
 

 

 

 

 

 

 

 

 

Copyright © 1978, by the author(s). 

All rights reserved. 

 

Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 

for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 

lists, requires prior specific permission. 



LOCKING GRANULARITY REVISITED

by

D.R. Ries and M.R. Stonebraker

Memorandum No. UCB/ERL M78/71

6 October 1978

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



LOCKING GRANULARITY REVISITED

by
Daniel R. Ries

Michael R. Stonebraker

ABSTRACT

Locking Granularity refers to the size and hence the
number of locks used to insure the consistency of a database
during multiple concurrent updates. In an earlier simula
tion study we concluded that coarse granularity, such as
area or file locking, is to be preferred to fine granularity
such as individual page or record locking.

However, alternate assumptions than those used in the
original paper can alter that conclusion. First, we changed
the assumptions concerning the placement of the locks on the
database with respect to the accessing transactions. In the
original model the locks were assumed to be well-placed.
Under a worst-case and random placement assumptions, when
only very small transactions access the database, fine
granularity is preferable.

Second, we extended the simulation to model a lock
hierarchy where large transactions use large locks and small
transactions use small locks. In this scenario, again under
the random-worst case lock placement assumptions, fine
granularity is preferable if all transactions accessing more
than 1% of the database use large locks.

Finally, we simulated database systems which support a
"claim as needed" locking strategy together with the resul
tant deadlock. In the original study all locks were claimed
in one atomic operation at the beginning of a transaction.
The claim as needed strategy does not change the conclusions
on the desired granularity.

Key Words and Phrases: concurrency, database management,
locking granularity, locking hierarchies, multiple updates

CR Categories: 3-50, 4.33

This research was sponsored by the Air Force Office of
Scientific Research, grant 78-3596; and the Naval Electronic

Systems Command, Contract N00039-78-C-0013.



Ries, Stonebraker Granularity Revisited

lr. MIJ!°DUCJI_q_N

In a previous paper [RIES77], we examined the effects

of using locks of various sizes (or "granules") for con

currency control in a database management system. In this

paper, we report three significant extensions that affect

the conclusions of that study. We first briefly review

some aspects of concurrency control in a database system and

present an overview of the results in the original paper.

.Ijl 1l Database Concurrency Control

The concurrency control mechanism in a database manage

ment system is responsible for ensuring some level of con

sistency [ESWA76] during the processing of concurrent

updates. A variety of concurrency control mechanisms have

been suggested [CHAW, GRAY76, MACR76, STEA76] which lock

required portions of a database while a transaction is in

progress.

Some mechanisms require the notion that certain units

of the database can be locked. We shall refer to a unit of

the database which can be locked by the concurrency mechan

ism as a "granule". The size of the granule in different

database management systems varies. In some systems

(CODASYL [CODA733, System R [ASTR76], DMS-1100 [GRAY75.1) the
granule may be as small as one record. Other systems (Sys

tem 2000 [SPIT76], IMAGE [HEWL77]) support one granule cov

ering the entire database. Still other systems (DBMS-11

[DEC77], LSL [LIPS76]) support intermediate sized granules
such as files or areas.

Ll2_i Previous ResuIts

In the previous paper [RIES771 we described a simula

tion model which was used to examine the effects of dif

ferent granule sizes on the efficiency of the database

management system. It is clear that fine granularity allows

a higher degree of parallelism at a greater cost in managing

locks. Conversely, coarse granularity inhibits parallelism

but minimizes lock management costs. The simulation model

gave insight into the tradeoffs between the increased paral

lelism and the locking overhead.



Ries, Stonebraker Granularity Revisited

In the simulation, a fixed number of transactions were

cycled continuously around the model shown in figure 1. In

this model, the database was an abstract collection of enti
ties. An entity can oe thought of as the unit of data moved

by the operating system into the database system buffers.

The number of entities "touched" or accessed by a given

transaction completely determined the amount of I/O, CPU and

lock resources required by that transaction. The I/O and

CPU resources required for processing a transaction were

respectively equal to the number of entities touched times

an I/O cost per entity and a CPU cost per entity. The pro

portion of available locks required was equal to the percen

tage of the entities touched by the transaction.

