
 

 

 

 

 

 

 

 

 

Copyright © 1978, by the author(s). 

All rights reserved. 

 

Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 

for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 

lists, requires prior specific permission. 



SPECIFICATIONS FOR A PROPOSED STANDARD

FOR FLOATING POINT ARITHMETIC

by

J. T. Coonen

Memorandum No. UCB/ERL M78/72

13 October 1978



SPECIFICATIONS FOR A PROPOSED STANDARD

FOR FLOATING POINT ARITHMETIC

by

J.T. Coonen

Department of Mathematics
University of California

Memorandum No. UCB/ERL M78/72

13 October 1978

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

*£*



Errata in Memorandum No. UCB/ERL M78/72 October 23, 1978

p.16 Maximum positive normalized:

SINGLE 2127 * (2-2-23) DOUBLE 21023 * (2-2-52)

p. 19 a. +

-0

+0

-0 +0

-° A A. +0 in rounding modes RN, RZ, RP
A +0 and -0 in rounding mode RM.

p. 20 k.i) If all bits of the (unrounded) significand are zero, set
thenSuSn t0 ll+" in roundinS modes RN, RZ, RP, and set the sign
to "-" in mode RM, as in case A of (a) above. The result is
true zero, i.e. the exponent is set to its most negative value.

p. 28 Replace the first line of the page with:

FL0ATING_T0_INTEGER

This instruction converts a floating point integer X into
a binary integer of the host processor.

p. 36 6) Should J-5 = -^ if trapped? or NAN?

8) Should the over/underflow bias adjust be 3*2n"2 rather than
3*2 - 2, where n is the number of bits in the exponent
field?



INTRODUCTION

This draft standard is one of several before an IEEE subcommittee whose
goal is to standardize floating point arithmetic for mini- and micro
computers. This is the seventn in a series of drafts, the first of which was
presented by Harold Stone, William Kahan and Jerome Coonen in May, 1978. The
present document benefits from extensive discussions in previous meetings of
the IEEE subcommittee. The author wishes to acknowledge the help of Professor
wiLLiam Kahan in preparing this draft.

This proposal specifies meticulously its data formats and its very com
plete complement of arithmetic operations down to the last bit. It must do 30
to be of use to the producers of micro-processor hardware and software, who
cannot afford to provide the support software and personnel to perform conver
sions between systems conforming to a less rigid standar-j. The present stan
dard would allow communication between systems at the data Level without
conversions.

While this standard is precise in its specification of the results of
arithmetic operations, it must be flexible enough to accommodate a variety of
computer architectures (e.g. stack, multi-register, single-accumulator,
storage-to-storage, dedicated auxiliary processor,...) and several possible
Levels of implementation (SINGLE precision only, both SINGLE and DOUBLE preci
sions,...). At the same time it must allow for future developments; some of
tnem,' hitherto precLuded by iLl-advised aspects of current designs, should
instead be supported by the new system's design in so far that support is
achievable without an excessive burden upon the performance of today's tasks.
Among the necessary developments are:

Interval Arithmetic, which provides a certifiable result despite roundoff
and over/underfLow and other exceptions; and

A degree of collaboration between numerical (approximate) procedures on
the one hand and automatic symboLic algebraic (exact) procedures on the
other; and

The use of reserved operands to extend the numerical data structure, say
with complex infinities, or pointers into heaps of numbers with extended
range and precision.

The new standard takes great care in the handling of exceptional condi
tions such as over/underflow. An attempt ha3 been made to achieve a higher
Level of safety than ha3 been customary, with enhanced utility but without
excessive cost. This will impact existing software in the following way.
Programs, which run now in higher Level languages like FORTRAN, should be
portabLe to a system with the new standard arithmetic at the cost of a modest
amount of editing and a recompilation, and then should execute with results
almost certainly no worse than before, though programs which used to give
incorrect results might now give diagnostic messages instead.

This work was paTtially funded by Office of Naval Research Contract N00014-76-C-
0013.
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PART i: NARRATIVE DESCRIPTION OF THE STANDARD ARITHMETIC

BASIC LEVELS OF PRECISION

e

Any nonzero real number x may be expressed as x = +2 * f, where e
is a signed integer and 1 <. f < 2. We call this the "fLoating point"
representation of x, with exponent e and significant digit field f. Our
object is to describe a machine representation for real numbers based on this
fLoating point decomposition, and to prescribe ruLes for arithmetic on these
numbers. In this scheme, e and f wilL be represented by bit strings of
prescribed Lengths so that necesariLy only a finite subset of the real numbers

wilL be representabLe exactLy.

This standard for floating point arithmetic admits two basic levels of
precision, SINGLE and DOUBLE. It is possible that a third, QUAD, will be
added. An implementation of this standard may provide SINGLE only, or both
SINGLE and DOUBLE precisions. We require SINGLE in all standard systems,
recognizing both its value as a debugging precision and its efficiency for a
wide range of applications where storage economy matters.

We will discuss only SINGLE here, referring the reader to PART II for
the analogous details of DOUBLE. A normalized nonzero number X in SINGLE
precision has the form

S E-127
X = (-1) *2 *(1.F) where

S = sign bit = bit string of length one
E = biased exponent = bit string of length 8 encoding

integers in the range 0 to 255
F = significand = bit string of length 23 encoding

those of X's significant bits that follow the
binary point, yielding a 24 bit significant digit
field for X that aLways begins "1. ".

In terms of the above decomposition of X as a normalized number we have the
foLLowing relations provided 0 < E < 255:

S
sign of X = (-1)
e = E-127 = X's unbiased exponent
f = 1.F = X's significant digit field.

Note that the Leading 1 bit of X's the significant digit field f is "impli
cit" in the storage representation. The vaLues 0 and 255 of E are reserved to
designate special operands to be discussed in later sections. It may at least
be noted here that signed zero is represented by E = F = 0. With this con
straint ,on E, a normalized nonzero SINGLE precision number X can range in
magnitude between

2~126=2~12D* 1.000...00 and212r* 1.111...11 =2

incLusive.

The number X above is represented in sl.or.--w- by the bit string
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This encoding has the special property that the order of fLoating point
numbers coincides with the lexicographic order of their machine counterparts
when interpreted as sign-magnitude binary integers.

The normalized nonzero SINGLE precision numbers are elements of a finite
model for the real number system, a model we shalL deveLop further in the fol
lowing sections. In this modeL the normalized nonzero SINGLE precision
numbers simply represent themseLves as infinite precision real numbers.

ARITHMETIC OPERATIONS

The following arithmetic operations are completely described by this
standard:

ADD REMainder INTeger_part
SUBtract CoMPare FLoating__to_lNTeger
MULtiply MOVe lNTeger_to_Floating
Divide SQuare_RooT
binary_INTeger_toJ)ECimaL__str ing
dec imal_STRing_to_BINary_integer
BINary_f Loat ing_to_DECimal_f Loat ing
DEC imaL__f Loa t ing_to_BINary_f Loa t ing

The description is complete in the sense that, given operands at any Levels of
precision, and given the precision desired for the resuLt, the result is
specified by the standard. We refer the reader to PART II for tables detaill
ing the operations.

An implementation of this standard must at Least provide

1. ADD, SUB, MUL, DIV and REM for any two operands of the same precision,
for each supported precision, with the result having no Less exponent ranee
than the two operands.

2. CMP and MOV for operands at any, perhaps different, supported levels of
precision (in the case of MOV the second operand is the destination).

3. INT and SQRT for operands at all supported levels of precision, produc
ing results having no Less exponent range than the input operands.

4. Conversions between fLoating point integers and binary integers Ln the
host processor.

5. Binary__decimaL conversions to and from all supported levels of precision
These conversions are supported by conversions between floating point integers
and decimal strings. A section of PART II is devoted to the details or thes<>
operations.

