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ABSTRACT

The problem of determining row and column permutations to transform

a nonsingular (not necessarily symmetric) matrix to a minimum k k-bordered

lower triangular form is shown to be an NP-complete (intrinsically

difficult) problem by treating an equivalent bipartite graph problem

— determine a minimum essential dumbbell set, A (sequential, rather

than backtrack oriented) algorithm is described by which to obtain a

minimal (local minimum, rather than minimum) essential dumbbell set,

hence, also a minimal k k-bordered lower triangular form of a matrix.

The performance of an APL realization of the algorithm is illustrated

and data to justify an embedded heuristic is provided.
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I. INTRODUCTION

In the analysis of a large scale system, such as an electrical

network, it is usually advantageous to take account of such a system's

structure. This structure is manifested by the equations describing

the mathematical model of the physical system and can (usually) be exploited

by a reordering of the equations and variables. One structure, made

manifest as a k-bordered lower triangular Jacobian matrix of the re-

tordered equations, has been recently exploited. This is the case in

algorithms developed to solve sets of nonlinear equations [1], to solve

linear programming problems [2], (with tearing methodologies) to solve

linear algebraic system equations [3,4], and to study input-output

stability of interconnected systems [5].

In general, many different k-bordered lower triangular forms PAQ

of a matrix A exist, depending upon the row permutation —

matrix P — and the column permutation — matrix Q —

selected. Of note, though, is: In all the applications just mentioned,

the solution process becomes increasingly efficient as k decreases.

By this we then infer the following optimization problem [4]: Given the

matrix A determine permutation matrices P and g such that PAQ is a

k-bordered lower triangular matrix with minimum k. As a constraint

on the problem, we would, as has been necessary in all of the above

noted applications, impose: The matrix PAQ must have non-zero diagonal

elements. This now constrained optimization problem has been investigated

+

A square matrix A « [a..] of order n is k-bordered lower triangular

(k-BLT) if a±. = 0 (i = l,...,n-k (j = i+1,...,n-k)). See Fig. 1.
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under the assumption that g = p* — symmetric permutations on A — with

some graph theoretic algorithms for establishing P having been given

t
[1,4,6,7,8]. Without this assumption this problem stands unresolved — an

open question [9] — with but few applicable results.

In [10], the first author proposed a graph theoretic interpretation

of the problem and a resolution of it, based on directed graphs and

simple operations on them. Some heuristic algorithms were subsequently

proposed in [11]. In this paper, we will provide a careful interpretation

and treatment of this problem based on bipartite graph theory,

culminating with presentation of a rigorously justified heuristic

algorithm.

The organization of the paper is as follows: Some graph theoretic

terms are defined and the correspondence between matrices and bipartite

graphs is shown in Section II; the equivalence of the task of establishing

an optimum — minimum k — solution of the (non-symmetric permutation)

problem to the task of obtaining a dumbbell — graph theoretic term to

be defined —- set of minimum cardinality is established in Section III;

a backtrack algorithm by which to accomplish the latter task is produced

in Section IV and then there shown to be intrinsically hard (NP-complete);

a heuristic algorithm to invoke in place of and exhibiting greater

efficiency than the backtrack algorithm is described and validated in

Section V; illustrations of the heuristic algorithm, realized as a

collection of APL functions (listed in the Appendix), are given in

Section VI; the concluding discussion is the subject of Section VII.

See also the papers cited in these referenced papers, especially the
citation of [8].
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II. DEFINITIONS

Any graph theoretic terms not hereafter defined are to be understood

as defined by Harary [12]. Let G = (X,U) be a graph [alternatively,

G = (X,E) be a digraph] with a set of nodes X and a set of edges

U = {{x.,x.} : x.,x. £ X} [alternatively, a set of directed edges

E = {(x ,x.) :x ,x ^x}]. A simple path [alternatively, simple directed

path] y(x.,x.) is a sequence of distinct nodes — thus, x.^ ?* x^ — denoted

<P0,...,Pjl> such that pQ =x±, p£ =xj5 and {Pj^.P^ ^U(k =1,... ,£)
[alternatively, and (Pk-1»Pk) ^E(k =1,...,*)]. The path is said to

be of length A. A simple cycle [alternatively, a simple directed cycle]

n is a sequence of nodes <Pq,. .. »Po_i»Pn^ suc^ ^^ ^0'**''^l-l* anc*

<p.,,...,P0> are simple paths [alternatively, simple directed paths].

The cycle is said to be of length I. A simple [alternatively, a simple

directed] path or cycle is said to contain an edge if that edge is

*pk-l,pk* talternatively» (Pfc-l'Pk^ for some k= 1»'"'»A» ^^ Pji
interpreted as pQ for a cycle. The section graph [alternatively, section

digraph] defined on the node set Y C x is G(Y) = (Y,U(Y)) where

U(Y) ={{x±,x.}: {x±,x }euAx±,xj GY} [alternatively, G(Y) A (Y,E(Y))

where E(Y) ={(x±,x ): (x±,x )€Eax^x.. <= Y}].

A directed graph G = (X,E) is said to be strongly connected if,

for every pair of vertices x ,x. £ X, there exist a simple path

y (x±,x )and a simple path y£(x ,x±). Note: A trivial digraph —

with just one node — is considered to be strongly connected. Let
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it = {X.,... ,X } be a partition of the nodes X. If the section

digraph G. = G(X.) (i « l,...,q) is strongly connected and is not a

proper subgraph of some strongly connected section digraph of G, then

the G.fs are called the strongly connected components of G.

A bipartite graph B = (S,T,U) is a graph B = (X,U) [alternatively, a

bipartite digraph B = (S,T,E) is a digraph B = (X,E)] such that X = S U t,

[alternately, E = S U T], S n T = <J>, and the section graphs [alternatively,

digraphs] B(S) and B(T) are both node graphs — edge free graphs. A set of

edges I C u of a bipartite graph B = (S,T,U) [alternatively, C E

of a bipartite digraph B = (S,T,E)] is said to be a matching if no

two edges of I are incident at the same node. A node is said to be

covered if an edge of I is incident at it. A complete matching is a

matching such that all nodes are covered. A maximum cardinality matching

is a matching having a maximum number of edges. Note: A bipartite

graph may not have a complete matching, but it always has a maximum

cardinality matching; on the other hand, a complete matching is a

maximum cardinality matching. These several categories of matchings

are illustrated in Fig. 2. A simple path — node sequence

<pQ,...,p ) — is said to be a simple alternating path wrt I

(with respect to I), denoted X_(x.,x.), if {p, .,pt } G I for k odd
I I j k-1 k

or for k even. A simple cycle — node sequence <pn,...,p nrfJ — is

said to be a simple alternating cycle wrt I, denoted pT, if <pn,...,p _>

and ^Pi»•••>Po_i»Pn^ are alternating simple paths wrt I.

Clearly the length of an alternating cycle must be even. If a bipartite

graph B has no alternating simple cycles with respect to some matching

I (of B), then B is said to be acyclic wrt J.
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Graphs have often been used to represent the zero/non-zero element

structure of matrices. In this paper we will do likewise for square

matrices using bipartite graphs. The relationship of a bipartite graph
— f

to amatrix A=[a±j] €IR*** is quite simple: Let
B[A] = (S[A], T[A], U[A]), denoting the bipartite graph associated

with A, be defined by the conditions1"1* |S[A]| = |T[A]| =nand
{8±,t }eu[A] iff++t a±j t0(i,j -1 n). Now, bipartite graphs
are particularly well matched to the task of establishing anon-symmetric

permutation strategy. In particular, a non-symmetric permutation on

A, realizing PAQ, has as its effect the separate reordering of the rows

and columns of A. Thus, by the definitions of B[A] and B[PAg] it

follows — because PAQ is but arow and column reordered copy of A— that

B[A] and B[PAg] are isomorphic. The structural properties are maintained.