Initially, the transactions arrived one time unit apart

and were put on the pending queue. A transaction then went

through the following stages.

a) The transaction was removed from the PENDING

queue and all required locks were requested.

If the locks were granted, the transaction

was placed on the bottom of the I/O queue.

If the locks were denied, the transaction was

placed on the bottom of a BLOCKED queue. The

blocking transaction was recorded. Note that

no locks are held while on the blocked queue

so deadlock was impossible.

b) After completing the I/O required, the tran

saction was placed on the bottom of the CPU

queue.

c) After completing the CPU required, the tran

saction released its locks and joined the end

of the PENDING queue. Note that each tran

saction went through one I/O phase and one

CPU phase.- Although they were sequential in

the model, the result would be the same if

each transaction went through many I/O - CPU

phases in a single cycle. All transactions

that were blocked by the completed



Ries, Stonebraker Granularity Revisited

transaction were placed on the front of the

PENDING queue.

The major parameters in the model were:

1) The number of transactions.

2) The number of entities "touched" by a tran
saction .

3) The distribution of the entities touched by
transactions.

4) The I/O cost of processing an entity.

5) The CPU cost of processing an entity.

6) The number of granules or locks.

7) The I/O cost of setting one lock.

8) The CPU cost of setting one lock.

The simulation was run varying the size of the granules

while holding other factors fixed. Figure 2 shows a typical
output from the model. In this figure, the average transac

tion "touched" 10% of the database, the I/O cost for access

ing an entity was four times the CPU costs for manipulating
the data within one entity (simulating I/O bound transac

tions), the I/O cost for setting a lock was equal to the I/O
cost for accessing an entity, while the CPU cost for setting
a lock was 1/5 of the CPU cost for manipulating an entity.

Note that machine utilization increases as the number

of granules increases then levels off and falls. Also note

that maximum utilization occurs at a relatively small number

of granules and that utilization is within W> of this

optimum for 10 granules. The conclusion can be drawn that

crude locking schemes with coarse granularity are nearly

optimal. Since a crude locking system may be easier to

implement than a sophisticated finer granularity scheme, it

is preferred. This conclusion was tested against many

changes in model parameters. These experiments included

changing the ratio of I/O time to CPU time required by a

transaction; changing the CPU and I/O resources required for

locking; and changing the number of I/O channels. The model



Ries, Stonebraker Granularity Revisited

was also changed to reflect not keeping all of the locks for
the entire duration of the transaction processing and to

reflect the keeping of locks for a "think period" during

which no useful I/O or CPU activity for the given transac

tion took place. In all cases curves similar to figure 2

resulted.

Three situations, however, did favor somewhat finer

granularity than shown in figure 2. First, reducing the
costs associated with locking, particularly keeping all

locks in core (i.e. I/O lock cost was set to zero), signifi

cantly reduced the heavy overhead costs associated with fine
granularity. The second case was was using very small tran

sactions. In this case, the optimum granularity in figure 2

was moved to the right. Finally, a balance between the I/O

and CPU costs for processing each entity needed by a tran

saction also moved the optimum to the right. Such a "bal

anced" system creates the greatest potential for I/O and CPU
overlap. However, even in these cases coarse granularity

would have served almost as well (i.e. within 5$).

1.3. Model Extensions

Several people have questioned the validity of some of

our model assumptions. In particular our assumption con

cerning the number of locks that must be obtained for each

transaction is sometimes suspect. Potentially, many more

granules may be required to lock a given number of entities
than allowed in the original model. Alternate assumptions

concerning these numbers are explored in section 2. Also, a

lock hierarchy [GRAY76] could have significantly changed our

results. In a lock hierarchy, different transactions use

different size granules for locking. With such a hierarchy,

the costs of locking may be greatly reduced since it would

be cheaper to set one large lock than to set many small
locks. This alternative is explored in section 3. Finally,

in our original model, all locks were requested at the

beginning of a transaction. In some database locking

mechanisms, locks are requested during the transaction pro
cessing. These "claim as needed" mechanisms can result in