This standard provides a notably complete set of arithmetic operations Ln
an attempt to facilitate program portability by guaranteeing that results
obtained using standard arithmetic may be reproduced on different computer
systems, down to the last bit. SQRT is included as a primitive operation
because a appears so often, for example in matrix calculation:*, and because
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when implemented in hardware according to published algorithms its execution
time is comparable with that of a divide. In many current systems, SQRT is
implemented too slowLy and/or too LnaccurateLy, so that unnecessary effort is
expended coding around it. The same applies in the case of REM. We point out
that REM is preferable to the MOD function because REM is computed without
rounding error. Consider, for example

0.01 MOD (-95) versus 0.01 REM (-95)

on ;i ;'-rJif/j». machine. MOD yieLds the result round(-94.99) = -95 for a com
plete loss of accuracy while REM yield3 the correct result 0.01. The
standard's insistence upon standard binary-decimal conversions is both a
reflection of the delicacy of the calculations involved and an attempt to
allow comparison of data from different systems at the decimal output level
rather than via hexadecimal dumps.

ACCURACY AND ROUNDING

The operations ADD, SUB, MUL, DIV, REM, INT, and SQRT are presumed to
deliver their results to destinations having no Less exponent range than their
input operands. Besides simplifying the narrative, this constraint avoids
unnecessary complexity in the implementation. Systems which implemented the
rare operation

DOUBLE * DOUBLE —> SINGLE

directly instead of indirectly via

DOUBLE * DOUBLE —> DOUBLE; MOVE (ROUND) DOUBLE —> SINGLE

wouLd enjoy a slight advantage in speed and rounding error at the cost of a
richer instruction set and considerably more complicated responses to
over/underfLow. There are better ways.

Tne simplest systems may restrict their instruction sets to allow no

raixed-preci3ion operations besides MOVE and COMPARE, providing only

SINGLE * SINGLE —> SINGLE and DOUBLE * DOUBLE —> DOUBLE,

but they would not support efficient numerical computation adequately. There
are many occasions when constructions Like

SINGLE + SINGLE —> DOUBLE or

(SINGLE * SINGLE —> DOUBLE) + DOUBLE —> DOUBLE

ought to be used in innermost loops, and then the cost3 of "padding" Like

(SINGLE —> DOUBLE) + DOUBLE —> DOUBLE or

(S1NGLK —> DOUBLE) * (SINGLE —> DOUBLE) + DOUBLE —> DOUBLE

respectively become unnecessary nuisances. Rather than prohibit mixed-
precision operations, the standard ii designed to encourage the provision of
some such operations, though it is unreasonable to expect operations that
cater to every possible combination of input types and yield results at every
supported Level of precision.
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What is needed is controL over the precision to which a result is rounded
independent of the ostensible precisions of the input operands. This is
achieved in a standard system in either or both of two ways. One way is to
specify the width of the destination subject to the constraint, mentioned
above, that the destination be no narrower than the operation's input operands
(except for the operations MOVE and COMPARE). The 3econd way is to specify in
advance the precision to whicn a resuLt is to be rounded subject to the con
st r-a inl. i.IvjL that precision be not too wide for the intended destination. For
iristarie'v, the standard allows for operations of the form

((SINGLE * DOUBLE) rounded to SINGLE PRECISION) —> DOUBLE.

Operations Like that are appropriate for a system which, in an attempt to
economize on the 3ize of its instruction set, deLivers all results except
those of MOVE and COMPARE onLy to the widest destinations supported by the
system. Such a system would encourage a healthy practice, namely the preser
vation of intermediate resuLts for a Long expression in the widest available
precision, with just one serious rounding error at the end when the
expression's vaLue is stored in a narrower destination. But that healthy
practice is practicalLy precluded at present by ill-considered constraints
built into current programming Languages. Therefore, the standard's specifi
cations for roundoff control are burdened by the complications necessary to
provide, on the one hand, compatibility with past practice however ill-
advised, and on the other hand an opportunity for better procedures in the
future.

If the resuLt of one of the arithmetic operations, when computed to
infinite precision, is exactly representable within the exponent range and
precision specified for the result, then it must be given exactly. Otherwise
the resuLt must be rounded according to one of the schemes to be presented Ln
this section, ln any case, the error will be less than one unit Ln the last
pLace to which the resuLt is rounded unless Over/Underflow or some other such
exception intervenes.

To iLLustrate the rounding modes we let z be the infinitely precise
resuLt of an arithmetic operation. Then we determine Z1 and Z2, numbers
representable exactly with the precision of the intended destination field,
such that 2,1 and Z2 most closeLy bracket z, that is Z1 <. z <. Z2, barely.
Certain details concerning the exponent range and the alignment of the binary
point of 21 and Z2 are deferred to PART II. We then have:

Round_to_Nearest(z) = Unbiased__Round(z) = the nearer of
Z1 and Z2 to z; in case of a tie choose the one of
Z1 and Z2 whose least significant bit is 0.

Round__to_Zero(z) = Chop(z) = smaLLer of Zl and Z2 in
magnitude.

Round_to_PLus_Infinity(z) = Z2
directed roundings

Round_to_Minus_Infinity(z) = Z;.}
As noted, the Latter two rounding modes are often referred to as the "directed
rounding?*11. Thev are intended to support Interval Arithmetic and to calculate
certifiable upper and Lower bounds, and to control conversion to Integers.
Roundel o__Zero is useful too in controlling conversions to integers Ln accor
dant with v^onvtMil ion-? i\nfooiidi?d in certain progammlng languages like FORTRAN.
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An implementation of the standard may support either of the following
combinations of rounding modes:

1. Round_to__Nearest onLy, with Round_to_Zero
for certain specified integer operations.

2. ALL four rounding modes.

If more than one rounding mode is supported then Round_to__Nearest shall be the
default mode for aLL operations. Despite the apparent redundancy of rounding
to Zero, PLus_Infinity and Minus_Infinity, both directed roundings are
required if either is implemented. It is a faLse economy to attempt a saving
in the number of rounding modes implemented, because codes are much simpler
when given direct access to aLL rounding modes. In intervaL arithmetic, for
example, one often computes the upper and Lower bounds of an intervaL by exe
cuting the 3ame sequence of instructions twice, rounding up during one pass
and down the next.

Calculation of Round_to_Nearest requires the so-called Sticky Bit, as
shown in PART II. Once the Sticky Bit is implemented, the directed roundings
may be suppLied at very Little extra cost,the buLk of which Lies Ln the
mechanism, e.g. mode bits or extra opcodes, for exercising the choice of
rounding mode. While the standard Leaves this mechanism up to the imple
mented we remark that the mode bits are usually preferable. For example,
consider the intervaL arithmetic computation of the previous paragraph. This
task is greatLy expedited if changing rounding modes from one pass to the next
is simpLy a matter of fLipping a pair of mode bits.

EXTENDED PRECISION

To perform the arithmetic operations on numbers stored in SINGLE or DOU
BLE pecision, a system will generally "unpack" the bit strings into their com
ponent fields

S = sign
E = biased exponent

F = significand.

Moreover, the Leading bit of the significand wilL be made explicit, and
perhaps the bias wiLL be removed from the exponent. Since most current
machines use data paths of widths 4, 8, 16, 32 or 64, the 24-bit SINGLE signi
ficand, with explicit Leading bit, will probably be unpacked into a 32-bit
field. SimiLarly, the 53-bit DOUBLE significand may be dealt with in a 64-bit
fieLd.

The standard provides a way to exploit this unpacked format, by admitting
S1NGLE__EXTENDED and DOUBLE_EXTENDED precisions; perhaps QUAD_EXTENDED will be
added later. Support of the extended precisions is optionaL. If implemented
at aLL, only one extended precision shalL be provided, nameLy that correspond
ing to the widest basic precision supported.

As with the basic precisions, we will describe S1NGLEJEXTENDED here,
referring the reader to PART 11 for the full detaiLs of the extended preci
sions. SINGLEJEXTENDED is comprised of the fields
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S = sign = bit string of Length one
E = 'unbiased exponent = a signed integer of at least 11 bits
F = significand = a bit string of Length at Least 32 bits,

with an expLicit leading bit folLowed by an implicit
binary point.