Moreover, it must be noted that the existence of a complete matching

I[A] in B[A] is equivalent to the existence of non-zero elements of A

which can be brought by row and column permutations to the main diagonal

of PAQ. Thus, I characterizes a"coupling" between rows — corresponding

to the S set — and columns — corresponding to the T set — of A.

Throughout the paper it will be necessary to consider, in addition

to an edge in I, the nodes at which the edge is incident. This is a

special section graph — of a bipartite graph B = (S,T,U) — which we call a

dumbbell. In particular, let se s and te T; then the section graph

defined on these two nodes is a dumbbell, denoted s-t, if {s,t} e u. Now,

given a bipartite graph B and a complete matching I, the

When there can be no confusion in doing so [A] will not be appended
to B, S, etc.

The symbol for a set enclosed by vertical rules — e.g., |S[A]| — denotes
the cardinality — number of elements — of the set.

ttt
Throughout, iff denotes if and only if.
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fundamental dumbbell set wrt I, denoted D , consists of the dumbbells

associated with the edges of I. Given a bipartite graph B = (S,T,U),

a set of dumbbells D, and a dumbbell d = s-t € D, the set of

dumbbells adjacent to d in D wrt S, denoted SA^(d), is

^ SA^d) = {d: d = s-t e D-{d} a t = £}

and the set of dumbbells adjacent to d in D wrt T, denoted TA^(d), is

TAD(d) = {d: d = s-t e D-{d} a s = s}

The S-degree of d denoted S°(d), is the cardinality — |SA^(d)| — of

the set SAD(d), and the T-degree of d, denoted Tfj(d), is the cardinality -

|TA])(d)| — of the set TA])(d). A set of dumbbells D distinguishes

the following sets of nodes:

S(D) = {s: s^S A ] s-t ^ D},

T(D) = {t: t e T a^ s-t e D},

and

X(D) = S(D) U T(D).

Let B be a bipartite graph with a complete matching, then a set of

dumbbells F is an essential dumbbell set of B if the section graph

. B(Y), where Y = X-X(F), admits a complete matching and is acyclic with

respect to that matching. An essential dumbbell set of minimum

cardinality, denoted MF, is called a minimum essential dumbbell set

(of B). These several constructs associated with dumbbells are

illustrated in Fig. 3. Each of these dumbbell related concepts associated

with a bipartite graph have their counterparts when a bipartite digraph

is considered. In the definitions the word directed would be added
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and U would be replaced by E. Notationally, a directed dumbbell is

denoted as s + t (or t •*• s, as the case might be).

III. OPTIMUM BORDERED (LOWER) TRIANGULAR FORM AND BIPARTITE GRAPHS

The graph theoretic interpretation of the constrained optimization

problem will emerge as a consequence of the following propositions and

lemmas. We start with

PROPOSITION 3.1 Suppose a bipartite graph B has two complete matchings

I and I-.. Then there exists a set of disjoint simple alternating

cycles wrt I and wrt I-, {p (i = l,...,m)} such that (I -I) U (I-l-D

i *is the edjge set associated with {p }, where I = I n J,.

PROOF: This proposition is an immediate consequence of a theorem

in [13, p.123]. n

The relationship between a pair of complete matchings specified

by this proposition is illustrated in Fig. 4. We now present

LEMMA 3.1 Let B be a bipartite graph with the complete matching I.

Then the following statements are equivalent:

(a) I is unique.

(b) B is acyclic wrt I.

PROOF This lemma is an immediate consequence of Proposition 3.1.
n

The next result we seek to establish is expressed in
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LEMMA 3.2 Let Bbe a bipartite graph with complete matching I and let

D be its fundamental dumbbell set wrt I. Then, if Bis acyclic wrt I,

there exists a dumbbell d^ eD]. such that SAD (dj =$and a dumbbell
d e Dj. such that TAD (dQ) = <j>.

The proof of this lemma rests upon

CONSTRUCTION 3.1 Let B= (S,T,U) be a bipartite graph with the complete

matching I. Let B1 = (S,^*?) be the derived bipartite digraph wherein
(s,t) e/ iff {s,t} e Ua {s,t} £ I

and

(t,s) e bF iff is,t} e ua {s,t} G I

and upon

PROPOSITION 3.2 Let B be a bipartite graph with the complete matching

I and let B1 be the bipartite digraph derived according to Construction 3.1.

Then, there is one-to-one correspondence between simple directed cycles

of Br and simple alternating cycles wrt I of B.

PROOF: This proposition is an obvious consequence of the definitions of

simple directed and simple alternating cycles. n

Because of the correspondence established by this theorem, we may refer

to a bipartite digraph which has no simple directed cycles as acyclic.

We now return to

PROOF: [Lemma 3.2] Create B according to Construction 3.1. Because

B is acyclic wrt I (by hypothesis), it follows (by Proposition 3.2)

that B has no simple directed cycles. Hence, by a well-known theorem

(see Proposition 6.2 in [14, p. 29]), there is a node which has 0 out-degree,

By Construction 3.1 this node must be in S; denote it by s . Similarly,

there is a node which has 0 in-degree that must be in T; denote it by t .

-9-



Clearly, there is only one edge, denoted (ta>sa), incident at

s and only one edge, denoted (t ,s), incident at t . By the
a T T T

correspondence between edges of B and B and by the fact — established

by hypothesis — that I is a complete matching the dumbbell

d = s -t GDT is such that TA„ (d ) = (f>. Similarly, the dumbbell
a a a I u^ o

d = s -t ^ DT is such that SA (d ) = <J>.
t x x I I n

The next result we need is set forth in

LEMMA 3.3 Let B be a bipartite graph with the complete matching I.

Then, B is acyclic wrt I iff it is possible to order the fundamental

dumbbell set 0, as a sequence kd^...yd^ such that d^ € TA^ (d.) implies

i < j.

PROOF: [only if] Set B = B and I =1. (Obviously, D Q= D .)
IA A *• A

By Lemma 3.2 there exists ad£Dn such that TA^ (d) = <f>. Set d = d.
IU ^0 L

It follows that {Dj - {d1> H TA^ (d^ = 4> and (hence) that
1°

(Dx -{d±}} OTAp (dx) =<J>. Derive B1 from B° and I1 from 1° by
1 1 11

deteleting d-. Clearly, I is a complete matching for B and B is acyclic

wrt I . Again by Lemma 3.2 — here applied to B with I — there

* A

exists a d £ D .. such that TA_ (d) = <{>. Set d = d. It follows that
I u 1 Z

{Dj - {d1,d2>} n TAjj 1(d2) = <|) and (hence) that {Dj - {d.^}} n TA])(d9) =f

Continuing in this manner a complete ordering of the dumbbells of D is

obtained such that {D - {d ,...,<! }} H TA^ (d.) = <J>. Equivalently,
0 0d± S TA]) (d ) implies i < j. [if] Again, set B = B and I = I. By

di eTAD (dj) lmPlies i<^(j,i =l,...,n) we infer that TA^ (d^
T -0

-10-
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Thus, the vertices of d_ cannot be in a simple alternating cycle. It then

follows that any simple alternating cycles of B remain as simple alternating

cycles of B , derived from B by deleting d.. Similarly, I is

derived I by deleting d-. Clearly, I is a complete matching for B .