more concurrency since locks are not held during the entire

lifetime of a transaction. However, the possibility of

deadlock is introduced. This case is discussed in section



Ries, Stonebraker Granularity Revisited

4. In section 5, we present our overall conclusions.

In the original model, the number of locks required by

a given transaction was exactly proportional to the percen

tage of the data base "touched" or accessed by the transac

tion. Hence, a transaction which touched half of the enti

ties in the database would require half of the possible

database locks. Note that this amounts to assuming that the

granules are "well placed", i.e. that the entities needed by

the transactions are packed into as few 'lockable' granules

as possible. This assumption is reasonable for transactions

which access the database sequentially. Although sequential

processing in database applications has been observed

[RODR76], actual transactions may require a combination of

sequential and random accesses to the database. R. Fabry

was the first to suggest that we explore the effects of

assumptions other than "well placed" granules on the locking
granularity.

2.1. Alternative Granule Placement Assumptions

In order to study the effects of different lock place

ment assumptions two alternatives to "well-placed" locks

were explored.

1) Worst case access:

Each transaction requires the maximum number of

granules possible. If the total number of entities

touched by a given transaction, say NE, is greater than

the number of locks covering the entire database, say

ML, then in the worst case, all of the locks might have

to be set to access the needed entities. If NE is less

than ML, on the other hand, the number of locks that

have to be set is bounded by the number of entities,

ME. Thus the number of locks required is the minimum

of the number of locks for the entire data base and the

number of entities touched by tne transaction. Tnis

assumption simulates an "uncooperative" transaction;

i.e. one whose access pattern is the worst possible

from the point of view of the locking mechanism. This

scenario is the opposite extreme of the "well placed"



Ries, Stonebraker Granularity Revisited

2)

assumption.

Random access

For each transaction, a mean-value formula is used to
estimate the number of locks required. Let s be the

number of records in the database; nlks be the total

number of locks; and p be the number of records per
block (=s/nlks). Then a transaction which accesses r

records will require

s-p "I

nlks * !1 -

locks. The Cs~p and
r

C represent the number of dif-
r

ferent ways r records can be selected from s-p and s

records respectively. The number of locks required

under the random access assumption is analogous to the

number of blocks accessed when randomly selecting

records from a blocked file. A mean-value formula for

this number and its derivation are given in [YA077].

This model accurately reflects random processing where

the probability of accessing any entity is.the same and

independent of any previous entities accessed.

Which model is more accurate depends on the nature of

transactions in a given application. However, our experi

ence is that this will normally be somewhere between well-

placed and random depending on how much sequential process

ing is done. Which model is chosen affects our original

results. If the "worst case" is chosen, the following

intuitive analysis applies. The graph in figure 3 assumes

that all transactions touch the same number of entities, NE.

The machine utilization measures decreased as the number of

locks for the entire database increased from one to NE. The

decrease is because each transaction will require more and

more locks thus increasing the locking overhead. However,

there is no additional parallelism because each transaction

locked t'» entire database.

The utilization increases, however, as the number of

locks increases from ME to the total number of entities in



Ries, Stonebraker Granularity Revisited

the database because the cost of the locking overhead will

remain constant while the allowed concurrency increases.

The locking overhead remains constant since each transaction

can never set more than NE locks. Consequently, the optimum

number of locks is very dependent on the transaction sizes

in the worst case placement lock assumption. Moreover, it

will always occur at 1 granule or the maximum number of

granules (corresponding to one lock per entity) if all the

transactions are the same size.

The effects of having varying transaction sizes will be

discussed below.

?l?..! Simulation Extension

The simulation model was run for each of the three

placement assumptions under a wide variety and combination

of parameter values. Figures 4 and 5 diagram some of the
results. In figure 4, the transaction sizes were determined

by an exponential distribution with a mean value of 500

entities (10$ of the database). In figure 5, the transac

tion sizes were also determined by an exponential distribu

tion but with a mean value of 5 entities (0.1% of the data

base). For these runs, the locks were assumed to be in core

(no lock I/O required) and the I/O and CPU time required by

the transactions were equal. These conditions were chosen

as the ones most favorable to finer granularity. The other

parameters were similar to those described in the original
paper. The top curve in both figures is consistent with the

results in our original paper. The bottom two curves

represent the worst case and random access assumptions.

For large transactions requiring about 10% of the data
base (see figure 4) a smaller number of granules was still

to be prefered to a lock for each entity. For small tran
sactions requiring about 0.1% of the database (see figure 5)
one lock per entity produced the greatest machine utiliza
tion under the worst case and random placement assumptions.