A number X encoded in SINGLEJEXTENDED is then given by

S E
X = (-1) * 2 * F

except possibLy when E takes its most positive value. Signed zero is given

by E = most-negative-value and F = 0.

The exponent width i3 so chosen to provide at Least the range of DOUBLE
precision. The most positive vaLue of the exponent is reserved for the encod
ing of special operands to be discussed later. Having at Least eight extra
signifLcand bits greatLy simplifies the accurate computation of the ^tri
gonometric, logarithm and exponential functions, and the power function Y , to
fulL SINGLE precision. Matrix calculations also benefit from 3INGLE_EXTENDED
accumulations of products of SINGLE precision data. Moreover, the extra bits
of precision are so important in binary-decimal conversions that some extended
capability must be simulated by system software if extended precision is not
implemented; this is discussed in PART II.

If implemented, extended entities are assumed to be few in number, used
to evaLuate complicated subexpressions, for example. They are not intended to
be indexed in arrays in higher-LeveL Languages.

Another way to obtain most of the computational benefits of extended pre
cision is by using the "next higher" basic LeveL of precision. Indeed, QUAD
may be included in the standard solely as an alternative for those not wishing
to implement DOUBLEJEXTENDED in a system with SINGLE and DOUBLE. One impor
tant difference between the basic and extended precisions is the Leading sig
nificand bit, which is explicit onLy in the extended precisions. The section
on treatment of Underflows wiLL indicate how special classes of unnormaLized

numbers arise in the basic precisions. In extended precision, on the other

hand, the expLicit Leading significand bit allows encoding of unnormaLized
numbers over the entire exponent range (except, of course, the reserved
vaLue). Thus EXTENDED is a more fLexible way to get extended range than is
the next higher basic level of precision, but it is less precise. Moreover,
in most implementations EXTENDED wiLL be as fast as the precision it supports,
as compared to the factor of 2 or 4 Loss in speed realized by the next higher
basic level of precision, if implemented.

EXCEPTIONS

So far we have described the basic and optional extended precisions for
encoding real numbers, and we have specified a Large family of arithmetic

operations on them. This is aLL quite straightforward, given the word sizes
of current machines and the needs of people seeking fLoating point capability.

A much more interesting question remains, with regard to the exceptional 2on-
dit ions that arise during arithmetic operations — how are the responses to
exceptions to be standardized? The remainder of this narrative addresses this

question.

The standard organizes the exception conditions under the five headings:
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Inva Lid_Operat ion
UnderfLow

OverfLow

lnvaLLd_Division
lnexact_Re3uLt

The following sections treat these conditions individually, ultimately
prescribing the results, if any, to be delivered in each instance. It is
important to note that these results, as standard system responses, are
independent of whether the standard is implemented entirely in hardware or
software, or in a combination of the two. Certain diagnostic information
passed via "resuLts" is necessariLy implementation-dependent; however, in the
context of a given system, the resuLts are uniquely determined by the stan
dard.

For each of the five exceptions, an implementation of the standard may

a. Force a trap to user software.

b. DeLiver a result specified by the standard and proceed.
or

or

c. Provide the user with a TrapJEnable bit whereby to choose
(a) or (b), i.e. whether or not to trap.

Whenever a choice is given, the defauLt shall be to proceed without a trap.
The standard provides a precedence rule to determine which single trap, is to
be invoked in case severaL exceptions occur simultaneously.

Associated with each of the exceptions is a "sticky" fLag which is set on
each occurrence of the corresponding exception, regardless of the system
response. Each fLag may be tested by a program to determine whether an excep
tion has occurred. FoLLowing an exception, a flag remains set until cleared
by the user's program (or programming environment). In certain instances,
e.g. when the end of a job is obviousLy at hand, a humane operating system may
draw the user's attention to fLags stilL set, thereby perhaps reminding him of
exceptions that were overlooked by his program.

To deal effectively with traps, programmers need access to certain vital
information, ideaLly:

What event caused the trap?
Where in the program?
What did the instruction try to do (what opcode)?
What were the operands (source and destination)?

In response, the programmmer wiLL normalLy either:

Depart from the offending block of code to try
something utterly else.

Fix up the aberrant result and resume execution
after the offending instruction.

Fix up the aberrant operands and re-execute the
offending instruction.

Sometimes the full range of information and responses is not needed, espe
cially when the correct resuLt is available, possibly in encoded form as in
the case of Over/UnderfLow. One might dispense with some of the above
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information in these cases.

INVALID_OPERATION

The InvaLidjjperation exception encompasses problems arising in a variety
of arithmetic operations; it is the blanket covering those errors not fre
quent or important enough to merit their own fault condition. Here are exam
ples of InvaLid_Operations:

- <f?
— 0/0 with the InvaLid_J)ivision trap disabLed
— pLus_infinity + minus__infinity

(the infinities wilL be introduced Later)
— Attempted arithmetic with a designated reserved

operand (the3e "Not-A-Number3" will be introduced
below).

We see that some invalid operations, Like 0/0, cannot deliver a numerical
resuLt that wouLd be reasonable in all circumstances. For these situations we
utilize one class of reserved operands, the Not-A-Number symbols, or NAN3. In
SINGLE and DOUBLE precisions, with the format

NANs are characterized by

s = sign bit
E = U1...11

F not= 0.

(it may be irrelevant)

ln extended precision, NANs have the most positive exponent. The sign bit S
participates in the obvious way in the execution of statements Like X = -Y
and Z = X-Y = X+(-Y) without loss of information in the event that Y is a
NAN with a numerical connotation.

The nonzero significand field F of a NAN wiLL contain system-dependent
information, for exampLe:

a. A distinguished cLass of NANs, say with two Leading zero significand
bits, may be used by an operating system to initialize storage. The sig
nificand of such a NAN may be a name or a pointer to the region where the
NAN is stored. As we wiLL see below, these NANs will propagate through
arithmetic operations, ultimately providing pointers to those area3 of
user-uninitialized storage which are the' ancestors of meaningless final
resuLts.

b. A NAN generated by an invalid arithmetic operation on numeric data,
for example 0 * infinity, may be a pointer to the offending line or
block of code.

c. When complex arithmetic is implemented, it is often usefuL to think
of infinity as a line rather than a point in the projective plane. A
distinguished class of NANs, say those with two leading one bits in the
significand, may be used in pairs to provide the relative sizes and signs
of the real and imaginary parts of numbers tending to infinity along a
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fixed ray emanating from the origin. WhiLe these entities have the for
mat of NANs, they contain signed numeric data and would be handled in
software invoked by traps.

d. Sometimes an operation could generate an acceptable result but for
its inability to pack that resuLt correctLy into the intended destination
(see the discussion of over/underfLows). In such a case, a NAN -ould be
supplied as the "result", with a significand pointing to a place, e.g. an
extended fieLd or a heap in storage, where the correct result may be
found.

«:. .Sometimes a subroutine may encounter data for which onLy a partial
result can be delivered in the time available. The rest of the result
can be replaced by NANs which point to a piece of the program which will
resume execution of that subroutine onLy if that undelivered portion of
tne result is reaLLy needed.

f. List-oriented systems like LISP may use SINGLE precision NANs to
point to DOUBLE numerical data.

As elements of our model of the reaL numbers, the NANs are extensions of
the reaL number system. Their roLe in arithmetic operations is quite simple.
While certain classes of NANs, for example those in (c) above, will cause an
invalid_operation exception when picked up as operands, NANs will generally
propagate through arithmetic operations without generating exceptions. For
example 5 + n —> n if n is a NAN. If two NANs are picked up as
operands, the one with the smaller significand has precedence; this is more
precisely specified in the Appendix.

We now specify system action on InvaLid_0perat Ion exceptions. If no trap
is to be taken then the resuLt of any lnvalid_0peration ",.:i a NAN bearing some
system-dependent information.

