to solve
linear algebraic system equations [3,4], and to study input-output
stability of interconnected systems [5].

In general, many different k-bordered lower triangular forms PAQ
of a matrix A exist, depending upon the row permutation —
matrix P — and the column permutation — matrix Q —
selected. Of note, though, is: 1In all the applications just mentioned,
the solution process becomes increasingly efficient as k decreases.
By this we then infer the following optimization problem [4]: Given the
matrix A determine permutation matrices P and Q such that PAQ is a
k-bordered lower triangular matrix with minimwn k. As a constraint
on the problem, we would, as has been necessary in all of the above
noted applications, impose: The matrix PAQ must have non-zero diagonal

~

elements. This now constrained optimization problem has been investigated

+
A square matrix A = [aij]of order n is k-bordered lower triangular
(k-BLT) if aij = 0 (i = l,ooo,n_k (j = i+l,.oo,n—k)). See Figo 1‘
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under the assumption that Q = P' — symmetric permutations on A — with
some graph theoretic algorithms for establishing P having been given
[1,4,6,7,8].+ Without this assumption this problem stands unresolved — an
open question [9] — with but few applicable results.

In [10], the first author proposed a graph theoretic interpretation
of the problem and a resolution of it, based on directed graphs and
simple operations on them. Some heuristic algorithms were subsequently
proposed in [11]. 1In this paper, we will provide a careful interpretation
and treatment of this problem based on bipartite graph theory,
culminating with presentation of a rigorously justified heuristic
algorithm.

The organization of the paper is as follows: Some graph theoretic
terms are defined and the correspondence between matrices and bipartite
graphs is shown in Section II; the equivalence of the task of establishing
an optimum — minimum k — solution of the (non-symmetric permutation)
problem to the task of obtaining a dumbbell — graph theoretic term to
be defined — set of minimum cardinality is established in Section I11;

a backtrack algorithm by which to accomplish the latter task is produced
in Section IV and then there shown to be intrinsically hard (NP-complete)j
a heuristic algorithm to invoke in place of and exhibiting greater
efficiency than the backtrack algorithm is described and validated in
Section V; illustrations of the heuristic algorithm, realized as a

collection of APL functions (listed in the Appendix), are given in

Section VI; the concluding discussion is the subject of Section VII.

See also the papers cited in these referenced papers, especially the
citation of [8].
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II. DEFINITIONS
Any graph theoretic terms not hereafter defined are to be understood
as defined by Harary [12]. Let G = (X,U) be a graph [alternatively,

G = (X,E) be a d'bgmphﬂ with a set of nodes X and a set of edges

U= {{xi’xj} X%y € X} [alternatively, a set of directed edges
E = {(xi’xj) f XX, € X}]. A simple path [alternatively, simple directed

path] u(xi,xj) is a sequence of distinct nodes — thus, X # Xy — denoted

<p0""’p2,) such that py = X;, Py = X5 and {pk l’pk} € U (k = 1y00052)
[alternatively, and (pk-l’pk) €EE (k= 1l,...,2)]. The path is said to
be of length %. A simple cycle [alternatively, a simple directed cycle]
n is a sequence of nodes <p0’”"P2,-1’p0) such that (po,...,pz_l) and
(pl,. ..,po) are simple paths [alternatively, simple directed paths].

The cycle is said to be of length %. A simple [alternatively, a simple
directed] path or cycle is said to contain an edge if that edge is
{Pk-l’pk} [alternatively, (pk_l,pk)] for some k = 1,...,%, with Py
interpreted as p, for a cycle. The gection graph [alternatively, section
digraph] defined on the node set Y C X is G(Y) (Y U(Y)) where

u(y) = {{xi,xj} {x ,xj} €U A xi,xj € 1} [alternatively, G(Y) A (Y,E(Y))

where E(Y)i:.{('xi,xj): (xi’xj) €EEA xi,xj € Yl}l.

A directed graph G = (X E) is said to be strongly connected if,

for every pair of vertices x ,xj € X, there exist a simple path

i
ul(xi,xj) and a simple path uz(xj,xi). Note: A trivial digraph —

with just one node — is considered to be strongly connected. Let



™ =‘{X1,...,Xq} be a partition of the nodes X. If the section

digraph G, = G(xi) d=1,...,q9) is strongly connected and is not a

i
proper subgraph of some strongly connected section digraph of G, then

the G,'s are called the strongly connected components of G.

i
A bipartite graph B = (S,T,U) is a graph B = (X,U) [alternatively, a

bipartite digraph B = (S,T,E) is a digraph B = (X,E)] such that X = § Ur,

falternately, E= S UT], S VT = ¢, and the section graphs [alternatively,

digraphs] B(S) and B(T) are both node graphs — edge free graphs. A set of

edges I C U of a bipartite graph B = (S,T,U) [alternatively, C E

of a bipartite digraph B =‘(S,T,E)] is said to be a matching if no

two edges of I are incident at the same node. A node is said to be

covered 1f an edge of I is incident at it. A complete matching is a

matching such that all nodes are covered. A maximum cardinality matching

is a matching having a maximum number of edges. Note: A bipartite

graph may not have a complete matching, but it always has a maximum

cardinality matching; on the other hand, a complete matching is a

maximum cardinality matching. These several categories of matchings

are illustrated in Fig. 2. A simple path — node sequence

<PO""’p2? — 1is said to be a simple alternating path wrt I

(with géépect to If:-denotéd AIkki,xj), if {pk?l,pk} € i for k odd

or for k even. A simple cycle — node sequence (po,...,pz_l,po) — 1is
said to be a gimple alternating cycle wrt I, denoted pps if (90""’92—1)
and <p1"°”p2—1’p0) are alternating simple paths wrt I.

Clearly the length of an alternating cycle must be even. If a bipartite

graph B has no alternating simple cycles with respect to some matching

I (of B), then B is said to be acyclic wrt I.
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Graphs have often been used to represent the zero/non-zero element
structure of matrices. In this paper we will do likewise for square

matrices using bipartite graphs. The relationship of a bipartite graph

to a matrix A = [aij] € R™™ j5 quite simple: Letf
B[A] = (s[al, T[A], U[A]), denoting the bipartite graph associated
with A, be defined by the conditions' | |S[§1| = |T[A]l] = n and

Tt

{Si’tj} € yl[A] iff #0 (1,j = 1,...,m). Now, bipartite graphs

a4

are particularly well matched to the task of establishing a non-symmetric

permutation strategy. In particular, a non-symmetric permutation on

A, realizing PAQ, has as its effect the separate reordering of the rows

and columns of é.vyThus, by the definitions of B[A] and B[PAQ] it

follows — because PAQ is but a row and column reordered copy of A — that

B[A] and B[PAQ] are isomorphic. The structural properties are maintained.