However, even with small transactions, the degree of
improvement was small as the granularity increased beyond a

certain limit. With 200 locks for example, 90% of the max

imum machine utilization was reached.



Ries, Stonebraker Granularity Revisited

Next, the simulation was run with mixed size transac

tions (the size being generated by hyper-exponential distri

butions, also suggested by R. Fabry) using the best case,
the worst case and random access assumptions. Intuitively,

this simulates a few large transactions and many small ones.

As in the original paper, under the well-placed assumption a

small number of granules was best. A relatively flat curve

relating machine utilization and the number of locks was

observed for the worst case and random access assumptions.

Thus, in these two cases, fine granularity did not interfere

with useful I/O and CPU time, but more coarse granularity

would have served as well. In fact, 98% of the maximum

utilization was achieved by 10 granules. The basic problem

with fine granularity is that the expense of running just a

few large transactions seems to outweigh the gain due to the

increased concurrency experienced by the small transactions.

—3_i Conclusions

These studies do change our original conclusions some

what. Fine granularity may be best if the following two
conditions are meet: 1) almost all of the transactions are

small and 2) access patterns are random with no sequential
ly. Under these conditions, the greater the number of

locks, the greater the machine utilization. However, the
rate of increase drops dramatically after a certain level of

granularity is obtained (about 200 granules in our simula

tion). Hence "medium" granularity does almost as well as

fine granularity; coarse granularity is unacceptable in this
case.

If too many of the transactions access a large portion

of the database, fine granularity produces too much locking
overhead and coarse granularity is again to be preferred.

Regardless of the transaction sizes, in the data access

patterns are primarily sequential, coarse granularity is

still the most effective.

1_l LOCK HIERARCHY

One way a large transaction can avoid the expense of

locking many small granules night be to have the larqe tran

sactions lock large granules while the small transactions



Ries, Stonebraker Granularity Revisited

continue to use the small locks [GRAY76]. An extension of

our simulation model to study the effects of such a lock

hierarchy on the desired granularity was first suggested by
R. Karp.

3»1 * The Model Extension

In the simulation extension a two level hierarchy was
implemented. A transaction, depending on its size, either
requested a set of small locks or one global lock which

covered the entire data base. With this extension, we
explored the interactions between any two levels of a more
general hierarchy.

The simulation was modified by adding 'pending' and

'blocked' queues for the global lock. If a transaction is

"small", it sets the global lock in shared mode and is

placed on the original pending queue. From that queue the
"small" transactions must compete for the small locks as in

the original model. If the transaction is "large", the glo
bal lock is set for exclusive access and the transaction

waits for all active transactions to finish. With the glo

bal lock set for exclusive use, new transactions, regardless
of size would also wait in the blocked queue. Once the
large transaction was allowed to proceed, it goes directly
to the I/O queue bypassing the small lock control.

The simulation was used to study the effects of certain

parameters of such a hierarchy on the desired granularity.

One of the main areas of interest was the criteria for

deciding whether the small locks or the global lock should

be used. An input parameter was added to the simulation

which specified the threshold percentage, tp, of the data
base which, must be touched by a transaction before it is

declared "large". If a transaction used less than tp per
cent of the database, the small locks would be used. Other

wise, only the global lock would be set.

3jL.ii The Simulation Results

The simulation was run with threshold percentages of

0.1%, 0.2%, 0.5%, U, 2%, 5%, ?5%, 50% and 100?, for each of
a large number of other parameter settings in order to find

10



Ries, Stonebraker Granularity Revisited

the value of tp which maximized machine utilization. The

optimum threshold observed was dependent on the number of

small locks, the assumptions concerning the placement of

those locks, the number of entities touched by the transac

tions, and the size of the database.

Figures 6 and 7 compare the threshold percentages with
the number of small locks. The depicted results represent

simulation runs with a database of 5000 entities and tran

saction sizes determined by a hyper-exponential distribution

with 90% of the transactions touching an average of 5 enti

ties and 10% touching an average of 500 entities. Again the

I/O lock costs were assumed zero (locks kept in core) and

the CPU and 1/0 costs for a given transaction were equal —

two factors favoring finer granularity in our original

study. The results in Figure 6, reflect the best case

assumption that the transactions are sequential. Random

access of the database is assumed for the simulation runs

for figure 7.