If an InvaLid__0peraton occurs and a trap is to be taken, the result, if
any, to be delivered is highly machine-dependent as well as operation-
dependent. In some impLementations, the trap will effectively occur before
the operation is carried out, so no result need be written into the destina
tion field. On the other hand, the trap may be invoked too late by some
machines, i.e. after some result is produced and delivered. In this case the
usual result is a NAN, though an implementation may, in certain situations,
deliver a numeric result, for example it may make sense to deliver -V5 in
place of T-5; these special cases are noted in PART II.

UNDERFLOW

Exponent Underflow is the most interesting of the exceptions because of
the care taken by the standard to provide as much information as possible when
proceeding without a trap. In the case of Overflow, on the other hand, a
bare minimum of information is passed; this i3 discussed in the next section.
For this reason, the range of normalized numbers in SINGLE and DOUBLE preci
sions h.-i:> boon v-hoson to diminish slightly the risk of Overflow compared with
\\\o risk of* Underflow. This was done by picking the exponent bias and align
ment of the binary point in the significand in such a way that the product of
the largest and smallest positive normalized numbers is roughLy 4 in each of
the basic levels of precision.

We now discuss the treatment of Underflows. In each case we let z be
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the infiniteLy precise nonzero resuLt of an arithmetic operation and we let z
have the form

e

z = +2 * f where

e is a signed integer and 1 <. f < 2. We assume no prior knowledge about e.
Note that before rounding z we check whether or not we'LL trap on Underflow,
if it occurs.

If a trap is to be taken on Underflow, then z is rounded to the preci
sion of the destination field. If the exponent Lies below the exponent range
of the destination field then UnderfLow occurs. Because of the restrictions

on arithmetic operations presumed under "ACCURACY AND ROUNDING", the exponent
can be out of range by at most a factor of two, except for the MOV instruction
which is discussed in PART II. The exponent is wrapped around into the
desired range with a bias adjust specified in PART II. The resuLt is then
delivered to the destination and the trap is invoked.

If no trap is to be taken on UnderfLow, then the exponent of our infin
iteLy precise resuLt z is tested before rounding. If it Lies below the
minimum possible exponent of the destination fieLd, then z is "denormal-
ized", that is: -

the significant digit fieLd of z is right-shifted while z's exponent
is incremented until it reaches the minimum possible exponent of the des

tination.

Then z is rounded to the precision of the destination field, and the resuLt
is deLivered, in a manner to be described presently. UnLess z rounds up in
magnitude to the smallest nonzero normalized number, Underflow is signalled.

To

Let Z = +2 """ * 1.01101... and suppose that the destination is a

SINGLE precision field. As a further simplification Let us assume there are
onLy 6 bits of precision to be carried, pLus the implicit leading bit, in SIN
GLE . Then

Z = 2" * 1.01101... -130 < -126 so we denormalize —

— 1?fi
Z = 2~ * 0.000101101... we round (to nearest,say) —

— 1?6
X = 2~ * 0.000110 = the resuLt to be delivered.

We call the above result X a "denorraalized number" in SINGLE precision;
it is a special type of unnormaLized number, nameLy one with the smallest pos
sible exponent for the given basic level of precision. Note that the exponent
cf a denormaLized number links it to a basic Level of precision. We will dis
cuss only SINGLE precision denormaLized numbers here. DOUBLE precision is
essentially the same; see PART II for details of the differences. In terms
of the format

iLlustrat&sjthe denormalization process Let us consider an example:
\ = +2" * 1.01101... and suppose that the destination i:

IS

a SINGLE precision nonzero denormaLized number X is encoded as
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S = sign bit
E = 0

F = nonzero string of bits to the right of the binary point
of X.

We reconstruct X via the formuLa

X = (-1)S * 2~126 * (O.F)

observing that E is not the true biased exponent in SINGLE precision. Cora-
paring this formuLa with its analogue for normalized numbers we see that, when
unpacking a denormaLized number, the 1-bit that would have gone to the Leading

bit of the significand for a normalized number is instead added into the
unbiased exponent E-127+1.

The denormaI ized numbers and signed zeros are the family of reserved
operands corresponding to a biased exponent of zero. The values +0 are
obtained just when F = 0 above. Zero may result from an Underflow, depend
ing on the rounding mode, when the Underflow is so severe that all nonzero
bits are shifted out of the significand fieLd.

The denormaLized numbers and ±0 join the normalized numbers and NAN3 as
elements of our model of the real numbers. Both +0 and -0 correspond to

the reaL number 0 and are identical in every operation except division;
this will be discussed aLong with InvaLidJDivis ions. A denormaLized number X
represents, roughly speaking, all of the reaL numbers which would round to
that bit-string X in the specified rounding mode and precision. We note
that the denormaLized numbers are designed not so much to extend the exponent
at any level of precision, but rather to alLow further computation with some
sacrifice of precision in order to defer as Long as the possible the need to
decide whether the underflow wiLL have significant consequences.

In add/subtracts> denormaLized numbers behave in much the same way as
normalized numbers, with never more than a rounding error committed in any
operation. The situation is different in multiply/divides, where multiplying
a SINGLE precision denormaLized number by a Large power of 2 and attempting to
store the resuLt in SINGLE is an InvaLid_0peration. The unnormaLized signifi
cand, having suffered Loss of precision during some prior UnderfLow, may not
be promoted to normalized status mereLy by multiplication. If, however, the
destination had been an extended field, the unnormalized significand with
Large exponent would have been a (perhaps temporarily) Legitimate resuLt.
PART II gives the fuLl details of denormaLized numbers in arithmetic opra-
tions.

The implementation of denormalized numbers, whether in hardware or
software, is required only of those systems in which, on UnderfLow, users may
proceed without trapping. Implementations not supporting denormalized
numbers, and thus forcing a user trap on every Underflow, must nonetheless
sense the denormalized numbers as bit strings, when they are picked up as
operands, and generate an InvaLid_0perat ion fauLt. Note that implementations
whose default, or onLy, option upon Underflow is to underflow abruptly (i.e.
from anything sraaLLer than the smallest normalized number) to zero, do not
conform to the standard.

OVERFLOW

In contrast to the graceful treatment of Underflows in no-trap
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situations, Overflows are dealt with swiftly and surely, with a corresponding
Loss of information. It is noted in the discussion of Underflows that to take
the greatest advantage of the treatment of Underflows, the number system is
slightly biased away from zero, in the hope of making Overflows more rare than
Underflows.

We now discuss the treatment of Overflows. In each case we let X be
the normalized result of an arithmetic operation; we assume that X has been
rounded to the precision of the destination field and that X has overflowed
the exponent range.

If a trap is to be taken then, because every arithmetic operation's
result goes to a destination no narrower than its input operands, the exponent
can be out of range by at most a factor of two, except for the MOVE operation
which is discussed in PART II. The exponent is wrapped around into the
desired range with a bias adjust specified in PART II. This result is
delivered to the destination field and the trap is invoked. The exponent
wrap-around is chosen so that the result, while related in a simple way to the
overflowed value, lies somewhere in the middle of the numerical range of
representable numbers. This diminishes the risk that a computational response
(like scaling) to Overflow will encounter almost immediately a rash of conse
quent Underflows. The analogous statement holds for the treatment of Under
flows when the trap is enabled.

If no trap is to be taken, then infinity with the sign of X is written
into the destination field. In SINGLE and DOUBLE precision with format

IS! E ! F !

infinity is encoded as

S = sign bit
E = 111...11

F = 0.

In extended precision E = 0111...11 = the most positive exponent and F = 0.

The signed infinities and NANs thus comprise the family of reserved
operands with most positive exponent. As elements of our model of the real
numbers, the infinities are given two interpretations. In the Affine Closure,

minus_infinity < {real numbers} < plus__infinity.

But in the Projective Closure the sign of infinity is ignored, i.e.

infinity = minus_infinity = plus_infinity,

and all comparisons between infinity and a real number involving order rela
tions other than = or not= are invalid_operations.