Moreover, it must be noted that the existence of a complete matching

I[A] in B[A] is equivalent to the existence of non-zero elements of A

which can be brought by row and column permutations to the main diagonal

of PAQ. Thus, I characterizes a "coupling" between rows — corresponding

to the S set — and columns — corresponding to the T set — of A.
Throughout the paper it will be necessary to consider, in addition

to an edge in I, the nodes at which the edge is incident. This is a

special section graph — of a bipartite graph B = (S,T,U) — which we call a

dumbbell. 1In particular, let s € S and t € T; then the section graph

defined on these two nodes is a dumbbell, denoted s—t, if {s,t} € U. Now,

given a bipartite graph B and a complete matching I, the

= .
When there can be no confusion in doing so [A] will not be appended
to B, S, etc. -

it
The symbol for a set enclosed by vertical rules — e.g., |S[A]| — denotes
the cardinality — number of elements — of the set. B

+++
Throughout, iff denotes if and only if.
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fundamental dumbbell set wrt I, denoted D;, consists of the dumbbells
associated with the edges of I. Given a bipartite graph B = (S,T,U),
a set of dumbbells D, and a dumbbell d = s—t € D, the set of

dumbbells adjacent to d in D wrt S, denoted SAD(a), is
s (d) = {d: d = st €D-{d} A t = {}

and the set of dumbbells adjacent to d in D wrt T, denoted TAD(a), is
TAy(d) = {d: d = st €D -{d} A s = 8}

The S-degree of d denoted sg(a), is the cardinality — |SAD(3)| — of
the set SAD(a), and the T-degree of 3, denoted Tg(a), is the cardinality —
|TAD(a)| — of the set TAD(&). A set of dumbbells D distinguishes

the following sets of nodes:
S(D) = {s: s €5 A 4 st €D},
T(D) = {t: t €T A J st €D},
and
X(D) = s(D) YV T(D).

Let B be a bipartite graph with a complete matching, then a set of
dumbbells F is an essential dumbbell set of B if the section graph

B(Y), where Y = X-X(F), admits a complete matching and is acyclic with
respect to that matching. An essential dumbbell set of minimum
cardinality, denoted MF, is called a minimum essential dumbbell set

(of B). These several constructs associated with dumbbells are
illustrated in Fig. 3. Each of these dumbbell related concepts associated
with a bipartite graph have their counterparts when a bipartite digraph

is considered. In the definitions the word directed would be added
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and U would behfé;iaced B} E. Notationally, a directed dumbbell is

denoted as s >+ t (or t -+ s, as the case might be).

III. OPTIMUM BORDERED (LOWER) TRIANGULAR FORM AND BIPARTITE GRAPHS
The graph theoretic interpretation of the constrained optimization

problem will emerge as a consequence of the following propositions and

lemmas. We start with

PROPOSITION 3.1 Suppose a bipartite graph B has two complete matchings

Ia and Ib' Then there exists a set of disjoint simple alternating

cycles wrt I& and wrt I, {pi 1= l,;.;,no} such that (I&-f) U (Ib-f)

is the edge set associated with {p*}, where T= T, N I,.

PROOF: This proposition is an immediate consequence of a theorem

in [13, p.123]. n

The relationship between a pair of complete matchings specified
by this proposition is illustrated in Fig. 4. We now present
LEMMA 3.1 Let B be a bipartite graph with the complete matching I.
Then the following statements are equivalent:

(a) I is unique.

(b) B is acyelic wrt I.

PROOF This lemma is an immediate consequence of Proposition 3.1.
-}

The next result we seek to establish is expressed in



LEMMA 3.2 Let B be a bipartite graph with complete matehing I and let
DI be its fundamental dumbbell set wrt I. Then, if B is acyclic wrt I,
there exists a dumbbell dT € Dy such that SADI(dt) = ¢ and a dumbbell
d0 € Dy such that TADI(do) = ¢.
The proof of this lemma rests upon
CONSTRUCTION 3.1 Let B = (S,T,U) be a bipartite graph with the complete
matching I. Let BY = (S,T,E') be the derived bipartite digraph wherein
(s,t) € E iff {s,6} € U A (8,8} E I
and
(t,6) € B iff {e,6} €U A {e,t} €I
and upon
PROPOSITION 3.2 Let B be a bipartite graph with the complete matching
I and let B be the bipartite digraph derived according to Comstruction &.1.
Then, there ie one-to-one correspondence between simple directed cycles
of B and simple alternating cycles wrt I of B.

PROOF: This proposition is an obvious consequence of the definitions of

simple directed and simple alternating cycles. -

Because of the correspondence established by this theorem, we may refer
to a bipartite digraph which has no simple directed cycles as acyclic.
We now return to
PROOF: [Lemma 3.2] Create EI according to Construction 3.1. Because
B is acyclic wrt I (by hypothesis), it follows (by Proposition 3.2)
that EI has no simple directed cycles. Hence, by a well-known theorem
(see Proposition 6.2 in [14, p.29]), there is a node which has 0 out-degree.
By Construction 3.1 this node must be in S; denote it by 8y Similarly,

there is a node which has 0 in-degree that must be in T; denote it by tT.
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Clearly, there is only one edge, denoted (to,so),incident at
8, and only one edge, denoted (tT,BT), incident at t'r’ By the
correspondence between edges of ﬁI and B and by the fact — established

by hypothesis — that I is a complete matching the dumbbell

¢. Similarly, the dumbbell

(-
n

- (S T
Sy 1:0 DI is such that TADI(dG)

(="
I

-t €
s .-t DI is such that SADI(dT) ¢. y

The next result we need is set forth in
LEMMA 3.3 Let B be a bipartite graph with the complete matching I.
Then, B i8 acyelic wrt I iff it is possible to order the fundamental
dumbbell set Dy as a sequence <d1""“i) such that d. € TA_ (d.) implies
n 1 DI J
i< J.
0 0

PROOF: [only ©¢f] Set B" = Band I = I. (Obviously, D 0° DI.)
I

By Lemma 3.2 there exists a ;i €D 0 such that TAD (‘?1) = ¢, Set d, = d.
I I0
It follows that {D. - {d,} N TAD (d,) = ¢ and (hence) that
I 1 0 1
I

{DI - {d-l}} N TA.DI(dl) = ¢. Derive B1 from BO and Il from IO by

deteleting d Clearly, Il is a complete matchirig for Bl and Bl is acyclic

1.
wrt Il. Again by Lemma 3.2 — here applied to Bl with Il - there

exists a d €D 1 such that TA, (d) = ¢. Set d, = d. It follows that

2
I Il

{p; - {dl’dz}} N TAbll(dZ) = ¢ and (hence) that {DI - {dl’dZ}} N TAD](:dZ) = 4.
Continuing in this manner a complete ordering of the dumbbells of DI is

obtained such that {DI - {dl,... ’dk}} N TADI(dk) = ¢. Equivalently,

di € T%I(dj) implies 1 < j. [Zf] Again, set B0 = B and IO = I. By

di € TAD (dj) implies 1 < j (j,1 = 1,...,n) we infer that TA, @) =¢
0 1 ¢
I IO
-10-



Thus, the vertices of d, cannot be in a simple alternating cycle. It then

1
follows that any simple alternating cycles of B0 remain as simple alternating

cycles of Bl, derived from BO by deleting d Similarly, Il is

lo

derived IO by deleting d Clearly, I]' is a complete matching for Bl.

1'
Furthermore, by di € TA, (dj) implies 1 < j (i,j = 1,...,n) we deduce
0

that d, € TA, (dj) implies i < j (i, = 2,...,n). Continuing in this
I1
manner — next for B1 — we arrive at the bipartite graph Bn-l consisting

of just dn' This graph is obviously acyclic. Hence, B must also be

acyclic. n

The last of the preliminary results we need is stated in

X
mnn

LEMMA 3.4 A matrix A € can be transformed by row and column

permutations to a lower triangular matriz with non-zero diagonal elements
iff BIA] has a complete matching I and is acyclic wrt I.

