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Errata in Memorandum No. UCB/ERL M78/72 October 23, 1978

P.16 Maximum positive normalized:

SINGLE 2127 % (2-2-23) DOUBLE 21023 % (o_p-52)
B- 19 a.  _+| -0 +0
-0 -0 A A. +0 in rounding modes RN, RZ, RP
- +0] A +0 and -0 in rounding mode RM.

P- 20 4.i) If all bits of the (unrounded) significand are zero, set
the sign to "+" in rounding modes RN, RZ, RP, and set the sign
to "-" in mode RM, as in case A of (a) above. The result is
true zero, i.e. the exponent is set to its most negative value.

P. 28 Replace the first line of the page with:

FLOATING_TO_ INTEGER

This instruction converts a floating point integer X into
a binary integer of the host processor.

p. 36 6) Should"-s = -‘F if trapped? or NAN?

8) Should the over/underflow bias adjust be 3%2N-2 pather than

3%pn-2 _ 2, where n is the number of bits in the exponent
field?



INTRODUCTLON

This draft standard is one of several before an IEEE sabcommiltee whose
goal is Lo standardize Ffloating point arithmetic for mini- and micro-
computers. This is Lhe seveatn in a series of drafts, the Ffirst of which wasd
presented by Harold Stone, William Kahan and Jerome Coonen in May, 1978. The
present document benefits from extensive discussions in previous meetings of
the 1EEE subcommittee. The auathor wishes Lo acknowledge the help of Profesuor
william Kahan in preparing this draft.

This proposal specifies meticulously its data formats and its very com-
plete complement of arithmetic operations down to the last bit. 1t muast do 30
to be of use to the producers of micro-processor hardware and software, who
cannot afford to provide the support software and personnel to perform conver-
sions between systems conforming to a less rigid standari. The present stan-
dqurd would allow communicalion between systems at the data level withoat
conversions.

while this standard is precise in its specification of the reautLs of
arilhmetic operations, it must be flexible enough to accommodate a variely of
computer architectures (e.g. stack, multi-register, single-accumalator,
slorage-to-storage, dedicated auxiliary processor,...) and several possible
levels of implementation (SINGLE precision only, both SINGLE and DOUBLE preci-
sions,...). At the same time iL must allow for future developments; some of
tnem, hitherto precluded by ill-advised aspects of current designsa, should
instead be supported by the new system's design in so Far that support is
achievable without an excessive burden upon the performance of Loday':s Lasks.
Among the necessary developments are:

Interval Arithmetic, which provides a certifiable resilt deapite roundoff
and over/underflow and other exceptions; and

A degree of collaboration between numerical (approximate) procedures on
the one hand and automatic symbolic algebraic (exact) procedures on the
other; and

The use of reserved operands to extend the numerical data structuare, say
with complex infinities, or pointers into heaps of numbers with extended
range and precision.

The new standard takes greal care in Lhe handling of exceptional condi-
tions such as over/underflow. An attempt has been made to achieve a higher
level of safety than has been customary, with enhanced utilily bul wilhoal
excessive cost. This will impact existing software in the following way.
Programs, which run now in higher level languages like FORTRAN, should be
portable to a system with the new standard arithmetic at the cost of a modest
amount of editing and a recompilation, and then should execute with resulbs
almost certainly no worse than before, though programs which used Lo give
incorrect results might now give diagnostic messages instead.

This work was partially funded by Office of Naval Research Contract NOOOl4-76-C-
0013. '
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PART L: NARRATIVE DESCRIPT1ION OF THE STANDARD ARITHMETIC

BASIC LEVELS OF PRECISION

Any nonzero real number x may be expressed as x = ize ¥ f, where e
is a signed integer and 1 < F < 2. We call this the "floating point"
representation of x, with exponent e and significant digit field f. Our
object is to describe a machine representation for real numbers based on thiy
floating point decomposition, and to prescribe rules for arithmetic on Lhese
numpers. In tnis scheme, e and f will be represented by bit strings of
prescribed lengths so that necesarily only a finite subset of the real numbers
will be representable exactly.

This standard for floating point arithmetic admits two basic levels of
precision, SINGLE and DOUBLE. 1t is possible that a third, QUAD, will be
added. An implementation of this standard may provide SINGLE only, or both
S31NGLE and DOUBLE precisions. We require SINGLE in all standard syslems,
recognizing both its valie as a debugging precision and its efficiency for a
wide range of applications where storage economy matters.

We will discuss only SINGLE here, referring the reader Lo PART 11 for
the analogous details of DOUBLE. A normalized aonzero number X in SINGLE
precision has the form

S, E-12
X = (-1) #2 i*(I.F) where
S = sign bit = bit string of length one
E = biased exponent = bit string of length 8 encoding
integers in the range 0 to 255
F = significand = bit string of length 23 encoding

those of X's significant bits that follow the
binary point, yielding a 24 bit significant digit
field for X that always begins "1, ",

In terms of the above decomposition of X as a normalized number we have Llhe
following relations provided 0 < E < 255:

S
sign of X = (-1)
e = E-127 = X's unbiased exponent
F = 1.,F = X's significant digit field.

Note that the leading 1 bit of X's the significant digit field f is “impli-
cit" in the storage representation. The values 0 and 255 of E are reserved to
designate special operands to be discussed in later sections. It may at leasl
be noted here that signed zero is represented by E = F = 0. With this con-
straint on E, a normalized nonzero SINGLE precision number X can range in
magnitude between

-126 _-1206 127
2

128
=2 # 1.000...00 and2 101100010 =2

inclusive.

The number X above ia represenled in slorapge by bLhe bil atring,
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This encoding has the apecial property that the order of floating point
numbers coincides with the lexicographic order of their machine counterparts
when interpreted as sign-magnitude binary integers.

The normalized nonzero SINGLE precision numbers are elements of a finite
model for the real number system, a model we shall develop further in the Ffol-
lowing sections. In this model the normalized nonzero SINGLE precision
numbers simply represent themselves as infinile precision real n.mbers.

ARITHMETIC OPERATIONS

The Ffollowing arithmetic operations are completely described by this
standard:

ADD REMainder INTeger_part
SUBtract CoMPare Float ing_to_lNTeger
MULtiply MOvVe INTeger_to_Float ing
DiVide SQuare_RooT

binary_lNTeger_Lo_DECimal_string
decimal_STRing to_BINary_integer
BINary_Ffloating_to_DECimal_floating
DECimal_ﬁloatlng_to_BINary_Floating

The description is complete in the sense that, given operands at any levels of
precision, and given the precision desired for the result, the resualt is
specified by the standard. We refer the reader to PART Il for tables detail-
ing the operations.

An implementation of this standard must at least provide

1. ADD, SUB, MUL, DIV and REM for any Lwo operands of the same precision,
for each supported precision, with the resultl having no less exponent range
than the two operands.

2. CMP and MOV for operands at any, perhaps different, supported levels of
precision (in the case of MOV the second operand is the destination).

3. INT and SQRT for operands at all supported levels of precision, produc-~
ing results having no less exponent range Lhan the inpul operands.

4. Conversions between floating point integers and binary integers in Lhe
host processor.

5. Binary_decimal conversions to and from all supported levels of precision.
These conversions are supported by conversions between floating point integers
and decimal strings. A section of PART II is devoled to the details of these
operations.

This standard provides a notably complete 3et of arithmetic operations in
an attempt to Ffacilitate program portability by guaranteeing that resualls
obtained using standard arithmetic may be reproduced on differentl compuler
Systems, down to the lasL bit. SQRT is included as a primitive operal.ion
because il appears 30 often, for example in malrix caleculalions, and beca e,
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when implemented in hardware according to published algorithms its execuiion
time is comparable with that of a divide. In many cuarrent systems, SQRT ias
implemented too slowly and/or too inaccurately, so that unnecessary effort is
expended coding around it. The same applies in the case of REM. We point out
that REM is preferable to the MOD function because REM is computed withonl.
round ing error. Consider, for example

0.0 #MOD (-95) versas 0.0 REM (-95)

o i Z-digil machine. MOD  yields Lhe resalt round(-94.99) = -95 for a com-
plele losan of accuracy while REM yields Lhe correct resialt 0.01. The
standard's  inscstence apon standard binary-decimal conversions is both a
reflecLion of Lhe delicacy of the calcilations involved and an attempt to
allow comparison »f data from different system:s at the decimal output level
rather Lhan via hexadecimal dumps.