Aside from the compares, all operations on the infinities in the two clo
sures are the same except that both

infinity • infinity and infinity - infinity
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are Invalid__Operations in the Projective Closure. Systems supporting the
infinities shall provide an Affine/Projective mode bit so that choice of
closures can be made under program control. The Affine mode is the default
mode, and is appropriate for most engineering calculations involving exponen
tials or disparate time constants or infinities generated by overflows. The
Projective mode is appropriate for real and complex rational arithmetic, for
continued fractions, and for infinities generated by division by zeros not
generated by underflows.

The infinities interact with ±0 in a very special way. It was noted in
the last section that, aside from a trivial exception noted in PART II, +0
and -0 participate identically in all operations except division. The only
way to distinguish +0 and -0 arithmetically is to use the fact that

+ V+0 = plus_infinity > +1/-0 = minus_inf inity

can be recognized in the Affine mode. In terms of our model of the real
numbers, this situation is to be expected. Since we associate the two ele
ments ±0 with the singLe real number 0, we should not be able to distin
guish machine +0 using arithmetic on real numbers; rather, we find that we
can disitinguish them only in a proper extension of the real numbers that
includes infinities.

As we saw in the case of Underflows, systems forcing traps on Overflow
need not support infinities but must recognize them when they are picked up as
operands for arithmetic operations, and generate an lnvalid_Operation excep
tion.

INVALID_DIVISION

The Invalid_Division exception arises when a zero divisor occurs in a
division operation. It also arises when a denormalized divisor is picked up
in a system not implementing division by denormalized numbers; see PART II
for details.

If the divisor is zero and the dividend is nonzero, the result is infin
ity with sign according to convention.

If both the divisor and dividend are zero, or if the divisor is (too far)
denormalized, then if the invalid__division trap is enabled, it is invoked; if
a result must be delivered it is a NAN. If the InvalidJDivision trap is dis
abled then an lnvalid_Operation exception arises; if a result must be
delivered it is a NAN.

INEXACT__RESULT

The Inexact__Result exception arises when a round-off error is committed
in an arithmetic operation. It is intended for essentially integer calcula
tion as in COBOL and to facilitate multiple-precision calculation. The
rounded result is delivered to the destination field and the trap is invoked
if enabled. When this exception occurs together with Over/Underflow, the
latter traps have precedence.
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PART II: SPECIFICATIONS FOR STANDARD ARITHMETIC

LEVELS OF PRECISION

SINGLE and DOUBLE are the basic LeveLs of precision. A standard system
shaLL provide either SINGLE onLy, or both SINGLE and DOUBLE. In addition a
system may provide the extended precision corresponding to the widest basic
precision supported.

The tabLes below detail the levels of precision and the data types speci
fied by this standard. Of the reserved operands, the denormalized numbers and
infinities need not be implemented in hardware in systems trapping to user
software on all Overflow, UnderfLow and InvaLid_Divis ion exceptions, provided
these operands cause an InvaLid_Operation exception when picked up as operands
in an arithmetic operation.

The signed infinities, when Implemented, will be interpreted in either
the Affine or Projective cLosures of the real numbers. In the latter case the
sign of infinity is ignored by the add, subtract and compare instructions,
i.e. "plus" and "minus" infinity are treated as the same, unsigned, infinity.
Choice of closures shaLL be exercised via the Affine/Projective mode bit,
which may be sensed and changed by user programs. Affine mode shall be the
defauLt for aLL arithmetic operations. Note that tabLe entries giving
specific values for the exponent E of the zeros and reserved operands in
EXTENDED precision depend on the number of bits in the exponent field.
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BASIC LEVELS OF PRECISION

Length in bits
FieLds:

S = sign
E = exponent
F = significand

Storage format:

SINGLE

32

1

8

(D+23

Interpretation of sign:
Positive 0
Negative 1

Normalized numbers:

Interp. of K unsigned integer
Bias of E

Range of E

Interp. of F

Relation to

represented

reaL number

Signed Zeros:

E = 0

F = 0
Reserved Operands:

Denormalized numbrs:

E = 0
Bias of E 126

Interp. of F significant
digit field = O.F

Range of F nonzero

ReLation to s -126
represented(-l) *2~ *(0.F)
number

Signed Infinities:
E = 255
F = 0

Not-A-Number, or NAN:

127
1 1 E < 254

significant digit
fieLd = 1.F

S E-127
(-1) *2 '•(1.F)

I ^1

DOUBLE

64

1

11

(1)+52

unsigned integer
1023

1 < E <. 2046
significant digit

field = 1.F

(-,)S.2£-'°23.(,.F)

0

1022

significant digit
field = O.F

nonzero

(-.)V°22.(0.F)

2047
0

E =

Range of F
Interp. of F

Ranges:
Max positive
normalized

Min positive
normalized

Min positive
denormaLized

255 2047
nonzero nonzero

system-dependent diagnostic and pos3ibLy
numeric information

= 1.7*10

2-126
= 1.2*10"38

~-l49

= 1.4*10
-45

1022 -522 *(2-2 >}
= 9*103

-1022

=2.24-308
-1074

-324
= 4.9*10
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EXTENDED PRECISION

SINGLE_EXTENDED

44Length in bits >.
FieLds:

S = sign 1 1
E = exponent >. 11 15
F = significand >_ 32 64

Storage format: not specified beyond minimum field widths
interpretation of sign:

Positive 0 0

Negative 1 1
Interp. of exponent: unsigned integer

Max E

Min E

Nonzero numbers:

Range of E
Interp. of F

Min E to (Max E - 1)
significant digit field with binary point
to the right of the leading bit

Relation to

represented
number

Signed zeros:
E =

F =

Reserved operands:
Signed infinities: use special,indicator or condition bits,

or else

E = Max E Max E

F = 0 0
Not-A-Number symboLs,
or NANs: use special indicator or condition bits, or else

E = Max E Max E
Range of F nonzero nonzero
Interp. of F system-dependent diagnostic and possibly

numeric information

(-1)S*2E*F

DOUBLE_EXTENDED

80

unsigned integer

1023 16383
-1024 -16384

Min E to (Max E - 1)

S E
(-1) »2 *F

use speciaL indicator or condition bits, or else
Min E Min E

0 0

Ranges:
Max positive >.
normaL ized

Min positive <.
normalized

Min positive <.
unnormaLized

= 9*i<r

-1024

= 5.6*10

--1055
-318

= 3*10

= 6*10 *3

-16384

-4933
= 8*10

-16447
-4952

= 9*10
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ARITHMETIC OPERATIONS

The following arithmetic operations are completely described below:

ADD REMainder INTeger_part
SUBtract CoMPare FLoating_to_INTeger
MULtiply MOVe INTeger_to_Float ing
Divide SQuare__RooT
BlNary_integer_to_dec imal__STfl ing
dec imal_STR Lng_to_binary_INTeger
BlNary_fLoat ing_to__DEC imal__f Loat ing
DEC imal__f Loat ing to BINary floating

An implementation of this standard must at Least provide:

1. ADD, SUB, MUL, D1V and REM for any two operands of the 3ame precision, for
each supported precision, with the resuLt having no Less exponent range than
the operands.

2. CMP and MOV for operands at any, perhaps different, supported Levels of
precision (in the case of MOV the second operand is the destination).

3. INT and SQRT for operands at all supported Levels of precision, with the
result having no Less exponent range than the input operands.

4. Conversions between fLoating point integers in aLL supported Levels of
precision and binary integers in the host processor.

5. Radix conversions, as described in a separate subsection below.

It is assumed that MOV is the onLy operation whose destination may have a
smaLler exponent range than its source operand(s). Otherwise Over/Underflow
with the corresponding trap enabled entails difficulties which are discussed
under "BIAS ADJUST" below.

For simplicity, those arithmetic operations which deliver floating point
resuLts rather than strings or binary integers are broken into two steps. In
the first step a preliminary resuLt Z is formed and, if numeric, rounded to
the required precision. This step is peculiar the the specific operation. In
the second step the result Z is delivered to the destination, any exceptions
are noted, and any traps invoked. The second step is the same for all opera
tions except REM and MOV; the minor differences are noted.