Each of the graphs is divided into three areas based on

machine utilization. The "optimum" line represents the
threshold value, tp, at which the maximum I/O and CPU utili

zation was observed for a fixed number of small locks. With

threshold values in area B, the hierarchical locking pro
duced results within 2% of that maximum utilization. In

area A, the utilization was less than in area B. In this

case, too few transactions used the global lock, i.e. the
threshold, tp, was set too high. In area C, the machine
utilization was also less than in area B. In this case,
however, too many transactions have used the global lock,
i.e. the threshold, tp, was too low.

For example, consider figure 6 with 1000 small locks.

The machine utilization increased as the threshold percen
tage was increased from 0.1% to 5%, but decreased as the

threshold increased from 5% to 100%. However, simulation
runs with threshold percentages between 17, and 25% produced
within ?.% of the machine utilization observed with the

optimum threshold.

In figure 6, "well-placed" granules are assumed. With

more than 1000 small locks the optimum value of tp was

between 1% and 5%. With the number of locks between 10 and

100, to values of 50% to 1007, were optimal. In this

11



Ries, Stonebraker Granularity Revisited

granularity interval, the 2% area included the case where

all transactions used only the small locks. The overall

maximum machine utilization occurs in figure 6 with 10 locks

and tp values greater than 50%. In these cases, almost all

of the transactions used the small locks. Hence, the value

of a lock hierarchy under the well-olaced locks assumption

is very small.

However, in figure 7, the random access patterns for

each transaction are assumed. With coarse granularity, the
optimum threshold occured at 0.5%. With a higher threshold,

more of the smaller transactions would use the small locks,

and consequently would lock a large portion of the database.

As a result, these transactions would expend more resources

for locking than if the global lock were used without signi

ficantly increasing the concurrency allowed.

In figure 7, the differences in computer utilization

between areas A, B, and C is small for coarse granularity.

For 10 granules, for example, no matter what value of tp is

used, the computer utilization is within 3% of the maximum

observed for that granularity. Similarly, for 100 granules,

the computer utilization was within 15% of the maximum

observed for any value of tp. Thus even with random access

transactions, a hierarchy with a small number of small locks

can at best provide slight improvement over a single level

locking system.

Under the random access assumptions, the overall max

imum machine utilization occurred with 5000 granules and a

tp of 1%. The cross-hatched area in figure 7 represents

those combinations of tp and number of small locks which

resulted in machine utilization within 2% of the overall

maximum. Hence, fine granularity is to be preferred. The

lock hierarchy effectively prevents excessive locking over

head for large transactions.

For fine granularity, the B areas in figures 6 and 7

have considerable overlap. For example, in figure 6, with

2500 small locks, the 2% of optimum interval occured with a

tp between 0.5% and 10%. In figure 7, with the same number

of small locks, the interval occurred with tp values between

0.5* and 5%. Thus, at this granularity, a tp between 0.5%

and 5% can safely be chosen regardless of the randomness of

the data access patterns.

12



hies, Stonebraker Granularity Revisited

Other simulation experiments used the worst case data

access assumption and produced results very similar to those
in figure 7.

In still other simulation runs, as the average transac
tion size decreased, the range of acceptable tp values (area
B) also decreased. With fine granularity, regardless of the
transaction sizes, a threshold between 1% and 2% always pro
duced machine utilization within 2% of the maximum.

With coarse granularity, however, changes in the size

of the transactions, created non-overlapped intervals of
acceptable tp values. In other words, no one value of tp
could be chosen that would be correct for vastly different
sized transactions. Thus much greater care must be applied
to a hierarchy with coarse granularity. Furthermore, a
stable transaction size environment must be assumed.

The size of the database was also varied. F)r example,
we ran the simulation with a database consisting of only 16
entities. In this scenario, we examined the possible
interaction of a page/record hierarchy. An entity
corresponds to one record in a page which holds 16 records.