ACCURACY AND ROUNDING

The operations ADD, SUB, MUL, DIV, REM, INT, and SQRT are presumed Lo
deliver their resalts to destinations having no less exponent range than their
inpat operands. Besides simplifying the narrative, this constraint avoids
Jannecessary complexity in the implementation. Systems which implemented Lhe
rare operation

DOUBLE * DOUBLE --> SINGLE
directly instead of indirectly via
DOUBLE * DOUBLE --> DOUBLE; MOVE (ROUND) DOUBLE --> SINGLE
would enjoy a slight advantage in speed and'rounding error at the cosl of a
richer instruction set and considerably more complicated responses Lo

over/underflow. There are better ways.

Tne simplest systems may restrict their instruction sets to allow no
mixed-precision operations besides MOVE and COMPARE, providing only

SINGLE # SINGLE --> SINGLE and DOUBLE # DOUBLE --> DOUBLE,

but they would not support efficient numerical compiutation adequately. There
are many occasions when constructions like

SINGLE + SINGLE --> DOUBLE or
(SINGLE # SINGLE ~--> DOUBLE) + DOUBLE --> DOUBLE
ought to be used in innermost loops, and then the costs of "padding" like
(SINGLE --> DOUBLE) + DOUBLE --> DOUBLE or
(SINGLE ~-> DOUBLE) #* (SINGLE --> DOUBLE) + DOUBLE --> DOUBLE
‘respectively become unnecessary nuisances. Rather than prohibil mixed-
precision operations, the standard is designed to encourage the provision of
some 3such operations, though it is unreasonable Lo expect operations Lhat

cater Lo every possible combination of input types and yield res.lts at every
supported level of precision.
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What is needed is control over the precision to which a result is ro.nded
independent of the ostensible precisions of the input operands. This is
achieved in a standard system in either or both of two ways. One way is to
specify the width of the destination subject to the constraint, mentioned
above, that the destination be no narrower than the operation's input operands
(excepl. for the operations MOVE and COMPARE). The 3econd way is to specify in
advance Lhe precision to whicn a resill is Lo be rounded subject to the con-
shraind. Lhal Lhal precision be not too wide For the intended destination. For
tnsbance, Lthe standard allows for operations of the Fform

((SINGLE # DOUBLE) rounded to SINGLE PRECISION) --> DOUBLE.

Uperalions Llike that are appropriate for a system which, in an attempt to
economize on the size of its instruction set, delivers all resiulits except
those of MOVE and COMPARE only to the widest destinations sipported by the
system. Such a system would encourage a healthy practice, namely Lhe preser-
vation of intermediate results for a long expression in the widest available
precision, with just one serious rounding error at the end when Lhe
expression's value is stored in a narrower destination. Bul Lhat healthy
practice 1is practically precluded at present by ill-considered constraints
built into current programming languages. Therefore, the standard's specifi-
cations for roundoff control are burdened by the complications necessary Lo
provide, on the one hand, compatibility with past practice however ill-
advised, and on the other hand an opportunity for better procedures in Lhe
future.

If the result of one of the arithmetic operations, when computed to
infinite precision, is exactly representable within the exponent range and
precision specified for the result, then it must be given exactly. Otherwise
the result must be rounded according to one of the schemes Lo be presented in
this section. 1n any case, the error will be less than one unit in the last
place to which the result is rounded unless Over/Underflow or some other such
exception intervenes.

To illustrate the rounding modes we let 2z be the infinitely precise
result of an arithmetic operation. Then we determine Z1 and 22, nmbers
representable exactly with the precision of the intended destination field,
such that 21 and Z2 most closely bracket z, that is 2V < z £ 22, barely.
Certain details concerning the exponent range and the alignment of Lhe binary
point of Z1 and 2Z2 are deferred to PART II. We then have:

Round_to_Nearest(z) = Unbiased_Round(z) = the nearer of
Z1 and Z2 to z; in case of a tie choose the one of
Z1 and %2 whose least significant bit is 0.

Round_to_Zero(z) = Chop(z) = smaller of Z1' and Z2 in
magnitude.
Round_to_Plus_Infinity(z) = Z2.
directed roundings
Round_to_Minus_Infinity(z) = Z1.
As noted, the latter two rounding modes are often referred Lo as Lhe "directed
roundings". Thev are intended to supporl Interval Arithmetic and Lo calculatle
cert.ifiable wupperr and lower bounds, and to control conversion to integers.
Round_to_zero is aseful loo in controlling conversions Lo integers in accor-

dance wilth convention: cmbedded in certain progamming langages like FORTRAN.
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An implementation of the standard may support either of the following
combinations of rounding modes:

1. Round_to_Nearest only, with Round_to_Zero
for certain specified integer operations.
2. All four rounding modes.

If more than one rounding mode is supported then Round_to_Nearest shall be the
default mode for all operations. Despite the apparent redundancy of rounding
to Zero, Plus_Infinity and Minus_Infinity, both directed roundings are
required if either is implemented. It is a false economy to attempt a saving
in the number of rounding modes implemented, because codes are much simpler
when given direct access to all rounding modes. 1In interval arithmetic, for
example, one often computes the upper and lower bounds of an interval by exe-
cuting the 3same sequence of instructions twice, rounding wp during one pass
and down Lhe next.

Calculation of Round_to_Nearest requires the so-called S3ticky Bit, as
shown in PART II. Once the Sticky Bit is implemented, the directed roundings
may be supplied at very little extra cost,the bulk of which Llies in Lhe
mechanism, e.g. mode bits or extra opcodes, Ffor exercising the choice of
rounding mode. While the standard leaves this mechanism up Lo the imple-
menter, we remark that the mode bits are usually preferable. For example,
consider the interval arithmetic computation of the previous paragraph. This
task is greatly expedited if changing rounding modes from one pass to Lhe nexl
is simply a matter of flipping a pair of mode bits.

EXTENDED PRECISION

To perform the arithmetic operations on numbers stored in SINGLE or DOU-
BLE pecision, a system will generally "unpack" the bit strings into their com-
ponent fields

sign
biased exponent

S
E
F significand.

Moreover, the leading bit of the significand will be made explicil, and
perhaps the bias will be removed from the exponent. Since most current
machines use data paths of widths 4, 8, 16, 32 or 64, the 2U-bit SINGLE signi-
ficand, with explicit leading bit, will probably be unpacked into a 32-bit
field. Similarly, the 53-bit DOUBLE significand may be dealt with in a 6U4-bit
field.

The standard provides a way to exploit this unpacked format, by admitting
SINGLE_EXTENDED and DOUBLE_EXTENDED prezisions; perhaps QUAD_EXTENDED will be
added later. Support of the extended precisions is optional. 1f implemenie:l
at all, only one extended precision shall be provided, namely that correspond-
ing to the widest basic precision supported.

As with the basic precisiony, we will describe SINGLE_EXTENDED -here,
referring the reader Lo PART 11 for the full details of the exlended preci-
3ions. SINGLE_EXTENDED is comprised of the fields
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S = s8ign = Dbit string of length one
E = unbiased exponent = a signed integer of at least 11 bits
F = significand = a bit string of length at least 32 bits,

with an explicit leading bit followed by an implicit
binary point.

A number X encoded in SINGLE EXTENDED is then given by

S . E
X = (1) %2 &«F

except possibly when E takes its most positive value. Signed zero is given
by E = most-negative-value and F = 0.