One or more of five exceptional conditions may arise during an arithmetic
operation: Overflow, UnderfLow, InvaLid_Division, InvaLid_Operation and
lnexact_Result. For each of the exceptions, an implementation of the standard
may

a. Force a trap to user software,
or

b. Deliver a specified resuLt and proceed,
or

c. Provide the user with a Trap_Enable bit
whereby to choose (a) or (b).

Whenever a choice is given, the default shall be to proceed without a trap.
Associated with each of tne exceptions is a sticky flag which is set on the
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occurrence of the corresponding exception, regardless of the system response.
The fLags may be sensed and changed by user programs. Following an exception,
a flag remains set until cleared by jser software.

A system providing a trap on an exceptional condition must give suffi-
';n;rii. information to allow correction of the fault. The correct result may be
given encoded, as in Over/Underflow with the exponent wrap-around, or in a
heap pointed to by a NAN written into the destination. On the other hand, if
no numeric result can be given, the opcode and aberrant operands must be pro
vided; in this case if the destination field is the same a3 one of the source
fields then the trap must be taken before any "resuLt" is written over the
source operand.

While the specifications of the arithmetic operations indicate that NANs
propagate through operations without raising exceptions, a system may raise
the InvaL id__Operat ion exception for a system-specified distinguished cLass of
NANs. If the Invatid_Operation trap is enabled it should be invoked at the
start of the operation, i.e. before any resuLts are produced; if the trap is
disabLed a NAN should be generated as in any Invalid_Operation.

In the event that two NANs occtir as operands in an arithmetic operation,
and neither is designated to cause an InvalLd_OperatLon exception the follow
ing precedence ruLe determines which wilL be propagated as the result of the
operation:

The sign and exponent are ignored, and the significands are compared as
numbers of the form O.bbbb..., i.e. the leading bit, whether expLicit or
impLicit, is taken to be 0. The NAN which is smaller by this comparison
is the result of the operation.

"M": In the tables specifying the arithmetic operations, the entry "M" indi
cates that the above precedence ruLe is to be appLied to two NANs picked up as
operands.

ADD/SUBTRACT

Form a preliminary result Z = X + Y.
Z Is given by the foiLowing table:

X + Y ! ±0 V + inf NAN

±0 ! a Y Y Y

V I X b Y Y

+ inf X X c Y

NAN X X X M

On a SUBTRACT set Y = -¥ and ADD

where V is any nonzero number, possibly unnormaLized.

a. +J -0 +0

-Oi A

• »>

A »') in rniinlinK mod on UN, HA, HI' .md
O in r< miii I i iik in... |i- i<M .
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1) ALign the binary points of X and Y by unnormalLzing the operand
with the smaller exponent until the exponents are equal. Note
whether either of the resulting significands is normalized (for step
4 be Low).

2) Add the operands, yielding a result which may be viewed as:

isgni ! exp | |V|N. IGJRISI

< rounding precision —>

where the binary point foLLows N, and S = sticky bit = Logical OR of
aLL bits to the right of R.

3) Addition of magnitudes: If V=1 then right shift one bit and incre
ment exponent. During the shift R is ORed into S.

4) Subtraction of magnitudes: If, after binary point alignment in (1),
both operands were unnormaLized, then skip to (5). Otherwise...

L) if all oils of trie (unrounded) significand are zero, set the
;; ixii to "-»" in ro in«Un£ nodes RN, RZ, RP, and set the sign to
u~" in mod*; KM, as 'in case A of (a) above. The result is true
y.oiy, i.e. thf. exponent is set to it3 most negative value.

ii) Otherwise (some significand bit i3 nonzero)... Normalize the
resuLt, i.e. left shift the significand while decrementing the
exponent mtil. N=1. S need not participate in the Left shifts;
either zero or S may be shifted into R from the right.

5) Round, as specified under "ROUNDING".

c. In Affine mode (+infinity) + (+infinity) -> (+infinity) and (-
infinity) + (-infinity) -> (-infinity). In Affine mode on (+infInity) +
(-infinity) and (-infinity) + (+infinity), and in all cases in the Pro
jective mode, signal InvaL id__0peration, and if a resuLt must be delivered
set Z to NAN.

MULTIPLY

Form preliminary result Z = X * Y. Z is given by the following table,
with sign = exclusive OR of the input signs:

Y

X * Y ! ±o V + inf NAN

±0 i g g i Y.

V I g h J Y

i_inf ! i J J Y

NAN ! X X X M

where V is any nonzero number, possibly unnormaLized. (Perhaps the standard
shouLd specify that NAN * 0 = 0.)
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g. Z=0 with sign.

h.

1) Generate sign and exponent according to convention
significands. The resuLt may be viewed as:

Multiply the

.'GiRiS!l^gn! ! exp ! |V|N

<-- rounding precision >

where the binary point follows N, and S = sticky bit = logical OR of
all bits to the right of R.

2) If V=1 then right-shift the 3ignificand one bit and increment the
exponent, and go to (4). Else, when V=0,

3) If N=0, then Left shift the significand one bit and decrement the
exponent. S need not participate in the left shift; a zero or S may
be shifted into R from the right. (This step is contentious, and may
not be included in the standard.)

4) Round, as specified under "ROUNDING".

i. SignaL InvaL id__Operat ion. If a resuLt must be delivered, set Z to NAN.

j. Z = infinity with sign according to muLtiply convention.

DIVIDE

Form a preliminary resuLt Z = X/Y. Z Ls given by the foLLowing table,
with sign = exclusive OR of the input signs:

X / Y i ±0 unnorm norm + inf NAN

±0 m m* g g Y

V k m* n g Y

+ inf k j j m Y

NAN X X X X M

where V is any nonzero number, possibly unnormaLized. (Perhaps the standard
should specify that NAN / infinity =0.)

g. Z=0 with 3ign.

j. Z = infinity with sign.

k. Z = infinity with sign. Signal InvalLd_DLvL3ion .

m. Signal Inval Ld_DLvis ion. If a result must be delivered then sot Z to NAN.
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1) Generate sign and exponent according to convention. Divide the sig-
nificands. The result may be viewed as:

isgn! j exp J JN. {GjRiSi

< rounding precision •>

where the binary point foLlows N, and S = sticky bit = logical OR of
all bits to the right of R.

2) If N=0 then Left shift significand one bit and decrement exponent. S
need not participate in the left shift; either a zero or S may be
shifted into R from the right. (The standard may allow a second left
shift if N=0 after the first.)

3) Round as specified in "ROUNDING".

* These divisions may be implemented provided the result has no or one more
significant bit than the operand with the fewer significant bits. The stan
dard may allow divisors whose significant digits have the form O.lbbb...
where the b's are either 0 or 1.

REMAINDER

Form the preliminary resuLt Z = remainder when X is divided by Y, with
integer quotient Q. Q does not participate in STEP TWO of the operation
unless an exception is raised there, in which case if Z is set to NAN then Q
is assigned the same value. Z and Q are given by the folLowing table, with
the sign of Q given by the exclusive OR of the signs of the input operands.

X REM Y i ±0 unnorm norm ±inf NAN

±0 I wl X X X Y

V : w2 w y X Y

+ inf w2 w w w Y

NAN i X X X X M

where V is any nonzero number, possibly unnormaLized.

w. Signal Invalid_0peration. If results must be delivered then set Z and Q
to NAN.

wl. Signal InvaLid_0peration. If results must be delivered then set Z to X
and Q to NAN.

w2. SignaL InvalidjOperation. If results must be delivered then set Z to 0
with the sign of X and set Q to infinity with sign according to divide
convention.

x. Q=0 with sign. Z=X. (This is equivalent to (y) when the divisor is 0.)

y. Set Q to the integer part of X/Y, with 3ign. If Q contains more signifi
cant bits than its intended destination, then discard the excessive high
order bits and signal lnexact_Result. Set Z to the remainder, with sign
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of X. Normalize and round Z as in "ROUNDING".