In our simulation, we were then modelling the effects of
locking the whole page by the global lock, or locking indi
vidual records by the small locks. Some increase in machine

utilization was observed with a threshold of 50%; but the
increase over using no hierarchy at all was less than 4%.
Again it appears that a lock hierarchy covering only a small
number of smaller locks is not worth implementing.

We also ran the simulation with databases of up to
100,000 entities. The results were similar to the results

produced with a database of 5,000 entities. For example, we
ran cases where the average transaction size of most of the

transactions was just 0.05% of a 100,000 entity database and
the average size of a few large transactions was 1% of the

database. In these cases, with tne finest granularity
(100,000 small locks), a threshold of 1% was still optimal.

3 .3 » Conclusions

A locking hierarchy should oe implemented when the

small locks are of a fine granularity; a low threshold is
used to separate the large and small transactions, and

13



Ries, Stonebraker Granularity Revisited

random data access patterns are anticipated. With this

model the increase in machine utilization over a single

level locking scheme is potentially significant. Further

more, a threshold of about one percent can be selected

independent of the granule placement or transaction size

assumptions.

With coarse granularity, on the other hand, a locking

hierarchy should not be used. The potential gain is not
significant and is only realized in certain cases. Another

problem with the coarse granularity/locking hierarchy model
is that the optimum value for the threshold percentage is

extremely sensitive to the placement of the locks with

respect to the transactions.

1l CLAIM AS NEEDED LOCKING

Another difference between our model and some database

concurrency control immplementations deals with when the

locks are actually acquired. In the original study, a "ore-
claim" model was assumed where all of the locks were

acquired before any transaction processing took place. In

some database systems, a lock is not acquired until the

related entities are actually needed by a transaction.

These "claim as needed" schemes are used either to reduce

the total time locks are held and/or because the locks to be

acquired depend on data values of entities already accessed.

In these cases, some locks may'have to be held while other

locks are requested, and deadlock can occur [C0FF71]. In

this section we examine the effects on the optimum granular
ity of a claim as needed scheme.

4.1. The Model Extension

The simulation was modified by cycling each transaction

through the I/O and CPU queues (see figure 1) once for each

lock reauired. The total I/O and CPU times required for a

transaction are the same as in the original model and are

equally distributed among each of a transaction's cycles.

Between each cycle, a transaction requests one lock.

If the lock is granted, the transaction goes on the active

queues. When a transaction has completed its last cycle on

the active queues, all its locks are released as in the

14



Ries, Stonebraker Granularity Revisited

or iginal model.

If the lock is denied, the requesting transaction is
placed on the blocked queue. The lock can be denied due to
locks held by other active transactions, or by blocked tran
sactions. If the blocking transaction is on the blocked

queue, a deadlock condition can exist. If deadlock occurs,
a victim is picked for backout. The locks held by the vic
tim are released, any blocked transactions are freed, and
any time spent on the active queues by the victim is added
to a "lost time" total.

**••"• The Simulation Results

The modified simulation was run varying the sizes of

the transactions, changing the lock placement assumptions,
and with and without a lock hierarchy. Again we assumed

that there is no I/O cost associated with locking and that

the transactions required equal amounts of CPU and I/O
resources.

The results of these simulation runs are very similar

to those in [RIES773 and those presented above for the pre-

claim strategy. In all cases, a claim as needed strategy
does not change the granularity required for maximum machine
utilization.

For example, figure R, shows the results of running the
simulation with no hierarchy, well placed granules and tran
saction sizes determined by a hyper-exponential distribution

(see section 3.2). The lost time area represents the
machine utilization by transactions that had to be restarted
due to deadlock. The useful computing includes only the I/O

and CPU resources used by successfully completed transac

tions .

The locking cost in the preclaim model is greater than

the locking cost in the claim as needed locking model. This
difference is because in the case of a lock request failure,

in the preclaim model all of the locks must be requested

again. In many cases, any decrease in lock costs, however,
was more than offset by the lost time due to deadlock reso

lution. Thus the useful machine utilization was greater

under the preclaim model than under the claim as needed
strategy. Many other cases with different transaction sizes

15



Ries, Stonebraker Granularity Revisited

and lock placement assumptions were also tested and produced

similar results.