The exponent width i3 so chosen to provide at least the range of DOUBLE
precision. The most positive value of the exponent is reserved for the encod-
ing of dpecial operands Lo be discussed later. Having at least eight extra
aignificand bils greatly simplifies the accurate computation of the xtrl—
gonometric, logarithm and exponential funcilions, and the power function Y , Lo
full SINGLE precision. Matrix calculations also benefit from 3INGLE_EXTENDED
accum:tlations of products of SINGLE precision data. Moreover, the extra bils
of precision are so important in binary-decimal conversions that some extended
capability must be simulated by system software if extended precision is nol
implemented; this is discussed in PART 1I.

I1f implemented, extended entities are assumed to be few in number, used
to evaluate complicated subexpressions, for example. They are not intended to
be indexed in arrays in higher-level languages.

Another way to obtain most of the computational benefits of extended pre-
cision is by using the "next higher" basic level of precision. 1ndeed, QUAD
may be included in the standard solely as an alternative for those not wishing
to implement DOUBLE_EXTENDED in a system with SINGLE and DOUBLE. One impor-
tant difference between the basic and extended precisions (s the leading sig-
nificand bit, which is explicit only in the exlended precisions. The section
on treatment of Underflows will indicate how special classes of unnormalized
numbers arise in the basic precisions. In extended precision, on the olher
hand, the explicit leading significand bit allows encoding of unnormalized
nambers over the entire exponent range (except, of course, the reserved
value). Thus EXTENDED is a more flexible way to get extended range than is
the next higher basic level of precision, but it is less precise. Moreover,
in most implementations EXTENDED will be as fast as the precision it supportis,
as compared to the factor of 2 or U4 loss in speed realized by the next higher
basic level of precision, if implemented.

EXCEPTIONS

So far we have described the basic and optional extended precisions for
encoding real numbers, and we have specified a large family of arilhmetic
operations on them. This is all quite straightforward, given the word uizes
of current machines and the needs of people seeking floating point capabililty.
A much more interesiing question remains, with regard Lo the exceptional zon-
ditions that arise during arithmetic operations -- how are the responses Lo
exceptions to be standardized? The remainder of this narratlive addressen Lhin
question.

The standard organizes the exceplion conditions inder the five headings:



Invalid_Operation
Underflow
Overflow
Invalid_Division
Inexacl_Result

The following seclions Lreat these conditions individually, ultimately
prescribing Lhe resulls, if any, Lo be delivered in each instance. It is
important to note that these results, as standard aystem responses, are
independent of whether the standard is implemented entirely in hardware or
software, or in a combination of the two. Certain diagnostic information
passed via "results" is necessarily implementation-depend=zat; however, in the
context of a given system, the results are uniquely determined by the stan-
dard.

For each of the five exceptions, an implementation of the standard may

a. Force a trap to user software.
or
b. Deliver a result specified by the standard and proceed.
or
¢. Provide the user with a Trap_Enable bit whereby to choose
(a) or (b), i.e. whether or not to trap.

Whenever a choice is given, the default shall be to proceed without a trap.
The standard provides a precedence rule to determine which dingle Lrap. is Lo
be invoked in case several exceptions occur simultaneously.

Associated with each of the exceptions is a "sticky" flag which is set on
each occurrence of the corresponding exception, regardless of the system
response. Each flag may be tested by a program to determine whether an excep-
tion has occurred. Following an exception, a flag remains set until cleared
by the user's program (or programming environment). 1In certain instances,
e.g. when the end of a job is obviously at hand, a humane operating syslLem may
draw the user's attention to flags still set, thereby perhaps reminding him of
exceptions that were overlooked by his program.

To deal effectively with traps, programmers need access Lo certain vital
information, ideally:

What event caused the trap?

Where in the program?

What did the instruction try to do (what opcode)?
What were the operands (source and destination)?

In response, the programmmer will normally either:

Depart from the offending block of code to try
something utterly else.

Fix up the aberrant result and resume execation
after the offending instruction.

Fix up the aberrant operands and re-execute Lhe
offend ing instruction.

Sometimes Lhe full range of information and responses i3 not needed, espe-
cially when the correct result is available, possibly in encoded form as in
the case of Over/Underflow. One might dispense with 3some of the above



information in these cases.
INVALID_OPERATION

The Inval id_Operation exception encompasses problems arising in a variely
of arithmetic operations; it is the blanket covering those errors nol fre-
gquent or important enough to merit their own fault condiltion. Here are exam-
ples of lnvalid_Operations:

- ‘\j -5

-- 0/0 with the Invalid_Division trap disabled

-- plus_infinity + minus_infinity
(the infinities will be introduced later)

-- Attempted arithmetic with a designated reserved
operand (these "Not-A-Numbers" will be introduced
below).

We see that some invalid operations, Like 0/0, cannol deliver a numerical
result that would be reasonable in all circumstances. For these aituations we
atilize one class of reserved operands, the Not-A-Number symbols, or NANs. In
SINGLE and DOUBLE precisions, with the format

————— - - —— - R - W - - o = -

NANs are characterized by

sign bit (it may be irrelevant)
111,011
0.

o wn

not

1n extended precision, NANs have the most positive exponent. The sign bit S
participates in the obvious way in the execution of statements Llike X = -Y
and Z = X-Y = X+(-Y) without loss of information in the event that Y is a
NAN with a numerical connotation.

The nonzero significand field F of a NAN will contain system-dependent
information, for example:

a. A distinguished class of NANs, say with two leading zero significand
bits, may be used by an operating system to initialize slorage. The sig-
nificand of such a NAN may be a name or a pointer to the region where Lhe
NAN is stored. As we will see below, these NANs will propagate through
arithmetic operations, ultimately providing pointers to those areas of
aser-uninitialized storage which are the ancestors of meaningless final
results.

b. A NAN generated by an invalid arithmetic operation on numeric data,
for example O * infinity, may be a pointer to the offending line or
block of code.

¢. When complex arithmetic is implemented, it is often useful to think
of infinity as a line rather than a point in the projective plane. A
distinguished class of NANs, say those with two leading one bits in Lhe
significand, may be used in pairs Lo provide the relative sizes and signs
of the real and imaginary parls of numbers Llending lo infinity .long a
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fixed ray emanating from the origin. While these entities have the for-
mat of NANs, they contain signed numeric data and would be handled in
software invoked by traps.

d. Sometimes an operation could generate an acceptable result bal for
its inability to pack that resalt correctly into the intended destination
(see the discussion of over/underflows). 1In such a case, a NAN 2ould be
supplied as the "result", with a significand pointing to a place, e.g. an
extended field or a heap in storage, where the correct result may be
found.

. somebimes a sabrouline may encounter data for which only a partial
reaall. can be delivered in the Lime available. The rest of the res.lt
can be replaced by NANs which point to a piece of the program which will
resume execution of that subroutine only if that undelivered portion of
the result is really needed.

F. List-oriented systems like LISP may use SINGLFE orecision NANs to
point to DOUBLE numerical data.

As elements of our model of the real numbers, the NANs are extensions of
the real number system. Their role in arithmetic operations is quite simple.
While certain classes of NANs, for example those in (c) above, will cause an
invalid_operation =xception when picked up as operands, NANs will generally
propagate through arithmetic operations without generat ing exceptions. For
example 5 + n ==> n if n is a NAN. If two NANs are picked ap as
operands, the one with the smaller significand has precedence; Lhis is more
precisely specified in the Appendix.

We now specify system action on lnvalid_Operation 2xceptions. 1f no trap
is to be taken then the result of any Invalid_Operation i3 a NAN bearing some
system-dependent information.