SQUARE ROOT

Form i preliminary result Z =yX. Z is given by the following table

±0 : x
-unnorm ! si
+unnorm • 3

-norm i tl
+norm i t
-inf i U
+ inf ! x
NAN i x

si. Signal InvaLidjOperation. If a result must be delivered, set Z to NAN.
The standard may allow -V-Xas in s.

s. Compute Z = |̂X to at Least the number of bits required to produce a
correctly rounded result*. Then unnormalize Z until it has just one
more significant bit than X has. Round, as specified in "ROUNDING".
(The standard may classify this as an InvaLid_0perat ion with NAN as the
resuLt.)

tl. SignaL InvaLid_0peration. 1f La resuLt must be delivered, set Z to NAN.
The standard may allow -Y~X* as in t.

t. Compute Z = |X to the number of bits required to produce a correctly
rounded result*. Round as in "ROUNDING".

u. ln Projective mode Z=X. In Affine mode signal Inval id_0perat ion; and if
a resuLt must be delivered then set Z to -infinity, if possible, other
wise set Z to NAN.

* To round correctly in all cases, calculate two more bits of X than the
precision of the destination, which precision is never less than that of X.

1NTEGER_PART

Form a preliminary result Z = integer_part(X). Z is given by the follow
ing table:

+0 ! X
V I p

+ in f I q
NAN i X

where V is any nonzero number, possibly unnormaLized.

q. Signal Inval id_0peration. If a result must be delivered then set Z to X.
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1) If X has no (zero or nonzero) fraction bits in its significand then
set Z to X. Otherwise...

2) Right-shift X's significand while incrementing the exponent until no
bits (zero or nonzero) of the fractional part of X Lie within the
rounding precision in effect. The exponent's vaLue wiLL then be:

SINGLE 23
SINGLEjEXTENDED 31
DOUBLE 52

DOUBLE EXTENDED 63

The result may be viewed a3:

isgni | exp | JN. |G|S|

< rounding precision >

where the binary point is to the right of N, and S = 3ticky bit =
Logical OR of all bits to the right of G.

3) Round as specified in "ROUNDING".

4) If aLL of the significand bits of Z are 0 then set Z to zero with the
sign of Z. Otherwise normaLize Z. S (which was set to zero after
rounding in step 2) need not participate in the left-shifts of nor
malization; zero or S is shifted into G from the right.

MOV is an operation whose destination may have shorter range and preci
sion than its source operand(s), in which case it performs an arithmetic
operation. A preliminary resuLt Z is given by the following table:

±o !
V !

! x
i r

±inf I1 X
NAN :! x

where V is any nonzero number, possibly unnormaLized.

r. Z=X rounded, as specified in "ROUNDING".

STEP TWO of the MOV operation differs from that of the other arithmetic
operations in the following way. On Over/UnderfLow with the corresponding
trap enabled, the exponent may be more than-a factor of two (i.e. one bit)
beyond the exponent range of the destination. In this case the BIAS ADJUST
routine is not invoked, rather a NAN is written to the destination field Indi
cating that the correct resuLt is the (unchanged) source operand of the opera
tion.

If the destination field is wider in range and precision than the souro--
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field than the MOV is exact with one exception:

In MOV SINGLE — > DOUBLE, if the SINGLE operand is denormalized then an
Invalid_Operation exception arises; deliver a NAN to the destination
indicating that the (unchanged) source operand is the correct resuLt.

ROUNDING

Round the preliminary resuLt W of an arithmetic operation to get the
rounded result Z. Four rounding modes are described by the standard:

RN — Round to Nearest

RZ — Round to Zero

RM — Round to -infinity
RP — Round to + infinity.

An implementation of the standard may support either of two combinations of
rounding modes:

1. RN onLy, with RZ for certain specified integer operations.

2. All four rounding modes.

If all four rounding modes are supported then RN shall be the default mode for
all arithmetic operations.

Many systems will support more than one level of precision; some as many
as three (SINGLE, DOUBLE, DOUBLE_EXTENDED). When a system supports more than
one level of precision it must provide users with the option of rounding to a
shorter precision results intended for a wider destination. The specification
of that option will require at most two bits of information:

One bit to specify whether to round to EXTENDED or BASIC;

One bit to specify either round to SINGLE or round to DOUBLE, effective
only when rounding to BASIC.

If the rounding precision specified is wider than can be held in the Intended
destination, the latter width will prevaiL. The standard does not specify how
this rounding option wiLl be specified., whether by

or

or

etc.

preset rounding mode bits

rounding mode options in each instruction

rounding instructions which can folLow the operation whose
result is re-rounded

The number W to be rounded may be viewed as:

isgni ! exp j |V|N. !L{G|S!

< rounding precision >



- 26 -

where the binary point follows N, and S = sticky bit = logical OR of all bits
to the right of G. V=0 at the start of rounding. If the exponent underflows
the intended destination and the Underflow trap is disabled, then denormalize
W, i.e. shift the significand right while incrementing the exponent untiL the
exponent reaches its most negative allowable value. During each right-shift
the G bit is OR-ed into the S bit; the S bit is not shifted.

Determine Wl and W2, numbers representable in the desired rounding preci
sion, as follows:

If G=S=0

then Wl = W2 = W and Z = RN(W) = RZ(W) = RP(W) = RM(W) = W.

Otherwise:

Signal InexactJtesuLt.
Set t = W with G and S = 0.

Compute T:
Add 1 to the L bit of t's significand.
If V=1 right-shift the significand one bit and increment the
exponent.
If sgn=0 then Wl = t and W2 = T; otherwise Wl = T and W2 = t.

Then the rounded values are determined by:
Z = RN(W) = the nearer of Wl and W2 to W;

in case of a tie choose the one of Wl and W2 whose L

bit is 0.

RZ(W) r the smaller of Wl and W2 in magnitude.
RM(W) = Wl.
RP(W) = W2.

STEP TWO OF ARITHMETIC OPERATIONS

Rounded preliminary result Z was developed in the first step.

1. Special cases involving numeric values of Z:

a. Test whether Z's exponent over/underflows the intended destination.

b. If Z is unnormaLized...

i. If the rounding mode is RP or RM then normalize Z as far as
possible without allowing Z's exponent to fall below the under
flow threshold. Otherwise...

ii. (In rounding modes RN and RZ...) If the destination is not
EXTENDED and Z has not been denormalized by Underflow with the
trap disabLed, then signai InvaLid_0perat ion and Inexact_Result
and if a result must be delivered set Z to NAN.

2. Over/Underflow cases:

a. On Over/Underflow with the corresponding trap enabLed, adjust the
exponent bias as specified below.

b. On Overflow with the trap disabled signal Inexact_Result. Then set Z
to infinity with the sign of Z if the rounding mode is:
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RN

RZ

RP and Z is positive

RM and Z is negative.

Otherwise set Z to the largest normalized number representable in the
destination field, with the sign of Z.

3. Set the exception flags:

a. Do not signal Over/Underflow signals if the rounding mode is RP or RM
and corresponding trap is disabled.

b. If Invaiid_Divis ion.has'been signalled but the corresponding trap is
disabled, then signal lnvalid_Operation.

c. Set the sticky exception flags corresponding to the exceptions sig
nalled.

4. Deliver Z to its destination. (This may not be required when certain
exceptions occur.)

5. Trap if any exception has been signalled for which the corresponding trap
is enabled. In the event that more than one signalled exception have
their traps enabled, only one trap shall be invoked, according to the fol
lowing precedence:

Overflow

Underflow

Inva1id_Division
Invalid_Operation
Inexact_Result.

BIAS ADJUST

On Over/Underflow, with the corresponding trap enabled, the exponent of a
rounded result Z is wrapped around into the required range of the destination.
Compute B = 190 in SINGLE, 1534 in DOUBLE, and

3*2n~2-2 in (SINGLE or DOUBLE) EXTENDED, where n is the number of
bits in the signed exponent.