For example, figure 9 compares the useful machine util

ization between the two models under the assumptions that

all transactions are small and that each transaction has

random data access patterns. In both of these runs, the

average transaction size was 0.1% of the database. Note

that, with the possibility of deadlock, the machine utiliza

tion curve does not flatten out as the granularity increased

in contrast to our observation in section 2.3. In these

cases, we thus conclude that with a claim as needed model,

the finest granularity may be manditory. Note, however,

that the claim as needed scheme again produced less useful

I/O and CPU utilization than the preclaim model.

However, as the average transaction size became even

smaller, the last observation does not hold. With an aver

age transaction size of less than 0.05% of the database,

random data access patterns, and the finest granularity, the

claim as needed scheme resulted in greater useful machine

utilization. Under these conditions, the claim as needed

strategy allowed the greatest concurrency since locks were

held for a shorter period of time. In contrast to our other

runs, very few transactions had to be backed out and the

cost of rerunning such small transactions was insignificant.

The modified simulation was. also run with a lock

hierarchy and various threshold percentage values. A simi

larity in the shapes of the curves between the preclaim and

claim as needed strategies was also observed. Under the

random access assumptions, for example, the maximum machine

utilization is again reached with the finest granularity and

a threshold value of 1 to 2 percent.

4.3 Conclusions

The acquisition of locks throughout the processing of a

transaction does not significantly change the other conclu

sions of this paper. .However, two observations should be

made. First, deadlock detection and resolution appears to

be generally more expensive than the release and rerequest

used in the preclaim strategy. When locks are known at the

start of a transaction a preclaim algorithm is suggested.

16



Ries, Stonebraker Granularity Revisited

Second, if all of the transactions are small and a ran

dom access pattern is present (see figure 9), an algorithm

allowing for deadlock makes the finest possible granularity

essential.

5. SUMMARY

In a previous simulation study, we concluded that for

concurrency control locking in a database management system,

coarse granularity, such as file, area or database locking,

was alnost always preferable to fine granularity such as

individual page or record locking.

In this extension of the study, several alternative

assumptions showed that there are cases where this conclu

sion doesn't hold. In particular, if ALL transactions are

randomly accessing small parts of the database, then finer

granularity is to be preferred.

However, if several of the transactions are large, a

lock hierarchy must be used if the fine granularity is still

to be supported. Such a hierarchy was shown to be benefi

cial mainly for fine granularity and random data access pat

terns. In these cases, all transactions touching more than

1% of the database should use a few large locks rather then

many small locks. If the data access patterns were sequen

tial, however, single level locking with coarse granularity

was still to be preferred.

Both of these results hold, regardless of whether a

preclaim or claim as needed strategy is used for lock

acquisition. In general, with a few exceptions, if possi

ble, a oreclairn strategy produced better machine utilization

than the claim as needed model.

Our overall conclusions are that the optimum locking

granularity is somewhat application dependent. In many

cases, coarse granularity, such as file or relation locking,

with a preclaim strategy is to be preferred. Such a coarse

granularity can be augmented with a lock hierarchy using

very small granules, such as record or page locking within a

file, at the lower level of the hierarchy. Then the con

currency control can be tuned to allow for a wider class of

transactions. In particular, this class includes those

transactions that randomly access just a few records of a

17



Ries, Stonebraker Granularity Revisited

given file. However, any gains of such a hierarchy are
still application dependent and must be weighed against
increased implementation and locking overhead costs.

13



Ries, Stonebraker Granularity Revisited

ASTR76

CHAM74

CODA73

C0FF71

DEC77

ESWA76

GRAY75

GKAY76

REFERENCES

Astrahan, M. et.al, "System-R: Relational

Approach to Database Management," ACM Tran

sactions on Data Base Systems, Vol 1, Mo 2,

June 1976.

Cha.mberlin, D. et. al, "A Deadlock-Free

Scheme for Resource Locking in a Data Base

Environment",IBM Research Report, San Jose,

Ca., June, 1974.

CODASYL Programming Language Committee.

CODASYL COBOL Data Base Facility Proposal,

March 1973

Coff.man, Jr. E.G., Elphick, M.J., Shoshani,

A., "System Deadlocks" Computing Surveys,

Vol 3 No 2, June 1971 pp 67-78

Digital Equipment Corparation, "DBMS-11 Data

Base Administrator's Guide", DEC-11-ODABA-

A-D, 1976.