Furthermore, by d. £ TAj. (d ) implies i < j (i,j «= 1 n)
1 jO J

that d. € TA^ (d ) implies i <j (i,j = 2,...,n). Continuing

we deduce

"I Tl—1

manner — next for B — we arrive at the bipartite graph B consisting

of just d . This graph is obviously acyclic. Hence, B must also be

acyclic. n

The last of the preliminary results we need is stated in

LEMMA 3.4 A matrix A £ Et can be transformed by row and column

permutations to a lower triangular matrix with non-zero diagonal elements

iff BIA] has a complete matching I and is acyclic wrt I.

PROOF: [if] By Lemma 3.3, order D_ as a sequence (d-,...,d ) such
l In

that d. €: TA^ (d.) implies i < j. Let d = s,—t, . Now there always

exist permutation matrices P and Q such that row s (i = 1,...,n) of A

becomes row i of PA and column t. (j = l,...,n) of PA becomes column j

of PAg. Becuase each dumbbell of DT corresponds to a non-zero diagonal

element of PAQ, it follows, by d. G TA^ (d ) implies i < j, that PAg
I ^

is lower triangular, [only if] This only if portion of the proof can

be obtained by reversing the arguments and steps of the preceding if

portion.

Let us observe that, by Lemma 3.1, the last part of this lemma could

have read ...has a unique complete matching.

A lower triangular matrix is a 0-bordered lower triangular matrix.
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We now present the principal result of this section as

THEOREM 3.1 The determination of a transformation of A ^ m by

row and column permutations — A into PAQ — such that PAQ is

k-BLT with minimum k and with non-zero diagonal elements is equivalent

to W the determination of a minimum essential dumbbell set MF of

B[A],

PROOF [=*] Suppose there exist permutation matrices P and Q such

PAg = A is k-BLT with minimum k and with non-zero diagonal elements.

Then

A «
-11 -12
A A

-21 -22

A A

where A-- is lower triangular and order n-k. By Lemma 3.4, Bt^^]
A A

has a complete matching I[A..,] and is acyclic wrt I[A--]. Furthermore,
A *

because A«« has non-zero diagonal elements B[A„2] has a complete matching

I[A??] corresponding to those diagonal elements. (Obviously,

I[A] = It^ii] u If^22^ is a comPlete matching for B[A].) Now,

B[A,J = B[A](X-X(D * ,)). Therefore, D_r- , is an essential
-11 ~ '•-92 ^-22

dumbbell set of B[A] and, as A is of minimum order (by hypothesis),

A- A

it is a minimum essential dumbbell set of B[A]. Since B[A] and B[A]

are isomorphic, there exists a corresponding minimum essential dumbbell

set MF of B[A]. [4s] Suppose there exists a minimum essential dumbbell

set MF of B[A]. It also then follows that B[A] has a complete matching

(containing MF). So, there exist row and column permutations — correspond

ing to relabelings of the vertices of S and T — such that the diagonal

elements of the transformed A, expressed as PAg, are non-zero and such

that those associated with the dumbbells of MF occupy the last k = |MF|

positions. By the definition of a minimum essential dumbbell set it
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also follows that B[A] (X-X(MF)) has a complete matching and is acyclic.

Thus, by Lemma 3.4, the above noted permutations can be chosen such

that the first n-k rows and columns are a lower triangular submatrix

of PAQ. Therefore, PAQ is k-BLT with — because MF (by definition) is

of minimum cardinality — minimum k. n

IV. BACKTRACK ALGORITHM FOR MINIMUM ESSENTIAL DUMBBELL SET:
VALIDATION AND COMPUTATIONAL COMPLEXITY

By Theorem 3.1 we have deduced from the constrained optimization

problem the following equivalent problem: Given the bipartite graph B,

determine a minimum essential dumbbell set MF (of B). For the solution

of this problem we shall offer our backtrack (search) algorithm shortly.

In a search for a minimum essential dumbbell set it is necessary to

preclude, insofar as is possible, dead-end searches. Note: Dead-end

searches are made highly likely by the need to also establish a complete

matching. Therefore, we must exploit the relationship between a complete

matching and dumbbells to avoid dead-end searches. To that end, we

will invoke the criterion: The dumbbells considered at each step of

the search must belong to a set of dumbbells whose edges can be included

in a complete matching. Now, such dumbbells are identified through

Proposition 3.1. We shall, however, turn to an alternate means — one

that appears computationally more attractive — of identifying them.

By invoking Proposition 3.2, it is possible to prove, as in [15].

THEOREM 4.1 Suppose the bipartite graph B = (S,T,U) has a complete
A A

matching Ia. Consider the edge {s,t} ¥• I . Now, there exists a complete

matching IV such that {s,i} Gj iff (s,i) belongs to a strongly

connected component of B a, the bipartite digraph derived from B by

Construction 3.1.
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The backtrack search algorithm we shall propose is based upon

this theorem. Before doing so, however, it is convenient to the wording

of the algorithm to alter the category of components said to be strongly

connected in a trivial sense. Thus, if § £ S and t £ T are trivial

strongly connected components of B and (t,s) £ E , then d = t -»• s

is said to be a strongly connected component in a trivial sense.

We now present the

BACKTRACK (SEARCH) ALGORITHM +

COMMENT B « (S,T,E) is assumed to be strongly connected and

non-trivial (E 5* <|>).

BEGIN Make the assignments B° =(sJ,T°,E°) «- B1 =(S,T,E), D° «- <|>
(D, is a set of directed dumbbells, initially empty), MF -*- <J>,

a «- (BI/ (a is an ordered set — stack — initialized with B_),

jn «- 1, j, «-...«- j •*- 0, k «- », and k «- «.
u 1 n

—K
{1} REPEAT Let B. be the first element in the stack a. Make the

3K
assignments k •«- K.

IF k + 1 >_ k

{2} THEN Delete B^ from a
jk

ELSE

{3} REPEAT Determine the strongly connected components of

-k k
B . Let TSC. denote the trivial strongly connected

3k Jk
components — a set of dumbbells. Make the

-k -k k
assignment B •«- B. - TSC . Establish p, the

Jk 3k jk _,
number of strongly connected components of B.

3k
IF p + k > k

t
This algorithm, and that to follow, follow the conventions set forth
by Wirth [20]. In addition, line reference numbers are placed at the
left margin within braces, as {1} for line 1.
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{4} THEN Delete B from a. Make the assignment
Jk

k <- ».

{5} ELSE Let {d-,...,d , } be the set of directed

k -k
dumbbells associated with B. , one for each

-k kedge of B . Make the assignments n •*• 1 and
jk

k •*- k + 1

REPEAT Make the assignments j, •*• j, + 1

and Dk «• D^"1 U {d }.
jk jk-l
k k

IF D. = D for some m = l,...,j.-ljk m k
-k

THEN Put B, on top of a. Make the
jk

assignment n •*• n + 1.

ELSE

IF d ^ t + 3n
n n n

THEN Find a path y(t ,s ).
n n

Reverse the edges of

- k-1
p(t ,s ) in B. and the edge

n n ]H

- k-1
{s ,t } in B, and d .

n n in
{6} BEGIN Make the assignment

§k ^B.^-d .
jk Vi n

END

-k
IF B. is acyclic.