If an lnvalid_pperatbn occurs and a trap is to be taken, the resull, if
any, to be delivered is highly machine-dependent as well as operation-
dependent. In some implementations, the trap will effectively occur before
the operation is carried out, so no result need be written into the destina-
tion field. On the other hand, the trap may be invoked too late by some
machines, i.e. after some result is produced and delivered. In this case Lhe
,usual result is a NAN, though an implementation may, in certain situatjons,
deliver a numeric result, for example it may make sense to deliver :\[E* in

place of ‘ﬁ-s ; these special cases are noted in PART 1I.
UNDERFLOW

Exponent Underflow is the most interesting of the exceptions because of
the care taken by the standard to provide as much information as possible when
proceeding without a trap. In the case of Overflow, on the other hand, a
bare minimum of information is passed; this is discussed in the nexlL section.
For Lhis reason, the range of normalized numbers in SINGLE and DOUBLE preci-
dtons has been chosen Lo diminish slightly the risk of Overflow compared wilh
Lhe risgk of Underflow. This was done by picking the exponent bias and align-
ment of the binary poinL in Lhe significand in such a way that the product of
the largest and smallest positive normalized numbers is roughly 4 in each of
the basic levels of precision.

We now discuss the treatment of Underflows. 1In each case we let 2z be
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the infinitely precise nonzero result of an arithmetic operation and we let z
have the form

e
z = +2 #F where

e is a signed integer and 1| £ f < 2. We assume no prior knowledge about e.
Note that before rounding 2z we check whether or not we'll trap on Underflow,
if it occurs.

If a trap is to be taken on Underflow, then 2z is rounded to the preci-
sion of the destination field. If the exponent lies below the exponent range
of the destination field then Underflow occurs. Because of the restrictions
on arithmetic operations presumed under "ACCURACY AND ROUNDING", the exponent
can be out of range by at most a factor of two, except for the MOV instruction
which is discussed in PART II. The exponent is wrapped around into the
desired range with a bias adjust specified in PART II. The resalt is then
delivered Lo the destinabion and the trap is invoked.

If no trap is to be taken on Underflow, then the exponenlL of our infin-
itely precise resalt 2z is tested before rounding. If it lies below Lhe
minimum possible exponent of the destination Ffield, then 2z is "denormal-
ized", that is: .

the significant digit field of 2z is right-shifted while =2's exponenL
is incremented until it reaches the minimum possible exponent of the des-
tination.

Then 2z is rounded to the precision of the destination field, and th2 result
is delivered, in a manner to be described presently. Unless 2z rounds '1p in
magnitude to the smallest nonzero normalized number, Underflow is signalled.

To illustrq}fB&he denormalization process let 48 consider an example:
Let Z = +2 # 1.01101... and suppose that the destination is a
SINGLE precision field. As a further simplification lét us assume there are
only 6 bits of precision Lo be carried, plus the implicit leading bit, in SIN-
GLE. Then

130

Z = 2 ® 1.01101... -130 < =126 so we denormalize --
-1

Z = 2 26 4 0.000101101... we round (to nearest,say) --

X = 2"26 # 0.000110 = the result to be delivered.

We call the above result X a "denormalized number" in SINGLE precision;
it is a special type of unnormalized number, namely one with the smallest pos-
sible exponent for the given basic level of precision. Note Lhat the exponent
cf a denormalized number links it to a basic level of precision. We will dis-
cuss only SINGLE precision denormalized numbers here. DOUBLE precision is
essentially the same; see PART II for details of the differences. In terms
of the format

a SINGLE precision nonzero denormalized number X is encoded as
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sign bit
0

nonzero string of bits to the right of the binary poinl
of X.

nEw
woanon

We reconstract X via the formula

X = (_])S s 2-126

# (0.F) ,

observing that E 1is not the true biased exponent in SINGLE precision. Com-
paring this formula with its analogue for normalized numbers we see that, when
unpacking a denormalized number, the 1-bit that would have gone to Lhe leading
bit of Llhe significand for a normalized number is instead added into the
unbinsed exponent. E-127+1.

The: denormal ized number:s and signed zero3z are the family of reserved
operandy  corresponding Lo a biased exponent of zero. The values +0 are
obtained jusL when F = 0 above. Zero may result from an Underflow, depend-
ing on the rounding mode, when the Underflow is s0 severe thal all nonzero
bits are shifted out of the significand field.

The denormalized numbers and +0 join the normalized numbers and NAN3 as
elements of our model of the real numbers. Both +0 and -0 correspond to
the real number 0 and are identical in every operation except division;
this will be discussed along with Invalid_Divisions. A denormalized number X
represents, roughly speaking, all of the real numbers which would round to
that bit-string X in the specified rounding mode and precision. We note
that the denormalized numbers are designed not so much to extend lLhe exponent
at any level of precision, but rather to allow further computation with some
sacrifice of precision in order to defer as long as the possible the need to
decide whether the underflow will have significant consequences.

In add/subtracts, denormalized numbers behave in much the same way as
normalized numbers, with never more than a rounding error committed in any
operation. The situation is different in multiply/divides, where multiplying
a SINGLE precision denormalized number by a large power of 2 and attempling Lo
store the result in SINGLE is an Invalid_Operation. The unnormalized signifi-
cand, having suffered loss of precision during some prior Underflow, may not
be promoted to normalized status merely by multiplication. 1f, however, the
destination had been an extended field, the unnormalized significand with
large exponent would have been a (perhaps temporarily) legitimate result.
PART II gives the full details of denormalized numbers in arithmetic opra-
tions.

The implementation of denormalized numbers, whether in hardware or
software, is required only of those systems in which, on Underflow, users may
proceed without trapping. Implementations not supporting denormalized
numbers, and thus Fforcing a user trap on every Underflow, must nonethele:ss
sense the denormalized numbers as bit strings, when they are picked up as
operands, and generate an Invalid_Operation fault. Note that implementations
whose default, or only, option upon Underflow is to underflow abruptly (i.e.
from anything smaller than the smallesl normalized number) to zero, do nol
conform to the standard.

OVERFLOW

In conlrast Lo the gracefal treatment of Unaerflows in no-trup
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situations, Overflows are dealt with swiftly and surely, with a corresponding
loss of information. It is noted in the discussion of Underflows that to take
the greatest advantage of the treatment of Underflows, the number system is
slightly biased away from zero, in the hope of making Overflows more rare than
Underflows.

We now discuss the treatment of Overflows. In each case we let X be
the normalized result of an arithmetic operation; we assume that X has been
rounded to the precision of the destination field and that X has overflowed
the exponent range.

If a trap is to be taken then, because every arithmetic operation's
result goes to a destination no narrower than its input operands, the exponent
can be out of range by at most a factor of two, except for the MOVE operation
which is discussed in PART I1. The exponent is wrapped around into the
desired range with a bias adjust specified in PART Il. This result is
delivered to the destination field and the trap is invoked. The exponent
wrap-around is chosen so that the result, while related in a simple way to the
overflowed value, lies somewhere in the middle of the . numerical range of
representable numbers. This diminishes the risk that a computational response
(like scaling) to Overflow will encounter almost immediately a rash of conse-
quent Underflows. The analogous statement holds for the treatment of Under-
flows when the trap is enabled.

If no trap is to be taken, then infinity with the sign of X 1is written
into the destination field. In SINGLE and DOUBLE precision with format

infinity is encoded as

sign bit
1.
00

S

E

F

In extended precision E = Ovt1,..1t = the most positive exponent and F = O.
The signed infinities and NANs thus comprise the family of reserved

operands with most positive exponent. As elements of our model of the real

numbers, the infinities are given two interpretations. In the Affine Closure,

minus_infinity < {real numbers} < plus_infinity.
But in the Projective Closure the sign of infinity is ignored, i.e.
infinity = minus_infinity = plus_infinity,

and all comparisons between infinity and a real number involving order rela-
tions other than = or not= are invalid_operations.

Aside from the compares, all operations on the infinities in the two clo-
sures are the same excepl Lhat bolh

infinity infinitly and infinitly - inflinily
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are Invalid_Operations in the Projective Closure. Systems supporting lhe
infinities shall provide an Affine/Projective mode bit so that choice of
closures can be made under program control. The Affine mode is the defaull
mode, and is appropriate for most engineering calculations involving exponen-
tials or disparate time constants or infinities generated by overflows. The
Projective mode is appropriate for real and complex rational arithmetic, for
continued fractions, and for infinities generated by division by 2zeros not
generated by underflows.