PROOF: [Zf] By Lemma 3.3, order D_. as a sequence {d ,...,dn) such

I
S .
that di TADI(dj) implies i < j. Let d

1

- Sk-tk' Now there always

exist permutation matrices P and Q such that row s, (1 = 1,...,n) of A

i
becomes row i of PA and column t:j (3 =1,...,n) of PA becomes colum j
of PAQ. Becuase each dumbbell of DI corresponds to a non-zero diagonal
element of PAQ, it follows, by d, € T4, (4)) dmplies i <3, that 2AQ

is lower triangular. [only if] This only <f portion of the proof can
be obtained by reversing the arguments and steps of the preceding Zf

portion. .

Let us observe that, by Lemma 3.1, the last part of this lemma could

have read ...has a unique complete matching.

+A lower triangular matrix is a O-bordered lower triangular matrix.
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29

We now present the principal result of this section as

nxn b

THEOREM 3.1 The determination of a transformation of A € R Yy

row and column permutations — A into PAQ — such that PAQ is

k-BLT with minimum k and with non-zero diagonal elements is equivalent
to (®) the determination of a minimum essential dumbbell set MF of
BIA].

PROOF [=] Suppose there exist permutation matrices P and g such

PAQ = A is k-BLT with minimum k and with non-zero diagonal elements.

Then
~ %11 %412
2714, &,
221 222

where éll is lower triangular and order n-k. By Lemma 3.4, B[éll]

has a complete matching I[§11] and is acyclic wrt 1[511]. Furthermore,
because §22 has non-zero diagonal elements B[ézzl has a complete matching
1[522] corresponding to those diagonal elements. (Obviously,

I[é] = 1[511] L’I[§22] is a complete matching for B[é].) Now,

3[511] = B[é](X—X(DI[A ])). Therefore, is an essential

D P
el Il4y,!
dumbbell set of B[A] and, as A is of minimum order (by hypothesis),
it is a minimum essential dumbbell set of B[é]. Since B[A] and B[é]
are isomorphic, there exists a corresponding minimum essential dumbbell

set MF of B[A]. [¢] Suppose there exists a minimum essential dumbbell

set MF of B[A]. It also then follows that B[A] has a complete matching

(containing MF). So, there exist row and column permutations — correspond-

ing to relabelings of the vertices of S and T — such that the diagonal
elements of the transformed A, expressed as PAQ, are non-zero and such
that those associated with the dumbbells of MF occupy the last k = |MF|
positions. By the definition of a minimum essential dumbbell set it

-12-
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also follows that B[é](X—X(MF)) has a complete matching and is acyclic.
Thus, b& Lemma 3.4, the above noted permutations can be chosen such
that the first n-k rows and columns are a lower triangular submatrix
of PAQ. Therefore, PAQ is k-BLT with — because MF (by definition) is

~ o0

of minimum cardinality — minimum k. -

IV. BACKTRACK ALGORITHM FOR MINIMUM ESSENTIAL DUMBBELL SET:
VALIDATION AND COMPUTATIONAL COMPLEXITY

By Theorem 3.1 we have deduced from the constrained optimization
problem the following equivalent problem: Given the bipartite graph B,
determine a minimum essential dumbbell set MF (of B). For the solution
of this problem we shall offer our backtrack (search) algorithm shortly.

In a search for a minimum essential dumbbell set it is necessary to
preclude, insofar as is possible, dead-end searches. Note: Dead-end
searches are made highly likely by the need to also establish a complete
matching. Therefore, we must exploit the relationship between a complete
matching and dumbbells to avoid dead-end searches. To that end, we
will invoke the criterion: The dumbbells considered at each step of
the search must belong to a set of dumbbells whose edges can be included
in a complete matching. Now, such dumbbells are identified through
Proposition 3.1. We shall, however, turn to an alternate means — one
that appears computationally more attractive — of identifying them.

By iﬁvoking Proposition 3.2, it is possible to prove, as in [15].

THEOREM 4.1 Suppose the bipartite graph B = (S,T,U) has a complete
matehing I,. Consider the edge {8,t} E I, PNow, there exists a complete
matehing Ib such that {322} Gilb iff (8,%t) belongs to a strongly
conmected component of B %, the bipartite digraph derived from B by
Construction 3.1.
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The backtrack search algorithm we shall propose is based upon
this theorem. Before doing so, however, it is convenient to the wording
of the algorithm to alter the category of components said to be strongly

connected in a trivial sense. Thus, if 8 € S and t € T are trivial

I

st:ongly connected components of EI and (E,Q) €E, thend = t +>s

is said to be a strongly connected component in a trivial sense.
We now present the

BACKTRACK (SEARCH) ALGORITHM'r

COMMENT ﬁI = (8,T,E) is assumed to be strongly connected and

non-trivial (E # ¢).

BEGIN Make the assignments ﬁg = (Sg,Tg,Eg) « B = (s,T,E), Dg <« ¢

(Dg is a set of directed dumbbells, initially empty), MF <« ¢,
o <« (ﬁ?_) (¢ is an ordered set — stack — initialized with ]—32),

o <« 1, j1 € ce. € jn « 0, k « », and ﬂ “ o,

{1} REPEAT Let RN
Ix

assignments k < K.

be the first element in the stack a. Make the

IF k+1>k

{2} THEN Delete §§ from a
k
ELSE
{3} REPEAT Determine the strongly connected components of
§§ . Let TSC? denote the trivial strongly connected
k k
components — a set of dumbbells. Make the
=k =k k
assignment B, <« B, - TSC, . Establish p, the
e I

number of strongly connected components of ﬁ?
k

IF p+ k> Kk

1.This algorithm, and that to follow, follow the conventions set forth

by Wirth [20]. In addition, line reference numbers are placed at the
left margin within braces, as {1} for line 1.

-14-
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{4}

{5}

{6}

{7}

{8}

THEN Delete §§ from a. Make fﬂe assignment
k
k « =,

ELSE Let {dl,...,d " } be the set of directed

L

I

=k
dumbbells associated with Bj
k

edge of §§ . Make the assignments n < 1 and
k
k<k+1

, one for each

REPEAT Make the assignments jk < jk +1

and D? «p*t U{dn}.
Kk k-1
IF Dk =Dk for some m = 1,...,3,-1
I m k
THEN Put ﬁk on top of a. Make the

Ik
assignment n < n + 1.

ELSE

IF d #t_+s
n n n

THEN Find a path u(tn,sn).

Reverse the edges of
k-1

Ip-1

{s ,t } in B k-1 ndd.
n’ n n

I
BEGIN Make the assignment
§§ «B KL
kK Jk-1

u(tn,sn) in B and the edge

d_.
n
END

IF 35 is acyclic.
Ik

THEN Make the assignments
k+kmdm+D§.

k
ELSE

IF k+ 1<k

-15-
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THEN Put ik on top
I
of a. Make the

assignment
n<n+l,

UNTIL n>zlj‘ ork+1>k
k

UNTIL k+ 1>k
UNTIL o = ¢ or k=1 (MF is, this case, a minimum essential

dumbbell set of B.)

The validity of this algorithm to échieve a solution of our
problem is expressed in
THEOREM 4.1 The backtrack algorithm establishes a minimum essential
dunbbell set. |

PROOF: At line 7, MF is set equal to D? when §§ is acyclic, where
igk has been obtained from ig = EI by delztion of gumbbells at lines 3
and 6. The dumbbells deleted at line 6, recorded as the elements of
D?k, are those which when deleted from ﬁg realize an acyclic bipartite
digraph, equal to ﬁ?k upon deletion of trivial strongly connected

componenté_:; those dumbbells deleted at line 3. That is

B(X-X(MF)) is acyclic and, furthermore, has a complete matching (by
Theorem 4.1). At lines 2, 4, and 8 the stack o is purged of or precluded

from acquiring any reduced graph which would lead to a D, of cardinality

k
. N
greater than that, k, of the thusfar established MF (at line 7). As
all essential dumbbell sets are considered, MF must be on exit from

the algorithm (satisfaction of the conditions of line 9) the minimum

essential dumbbell set, Note: The alternate stop by the test k=11in
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rééognition of the fact that the cardinality of MF must be at least 1

. =1
for a strongly connected bipartite digraph as assumed for B, .