{7} THEN Make the assignments

k «- k and MF «- Dk .

ELSE

{8} IF k + 1 < k

-15-



—k
THEN Put B* on top

Jk
of a. Make the

assignment

n •*- n + 1.

k
UNTIL n > SL or k + 1 > k

Jk

UNTIL k + 1 >_ k

A

UNTIL a = <|> or k = 1 (MF is, this case, a minimum essential

dumbbell set of B.)

END

The validity of this algorithm to achieve a solution of our

problem is expressed in

THEOREM 4.1 The backtrack algorithm establishes a minimum essential

dumbbell set.

k -k
PROOF: At line 7, MF is set equal to D. when B. is acyclic, where

•'k ^k
-k -0 -I
B, has been obtained from B. = B by deletion of dumbbells at lines 3
Jk
and 6. The dumbbells deleted at line 6, recorded as the elements of

k -0
D. , are those which when deleted from B. realize an acyclic bipartite

k -k
digraph, equal to B. upon deletion of trivial strongly connected

Jk

components — those dumbbells deleted at line 3. That is,

B(X-X(MF)) is acyclic and, furthermore, has a complete matching (by

Theorem 4.1). At lines 2, 4, and 8 the stack a is purged of or precluded

from acquiring any reduced graph which would lead to a D of cardinality
jk

greater than that, k, of the thusfar established MF (at line 7). As

all essential dumbbell sets are considered, MF must be on exit from

the algorithm (satisfaction of the conditions of line 9) the minimum

essential dumbbell set. Note: The alternate stop by the test k = 1 in
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recognition of the fact that the cardinality of MF must be at least 1

for a strongly connected bipartite digraph as assumed for B .

-k
Let us here observe that B is the j, -th graph at the k-th level

3k R
of the search process (or, tree), as illustrated in Fig. 5. The algorithm

implements a depth first search strategy — at every phase of the

process a path to greatest possible depth in the tree is sought and

after each backtrack, return to line 1, such a path is again sought.

Of course it is possible to implement a breadth first search strategy,

but it would not then be possible to use the bound fc to "prune" the

tree, as is done at lines 2, 4, and 8 of our algorithm. We also note

that the ordering of the dumbbells in the set of dumbbells at line 5

is arbitrary. Hence, the selected dumbbell d of subsequent steps is

also arbitrary. One might select d from among those of the set not

previously selected by some (heuristically established) criterion which

engenders (with a high likelihood) an acyclic graph at a least depth

in the tree.

As is evident (after a little thought), the number of twigs of

the pruned tree is exponential — not polynomial — in the number

of edges of B. Thus, even when the number of edges is modest, the bound

on the number of passes through the algorithm is so large as to preclude

using it. So we are led to ask: Is this the best we can expect to do?

Unfortunately, because the problem is NP-completef the answer is yes.

Some combinatorial problems — such as the traveling salesman
problem, the map coloring problem, and the feedback vertex set
problem — are more difficult than others, in the sense that for
these problems there is no available algorithm to solve any one
of them in operations and with storage bounded by a polynomial
in the number of edges and/or nodes of the problem's graph. Karp
has shown [16] that many of these difficult graph problems are
equivalent in the sense that for each of them, or none of them,
there is a polynomial bounded algorithm by which to generate a
solution. This result strongly suggests that these problems will
remain intractable.
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To prove that this problem is NP-complete, we recast the minimum

dumbbell essential set problem into a decision problem [16,17,18]

consisting of:

INPUT: a bipartite graph B = (S,T,U) and an integer lc — .

PROPERTY: There exists a set MF of k DUMBBELLS IN
MF

B = (S,T,U) such that B(X-X(MF)), with X = S U T, has a complete

matching I, and is acyclic wrt I.

By invoking a theorem of Cook [18], it can be shown that a

decision problem M is an NP-complete problem by showing that M is an

NP problem and by showing that any one of the decision problems already

known to be an NP-complete problem, such, as the feedback node set decision

problem [17], can be transformed^ into M^ We shall proceed in this way

to validate.

THEOREM 4*2 The minimum essential dumbbell set (decision) problem is

NP-complete.

PROOF: The backtrack algorithm presented previously is of polynomial

bounded depth — equal to half the number of vertices, or

|S| = |T| — and can be used to solve MDS; therefore, MDS is an NP

problem. Let FNS denote the feedback node set decision problem.

INPUT a digraph G = (X,E) and an integer k^,

PROPERTY there exists a set MV of k^ nodes in G = (X,E)

such that G(X-MV) is acyclic.

+A decision problem L is said to be transformable into a decision
problem M if there exists a relation f such that f maps the input
of L into the input of M, there is an algorithm to compute f in
polynomial bounded operations, and f preserves the problem, that
is, the input of L satisfies the property of L iff the corresponding
input of M satisfies the property of M.
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The transformation of the input of FVS into that of MDS is

defined as follows:

(i) *!& = kMV>
(ii) s± e s, t± e T, and {s1,t±} € u of B= (S,T,U) when

x e x of G = (X,E), and

(iii) {s±,t.}1 e u of B and {s±,t >2 €u of B— a pair of

parallel edges — when (x.,x.) £ E of G.

An input for MDS can be realized from one for FVS in polynomial bounded

operations (3|x| + |e|). Now, we must show that S for FVS with G and

k is true iff S for MDS with B and k^, derived from G and k^

by the transformation, is true.

[Only if] Let MV = {x ,...,x } be a feedback vertex set of G

of cardinality V^i-l) . Now, MF = ^s1~t1» •••̂ o^o} ls an essential

dumbbell set of B cardinality k^ = k^. (This follows easily from

the fact that every alternating cycle wrt I = t{s1,t1},...>{8|_|,ti i}}

of B corresponds by (ii) and (iii) to a directed cycle of G.

Hence, S for FVS with G and k^ implies S for MDS with B and k^,.

[if] Let MF = {d_,...,d } be an essential dumbbell set of cardinality

k^1(=A). Now, B(X-X(MF)) must have a complete matching I such that

B(X-X(MF)) is acyclic wrt to I. By (iii) it follows, with appropriately

assigned index values, that I = {s„+1-t. _,...,si i-ti i}, for

otherwise there would exist one or more simple alternating cycles wrt

I in B(X-X(MF)). Then, by (ii) and (iii) it must be that

G({x ,...,xi j}) is devoid of directed cycles. This implies that

MV = X - {x. _,...»xi I} is a feedback vertex set of G of cardinality

k^ = k^. Hence, S for MDS with B and k_, implies S for FVS with

G and SflT n
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The fact that the minimum essential dumbbell set" problem is an

NP-complete problem was our justification for developing an algorithm

to solve the less difficult problem: Given a bipartite graph B, determine

a minimal — not necessarily minimum — essential dumbbell set. This

algorithm is presented next.

V. ALGORITHM FOR MINIMAL ESSENTIAL DUMBBELL SET

We can solve this new problem only after establishing our meaning

of minimal — local minimum — essential dumbbell set. To that end

we tender the following: A minimal essential dumbbell set, denoted LMF,

is an essential dumbbell set such that no proper subset (of LMF) is

also an essential dumbbell set.