The infinities interact with +0 in a very special way. It was noted in
the last section that, aside from a trivial exception noted in PART 11, +0
and -0 participate identically in all operations except division. The only
way Lo distinguish +0 and -0 arithmetically is to use the fact that

+1/+0 = plug_infinity > +1/-0 = minus_infinity

can be recognized in the Affine mode. In terms of our model of the real
numbers, this situation is to be expected. Since we associate the two ele-
ments +0 with the single real number 0, we should not be able to distin-
guish machine +0 wusing arithmetic on real numbers; rather, we find that we
can disitinguish them only in a proper extension of the real numbers that
includes infinities.

As we saw in the case of Underflows, systems forcing traps on Overflow
need not support infinities but must recognize them when they are picked up as
operands for arithmetic operations, and generate an Invalid Operation excep-
tion.

INVALID_DIVISION

The Invalid_Division exception arises when a zero divisor occurs in a
division operation. It also arises when a denormalized divisor is picked up
in a system not implementing division by denormalized numbers; see PART 11
for details.

If the divisor is zero and the dividend is nonzero, the result is infin-
ity with sign according to convention.

If both the divisor and dividend are zero, or if the divisor is (too far)
denormalized, then if the invalid_division trap is enabled, it is invoked; if
a result must be delivered it is a NAN. If the Invalid_Division trap is dis-
abled then an 1nvalid_Operation exception arises; if a result must be
delivered it is a NAN.

INEXACT_RESULT

The Inexact_Result exception arises when a round-off error is committed
in an arithmetic operation. It is intended for essentially integer calcula-
tion as in COBOL and to facilitate multiple-precision calculation. The
rounded result is delivered to the destination field and the trap is invoked
if enabled. When this exception occurs together with Over/Underflow, the
lat.ter traps have precedence.
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PART 1I: SPECIFICATIONS FOR STANDARD ARITHMETIC

LEVELS OF PRECISION

SINGLE and DOUBLE are the basic levels of precision. A standard system
shall provide either SINGLE only, or both SINGLE and DOUBLE. In addilion a
system may provide the extended precision corresponding to the widesl basic
precision supported.

The tables below detail the levels of precision and the data types speci-
fied by this standard. Of the reserved operands, the denormalized numbers and
infinities need not be implemented in hardware in systems trapping to user
software on all Overfiow, Underflow and Invalid_Division exceptions, provided
these operands cause an Invalid_Operation exception when picked up as operands
in an arilthmetic operation.

The signed infiniliss, when implemented, will be interpreted in eilher
Lhe Affine or Projective closures of the real numbers. 1Ian the latter caze the
sign of infinity is ignored by the add, subtract and compare instruclions,
l.e. "plus" and "minus" infinity are treated as the same, unsigned, infinity.
Choice of closures shall be exercised via the Affine/Projective mode bit,
which may be sensed and changed by user programs. Affine mode shall be the
default for all arithmetic operations. Note that table entries giving
specific values Ffor the exponent E of the zeros and reserved operands in
EXTENDED precision depend on the number of bits in the exponent field.



BASIC LEVELS OF PRECISION

SINGLE DOUBLE
Length in bits 32 64
Fields:
S = sign 1 ' 1
E = exponent { 1R ]
F = significand (1)+23 (1)+52
Storage format: iSi E | Foo iSi E | F :
Interpretation of sign:
Positive 0 0
Negalive 1 1
Normalized numbers:
Interp. of E unsigned integer ansigned integer
Bias of L 127 1023
Range of E 1 < E £ 254 1 < E < 2046
Interp. of F significant digit significant digit
field = 1.F field = I.F
Relation to \
represented  (-1)%25"'2Ta(y ) (-1)505710234 ()
real number
Signed Zeros:
E = 0 0
F = 0 0
Reserved Operands:
Denormalized numbrs: :
E = 0 0
Bias of E 126 1022
Interp. of F significant significant digit
digit field = 0.F field = 0.F
Range of F nonzero nonzero
Relation to
represented(-?)8*2-126*(0.F) (-1)3*2-‘022*(0.F)
number
Signed Infinities:
E = 255 2047
F = 0 0
Not-A-Number, or NAN:
E = 255 20u47
Range of F nonzero nonzero

Interp. of F system-dependent diagnostic and possibly
numeric information

Ranges: 126 - 1022 -52
Max positive 2  #(2-2 zgé 2 #(2-2 20?
normal ized = 1.7%10 = 9#%10

-126 -1022
Min positive 2 —§8 2 -308
normalized = 1.2%10 = 2.2%10
-1 -1074
Min positive 2 9 2 07
-45 -324
denormal ized = 1.4%1Q0 = §.9%10



EXTENDED PRECISI1ON

Length in bits > 4y 30
Fields:
S = 3ign 1 !
E = exponent 2 1A 15
F = significand > 32 64
sStorage format: nol specified beyond minimum field widlhs
Interprctation of sign:
Pousitive 0 0
Negatlive 1 1
Interp. of exponent: anaigned integer ansigned integer
Max E 2 1023 16383
Min E £ ~1024 -16384
Nonzero numbers:
Range of E Min E to (Max E - 1) Min E to (Max E - 1)
Interp. of F significant digit field with binary point
to the right of the leading bit
Relation to 2
represented (-I)S*ZE*F (-1)6*2E*F
number
Signed zeros: ase special indicator or condition bits, or else
E = Min E Min E
F = 0 0
Reserved operands:
Signed infinities: ase special, indicator or condil.ion bits,
or else
E = Max E Max E
F = 0 0
Not-A-Number symbols,
or NANs: ase special indicator or condition bits, or else
E = Max E Max E
Range of F nonzero nonzero

Interp. of F

Ranges:
Max positive 2>
normal ized

Min positive £
normalized

Min positive <
annormal ized

SINGLE_EXTENDED

DOUBLE_EXTENDED

system-dependent diagnostic and possibly

numeric information

1022 -31
= 9#1Q
-1024

2 _309

= 5.6#10

-1055

2 _318

= 3%10

16362, -6
2" (22,07

= 6%10
-16364

. gw1g 1933
-16447

2
= 9*10'“952
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ARITHMETIC OPERATLONS

The following arithmetic operations are completely described below:

ADD REMainder . INTeger_part
SUBtract CoMPare Floating_ to_INTeger
MULtiply MOVe INTeger_to_Floating
D1lVide SQuare_RooT

BlNary_integer_to_decimal_STRing
decimal_STRing_to_binary_iNTeger
BlNary_floating_to_DECimal_floating
DECimal_floating_to_BINary_Ffloating

An implementation of this standard must at least provide:

!. ADD, SUB, MUL, D1V and REM for any Lwo operands of the same precision, for
each usupported preciision, with the resalt having no less exponent range lhan
the operands.

2. CMP and MOV for operands at any, perhaps different, supported levels of
precision (in the case of MOV the second operand is the destination).

3. INT and SQRT for operands at all supported levels of precision, with the
result having no less exponent range than the input operands.

4. Conversions between floating poinL integers in all supported levels of
precision and binary integers in the host processor.

5. Radix conversions, as described in a separate subsection below.

It is assumed that MOV is the only operation whose destination may have a
smaller exponent range than its source operand(s). Otherwise Over/Underflow
with the corresponding trap enabled entails difficulties which are discussed
under "BIAS ADJUST" below. .

For simplicity, those arithmetic operations which deliver Ffloating point
results rather than strings or binary integers are broken into two steps. In
the first step a preliminary result Z is formed and, if numeric, rounded Lo
the required precision. This step is peciliar the the specific operalion. 1In
the second step the result 2 is delivered to the destination, any exceplions
are noted, and any traps invoked. The second step is the same for all opera-
tions except REM and MOV; the minor differences are noted.