Eswaran, K. P., Gray, J. M., Lorie, R. A.,

Traiger, L. I.; "On the Motions of Con

sistency and Predicate locks in a data base

Svstem ", CACM Vol 19, Mo 11, November,

1976.

Gray, J.M.,Lorie, R.A., and Putzolu, G.R.

"Granularity of Locks in a Shared Data

Base", Proc. 1975 VLDB Conference, Framing-

ham, Mass., Sept., 1975.

Gray, J. Lorie, R. A., Putzolu, G

and Traiger, I. L.; "Granularity of Locks

and Degrees of Consistency in a Shared Data

1Q



Ries, Stonebraker Granularity Revisited

Base." Proc. IFIP Working Conference on

Modelling of Data Base Management Systems;

Freudenstadt, Germany; January 1976.

HFWL77 Hewlett-Packard Corporation, "IMAGE Refer
ence Manual", 1977.

LIPS76 Lipson, W. and Lapezak, "LSL User's Manual";
Computer Systems Research Group, University
of Toronto, Technical Note Mo 9, August,
1976.

MACR76 Macri, P., "Deadlock Detection and Resolu
tion in a CODASYL Based Data Management Sys
tem," Proc. 1976 ACM-SIGMOD Conference on

Management of data, Washington, D. C, June,
1976

RIES77 Ries, D. R., Stonebraker, M. "Effects of
Lock ng Granularity in a Database Management

System", ACM Transactions on Database

Systes, Vol. 2, Mo. 3 September, 1977

RODR76 Rodriquez-Rosell, J., "Empirical Data Refer
ence Behavior in Data Base Systems" Computer
Vol 9, No. 11, November 1976 pp 9-13

3TEA76 Stearns, R. E. et al, "Concurrency Control
for Data Base Systems " Proc 1976 ACM Sympo

sium on Foundation of Computer Science,
October 1976.

YA077 Yao S. 13., "Approximating Block Accesses in

Database Organizations", CACM Vol. 20, Mo.

4, April 1977, pp 260-261

20



Pending
queue

Figure 1: Simulation model

I/O
queue

CPU

queue



tmax= 10000 -i

8 000 -

2 000-

0 4

1 10 100 1000 5 000
No. of granules (log scale)

Peak

--Useful I/O

10

Figure 2: Computer time versus Number of Granules



a

o

o

CL

£
o

o

All transactions use

NE locks

NL=NE

Figure 3: Worst Case Lock Placement

NL= Database



20 000 n

16 000-

Well-placed

.2 12 000-

3

E
o

o

8 000-

4 000 -

Worst-case
placement

I 10 100 I 000 5 000

No. of granules (Log scale)

Figure 4: Large Transactions



20 000-,

16 000-

</>

c
o

o I2 000H

% 8000-1
£
o

o

4000-

Well-placed

Worst-case
placement

10 100

No. of granules (Log scale)

Figure 5: Small Transactions

—i 1

1000 5 000



a> 10
C7»
o
-♦—

c
CD 5
O
w

<D

Q.

X>

O |
JZ.

</>

<D

Overall

optimum

0 100 1000 5 000

No. of granules (Log scale)

Area A: tp too high
Area B: Highest Machine Utilization
Area C: tp too low

Figure 6: Well-Placed Locks in a Lock Hierarchy



a>

o>
o

c
CD
O
k-

CD
CL

o

I 0.5

Area A

Area B

Area C

Overall
optimum

10 100 1000 5 000

No. of granules (Log scale)

tp too high
Highest Machine Utilization
tp too low

Figure 7: Ramdom Lock Access in a Lock Hierarchy



20 OOO-i

16 000-

o 12 000H

O)

o

o

8 000-

4 000-

10 100

No. of granules (Log scale)

Lost time due

to dead lock
on

k^ Lock cost

—i 1

1000 5 000

Figure 8: "Claim as Needed" Locking



c
o

20 000-i

16 000-

•5 12 000-

0>

o
o

8 000-

4 000-

Claim as needed

10 100

No. of granules ( Log scale)

—i 1

I 000 5 000

Figure 9: "Preclaim" versus "Claim as Needed"


	Copyright notice 1978
	ERL-78-71