Let us here observe that E? is the j, -th graph at the k-th level
of the search process (or, tree)? as illustrated in Fig. 5. The algorithm
implements a depth first search strategy — at every phase of the
process a path to greatest possible depth in the.tree is sought and
after each backtrack, return to line 1, such a path is again sought.
Of course it is possible to implement a breadth first search strategy,
but it would not then be possible to use the bound k to "prune" the
tree, as is done at lines 2, 4, and 8 of our algorithm. We also note
that the ordering of the dumbbells in the set of dumbbells at lime 5
is arbitrary. Hence, the selected dumbbell dn of subsequent steps is
also arbitrary. One might select dn from among those of the set not
previously selected by some (heuristically established) criterion which
engenders (with a high likelihood) an acyclic graph at a least depth
in the tree. |

As is evident (after a little thought), the number of twigs of
the pruned tree is exponential — not polynomial — in the number
of edges of B. Thus, even when the number of edges is modest, the bound
on the number of passes through the algorithm is so large as to preclude

using it. So we are led to ask: 1Is this the best we can expect to do?

Unfortunately, because the problem is NP—complete+ the answer is yes.

*Some combinatorial problems — such as the traveling salesman
problem, the map coloring problem, and the feedback vertex set
problem — are more difficult than others, in the sense that for
these problems there is no available algorithm to solve any one
of them in operations and with storage bounded by a polynomial

in the number of edges and/or nodes of the problem's graph. Karp
has shown [16] that many of these difficult graph problems are
equivalent in the sense that for each of them, or none of them,
there is a polynomial bounded algorithm by which to generate a
solution. This result strongly suggests that these problems will
remain intractable.
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"To prove that this problem is NP-completé, wég;écast the minimum

dumbbell essential set problem into a decision problem [16,17,18]

consisting of:
INPUT: a bipartite graph B = (S,T,U) and an integer kMF'
PROPERTY: There exists a set MF of kMF DUMBBELLS IN
B = (S,T,U) such that B(X-X(MF)), with X = S UT, has a complete
matching I, and is acyclic wrt I.
By invoking a theorem of Cook [18], it can be shown that a
decision problem M is an NP-complete problem by showing that M is an
NP problem”and byuéﬁoﬁiné that any one of the decision problems already

known to be an NP-complete problem, such as the feedback node set decision

proBle& [17j, can be transformedT into M. We shall proceed in this way
to validate.

THEQREM 4.2 The minimum essential dumbbell set (decision) problem is
NP-complete.

PROOF: The backtrack algorithm presented previously is of polynomial
bounded depth — equal to half the number of vertices, or
|S| = |T| — and can be used.to solve MDS; therefore, MDS is an NP
problem. Let FNS denote the feedback node set decision problem.
INPUT a digraph G = (X,E) and an integer kMV’
PROPERTY there exists a set MV of kMV nodes in G = (X,E)

such that G(X-MV) is acyclic.

*A decision problem L is said to be transformable into a decision

problem M if there exists a relation f such that f maps the input
of L into the input of M, there is an algorithm to compute £ in
polynomial bounded operations, and f preserves the problem, that

is, the input of L satisfies the property of L. 1ff the corresponding
input of M satisfies the property’ of M.
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The transformation of the input of FVS into that of MDS is

defined as follows:

@) I = ke

(1) s, €8, t, €T, and {si,ti} €U of B= (5,T,U) when

i i
X € X of G = (X,E), and
(1ii) {si’tj}l € U of B and {si,'tj}2 € U of B — a pair of

parallel edges — when (xi,xj) € E of G.

An input for MDS can be realized from one for FVS in polynomial bounded
operations Q3|X| + |E|). -Now, we must show that S for FVS with G and
kMV is true iff S for MDS with B and kMF’ derived from G and ka
by the transformation, is true.

[Only-%gﬁiLet MVV;“{xl,...,xz} be a feedback vertex set of G
of cardinality kMV(=2). Now, MF ='{sl—tl,...,sz-t2} is an essential
dumbbell set of B cardinality kMF = ka. (This follows easily from
the fact that every alternating cycle wrt I = {{sl,tl},...,{slxl,tlxl}}
of B corresponds by (ii) and (iii) to a directed cycle of G.
Hence, S for FVS with G and kMV implies S for MDS with B and kMF'
[Zf] Let MF = {dl""’dz} be an essential dumbbell set of cardinality
kMF(=2). Now, B(X-X(MF)) must have a complete matching I such that
B(X-X(MF)) is acyclic wrt to I. By (iii) it follows, with appropriately
assigned index values, that I = {s£+1-tz+1,...,slxl-tlxl}, for
otherwise there would exist one or more simple alternating cycles wrt
I in B(X~-X(MF)). Then, by (ii) and (iii) it must be that
G({x2+1,...,xlx|}) is devoid of directed cycles. This implies that
MV =X - {x2+1,...,xlxl} is a feedback vertex set of G of cardinality

kMV = kMF' Hence, S for MDS with B and kMF implies S for FVS with

G and ka. -
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~ The fact that the minimum essential dumbbell set problem is an
NP-complete problem was our justification for developing an algorithm
to solve the less difficult problem: Given a bipartite graph B, determine
a mintmal — not necessarily minimum — essential dumbbell set. This

algorithm is presented next.

V. ALGORITHM FOR MINIMAL ESSENTIAL DUMBBELL SET

We can solve this new problem only after establishing our meaning
of minimal — local minimum -— essential dumbbell set. To that end
we tender the following: A minimal essential dumbbell set, denoted LMF,
is an essential dumbbell set such that no proper subset (of LMF) is
also an essential dumbbell set.,

In seeking ;ﬁcomputatibnally efficieﬁgmalgorithm to establish a
LMF of some bipartite graph B = (S,T,U), we must avoid a backtrack
procedure. Rather, we want a sequential procedure which assigns
dumbbells which constitute a complete matching to LMF or to NF — a
set of dumbbells such that, upon exit from the algorithm,
X(NF) = X-X(LMF) with X = S UT., Information about alternating cycles passing
through already assigned dumbbells is essential if subsequent assignments
are to be made efficiently. This information is retained in a pair
of labels for each edge established and updated in a pair of procedures

invoked in making dumbbell assignments. Thus, we offer

PROCEDURE 5.1 The labeled elimination of a dumbbell d = & + § from

a bipartite digraph B* = (5°,1°,5%) — related to a bipartite graph B, with
a complete matching by Construction 3.1 — is accomplished by, in twrn,

(i) modifying the labels of the edges of the set

i , i V. _ i v i
E, = {(sm,tn). (sm,tn) €EE" A (8,,t) €EE” A (s,tn) € E"}
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by aettu;g - o

v(sm,i:)=+1 ¥ (s t)GEf_
and af the edges of the set

{(t,s) (t,s)GE' A(sm,t)GE' A(s,t)GE}
bysettmg

_ t

(22) addmg a set of new edges

~(sm_.tn). (3m,t)§5E A('b,s)GEE’ A(sm,t)EE A(s,t)GE'}

with labels
i,
u(em,tn) = ‘1 and v(sm,tn) =+1¥ (sm,tn) € Ecr‘

and

v °
(1i1) deleting d from B".