One or more of five exceptional conditions may arise during an arithmetic
operation: Overflow, Underflow, Invalid_Division, Invalid_Operation and
lnexact_Resalt. For each of the exceptions, an implementation of the sLandard
may

a. Force a trap to user software.
or
b. Deliver a specified result and proceed.
or
¢. Provide Lhe user wilh a Trap_gtnable bit
whereby Lo choose (a) or (b).

Whenever a choice is given, the default shall b2 to proceed withouat a trap.
Associated with each of the exceptions is a sticky flag which i3 sel on Lhe



i-

- 19 -

occurrence of the corresponding exception, regardless of the system redponse.
The flags may be sensed and changed by user programs. Following an exception,
a flag remains setl ntil cleared by iser :software.

A system providing a Lrap on an exceplional e¢ondition must give saffi-
cient informalion Lo allow correcl.ion of the fault. The correcl resalt may be
Kiven encoded, a3 in Over/Underflow with the exponent wrap-around, or in a
heap pointed Lo by a NAN writlen inlLo the destinalion. On the other hand, if
no numeric resull can be given, the opcode and aberrant operands must be pro-
vided; in this case if the destination field is the same as one of the source
fields then the trap musL be taken before any "result" is written over the
source operand.

While the specifications of the arithmetic operations indicate that NANs
propagate through operations without raising exceptions, a system may raise
the Invalid_Operation exception for a system-specified distinguished class of
NANs. If the Invalid_Operation trap is enabled it should be invoked atL the

start of the operation, i.e. before any results are produced; if the trap is
disabled a NAN should be generated as in any Invalid_Operatlion.

In the event that two NANs occur as operands in an arithmetic operalion,
and neither is designated to cause an Invalid_Operation excepltion Lhe follow-
ing precedence ruls determines which will be propagated as the result of the
operation:

The sign and exponent are ignored, and the significands are compared as
numbers of the form O0.bbbb..., i.e. the leading bit, whether explicit or
implicit, is taken to be 0. The NAN which is smaller by Lhis comparison
is the result of the operation.

"M": 1In the tables specifying the arithmetic operations, the entry "M" indi-
cates that the above precedence rule is to be applied to two NANs picked up as
operands.

ADD/SUBTRACT

Form a preliminary result Z = X + Y. On a SUBTRACT set Y = -Y and ADD.
Z is given by the following table:

Y
! X + Y | +0 V +inf NAN
1]
e e e
i +0 i a Y Y Y
X | v i X b Y Y
| +inf I X X c Y
! NAN IX X X M

where V is any nonzero number, possibly unnormalized.

07 -0 A A - a0 in o roancting modes BN, RZ, R andd
1y A O o peoan bang mode M.
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b.

1) Align the binary points of X and Y by unnormalizing the operand
with the smaller exponent until the exponents are equal. Note
whether either of the resulting significands is normalized (Ffor step
4 below). '

2) Add Lhe operands, yielding a resilt which may be viewed as:

lsgn) | exp | IVIN. iGIRISI
{mmmm= round ing precision -->
where the binary point follows N, and S = sticky bit = logical OR of
all bits to the right of R.

3) Addition of magnitudes: 1f V=1 then right shift one bit and incre-
ment exponent. During Lhe shift R is ORed into S.

4) Suabtraction of magnitudes: If, after binary point alignment in (1),
both operands were annormalized, then skip to (5). Otherwise...

i) Lf all pilts of Lne (uoroandea) significand are zero, set the
fién Lo "M in ronding nodes RN, RZ, RP, and sel the 3ign Lo
narnomode M, as in case A of (a) above. The result is Lrae
“ato, L.e. the exponenl i3 setv to iLs moslL negalive value.

ii) OthePwi:e (some significand bit i3 nonzero)... Normalize Lhe
resull, L.e. left shift Lhe significand while decrementing the
exponenk ntil N=1. S need not participate in the left shifts;
either zero or S may be shifted into R from the right.

5) Round, as specified under "ROUNDING".

c. In Affine mode (+infinity) + (+infinity) -> (+infinity) and (-
infinity) + (-infinity) -> (-infinity). In Affine mode on (+infinily) +
(-infinity) and (-infinity) + (+infinity), and in all cases in the Pro-
jective mode, signal Invalid_Operation, and if a result must be delivered
set Z to NAN.

MULTIPLY

fForm preliminary resalt Z = X # Y, Z is given by Lhe following table,

with sign = exclusive OR of the input signs:

Y

I X * Y | 40 V +inf WAN

1

e e e

H +0 H g g i Y
X i v i & h j Y

H +inf 1 i j Y

H NAN I X X X M

where V is any nonzero number, possibly uannormalized. (Perhaps Lhe slandard
should specify that NAN *¥ 0 = 0.)
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g. Z=0 with sign.

h.

1) Generate sign and exponent according to convention. Maltiply Lhe
significands. The result may be viewed as:

where Lhe binary point follows N, and S = sticky bit = logical OR of
all bits to the right of R.

2) 1f V=1 then right-shift the significand one bit and incremenl the
exponenL, and go to (4). Else, when V=0,...

3) If N=0, then left shift the significand one bit and decrement the
exponent. S need not participate in the left shift; a zero or S may
be shifted into R from the right. (This step is contentious, and may
not be included in the standard.)

4) Round, as specified under "ROUNDING".

L. JSignal Invalid_Operation. 1If a res:ult must be delivered, set Z Lo NAN.
j. Z = infinity with sign according to multiply convention.

DIVIDE

Form a preliminary result Z = X/Y. 2 is given by Lhe following table,
with sign = exclusive OR of the input signs:

Y

i X / Y | +0 unnorm norm +inf NAN

]

e ————————— e

I i m o¥ g g X
X i v ik m¥* n g Y

i tinf ik j j m Y

i NAN X X X X M

where V is any nonzero number, possibly unnormalized. (Perhaps the standard
should specify that NAN / infinity = 0.)

g. Z=0 with sign.

[n]
n

je infinity with sign.

k. %

infinity wilh +ign. Signal Invalid_Division.

m. Signal Invalid_Division. 1t a resall musl be deliverced then sct 7 Lo NAN.
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1) Generate sign and exponent according to convention. Divide Lhe sig-
nificands. The result may be viewed as:

- e T - T - . - - - = - T - > W - - o o> o G ——— - —

where the binary point follows N, and S = sticky bit = logical OR of
all bits to the right of R.

2) 1f N=O then left shift significand one bit and decrement exponent. S
need not participate in the left shift; either a zero or S may be
shifted into R from the right. (The standard may allow a second left
shift if N=0 after the first.)

3) Round as specified in "ROUNDING".

¥ These divisions may be implemented provided the result has no or one more
significant bit than the operand with the Fewer significant bits. The stan-
dard may allow divisors whose significant digits have the form 0.1bbb...
where the b's are either 0 or 1.

REMAINDER

form the preliminary result Z = remainder when X 1is divided by Y, with
integer quotient Q. Q does not participatz in STEP TWO of the operation
unless an exception is raised there, in which case if Z is set to NAN then Q
is assigned the same value. Z and Q are given by the Ffollowing table, with
the sign of Q given by the exclusive OR of the signs of the inpult operands.

Y

! XREMY | 40 unnorm norm +inf NAN

]

e e e m—————

i +0 oWl X X b Y
X i v tow2 W y X Y

| zinf I w2 W Vi W Y

i NAN . ¢ X X X M

where V is any nonzero number, possibly annormalized.

W. Signal Invalid_Operation. If results must be delivered then set Z and Q
to NAN.

wl. Signal Invalid_Operation. 1f results must be delivered then set Z Lo X
and Q to NAN.

w2. Signal Invalid_Operalion. If results must be delivered then set Z to 0
with the sign of X and set Q to infinity with sign according Lo divide
convention.

X. Q=0 with sign. 2=X. (This is equivalent to (y) when the divisor is 0.)
Y. Set Q to the integer part of X/Y, with 3ign. If Q contains more signifi-

cant bits than its intended destination, then discard the excessive high
order bits and signal Inexact_Result. Set Z to the remainder, wilh uign
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of X. Normalize and round Z as in "ROUNDING".