On Overflow subtract B from Z's exponent; on Underflow add B to Z's exponent.

The foregoing wrap-around scheme works only when the over/underflowed
exponent exceeds its destination's range by a factor no larger than two, as is
the case when the destination's range is no narrower than the operands'
ranges. Such is the case assumed in this document. Otherwise, extreme
over/underflows would have to be detected and dealt with in a way similar to
what is specified above under "MOV". One way to cope involves a heap onto
which is placed that value whose exponent lies beyond the range of its
intended destination; into its destination would go a NAN pointing to that
value in the heap.
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integer of the host processor.

If X is a NAN, infinity, or non-integer then leave the destination
unchanged and set the InvaLid__Operat ion bit, trapping if the correspond
ing trap is enabled. Otherwise...

If X is ±0 then 0 is written into the destination, with the sign of X
if the processor supports signed zeros. Otherwise...

Convert nonzero integer X to a binary integer and write the result into
the destination. If X overflows the destination field then truncate
excessive high order bits and signal integer_overflow in the host proces
sor, if it recognizes such an exception.

INTEGER_TO_FLOATING

Map the binary integer x in the host processor into a fLoating point
integer. If x cannot be represented exactly then round as described in
"ROUNDING" and set the Inexactjtesult bit, trapping if the corresponding trap
is enabled.

COMPARES

One of four conditions can result from a fLoatLng point compare:

<, =, >, dlfferent_and_unordered.

From these conditions there follow:

= implies not<, <., £.,
< implies not=, <., not>=,
> implies not<, not<=, 2.»

The following table specifies the compare operation:

Y
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where n is a negative number and p is a positive number.

a. d i f f erent_and_unordered.

b. Set the InvalidjOperation exception bit. If X and Y are equaL a3 bit
strings then the result is "equal", otherwise the resuLt is
"different__and_unordered". Trap if the corresponding trap is enabled.

c. Determine <, =, or > by comparison of X and Y as sign-magnitude bit
strings if both have the same level of precision, and by fLoating point
subtraction if either X or Y is EXTENDED or if X and Y are at different

levels of precision. The subtraction may not have to be carried out com
pletely. The standard does not yet specify the result of the comparison
when the difference is a nonzero number with zero significand, as can be
obtained only if either X or Y is EXTENDED and one is unnormaLized.

RADIX CONVERSION

A. A system need provide standard conversion to and from only its basic lev
els of precision. Conversion of EXTENDED numbers, to fulL precision if
desired, is straightforward and intended to be done in auxiliary software
if at ail.

B. The decimal field widths are:

1. SINGLE: up to 2-digit exponent and up to 9-digit significand.

2. DOUBLE: up to 3-digit exponent and up to 17-digit significand, with
the option of using up to 19 digits in decimal to binary conversion.

C. Two floating point functions perform conversions between binary floating
point integers and signed decimal strings. The latter are character
strings consisting of a sign fo I Lowed by one or more decimal digits.
Choice of the character code (BCD, ASCII,...) is left to the implementer.

1. BINSTR converts a binary fLoating-point integer X to a signed
decimal string whose length is at most 9 for SINGLE and 17 for DOU
BLE. BINSTR converts zero with its correct sign. In case X is not
an integer round X as in "INT". If X is too Large to be expressed by
a decimal string that fits into the intended destination an
InvalidjOperation exception arises and the corresponding trap is
invoked if enabled and, if a result must be delivered, the result is
a non-decimal string.

2. STRBIN converts a signed decimal string with at most 9 digits in SIN
GLE, 19 in DOUBLE, to a normalized floating point number X whose
value is that of the decimal integer the string represents. If the
string contains non-deciamL characters, the standard does not yet
specify what happens. If the integer cannot be represented exactly
in the intended destination, an InvaLidjOperat ion exception arises
and the corresponding trap is invoked if enabled; if a resuLt must
be delivered it is a NAN.

D. ConvcraLon over tho rull range of floating poLnt quantities could be
required to be done correctly rounded, but the cost of doing so is prob
ably more than its value. What folLows is a compromise designed to ensure
that conversion is uniform and in error by appreciably less than one unit
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in the last place delivered, at a cost which is nearly minimal. But
correctly rounded conversion should also be regarded as conforming to the
standard.

E. The function log__base__10 is required and may be computed from the formuLa

log__base__10(X) = log_base_2(X) * log_base_10(2)

It need only be computed to the nearest integer for this calculation.

F. Within the conversion process arithmetic must be done to extended preci
sion. Systems without extended precision must therefore effect extended
floating arithmetic using fixed point arithmetic on 32-bit significands
(in systems with only SINGLE precision) or 64-bit significands (in systems
with DOUBLE precision) while processing signs and exponents separately.

G. Powers of 10 not exactly calculable in the stated precision shall be pro
cured from values stored in tables. Negative powers shall be obtained by
dividing by the corresponding positive powers instead of multiplying. The
following are suggestions for tables requiring minimal storage.

rt. Systems with SINGLE precision only: 10 can be computed exactly
og

using a 32-bit significand. To cover the range up to 10 , a table

?6
with the single entry 10 suffices.

2. Systems with DOUBLE or both SINGLE and DOUBLE precisions: 10 can be
computed exactly using a 64-bit significand. To cover the range up

to 10308 atable of 105\ 10,08, and 10216 suffices.

H. BINary__floating_to_DECimal_floating. Given binary floating point number
X and integer k with 1 <. k <. 9 for SINGLE precision and 1 <. k <. 17 for
DOUBLE precision, we compute signed decimal strings I and E such that I
has k significant digits and, interpreting I and E as the integers they
represent,

X = I * 10E+1"k = sd.ddddddd * 10E

where s is the sign of X and the d's are the k decimal digits.

1. If X is +infinity or NAN deliver a non-decimal string.

2. If X = ±0 then return I = BINSTR(X) and E = BlNSTR(O0. Other
wise. ..

3. Remember the sign of X. Let Y = absoiute_value(X).

4. If Y is normalized compute U = log_base_10(Y), otherwise let U =
log_base_10(smallest normalized number).

5. Remember the current rounding mode. Compute V = INT(U)+l-k with
mode RZ. Restore the original rounding mode.
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6. Compute W = INT(Y / 10"V), drawing powers of '10 from the table if
necessary.

7. Adjust W:

If W 210 +1 then increment V and go to (6).

If W = I0k then increment V, divide W by 10 (exactly), and go to
(8).

If W^IO^1 - 1and Ywas normalized in step (3) then decrement
V and go to (6).

8. Return I = BINSTR(W with sign of X) and E = BINSTR(V).

1. DECimal_floation_to_BINary_floating. The decimal floating point number X
has the form

E
X = sddddd.DDDDDDD * 10 .

We are given
signed decimal string E
signed decimal string I = sddddddDDDDDDD
integer P indicating how many digits of I are to the right of the
decimal point

so that X can be written

X=I* 10"P*10E.

1. Compute U = STRBIN(I) and W=STRBIN(E).
W-P

2- Compute result X = U » 10
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OPEN QUESTIONS

1) Should two's-complement representation be allowed, or used instead of
sign magnitude?

2) Should the Affine/Projective modes be replaced by three zeros

+0, -0, unsigned 0

and three infinities

+«», -», unsigned °°

3) Should underflow denormalize to "epsilon" instead of zero; should
overflow go to ±IIUGE instead of ±°°?

4) Should 0 x NAN = 0 or NAN?

Should NAN/°° = 0 or NAN?

5") Should denormalized numbers be allowed to he multiplied by numbers
bigger than 2, but less than 4? Divided by numbers smaller than
\ but bigger than \ ?

6) Should V7^ = 1/5 if not trapped?" or NAN?

7) Should division by a denormalized number be allowed if it has only
one leading zero?

8) Should division with full quotient and remainder, to expedite multiple-
precision division, be required?
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