The label u = 0 indicates that the edge was in the original
bipartite digraph; alternatively, u = 1 indicates that the edge was
inserted during some labeled elimination. The label v # 0 indicates

that between the edge's vertices there was a directed path (of length 3)

" through some eliminated dumbbell; otherwise, v = 0. Specifically,

v = +1 [alternatively, v = -1] indicates the labeled edge is oriented
from S to T [alternatively, from T to S] — as the path was
[alternatively, was not]. This leads to a second interpretation of the
v # 0 label: An edge with v = -1 was in a directed cycle containing
some eliminated dumbbell. This information on orientation of edges for

which v # 0 is redundant; however, it is convenient to have in stating

the algorithm to follow shortly.
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Labeled elimination is defined for a dumbbéll oriented from T to
S. For a dumbbell orieﬁted from S to T we need an additional procedure
to reverse the orientation. Thus, we tender
PROCEDURE 5.2 The labeled reversion of an edge (sm,tn) in a bipartite
digraph is accomplished by (i) replacing (sm,tn) with (tn,sm) and
(ii) set v(t s8,) = -v(sm,tn).

The ingredients now exist for our algorithm whereby we select a
maximal set of dumbbells whose edges are a matching with respect to
which the graph has no simple alternating cycle. A minimal essential
dumbbell set is then obtained as those dumbbells whose edges are needed
to augment the matching so as to arrive at a complete matching.

The matching is obtained in two stages: (1) By examining a succession
of strongly connected, but not trivially so, subgraphs a maximal set of
dumbells is determined such that the associated edges are a matching
with respect to which the graph has no simple alternating cycle

(2) This set of dumbbells is then augmented by a maximal number of
dumbbells, drawn from a succession of trivially strongly connected

subgraphs such that the same criteria are met. We herewith cender our

MINIMAL ESSENTIAL DUMBBELL SET (MEDS) ALGORITHM

BEGIN Make the assignments BC = (SO,TO,EO) « B = (S,T,E),

u(x,y) « v(x,y) « 0 ¥(x,y) € Eo, NF <« ¢, and i « 0,

i

{1} REPEAT Let E™ = {(x,y) : (x,y) € gl A u(x,y) = 0} and
=i i, 11
B” = (8°,T,E"). Determine the strongly connected

i

components, but not trivially so, of ﬁi and let ﬁs

denote their edge set. Set pt - {x-+y: (x,y)
G-ﬁ: A v(x,y) = 0}.

IF ﬁi#cb

-2~



{2}

{3}

K

o

{4}

{5}

{6}

THEN Select any dumbbell, denote it as éi, in D”.

UNTIL D

i

= ¢

~1

IF &i is oriented from S1 to Ti

THEN Find a directed cycle in ﬁi containing

ai Do a labeled reversion of each edge

of the cycle.
BEGIN Make the assignment i « i + 1. Do a

1 from ﬁi-l to

labeled elimination of &i‘
obtain Bl = (Si,Ti,Ei). add 37T to wr.

END

REPEAT Let 51 ={x+y: (x,y) = Ei A u(x,y) = 0 A v(x,y) = 0}.

UNTIL D

IF Bl #0
THEN Select any dumbbell oriented from Ti
i ~1i ~1
to S, denote it as d°, in D°. Make the
assignment i « i + 1. Do a labeled
elimination of d~ T from BX T to obtain

8lest,thEY). add d7T o wr.

BEGIN Set LMF = {x +y : (x,y) € E' A u(x,y) = 0 A v(x,y) = -1}.

END

END

The validity of this algorithm to obtain a solution of our less

difficult, modified problem is expressed in

THEOREM 5.1 The MEDS algorithm establishes a minimal essential

dumbbell set.
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PROOF: Let us first establish the fact that LMF is an essential
dumbbell set of B which by Construction 3.1 engendered 31. A dumbbell
added to NF at line 4 is drawn from a strongly connected component of
Ei-l

Cc BI. Therefore, its associated, non-directed. edge by Theorem 4.1

is to be found in a complete matching for B. The associated non-directed

edge of a dumbbell added to NF at line 5 must also be in a complete
matching for B, as the dumbbell is oriented from T to S and is a
strongly connected component in a trivial sense of ﬁi-l c BI. Let

i denote the value of i when line 6 is reached. Clearly, the
associated, non-directed edge of a dumbbell in LMF must too be in a complete
matching for B, as the dumbbell is oriented from T to S — v(x,y) = -1 —
and is in a strongly connected component (possibly, in a trivial sense)

lc BI. It is evident in fact that the non~directed edges associated

of B
with the dumbbells of NF U LMF constitute a complete matching for B.

It is also evident that NF and LMF are disjoint. Therefore, it

follows, that B(X-X(LMF)) = B(X(NF)) has a complete matching. A dumbbell

to be added to NF at line 4 or line 5. is drawn from candidates for

which v = 0. Perforce, there can be no simple alternating cycle wrt the edges
of the dumbbells in NF. Furthermore, the edges removed with the dumbbell during
the labeled elimination being oriented from S to T (a non-zero v of

only +1) cannot share a directed cycle with dumbbells in NF; with impunity

they may subsequently be edges of B(X(NF)). Therefore,

B(X-X(LMF)) = B(X(NF)) must be acyclic. As B(X~-X(LMF)) has a complete

matching and is acyclic, LMF must be an essential dumbbell set of B.
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It remains but to show that LMF is minimal. For each dumbbell
in IMF it is true that v = -1. That means that LMF diminished by any
dumbbell d cannot be an essential dumbbell set as B cannot be acyclic wrt

NF augmented by &. Hence LMF is minimal.

In line 2, the dumbbell selection is completely arbitrary.
Obviously there exists a particular choice which upon exit from the

algorithm would have |IMF| = |[MF|. That is LMF would be a minimum, not

' just mini;;i;ué;;;ﬁﬁi;l ddmbbeii set. Uﬁfortunately, fhere is no known

apriori criterion — Theorem 4.2 assures us of that — for the dumbbell
selection to achieve the desired end. However, a heuristic selection
guide might diminish the disparity between |LMF| and |MF|.

In [11], a heuristic dumbbell selection guide was incorporated in
an algorithm to establish an essential dumbbell set. The algorithm was
efficient but suffered from the fact that there could be no guarantee
that the essential dumbbell set was minimal. That could be achieved only
by augmenting the algorithm with an additional, termed refinement, step.

We propose that the same heuristic selection guide should be used
in 1ine 2 of the MEDS algorithm, which (as Theorem 5.1 testifies) does
not exhibit the limitation of the just above cited algorithm; the MEDS
algorithm establishes a minimal essential dumbbell set. We shall refer
to the so modified MEDS algorithm as the MMEDS algorithm. The modified
line 2 is

{2'} THEN Select from ﬁi a dumbbell, denote it as &i, which first

i

has minimum T-degree in ﬁi wrt B~ and then (among those of

minimum T-degree) has maximum S-degree.
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The rationale for this guide is: By selection of a dumbbell of
minimum S-degree, the number of dumbbells being committed to LMF

is being made small, as small as possible with such a simple

measure. From among equal choices, selection of a dumbbell of
maximum T-degree results in the number of simple alternating cycles
passing through the dumbbells committed to LMF being made large, as
large as possible with such a simple measure. By this latter choice
it can be reasoned that the number of dumbbells that must be
subsequently committed to LMF to open the remaining simple alternating
cycles is being made small.