SQUARE_ROOQT
Form 4 preliminary resalt, 7 = VX. Z is given by Lhe Following table:

X i YA

+0 H
-annorm |
+unnorm |
-norm H
+norm H
i

]

[}

]

1

174
— <

or

L T =S o R 7]

-inf
+inf
NAN

s1. Signal Invalid_Operation. If a result must be delivered, set Z Lo NAN.
The standard may allow —‘V-X as in s.

s. Compate 2 ::\ﬁ? to at least the number of bits required to produce a
correctly rounded result®*. Then unnormalize Z until it has juslL one
more significant bit than X has. Round, as adpecified in ™ROUNDING".
(The standard may classify this as an Invalid_Operation with NAN as the
result.)

t1. Signal Invalid_Operation. 1f a result must be delivered, set Z Lo NAN.
The standard may allow -y -X as in t.

t. Compute Z :‘T? to the number of bits required to produce a correctly
rounded result*®. Round as in "ROUNDING".

Q. In Projective mode Z=X. 1In Affine mode signal Invalid_Operalion; and if
a result must be delivered then set Z to -infinity, if possible, other-
wise set Z to NAN.

* To round correctly in all cases, calcilate two more bits of X than the
precision of the destination, which precision is never less than that of X.

INTEGER_PART

Form a preliminary result Z = integer_part(X). Z is given by the follow-
ing table:

X A
+0 I X
vV | p
+inf | q
“NAN | X

where V is any nonzero number, poszibly unnoraalized.

q. Signal Invalid_Operation. 1f a result must be delivered then set Z Lo X.
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p.

1) If X has no (zero or nonzero) fraction bits in its significand then
set Z to X. Otherwise...

2) Right-shift X's significand while incrementing Lhe exponent until no
bits (zero or nonzero) of the fractional part of X lie within Lhe
rounding precision in effect. The exponent's value will then be:

SINGLE 23

SINGLE_EXTENDED 31

DOUBLE 52

DOUBLE_EXTENDED 63
The res:ull may be viewed as:

isgn| | exp | |N. 1G1Si
L round ing precision —------- >

where the binary point is to the right of N, and S = sticky biL =
logical OR of all bits to the right of G.

3) Round as specified in "ROUNDING".

4) 1Ff all of the significand bits of Z are 0 then set 7 to zero with the
sign of Z. Otherwise normalize Z. S (which was set to zero after
rounding in step 2) need not participate in the left-shifts of nor-
mal ization; 2zero or S is shifted into G from the right.

MOV

MOV is an operation whose destination may have shorter range and preci-
sion than its source operand(s), in which case it performs an arilhmetic
operation. A preliminary result Z is given by the following Llable:

X |z
+0 i X
v ! r
+inf | X
NAN | X

where V is any nonzero number, possibly unnormalized.
r. 2=X rounded, as specified in "ROUNDING".

STEP TWO of the MOV operation differs from that of the other arithmelic
operations in the following way. On Over/Underflow with the corresponding
trap enabled, the exponent may be more Lhan.a -factor of two (i.e. one bil)
beyond the exponent range of the destinal.ion. 1In this case the BIAS ADJUST
routine is not invoked, rather a NAN is written to the destination field indi-
cat ing that the correct result is the (unchangsd) source operand of Lhe opera-
tion.

1f the destinalion Ffield i3 wider in range and precizion Lhan Lhe soure.:
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field than the MOV is exact with one exception:

In MOV SINGLE --> DOUBLE, if the SINGLE operand is denormalized then an
Inval id_Operation exception arises; deliver a NAN to the destination
indicating that the (unchanged) source operand is the correct result.

ROUNDING

Round the preliminary result W of an arithmetic operation to get the
rounded result Z. Four rounding modes are described by the standard:

RN -- Round to Nearest
RZ -- Round to Zero

RM -- Round to -infinity
RP -~ Round to +infinity.

An implementation of the standard may support either of two combinations of
rounding modes:

1. RN only, with RZ for certain specified integer operations.
2. All four rounding modes.

If all four rounding modes are supported then RN shall be the default mode Ffor
all arithmetic operations.

Many systems will support more than one level of precision; some as many
as three (SINGLE, DOUBLE, DOUBLE_EXTENDED). When a system supports more than
one level of precision it must provide users with the option of rounding to a
shorter precision results intended for a wider destination. The specification
of that option will require at most two bits of information:

One bit to specify whether to round to EXTENDED or BASIC;

One bit to specify either round to SINGLE or round to DOUBLE, effective
only when rounding to BASIC.

If the rounding precision specified is wider than can be held in the intended
destination, the latter width will prevail. The standard does not specify how
this rounding option will be specified., whether by

preset rounding mode bits

or
round ing mode options in each instruction

or :
rounding instructions which can follow the operation whose
result is re-rounded

ete.

The number W to be rounded may be viewed as:
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where the binary point follows N, and S = sticky bit = logical OR of all bits
to the right of G. V=0 at the start of rounding. If the exponent underflows
the intended destination and the Underflow trap is disabled, then denormalize
W, i.e. shift the significand right while incrementing the exponent until the
exponent reaches its most negative allowable value. During each right-shift
the G bit is OR-ed into the S bit; the S bit is not shifted.

Determine W1 and W2, numbers representable in the desired rounding preci-
sion, as follows:

If G=S=0
then W1 = W2 = W and Z = RN(W) = RZ(W) = RP(W) = RM(W) = W.

Otherwise:
Signal Inexact_Result.
Set t = W with G and S = 0.
Compute T:
Add 1 to the L bit of t's significand.
If V=1 right-shift the significand one bit and increment the
exponent.
If sgn=0 then W1 = t and W2 = T; otherwise W1 =T and W2 = t.
Then the rounded values are determined by:
Z = RN(W) = the nearer of W! and W2 to W;
in case of a tie choose the one of W1 and W2 whose L

bit is 0.
RZ(W) = the smaller of Wi and W2 in magnitude.
RM(W) = W1.
RP(W) = W2.

STEP TWO OF ARITHMETIC OPERATIONS
Rounded preliminary result Z was developed in the first step.

1. Special cases involving numeric values of Z:
a. Test whether Z's exponent over/underflows the intended destination.
b. 1f Z is unnormalized...

i. If the rodnding mode is RP or RM then normalize Z as far as
possible without allowing Z's exponent to fall below the under-
flow threshold. Otherwise...

ii. (In rounding modes RN and RZ...) If the destination is not
EXTENDED and Z has not been denormalized by Underflow with the
trap disabled, then signal Invalid_Operation and lnexac!l_Resualt
and if a result must be delivered set Z to NAN.

N

2. Over/Underflow cases:

a. On Over/Underflow with the corresponding trap enabled, adjust the
exponent bias as specified below.

b. On Overflow with the trap disabled signal Inexact_Result. Then set 2
to infinity with the sign of Z if the rounding mode is:
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RN
RZ
RP and Z is positive
RM and Z is negative.

Otherwise set Z to the largest normalized number representable in the
destination field, with the sign of Z.

3. Set the exception flags:

a. Do not signal Over/Underflow signals if the rounding mode is RP or RM
and corresponding trap is disabled.
C oHorthMabg ;e _
b. If Invalid_Division, has’been signalled but the corresponding trap ia
disabled, then signal Invalid_Operation.

e¢. Set the sticky exception flags corresponding to the exceptions sig-
nalled.

4. Deliver Z to its destination. (This may not be required when certain
exceptions occur.)

5. Trap if any exception has been signalled for which the corresponding trap
is enabled. 1In the event that more than one signalled exception have
their traps enabled, only one trap shall be invoked, according to the fol-
lowing precedence:

Overflow
Underflow
Invalid_Division
Invalid_Operation
Inexact_Result.