In seeking a computationally efficient algorithm to establish a

LMF of some bipartite graph B = (S,T,U), we must avoid a backtrack

procedure. Rather, we want a sequential procedure which assigns

dumbbells which constitute a complete matching to LMF or to NF a

set of dumbbells such that, upon exit from the algorithm,

X(NF) = X-X(LMF) with X = SU t. Information about alternating cycles passing

through already assigned dumbbells is essential if subsequent assignments

are to be made efficiently. This information is retained in a pair

of labels for each edge established and updated in a pair of procedures

invoked in making dumbbell assignments. Thus, we offer

PROCEDURE 5.1 The labeled elimination of a dumbbell d = t -> s from
• • • •

a bipartite digraph B = (SV,T%,E%) — related to a bipartite graph B. with
a complete matching by Construction 3.1 — is accomplished by, in turn,

(i) modifying the labels of the edges of the set

El - {fw; rwe ^ a <*m>*>e ** a&y€ **>
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by setting —

and of the edges of the set

2w/ setting

V(tn,sm)=-1 V(tn,sm)_€«f,
f£^ adding a set of new edges

Et ="W: fvV *B*A rW *«*A rv*; e ^ A&V e Ei}
with labels

«'VV - *md v(em> V " +1 V<VV € #

and

v

(£££,) deleting d from B1.

&v(tn,sm) = -i v rw e *-•

The label u « 0 indicates that the edge was in the original

bipartite digraph; alternatively, u « 1 indicates that the edge was

inserted during some labeled elimination. The label v ^ 0 indicates

that between the edge's vertices there was a directed path (of length 3)

through some eliminated dumbbell; otherwise, v » 0. Specifically,

v =» +1 [alternatively, v = -1] indicates the labeled edge is oriented

from S to T [alternatively, from T to S] — as the path was

[alternatively, was not]. This leads to a second interpretation of the

v # 0 label: An edge with v = -1 was in a directed cycle containing

some eliminated dumbbell. This information on orientation of edges for

which v £ 0 is redundant; however, it is convenient to have in stating

the algorithm to follow shortly.
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Labeled elimination is defined for a dumbbell oriented from T to

S. For a dumbbell oriented from S to T we need an additional procedure

to reverse the orientation. Thus, we tender

PROCEDURE 5.2 The labeled reversion of an edge fa *t ) in a bipartite

digraph is accomplished by (i) replacing (s.t) with (t ,s ) and

(ii) set v(t,s) - -v(s.t).
n m nf n

The ingredients now exist for our algorithm whereby we select a

maximal set of dumbbells whose edges are a matching with respect to

which the graph has no simple alternating cycle. A minimal essential

dumbbell set is then obtained as those dumbbells whose edges are needed

to augment the matching so as to arrive at a complete matching.

The matching is obtained in two stages: (1) By examining a succession

of strongly connected, but not trivially so, subgraphs a maximal set of

dumbells is determined such that the associated edges are a matching

with respect to which the graph has no simple alternating cycle

(2) This set of dumbbells is then augmented by a maximal number of

dumbbells, drawn from a succession of trivially strongly connected

subgraphs such that the same criteria are met. We herewith cender our

MINIMAL ESSENTIAL DUMBBELL SET (MEDS) ALGORITHM

BEGIN Make the assignments B = (S ,T ,E )+ B1 = (S,T,E),

u(x,y) -e- v(x,y) + 0 V(x,y) € e°, NF «- $, and i«- 0.

{1} REPEAT Let E* -{(x,y) :(x,y) G E1 Au(x,y) =0} and

B = (S ,T ,E ). Determine the strongly connected

components, but not trivially so, of B and let E1
s

denote their edge set. Set D = {x -*• y : (x,y)

&E1 Av(x,y) = 0}.
s

IF D1 t <J>
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{2} THEN Select any dumbbell, denote it as d1, in D1.

IF d is oriented from S to T

{3} THEN Find a directed cycle in B containing

d . Do a labeled reversion of each edge

of the cycle.

{4} BEGIN Make the assignment i •*- i + 1. Do a

labeled elimination of d from B ~ to

obtain B1 = (S^T^E1). Add d1"1 to NF.

END

UNTIL D* = <J>

REPEAT Let D1 ={x +y :(x,y) =E1 Au(x,y) =0Av(x,y) =0}.

IF D1 i 0

{5} THEN Select any dumbbell oriented from T1
i ~i ~i

to S , denote it as d , in D . Make the

assignment i -*- i + 1. Do a labeled

elimination of d from B* to obtain

B^S^tSe1). Add d1"1 to NF.

UNTIL D1 = <j)

{6} BEGIN Set LMF = {x -• y :(x,y) G e1 a u(x,y) =0 Av(x,y) = -1}.

END

END

The validity of this algorithm to obtain a solution of our less

difficult, modified problem is expressed in

THEOREM 5.1 The MEDS algorithm establishes a minimal essential

dumbbell set.
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PROOF: Let us first establish the fact that LMF is an essential

dumbbell set of B which by Construction 3.1 engendered B . A dumbbell

added to NF at line 4 is drawn from a strongly connected component of

B Cb . Therefore, its associated, non-directed edge by. Theorem 4.1

is to be found in a complete matching for B. The associated non-directed

edge of a dumbbell added to NF at line 5 must also be in a complete

matching for B, as the dumbbell is oriented from T to S and is a

strongly connected component in a trivial sense of B C b . Let

i denote the value of i when line 6 is reached. Clearly, the

associated, non-directed edge of a dumbbell in LMF must too be in a complete

matching for B, as the dumbbell is oriented from T to S — v(x,y) = -1 —

and is in a strongly connected component (possibly, in a trivial sense)
A

of B C b . It is evident in fact that the non-directed edges associated

with the dumbbells of NF U LMF constitute a complete matching for B.

It is also evident that NF and LMF are disjoint. Therefore, it

follows, that B(X-X(LMF)) = B(X(NF)) has a complete matching. A dumbbell

to be added to NF at line 4 or line 5. is drawn from candidates for

which v « 0. Perforce, there can be no simple alternating cycle wrt the edges

of the dumbbells in NF. Furthermore-, the edges removed with the dumbbell during

the labeled elimination being oriented from S to T (a non-zero v of

only +1) cannot share a directed cycle with dumbbells in NF; with impunity

they may subsequently be edges of B(X(NF)). Therefore,

B(X-X(LMF)) = B(X(NF)) must be acyclic. As B(X-X(LMF)) has a complete

matching and is acyclic, LMF must be an essential dumbbell set of B.
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It remains but to show that LMF is minimal. For each dumbbell

in LMF it is true that v = -1. That means that LMF diminished by any

dumbbell d cannot be an essential dumbbell set as B cannot be acyclic wrt

NF augmented by d. Hence LMF is.minimal.
n

In line 2, the dumbbell selection is completely arbitrary.

Obviously there exists a particular choice which upon exit from the

algorithm would have |LMF| = |mf|. That is LMF would be a minimum, not

just minimal, essential dumbbell set. Unfortunately, there is no known

apriori criterion — Theorem 4.2 assures us of that — for the dumbbell

selection to achieve the desired end. However, a heuristic selection

guide might diminish the disparity between |LMF| and |mf|.

In [11], a heuristic dumbbell selection guide was incorporated in

an algorithm to establish an essential dumbbell set. The algorithm was

efficient but suffered from the fact that there could be no guarantee

that the essential dumbbell set was minimal. That could be achieved only

by augmenting the algorithm with an additional, termed refinement, step.