The number of operations fér the MMEDS algorithm (also, the MEDS
algorithm) is polynomial bounded — not exponential bounded. In fact, the
number of operations in the worst case — a maximally connected bipartite
graph — 1is of order n3. This has elsewhere been established [11l] for
lines 1 and 3 and is easily shown to be the case for line 2'. For the

remaining steps the number of operations are of order not exceeding

n2 [11].
VIT_VMMEDé ALGORITHM ﬁEALIZATION AND ILLUSTRATION

The MMEDS algorithm has been realized as a collection of APL
functions, the principal function being named MMEDS. (A listing of
these functions is to be found in the Appendix. A somewhat expansive

description of this realization is to be found in [19].) To illustrate

the MMEDS algorithm thus realized we will next present some examples.
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EXAMPLE 1 Consider the matrix

T vertex numbers
e

8 9 10 11 12 13 14

F1 11 1 1 0 1 1

2 01 1 1 0 1 1

Svertex |3 0 1 1 1 o0 1 O
numbers ¢ 4 101 1 1 1 1 1
5 011 1 1 1 1 1

6 00 1 1 0 1 0

L7 11 1 1 1 1 1

which for subsequent purposes is the APL variable M. Vertex numbers

are assigned first to the S vertices — 1 through 7, one for each row —
and then to fhe T vertices — 8 through 14, one for each column — as shown
above adjacent to the rows and columns of the matrix. The next step

is to type+

MMEDS )
The subsidiary function INPUT (see the Appendix.) responds with the query

ENTER NUMBER OF NODES:

to whichAlh) is the correct rgsponse.' Theféichangé'would éﬁbear as

ENTER NUMBER OF NODES: 1u4)

Then by a sequence of queries and responses the edge data is entered asff

1.The 2 denotes a (non~printing) carriage return.

.y ) —_— - . ——
The missing edge data — edges 6 through 34 — may be found in th
following (packed) edge list: Y e

edge 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1
S vertex 3 54 4 1 7 5 3 3 1 4 1 4 1 2 3 5 :
T vertex 10 10 91014 9 9 g 13 10 14 8 13 13 10 11 11 14

edge 19 20 21 22 23 24 25 26 27 2829 30 31 -
S vertex 7 7 & 5 7 1 & 32 33 34 35 36 37 38 39

5 7
T vertex 11 10 12 14 13 11 13 8 13 10 14 12 8 12 11 11



queries responses
EDGE 1 : 3 10/
EDGE 2 : 5 10}
EDGE 3 : 4 94
EDGE 4 : 4 10}

14«)

EDGE 5

.
[N

EDGE 35 : 1 9
EDGE 36 : 2 11))
EDGE 37 : 4 8
EDGE 38 : 6 13)
EDGE 39 : 2 9

EDGE 40 :¢)

After all theAedéés have been éntered then, as shown, a éimple 2 -

is the correct response to the last query for an edge. Note: Each

edge 18 entered as: S vertex and (then) T vertex. When execution

of MMEDS is complete, the set of dumbbells in NF and LMF are the
elements of correspondingly labeled APL variables and can be printed

as follows:

NF 2

28 8 22 12 21 <«—dumbbell edges
LMF 2

17 23 «— dumbbell edges

Note: The edges 8, 22, 24, 25, 28, 32, and 37 comprised the complete
matching for the initial graph and during execution five labeled

reversions were accomplished (after selection of dumbbells 28, 8, 22, 12,

and 21) and line 1 was encountered six times.
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Since IMF has just two dumbbells, there must exist row and column
permutations which transform M to a 2-BLT matrix. By executing the
function PERM as

PERM )
the row and column permutations — lists of row and column indices — are
composed from the dumbbell lists NF and LMF. Those permutations are the
elements of the first and second, respectively, rows of the (matrix valued)

variable P. The 2-BLT form of M can be displayed as

MIP[15];P[2;]1] D

PRRRRP P
PRRRRRO
PR RERRLRLROO
RPrRrRRrRLROOO
PR RrROOCOO
RRRPBRRRR
RRBRRRRR

Obviously, the least poééibié value for the border width has been found.

Note: The permutation lists — rows of P — can be displayed as

) 2

rEoRy,
w F

3 2
2 7

(S0 0 ]
(o208 ]

6
y
EXAMPLE 2 The MMEDS algorithm engendered row and column permutations

1 % 6 7 9 313 19 11 20 16 14 22 2 15 23 24 25 12 21 10 18 17 S5 8
11 8 23 4 22 15 17 13 10 2 1 7 6 19 916 18 20 24 5 21 3 25 14 12

to transform the 25x25 matrix
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Note: The original matrix w;; obtained byT}andomly selected row
and column permutations of a sparse —— 12% fill — 8-BLT matrix.

To provide an illustration of the polynomial bound on the number of
operations we obtained the central processor time consumed by this
realization of the MMEDS algorithm applied to a number of maximally
connected bipartite graphs.+ A log-log plot of the time, Tcp’ versus n,
half the number of (graph) vertices, is presented in Fig. 6. The slope
for moderate values of n is slightly greater than 3, where 3 is the expected
value for large n, based upon the number of operations being of order

3
n under worst case conditions

 VII. CONCLUDING DISCUSSION

We have herein shown that the problem of finding a minimum
k k-BLT form of a nonsingular (non necessarily symmetric) matrix is
equivalent to finding a minimum essential dumbbell set of a bipartite
graph with a complete matching.+* We then established the :fact'that
the latter — hence, also the former — problem is an NP-complete
(intrinsically difficult) problem. We have proposed, as an alternative
to a backtrack algorithm by which this NP-complete problem could
be solved, an algorithm to solve the somewhat less ambitious problem
of finding a minimal — local minimum, rather than minimum — essential
dumbbell set. That (sequential, rather than backtrack oriented)
algorithm, the MEDS algorithm with an adopted heuristic for dumbbell
selection at line 2 was renamed the MMEDS algorithm. An APL realization

of that algorithm was then illustrated. In the first example it was

1.
Central processor time is for VS APL under CMS on an I
370 model 145 computer. n BM gystem

t+

1nA?2:§fiCient algoritim for evaluating a complete matching is described
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seen to lead to the minimum k-BLT form of the initial matrix. In
the second example it lead to a value of k less than a known upper
bound on the least value of k. Furthermore, we illustrated the
polynomial bound on the number of operations when invoking the MMEDS
algorithm,

We have also created an APL realizati&h of the MEDS algorithm
(with arbitrary dumbbell selection at line 2) and found as anticipated
that, in general the MMEDS algorithm performed better. This we support
by the data for fourteen cases presented in Table 1. In each case: The
original matrix was obtained by randomly selected row and columm permuta-
tions on a not particularly sparse k-BLT matrix; then edge lables were

assigned randomly to the edges, each associated with a non-zero matrix element.

_wé'ébnclude with the co;menE: We believe that the MMEDS
algorithm represents an efficient procedure by which to find a minimal

essential dumbbell set — hence, a minimal k k-BLT form of a matrix.
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APPENDIX

The MMEDS algorithm is realized as the niladic APL function

MMEDS next listed.