BIAS ADJUST

On Over/Underflow, with the corresponding trap enabled, the exponent of a
rounded result Z is wrapped around into the required range of the destination.
Compute B = 190 in SINGLE, 1534 in DOUBLE, and

3'2n-2«2 in (SINGLE or DOUBLE) EXTENDED, where n is the number of
bits in the signed exponent.
On Overflow subtract B from Z's exponent; on Underflow add B to Z's exponent.

The Fforegoing wrap-around scheme works only when the over/underflowed
exponent exceeds its destination's range by a factor no larger than two, as is
the case when the destination's range is no narrower than the operands'
ranges. Such is the case assumed in this document. Otherwise, extreme
over/underflows would have to be detected and dealt with in a way similar to
what is specified above under "MOV". One way to cope involves a heap onto
which is placed that value whose exponent lies beyond the range of its
intended destination; into its destination would go a NAN pointing to that
value in the heap.
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integer of the host processor.

If X is a NAN, infinity, or non-integer then leave the destination
unchanged and set the Invalid_Operation bit, trapping if the correspond-
ing trap is enabled. Otherwise...

1f X is +0 then 0 is written into the destination, with the sign of X
if the processor supports signed zeros. Otherwise...

Convert nonzero integer X to a binary integer and write the result into
the destination. IFf X overflows the destination field then truncate
excessive high order bits and signal integer_overflow in the host proces-
sor, if it recognizes such an exception.

INTEGER_TO_FLOATING

integ
"ROUN
is en

Map the binary integer x in the host processor into a floating polnt‘
er. If x cannot be represented exactly then round as described in
DING" and set the Inexact_Result bit, trapping if the corresponding trap
abled.

COMPARES

From

One of four conditions can result from a floating point compare:
<, =, >, different_and_unordered.

these conditions there follow:

= implies not{, <, 2 and not> ;
< implies not=, <, notd>=, and not> ;
> implies not<, not<=s, 2 and not= .

The following table specifies the compare operation:
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where n is a negative number and p is a positive number.

different_and_unordered.

Set the Invalid_Operation exception bit. If X and Y are equal as bit
strings then the result is "equal", otherwise the result is
"different_and_unordered". Trap if the corresponding trap is enabled.

Determine <, =, or > by comparison of X and Y as sign-magnitude bit
strings if both have the same level of precision, and by floating point
subtraction if either X or Y is EXTENDED or if X and Y are at different
levels of precision. The subtraction may not have to be carried out com-
pletely. The standard does not yet specify the result of the comparison
when the difference is a nonzero number with zero significand, as can be
obtained only if either X or Y is EXTENDED and one is unnormalized.

RADIX CONVERSION

A.

A system need provide standard conversion to and from only its basic lev-
els of precision. Conversion of EXTENDED numbers, to full precision if
desired, is straightforward and intended to be done in auxiliary software
if at all.

The decimal field widths are:
1. SINGLE: up to 2-digit exponent and up to 9-digit significand.

2. DOUBLE: up to 3-digit exponent and up to 17-digit significand, with
the option of using up to 19 digits in decimal to binary conversion.

Two floating point functions perform conversions between binary Ffloating
point integers and signed decimal strings. The latter are character
strings consisting of a sign followed by one or more decimal digits.
Choice of the character code (BCD, ASCII,...) is left to the implementer.

1. BINSTR converts a binary floating-point integer X to a signed
decimal string whose length is at most 9 for SINGLE and 17 for DOU-
BLE. BINSTR converts zero with its correct sign. In case X is not
an integer round X as in "INT". If X is too large to be expressed by
a decimal string that Ffits into the intended destination an
Invalid_Operation exception arises and the corresponding trap is
invoked if enabled and, if a result must be delivered, the result is
a non-decimal string. :

2. STRBIN converts a signed decimal string with at most 9 digits in SIN-
GLE, 19 in DOUBLE, to a normalized floating point number X whose
value is that of the decimal integer the string represents. 1If the
string contains non-deciaml characters, the standard does not yet
specify what happens. If the integer cannot be represented exactly
in the intended destination, an Invalid_Operation exception arises
and the corresponding trap is invoked if enabled; 1if a result must
be delivered it is a NAN.

Converalon over Lhe Full range of Ffloal.lng poinl quantities could be
required Lo be done correctly rounded, but the cost of dolng 30 is prob-
ably more than its value. What follows is a compromise designed to ensure
that conversion is uniform and in error by appreciably less than one unit
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in the last place delivered, at a cost which is nearly minimal. But
correctly rounded conversion should also be regarded as conforming to the
standard.

The function log base_ 10 is required and may be computed from the formula
log_base_10(X) = log_base_2(X) * log base_10(2) .
It need only be computed to the nearest integer for this calculation.

Within the conversion process arithmetic must be done to extended preci-
sion. Systems without extended precision must therefore effect extended
floating arithmetic using fixed point arithmetic on 32-bit significands
(in systems with only SINGLE precision) or 64-bit significands (in systems
with DOUBLE precision) while processing signs and exponents separately.

Powers of 10 not exactly calculable in the stated precision shall be pro-
cured from values stored in tables. Negative powers shall be obtained by
dividing by the corresponding positive powers instead of multiplying. The
following are suggestions for tables requiring minimal storage.

13

1, Systems with SINGLE precision only: 10 can be computed exactly

. 8
using a 32-bit significand. To cover the range up to 103 , a table

with the single entry 1026 suffices.

2. Systems with DOUBLE or both SINGLE and DOUBLE precisions: 1027'can be

computed exactly using a 64-bit significand. To cover the range up

to 10308 a table of losu; 10'08, and 102‘6 suffices.

BINary_floating to DECimal_ floating. Given binary floating point number
X and integer k with 1 < k < 9 for SINGLE precision and 1 < k < 17 for
DOUBLE precision, we compute signed decimal strings I and E such that I
has k significant digits and, interpreting I and E as the integers they
represent,

- E
X=1% 10" - sq.dddddda * 10
where 8 is the sign of X and the d's are the k decimal digits.

1. If X 1is xinfinity or NAN deliver a non-decimal string.

2. If X = 40 then return I = BINSTR(X) and E = BINSTR(0). Other-
wise...

3. Remember the sign of X. Let Y

absolute_value(X).

4., If Y is normalized compute U = log_base_10(Y), otherwise let U =
log_base_10(smallest normalized number).

5. Remember the current rounding mode. Compute V = INT(U)+1-k with
mode RZ. Restore the original rounding mode.
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6. Compute W = INT(Y / 1o'v), drawing powers of 10 from the table if
necessary.

T. Adjust W: _
k
If W210 + 1 then increment V and go to (6).

k
If W = 10 then increment V, divide W by 10 (exactly), and go to
(8) .

K-
If W <10 ! - 1 and Y was normalized in step (3) then decrement
V and go to (6).

8. Return I = BINSTR(W with sign of X) and E = BINSTR(V).

DECimal_floation_to_BINary_floating. The decimal floating point number X
has the form

X = sddddd.DDDDDDD * lOE.

We are given
signed decimal string E
signed decimal string I = 8ddddddDDDDDDD
integer P indicating how many digits of I are to the right of the
decimal point
so that X can be written

x=1% 10 #10E,

Compute U = STRBIN(I) and W = STRBIN(E).

Compute result X = U # 10w-P.
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OPEN QUESTIONS

1)

2)

3)

4)

5)

6)

7)

8)

Should two's-complement representation be allowed, or used instcad of
sign magnitude?
Should the Affine/Projective modes be replaced by three zeros
+(), -0, unsigned 0
and three infinities
+o, -0, unsigned «

Should underflow denormalize to "epsilon' instcad of zcro; should
overflow go to *HUGE instead of #«?

Should 0 x NAN = 0 or NAN?
Should NAN/» = 0 or NAN?

Should denormalized numbers be allowed to be multiplied by nmumbers
bigger than 2, but less than 4?7 Divided by numbers smaller than
% but bigger than % ¢

Should 4/-5 = Y5 if not trapped? or NAN?

Should division by a denormalized number be allowed if it has only
one leading zero?

Should division with full quotient and remainder, to cxpedite multiple-
precision division, be required?
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