We propose that the same heuristic selection guide should be used

in line 2 of the MEDS algorithm, which (as Theorem 5.1 testifies) does

not exhibit the limitation of the just above cited algorithm; the MEDS

algorithm establishes a minimal essential dumbbell set. We shall refer

to the so modified MEDS algorithm as the MMEDS algorithm. The modified

line 2 is

{21} THEN Select from D a dumbbell, denote it as d1, which first
~i -i

has minimum T-degree in D wrt B and then (among those of

minimum T-degree) has maximum S-degree.
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The rationale for this guide is: By selection of a dumbbell of

minimum S-degree, the number of dumbbells being committed to LMF

is being made small, as small as possible with such a simple

measure. From among equal choices, selection of a dumbbell of

maximum T-degree results in the number of simple alternating cycles

passing through the dumbbells committed to LMF being made large, as

large as possible with such a simple measure. By this latter choice

it can be reasoned that the number of dumbbells that must be

subsequently committed to LMF to open the remaining simple alternating

cycles is being made small.

The number of operations for the MMEDS algorithm (also, the MEDS

algorithm) is polynomial bounded — not exponential bounded. In fact, the

number of operations in the worst case — a maximally connected bipartite

3
graph — is of order n . This has elsewhere been established [11] for

lines 1 and 3 and is easily shown to be the case for line 21. For the

remaining steps the number of operations are of order not exceeding

n2 [11].

VI. MMEDS ALGORITHM REALIZATION AND ILLUSTRATION

The MMEDS algorithm has been realized as a collection of APL

functions, the principal function being named MMEDS. (A listing of

these functions is to be found in the Appendix. A somewhat expansive

description of this realization is to be found in [19].) To illustrate

the MMEDS algorithm thus realized we will next present some examples.
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EXAMPLE 1 Consider the matrix

T vertex numbers

S vertex

numbers

n

2

3

4

5

6

L7

10 11 12 13 14

which for subsequent purposes is the APL variable M. Vertex numbers

are assigned first to the S vertices — 1 through 7, one for each row —

and then to the T vertices — 8 through 14, one for each column — as shown

above adjacent to the rows and columns of the matrix. The next step

is to type

MMEDS £

The subsidiary function INPUT (see the Appendix.) responds with the query

ENTER NUMBER OF NODES:

to which 1*Q is the correct response. The exchange would appear as

ENTER NUMBER OF NODES: 1^

Then by a sequence of queries and responses the edge data is entered astt

The 2 denotes a (non-printing) carriage return.
•ft
The missing edge data - edges 6 through 34 - may be found in the
following (packed) edge list:

edge
S vertex

T vertex

edge

S vertex

T vertex

\ I I i ? S I 8 9 10 u 12 13 u 15 " 17 «3544175331 4 1 4 1 2 3 5 5
10 10 9 10 14 9 9 9 13 10 14 8 13 13 10 11 11 14

" 27° I' " " ? 2/ "" 2,f » 3° 31 32 33 34 35 36 37 38 39
^/155267577Ufii oueo11 10 12 14 13 U13 8 13 10 14 i2 8? /2 i £ g1 £ » £ 2
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queries responses

EDGE 1 : 3 10 «>

EDGE 2 : 5 10 «)

EDGE 3 : 4 9«>

EDGE 4 : 4 10^

EDGE 5 : 1 iV

EDGE 35 : 1 9^

£Z?Gtf 36 : 2 11 J

EDGE 37 : 4 8«>

EE>G£ 38 : 6 13«)

EDGE 39 : 2 V

EPGE 40 =«>

After all the edges have been entered then, as shown, a simple 2

is the correct response to the last query for an edge. Note: Each

edge is entered as: S vertex and (then) T vertex. When execution

of MMEDS is complete, the set of dumbbells in NF and LMF are the

elements of correspondingly labeled APL variables and can be printed

as follows:

dumbbell edges

NF p

28 8 22 12 21

LMF2
17 23 ««—dumbbell edges

Note: The edges 8, 22, 24, 25, 28, 32, and 37 comprised the complete

matching for the initial graph and during execution five labeled

reversions were accomplished (after selection of dumbbells 28, 8, 22, 12,

and 21) and line 1 was encountered six times.
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Since LMF has just two dumbbells, there must exist row and column

permutations which transform M to a 2-BLT matrix. By executing the

function PERM as

PERM J

the row and column permutations — lists of row and column indices — are

composed from the dumbbell lists NF and LMF. Those permutations are the

elements of the first and second, respectively, rows of the (matrix valued)

variable P. The 2-BLT form of M can be displayed as

M[P[l;];P[2;]] J

10 0 0 0 11

110 0 0 11

1110 0 11

11110 11

1111111

1111111

1111111

Obviously, the least possible value for the border width has been found,

Note: The permutation lists — rows of P — can be displayed as

P<?

6 3 2 17 4 5

4 2 7 15 3 6

EXAMPLE 2 The MMEDS algorithm engendered row and column permutations

1 * 6 7 9 3 13 19 11 20 16 14 22 2 15 23 24 25 12 21 10 18 17 5 8
11 8 23 4 22 15 17 13 10 2 1 7 6 19 9 16 18 20 24 5 21 3 25 14 12

to transform the 25x25 matrix
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0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0

0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1

0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1
0 0 0 0 ,0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 1
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Note: The original matrix was obtained by randomly selected row

and column permutations of a sparse — 12% fill — 8-BLT matrix.

To provide an illustration of the polynomial bound on the number of

operations we obtained the central processor time consumed by this

realization of the MMEDS algorithm applied to a number of maximally

t
connected bipartite graphs. A log-log plot of the time, x , versus n,

half the number of (graph) vertices, is presented in Fig. 6. The slope

for moderate values of n is slightly greater than 3, where 3 is the expected

value for large n, based upon the number of operations being of order
3

n under worst case conditions

VII. CONCLUDING DISCUSSION

We have herein shown that the problem of finding a minimum

k k-BLT form of a nonsingular (non necessarily symmetric) matrix is

equivalent to finding a minimum essential dumbbell set of a bipartite

++

graph with a complete matching. We then established the fact^that

the latter — hence, also the former — problem is an NP-complete

(intrinsically difficult) problem. We have proposed, as an alternative

to a backtrack algorithm by which this NP-complete problem could

be solved, an algorithm to solve the somewhat less ambitious problem

of finding a minimal — local minimum, rather than minimum — essential

dumbbell set. That (sequential, rather than backtrack oriented)

algorithm, the MEDS algorithm with an adopted heuristic for dumbbell

selection at line 2 was renamed the MMEDS algorithm. An APL realization

of that algorithm was then illustrated. In the first example it was

+

Central processor time is for VS APL under CMS on an IBM system
370 model 145 computer.
++

., *?*??*iclent al8orithm for evaluating a complete matching is described
in [21] •
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seen to lead to the minimum k-BLT form of the initial matrix. In

the second example it lead to a value of k less than a known upper

bound on the least value of k. Furthermore, we illustrated the

polynomial bound on the number of operations when invoking the MMEDS

algorithm.

We have also created an APL realization of the MEDS algorithm

(with arbitrary dumbbell selection at line 2) and found as anticipated

that, in general the MMEDS algorithm performed better. This we support

by the data for fourteen cases presented in Table 1. In each case: The

original matrix was obtained by randomly selected row and column permuta

tions on a not particularly sparse k-BLT matrix; then edge lables were

assigned randomly to the edges, each associated with a non-zero matrix element.

We conclude with the comment: We believe that the MMEDS

algorithm represents an efficient procedure by which to find a minimal

essential dumbbell set — hence, a minimal k k-BLT form of a matrix.
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APPENDIX

The MMEDS algorithm is realized as the niladic APL function

MMEDS next listed.