V MMEDS;CC 3;CNMS ;DB DBN; DLST ;K

(1] INPUT

[2] ATR«(u,B)+(1,B)p1l
{31 M

[u] NP« 0

(5] L1:SCMPT
£6] +L3[ 10=SLCT14A
£7] +L2[ 10=ATR[1;DB]

(8] LR

[9] L2:K«0EX 2 4 p'DLSTCC!
f10] LE

(11] NF<NF,DB

(12] -~»IL1

[13] L3:+Lu4[10=SLCT?2

C141 LE

(15] NF«<NF,DB

[1i6] -L3

[17] Lu:LMF<(0=v#ATR[(1 4 ;])/\B
[18] =+0L:10=ANC 'CC?
[19] K<QOEX CC

v

The hierarchy of functions, MMEDS beiﬁg at the top, is displayed in
Fig. A-1. Note:. The functions €YCL, CNCT, and CCNCT execute
themselves — are recursive. 'All of these functions, excluding MMEDS,

are listed next.

V INPUT;E
(1] M«0rCc(3], 'ENTER NUMBER OF NODES: '
[2] LST+\N+223+[0
£3] B+0
(4] L1i:M<07CC3], ! EDGE ' ,(34¥B<«B+1), ';: !
(5] +L2l10=pE«13+[
[6] LSTLE]+ T3 1 +pLST«LST,,$LSTLE],[1.5190E«2E

£7] +L1
[8] b5L2:B«B-1
v



(1]
(2]
£3]
(4]
[5]
(6]

V CM;AE;AN;FN;FSN3;FTN;I;IL;ME;NI;PE;PEU;PN;PNU;3;R;RE3;RN;S;SE;SN

SACM+STOP

FNe1\N ,ME+10
L1:FTN«(-S«(pFN):2)4+FN
SN+«AN+FSN+(S)+FN
SE+AE«15+«0

L2:R+« 2 0 pRN<«RE+1I+0
S«~8

IL+pAN
L3:>Lu4[\ITL<I+I+1

R«R,S ADJE ANLI]

+L3

Lu:+L6[ 10=pRN+(I+~R[1;]eSN)/R[1;]
RE«I/R(2;]

+L5[10=5
+L7[10<+/I«RNeFTN

L5 :SN«SN,AN+RN

SE+«SE ,AE+RE

+L2

L6:0+07C[3], 'THERE IS NO COMPLETE MATCHING.

O« 'TERMINATE EXECUTION.' ,07c[3]
STOP:
L7:ATR(4;])«Bp1

ATRL4 ;SE,I/RE]«0

NI«NpI+0

IL«pFTN

PNU+PEU«10
L8 :+L10[\IL<I«I+1

+L9[11=1 REC FTNLI]

+L8 '
L9 :PEU+PEU ,PE, (" 14PN)EDGE FTN[I]
PNU«PNU ,PN,FTNLI]

+L8
L10:ATRL 1 4 ;]«(2,B)4(1,B)p1
ATR{1;ME«((~MEePEU) /ME) ,(~PEU€eME) /PEU ]+0
+0L1\N=2xpME

FN«(~FNePNU) /FN

+L1

v

V Z«S ADJE I;E;J

Z« 2 0 poO

J«I-1
L1:+0L\I=J«LST[J+1]
+L1fIS=ATR[1;E+f(J-N)%4]
2«2 ,LSTLJ],E

+L1

v
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V 2«8 REC A;B;I
(1] Z2+0
(2] B+S ADJN A
(3] L1:+0L1(pB)<I«NILAI+NIL[A]+1
Cu] +L1[\1=B[I]ePNU
[51] +L2[10=8
(6] +L3[11=2«B[I]eFSN
7] L2:+L4[11=2«(~S)REC BI[I]
£8] +L1
£9] L3:PE+:0
(101 PN<«,BLI]
[11] =0
(12] L4 :PE<PE,( 14PN)EDGE B[I]
(13) PN+«PN,BL(I]
v

V Z+S ADJN I;J
1] Z+«10
2] J«I-1
3] L1:+0L1I=J«LST[J+1]
4] *L1M1v/(5,0)=ATR[ 1 4 s (T-N)zu]
(5] Z+«Z,LST[J]
Ce] +I1

v

V Z«I EDGE J;L
£1] Z2+0
(2] LeI-1
[3] L1:+0L1I=L«LST[L+1]
Cu4] +L1M v 1=ATRCY;T (L-N)+4]
(5] +L1\J=LST(L]
[s] Z«[ (L-N)+4
v

. v SCMPT ;LL;NF ;NN ;S
[1] CNMS« 0 0 p' !
[2] DLST«STR
£3] LL<«NN+NpK+0
4] S+10
[5] L1:+0L\N<NF<+NN10
(6] CNCT NF
£713 +L1
v
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V Z«STR;I;J;L
(1] Z+0,NpI+0
(2] Li:+Lul\N<I«I+1
(3] Z[Il«1+p2
4] J«LST[I]
(5] L2:+Lil\I=J
6] *L3[ 11=VFATRL 2 4 ;L<[(J-N)%4]
7] *L3[1~((I<N+2)AATRL1;L]=1)V(I>N+2)AATR[1;L]=0
L8] 2«7 ,LSTLJ],L
(9] L3:J«LST[J+1]

[10] -+L2
[11] L4:Z2[I])«1+p2
v

V CNCT A;C;I:M
[1] LLLAJ<«NN[A]«1++/0=NN
2] 5+5,4
(3] I<«DLSTLA+ 01 1- 2 0
(4] Li1:+L3[1=/I«I+ 2 0
[5] C+DLST[14I]
(6] +L2[ 1 020N (C]
£7] CNCT ¢
[8] LLLAJ«LLLAILLLLC]
9] +L1 :
(10] L2:+LAT\(NNLCI>NNLA])v~CeS
[11] LLCAJ«LLLAILNNLC]
[12] 11
[13) L3:+0L1\LLLA)=NNLA]
[14) CcMP(M<«NN(S]12NN[A4]1)/S
(151 S<«(~M)/s
v

V CMP A;C;E;I;J;L
£1] +0L12>p4
(2] C«'C'", (" "2L)/L«VK<«K+1
(3] CNMS«(K,pC)+CNMS
Cu4] CNMS[K; J«C
[5] 20, 'e1I+0!
[6] Li:+0L1(pd)<I«I+1
£71] J+«DLSTLALIl+ 1 0 J]-1
[8] E*((L*(-/J)*Z),2)9(1*J)+(1+J)#DLST
[9] 2C,'«',C, ',E[(EL;1]ed)/1L[;2]"
(10 -+r11
v
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V Z+«SLCT1A3D3:DG;I;J LM
(1] Z+0
£2] +0L 1X=0
[3] +0L10=J+«pL«(0=ATR[3;L])/L+2,',"',CNMS
4] DG+« 2 0 pI«0
(5] L1:+L2l1J<I«I+1
(6] DG+DG,(('T' DEG D),'S' DEG D«LST["1 ~3 +N+uxL[I]])
7] +L1
[8] L2:M«L/DG[1;]
[8] I<«(M=DGL1:;1)/\J
£10] DB<«LLI(DGL2;rI2T/DGL2;I11]
[11] DBN<LSTL™3 ~1 +N+u4xDB]
[12] Z+1
[13] I«0
C1u4] L3:+L3f10=DB££CNMS[I*I+1;]
[15] cC+«CNMSLI;]
[16] K<+/~QEX CNMS[(I=K)/K+1K;]
v