V MMEDS\CC\CNMS\DB\DBN\DLST\K
[13 INPUT
[2] i4!T/M4,B)t(l,B)pl
[33 CM
[43 NF+\Q
[53 LliSCMPT
[63 +L$[\0=SLCT1A
[73 +L2[\Q=ATRtliDB]
[83 LR
[93 L21K+UEX 2 4 p'DLSTCC*
[103 LE
[113 NF+NF,DB
[123 +L1
[133 L3:+L*[\0=SLCT2
[143 LE
[153 NF+NF.DB
[163 +z;3
[173 L4:LMF^(0 = v/>12,i?[l 4 ;3)/iB
[183 -K)U0 =AffC 'Ctf'
[193 K+QEX CC

V

The hierarchy of functions, MMEDS being at the top, is displayed in

Fig. A-1. Note:. The functions CYCL, CNCT, and CCNCT execute

themselves -^ are recursive. All of these functions> excluding MMEDS,

are listed next.

V INPUT;E
[13 B+UTC13], 'ENTER NUMBER OF NODES: f
[23 LST+iN+±23+\!\
[33 B«-0
[43 Ll:\n+UTCl3l9 ' EDGE • , ( 3f VB«-B +1), ': »
[53 +L2T i0 =pff-i-134'Q
[63 £ST[£3«- "3 "1 +pLST«-LSTt,$LSTlEl,11.5WE+&E
[73 -*-£l
[83 L2-.B+B-1

V
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[13
[23
[33
[43
[53

[63
[73
[83
[93
[103
[113
[123
[133
[143
[153
[163
[173
[183
[193
[203
[213
[223
[233
[243
[253
[263
[273
[283
[293
[303
[313
[323
[333
[343
[353
[363
[373

V CM9AE9AN9FN9FSN9FTN9I9IL9ME'9NI9PE\PEU\PN\PNU\R9RE9RN9S9SE9SN
SWM+STOP
FN*-\N9ME+iQ

LI :FTN+{ -£«-( pFN) *2) +FN
SN+AN«-FSN+(S)+FN
SE<*-AE+\S+Q

L2:R+ 2 0 pRN+RE+\I+0
S+~S

IL+pAN
L3:+L4riIL<I«-I+ l

R+R9S ADJE AN III
+L3

L*:+Let\0 =pRN+(I«r~Rll9leSN)/R\:ii]
RE+I/R12;]
+L5[i0=5

+L7[\Q<+/I+RNeFTN
L5:SN+SN9AN+RN

SE+SE9AE+RE
+L2

L6:D«-QrC[33, 'THERE IS NO COMPLETE MATCHING. ENTER -*• TO'
D«- 'TERMINATE EXECUTION.' ,D2,C[33

STOP:
Ll'.ATRlHil+Bpl

ATRlk-9SE9I/RE]+0
NI+NpI+0
IL+pFTN
PNU+PEU+\Q

LQ:+L10[\IL<I+I+1
-•L9ril =l REC FTNlI]
+L8

L$:PEU+PEU9PE9Cl*PN)EDGE FTNlIl
PNU+PNU 9PN 9FTNlI~\
+L8

LlO-.ATRl 1 4 ;3«-(2,B)t(l,B)pl
ATRll9ME«r{ (~MEePEU)/ME) , (-PEUeME)/PEU"]+0
+0l\N=2*pME
FN+(~FNePNU)/FN
+L1

V

V Z+S ADJE I;E;J
[13 Z+ 2 0 pO
[23 J+I-l
[33 Ll:+Ol\I=J«-LSTU+l]
[43 +L1[\S*ATRlliE+[(J-N)iHl
[53 Z+Z9LSTU19E
[63 +L1

V
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V Z+S REC A;B;I
[I] Z+0
[2] B+S ADJN A
[3] Ll:+Olx(pB)<I«rNIlA]+NIlAl +l
[4] +L1[ il^BUUPNU
[5] -»-L2rxO=5
[6] +L3[xl^Z+BlIleFSN
[7] L2-.+LW il=Z+(~S)REC Bill
[8] +L1

[9] L3:P£«-i0
[10] PN+9B\.I~\
[II] +0

[12] LH:PE+PE9(~1+PN)EDGE Bill
[13] Pff«-Pff,B[I]

V

V Z+S ADJN I;J
[13 Z+iO
[23 e^I-1
[33 £l:^0LiI=«7^52,[^+l]
J ^iriv/(5,o)^!ri?[ i ^ ;ru-jm*4]

[5] Z<rZ9LSTU1
[6] +L1

V

V Z+I EDGE J;L
[1] Z+0
[2] w-1

[3] Ll:+0LiI=L«-L52»[L+l]
[4] +L1T \l=ATRl*l;r {L-H)*W
[5] -»-Lirie/"*L5!r[L]
[6] Z«-r(L-ff)*4

V

r • V SCMPT;LL;NF;NN'9S
[13 CNMS+ 0 0 p' »
[2] DLST+STR
[3] LL+NN+NpK+0
[4] S-mO
[5] Ll:+0Litf<ffF«-Mi0
[6] cWt7T iVF
[7] +li

V
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V Z+STRiIiJ;L
[I] Z+09NpI+0
[2] Ll-.+LW \N<I+I+1
[33 Z[I>l+pZ
[43 J+LSTtI]
[53 L2:+Llt\I=J
[63 ^3Til =v/i4!ri?[ 2 4 ;2>rU-iV)*4]
[73 ^3ri~((I^il7*2)Ai4!Z'i?[l;L]=l)v(I>^*2)Ai4!P/?[l;ii]=o
[8] Z<rZ9LSTW]9L
[9] L3:e7-»-L52,[J+l]
[10] +L2
[II] L4:Z[I>l+pZ

V

V CNCT A9C9I9M
[13 LLlAl+NNlA ]«-l ++/0*1W
[2] S*-S,i4
[33 I«-0L5T[j1 + 0 13-20
[43 Ll:+L3[\=/I+I+ 2 0
[53 C+DLSTll+H
[6] -*L2[*iO*iW[C]
[7] cr^cr C
[8] LL[ii]-i-LJ&[i!:]LLL[(7]
[9] +L1

[10] L2:+L1[\(NNlC]>NNLA])v~CeS
[11] L£[4>£L[i4]UHC]
[12] +L1
[13] L3:+OLiLL[i4]*iW[i4]
[14] C7AfP(A/^iV[5]^M[i4])/5
[15] S«-(~A/)/S

V

V C7A/P AiC;E;I;J;L
[1] ->OLi2>Pi4
[2] C^'C'.C '*L)/L*riK+K+l
[3] CNMS+(K9pC)+CNMS
U3 C7ilWS[£;3<K7
[53 £67, •-Ml*-©1
[63 Ll:+0Li(pi4)<i>I +l
[73 J+DLSTLAH1+ 1 0 ]-l
[8] E+((L«-(-/J)*2)92)p(l+J) +(l+J)+DLST
[9] *£,'-«-',C, \£[(£[;l]ei4)/iL;2]»
[10] +L1

V
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V Z+SLCT1A9D9DG\I\J9L9M
[13 Z«-0
[23 -*»OliK =0
[33 +0l\0=J+pL+{0=ATRl39L'])/L«-£9' 9 ' .CNMS
[43 DG+ 2 0 p!«-0
[53 Ll:+L2[\J<I+I+1
[63 DG+DGACT' DEG D)9'S' DEG D+LSTl~l "3 +fl+4xL[l3 3)
[73 +L1
[8] L2:MH/DG[1;3
[93 I«-(Af=0G[l;3)/iJ
[103 Z?B^-L[I[Z?G[2a3ir/D(?[2;l3 33
[113 DBN+-LSTl~3 1 +ff+4xflB3
[123 Z«-l
[133 I>0
[143 L3:+L3[\0=DBezCNMSlI+I+l;l
[153 CC+CNMSUil
[163 K++/~QEX CNMSl(I*K)/K<r\K;']

V Z+F DEG D\A\B\I\M
[13 A+DVST'\F~\
[23 B+Dl'TS'iF]
[33 Z+piA*M)/M+ADJ B

V

V Z«-i40eT I;F;«T
[13 Z+iO

[23 J+I-l
[33 Ll:-*OU7=«r«-LST[«7+l3
[43 +L1[ \(l*EeL)vO*ATRl39E<r[ U'N)**1
[53 Z-Z.L5TU3
[63 +L1

7

[13 +Ll[\(I<-DLSTll+DBNl)=J*-N +2*AA-l+N-pDLST)*2)92)pl+N+DLST)li2]\DB
[2] Z?L52'[I,er]-«-Z?L52,[(J"^er+ 0 1 )9I<-I+ 0 1]
[3] Ll:L2>MMpO
[4] s+\0
[5] CCNCT 1+DBN
[6] REV(I/\N)lb(I<-LL =l)/NNl

V
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V CCNCT A;C9I;M
[I] LLlAl+NNlAl+l++/0*NN
[2] S+S9A
[3] I+DLSTIA+ 0 1 ]- 2 0
[4] LI:+0Li=/I+I+ 2 0
[5] +Llf\~{l+C+DLSTt 0 1 +HI])eiCC
[6] C7«-Itt7
[7] +L2[\0*NNlCl
[8] CCNCT C
[9] LLlAl+LLlAllLLlC"}
[10] -*L1

[II] L2:->-Liri(^[c7]>M[i4])v~c7€5
[12] LLLAl+LLlAllNNlCl
[13] +£1

V

V REV A
[13 i4^l+i4,lti4
[23 ATRll-9DB]+~I+l
[33 Ll:4TJ?[l;«r]*rAT/?[l;J-«-ii[I]ffZ?<?£ i4[I +l]]
[4] +Ll[\(pA)>I+I+l

V /

V LE9E9I\J9S'9SLST9T\TLST
[I] I-«-~l+S«-l 4- PBiV
[2] SLST+iO
[3] Ll:+L2riS=2>LS!r[I +l]
[4] +L1[ \l=ATRl*;E+[ (I-N)*M
[5] 24:n?[4;ff>i
[6] SLST+SLST.LSTLH
[7] +L1
[8] L2:I^~i+2»^it2JBiy
[9] TLST+iO
[10] L3:-»-L4ri!['=I-»-Ii5!P[I+l]
[II] -»-L3ril=i42,i?[4;ff^r(I-i7)*4]
[12] ATRl*l;El*-l
[13] TLST<rTLST9LST\.I]
[14] +L3

[15] L4:+0Li (0=I+pSLST+(T*SLST) /SLST)vO=J+pTLST
[16] L5:->-L6ri0=ff-H(5^2'L52'[er])ff2?(?ff T*5L52,[I3
[17] i4Ti?[3;fi:]^l
[18] +L7
[19] L6:LS!T[E]-»- ~3 "l +pLST-
[20] B^l +p^Ti?^^^, 1110
[21] L7:-»*L5riO<eW-l
[22] J+pTLST
[23] -*-L5l"iO<.Z>I-l

V

-Z)5!r, ,4>LS!P[ff ] , [ 1. 5]$E«-S9T
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V Z+SLCT2
[13 Z<-0
[23 +Ol\(HrpATR)<DB+(v+ATR) lO
[33 DBN+LSTl 3 "l +tf+4x0B3
[4] Z«-l

V

The row and column permutations necessary to transform the matrix

-I
engendering B (See step 0 of the MMEDS algorithm.) are composed from

the elements of (the APL global variables) NF and LMF .and .listed

as the entries of row 1 and row 2, respectively, of (the APL global

variable) P by the function PERM with the functions INC and ADJP next listed.

V PERM9D;HN;IiJ;L9NLSTiRiV
[13 ATR+{{l9B)pl)9lll ATRL2 2 2 j]
[23 B«-+/~/i:n?[2;3
[33 NLST+LSTl9n ~3 +0)<>.+4xtfF3
[43 I«-0
[53 Ll\+L2\\B<I+I+1
[63 -*-Lir \l =A/LSTl~l "3 +N+HxIleNLST
[7] i427?[4;73«-l
[83 +L1
[93 L2:D+\0
[103 RN+NS2
[113 V+HNtINC
[123 /?«-i0
[133 £3:+L4riO<I«-Fil
[143 7[L3«-nz^ZW J+(~JeR)/J+ADJP 13-1
[153 0«-0tJ EZ?G£ eT
[16 3 R+R9I9J
[173 +L3

[183^4:P-((2,^)pLSr[,(-l ~3 +N) o.+4x(ffF-Z?) 9LMF1 )-<S(HN 92)p09HN

V Z+INC9I
[13 Z4-iJ<-0
[23 LI :-K)L itf<J«-J+l
[33 Z+Z9pADJP I
[43 +L1

V
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V Z+ADJP I\J
[13 Z«-iO
[23 J+I-l
[33 Ll:+0LiI=Jr^52'[^+l3
[43 +Liril=42,i?[4;rU-ilD*43
[53 Z+Z9LSTlJ]
[63 +L1
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original nonsingular established value

sparse matrix of k

maximum

upper number of number of

bound on non-zero non-zero MEDS MMEDS

order minimum k elements elements algorithm algorithm

10x10 1 36 64 1 1

10x10 1 49 64 2 1

10x10 2 36 72 4 3

10x10 2 48 72 4 2

10x10 3 26 79 1 1

10x10 3 47 79 6 2

12X12 1 30 89 0 0

12X12 1 43 89 5 3

12x12 2 28 99 1 1

12x12 2 41 99 4 3

12x12 3 28 108 1 1

12x12 3 44 108 3 2

12x12 4 32 116 2 2

12x12 4
49

116 5 3

Table 1 Performance data for MEDS and
MMEDS algorithms.
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FIGURE CAPTIONS

Fig. 1 k-bordered lower triangular matrix

Fig. 2 Bipartite graph and matchings. a) Bipartite graph (i) and two

matchings (ii and iii), b) Bipartite graph (i) and a complete —

also, maximum cardinality — matching (ii), c) Bipartite graph

(1) and a maximum cardinality matching (ii).

Fig. 3 Bipartite graph and dumbbells a) Bipartite graph B, b) Complete

matching I, c) Fundamental dumbbell set D , d) Dumbbell set D,

e) Dumbbell set SA^d), f) Dumbbell set TA])(d), g) Essential
dumbbell set F, h) Section graph B(X-X(F)), i) Minimum

essential dumbbell set MF, j) Section graph (BX-X(MF)).

Fig. 4 Illustration of Proposition 3.1. a) Bipartite graph B,

b) Complete matching I with I darkened, c) Complete matching
cl

I, with I darkened, d) Cycle with edges in common with I, darkened,
b d

Fig. 5 Search tree.

Fig. 6 t versus n.
cp

Fig. A-1 Hierarchy of APL functions realizing the MMEDS algorithm.
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