V Z«F DEG D3;A;B;T ;M
£1] A«<D['ST'1F]
[2] B«D['TS"\F]
£3] Z<+p (AzM) /M«ADJ B
: v

V Z«ADJ IiE;d
[1] Z+1 0
[2] JeI-1
[3) L1:+0L1I=J«LSTL(J+1]
(4] +L1T 1(12EeL)VO=2ATRL3;E«[ (J-N)+u]
(5] 2+%2,LSTLJ]
(6] +L1

v

V LR;I;J;LL;NN;S

(1] +LAT 1 (IT«DLSTL1+DBN])=J«N+2x((((-1+N-pDLST)+2),2)pd+N+DLST)[;2]1DB
[2] DLSTLI,J)<«DLSTL(J+«J+ 0 1 ),I«I+ 0 1 1]

{3] Li:LL+«NN+NpO

(4] S« 0

£s] CCNCT 1+DBN

(6] gEV(Illﬂ)[A(I+LL=1)/NN]
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1]
2]
(3]
C4]
£s]
(6]
7]
[8]
(9]
(101
[11]
[12]
[13]

(1]
[2]
[3)
[u]

(1]
(2]
3]
Cu]
£s]
(6]
7]
(8]
(9]
(10]
[11]
(123
[13]
C14]
£15]
(16]
£17]
[18]
[19]
[20]
[21]
[22]
[23]

V CCNCT Ai;C;IM
LLUAJ«NN[A]«1++/0=NN
S«S,4A

I«DLST[A+ 01 1- 2 0
L1:%0Lv=/T«T+ 2 ¢

>L1M 1\~ (1+C«DLST[ 0 1 +14I1)esCC
C+«14C

+L2[10=24N[C]

CCNCT ¢

LLLAY«LLCAILLLLC]

+L1
L2:>LAT1(NNLCI>NN[A))Vv~CeS
LLLAJ«LLLAILNN(C]

+L1

v

V REV A

A+1+4,144

ATR[1;DBl+~I+«1
L1:ATR(1;J]«~ATR[1;J«ALI)EDGE AlT+1]]

+L1M1(pA)>I<«I+1

v /

V LE3E;I;J3S;SLST;T;TLST
I+ 1+S«1+DBN
SLST+10
L1:+2L2[1S=I«LST[I+1]
+L1T 11=ATRL4;E«[ (T-N)+u]
ATR[4;E]+1
SLST«+SLST,LSTLI]
+L1 _
L2:I+ 1+T+«14DBN
TLST«10
L3:+LU4[1\T=I+LST(I+1]
+L3M11=ATRL4;E«[ (I-N)+4]
ATR[U4;E]«1
TLST«TLST,LST(I]
+L3
LY4:+0L 1 (0=I«pSLST+(T#SLST)/SLST)V0=J«pTLST
L5:+L6[ 10=E+(S+TLSTLJ])EDGE T«SLST[I]
ATR[3;E]«1
+L7
L6:LSTL(E]« 3 ~1 +pLST«LST,,dLSTLE],[1.51¢E«S,T
B+1+pATR+ATR, 1 1 1 0
L7 :+L5T10<J«J -1
J«pTLST
+L5M0<I«I~-1
v
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V Z«SLCT2
(1] Z+0
£2] +0Lv(14pATR) <DB<«(V#ATR) 10
[3] DBN«LSTL "3 "1 +N+4xDB]
(4] 5«1 '

v

The row and column permutatioﬁs neceésary to transform the matrix
engendering BI (See step 0 of the MMEDS algorithm.) are composed - from
the elemengs of (the APL global variables) NF and LMF .and .listed
as the entries of row 1 and row 2, respectively, of (the APL global .

variable) P by the function PERM with the fungtions INC and ADJP next liated.

v PERM;D;HN;I;J;L;NLST;R;V
(1] ATR«((1,B)p1),[1] ATR[2 2 2 3]
[2] B«+/~ATR[2;]
(3] NLST«LST[,("1 "3 +N)o.+uxNF]
4] I+0
[5] Li:+L2l1\B<I+I+1
(6] +Lil\1=A/LSTL"1 ~3 +N+UxT)eNLST
[7] ATRL4;T]+1
(R +L1
£9] L2:D«10
[10] HN<N:2
{11] v<«HN+INC
[12] R+r0
[13] L3:+Lul1AN<I«V 11
[14] VLLI«V(L«ADJP J«(~J€eR)/J«ADJP I]-1
[15) D«D,I EDGE J
[16] R+R,I,J
{17] L3
[18]vLN:P*((2,HN)DLST[,(~1 ~3 *N)°.+4X(NF+D),LMF])'Q(HN’2)DO,HN

V Z<«INC;TI

(1] Z+1J+0

[2] L1:+0L1N<T«I+1
(3] Z+«Z,pADJP I
4] +L1

v
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l{'\

(1]
[2]
[3)
La]
£s]
L6l

v

v

2«ADJP I;d
2«10
J«I-1
L1:+0L\IT=J«LSTLJ+1]

+LiT11=ATRLu ;T (J-N) 2]

Z+Z ,LSTLJ]
+L1
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original nonsingular

established value

sparse matrix of k
maximum

upper number of number of

bound on non-zero non-zero MEDS MMEDS
order minimum k elements elements algorithm algorithm
10x10 1 36 64 1 1
10x10 1 49 64 2 1
10x10 2 36 72 4 3
10x10 2 48 72 4 2
10x10 3 26 79 1 1
10x10 3 47 79 6 2
12x12 1 30 89 0 0
12x12 1 43 89 5 3
12x12 2 28 99 1 1
12x12 2 41 99 4 3
12x12 3 28 108 1 1
12x12 3 44 108 3 2
12x12 4 32 116 2 2
12x12 4 49 116 5 3

Table 1 Performance data for MEDS and
MMEDS algorithms.




Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig.

Fig.

Fig.

6

FIGURE CAPTIONS
k~bordered lower triangular matrix

Bipartite graph and matchings. a) Bipartite graph (i) and two
matchings (ii and 11i), b) Bipartite graph (i) and a complete —
also, maximum cardinality — matching (11), c) Bipartite graph

(1) and a maximum cardinality matching (ii).

Bipartite graph and dumbbells a) Bipartite graph B, b) Complete
matching I, c) Fundamental dumbbell set DI’ d) Dumbbell set D,

e) Dumbbell set SAD(&), f) Dumbbell set TAD(a), g) Essential
dumbbell set F, h) Section graph B(X-X(F)), i) Minimum

essential dumbbell set MF, j) Section graph (BX-X(MF)).

Illustration of Proposition 3.1. a) Bipartite graph B,
b) Complete matching Ia with I darkéned, c¢) Complete matching

Ib with I darkened, d) Cycle with edges in common with Ib darkened.

Search tree.

T __ versus n.
cp

A-1 Hierarchy of APL functions realizing the MMEDS algorithm.



—A—

border of
width k
XeeeX
HoeooX
KeeooX
x--.x
XeeoX

»x X

» x X

x 3
x x
»x X

x X

XeeooX
x-oox
Xe*oX

X

X X XX X

X X

XX XX X o
X X X X X
X X X X X

X X X

X X X X XeeeX

Fig. 1



NODES

X

X[ NODES
] (o]
(i) (ii) (iii)
(a)
o—"0
S N
o
o—o0
(i) (ii)
(b)

/

| X

N

(i) (ii)
(c) _

Fig. 2

/.

o



(f)

(e)

(d)

h

(

Fig. 3



X1

(b)

(a)

(d)

(c)

Fig. 4



S 311




10 —

10

10

(dasw) %

10

20

10

Fig. 6



rav

930

RN

arav

1S

NLav 3903

o3y

WO

21078

31

- 1-V 814

A3d

10NJD

1

1NndNlI

dW?

19

NO 41S

1dWJS

SA3INN



	Copyright notice 1977
	ERL-78-74

