

Copyright © 1978, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

AN ALGORITHM TO SOLVE THE mxn ASSIGNMENT PROBLEM

IN EXPECTED TIME 0(mn log 0)

by

R.M. Karp

Memorandum No. UCB/ERL M78/67

27 September 1978

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

AN ALGORITHM TO SOLVE THE mxn ASSIGNMENT PROBLEM

IN EXPECTED TIME 0(mn log n)+

Richard M. Karp+t

Abstract

We give an algorithm to solve the m-source, n-destination assignment

problem in expected time O(mnlogn) under the assumption that the edge

costs are independent random variables and the costs of the edges incident

with any given source are identically distributed. The algorithm uses a new

implementation of priority queues.

Key Words, combinatorial optimization, network flow, matching, assignment

problem, priority queue, analysis of algorithms, data structure

+Research supported by National Science Foundation Grant MCS77-09906.
"^Computer Science Division, Department of Electrical Engineering and

Computer Sciences and the Electronics Research Laboratory, University of
California, Berkeley, CA 94720.

1

1. Introduction

•An instance of the assignment problem is specified by a complete undirected

bipartite graph, together with an assignment of a nonnegative cost to each

edge. The graph is denoted G = (V,E), where the vertex set V is the

union of two disjoint sets, X (the sources) and Y (the destinations),

such that |X| < |Y|; the edge set E consists of all two-element sets

{x,y} such that x e X and y e Y. The cost of the edge e = {x,y} is

denoted c(e) or c(x,y). A matching in G is a set MCE such that

every vertex is incident with at most one edge in M. The cost of M,

denoted c(M), is £ c(e)« A matching M is full if every source is inci-
em

dent with some edge in M. The assignment problem asks for a full matching

of minimum cost.

The assignment problem can be solved in time 0(|X| -|Y|) by an

algorithm based on the repeated computation of minimum-cost augmenting paths

([4],[5],[9]). In the present paper we show that a variant of this algorithm

has expected execution time 0(|X|«|Y|»log|Y|), provided the costs of the

edges are independent random variables and the costs of the edges incident

with any given source are identically distributed.

2. Review of Augmenting Path Methods

We review the augmenting path approach to the assignment problem. Further

background material on augmenting path methods can be found in [5] and [8].

Given a matching M, a vertex v is called free if it is incident with

no edge in M. A path in G is called alternating if its edges are alter

nately in M and not in M. A simple alternating path between free vertices

is called an augmenting path. If P is an augmenting path then one of its

end points is a source and the other is a destination. If M is a matching

and P is an augmenting path then their symmetric difference is also a match

ing, and |M©P| = |M| +1. The cost of the augmenting path P is c(M©P) -

cfM), which can be expressed as J c(e) - I c(e).
eep-M eEPHM

The following well-known lemma ([5]) is fundamental.

Lemma 1. If M is of minimum cost among matchings of cardinality k

and P is of minimum cost among augmenting paths relative to M, then M©P

is of minimum cost among matchings of cardinality k+1.

Lemma 1 is the basis of the following algorithm to solve the assignment

problem.

ASSIGNMENT ALGORITHM - VERSION 1

begin

M + 0;

whne |M| < |X| do

begin

let P be a minimum-cost augmenting path relative to M;

M +- M©P

end;

end

We will arrive at our eventual algorithm by refining and specifying in

greater detail the process of finding the augmenting path P. The augmenting

paths relative to a matching M can be determined using an associated

directed graph G = (V,E) called an augmentation graph. The set of directed

edges E consists of forward edges and backward edges, specified as follows:

if {x,y} e E, x € X and y e Y then:

if {x,y} $ M then <x,y> is a forward edge;

if {x,y} e M then <y,x> is a backward edge.

A minimum-cost augmenting path P is found as follows:

To each forward edge <x,y> assign cost c(x,y); to each backward

edge <y,x> assign cost -c(x,y); let P be a minimum-cost directed path

from a free source to a free destination; then P = {{x,y}|<x,y>ep or <y,x>ep}

References [4] and [9] give an improvement on VERSION 1. This improve

ment depends on the fact that a minimum-cost path in a digraph from one

given set of vertices to another given set can be computed rapidly provided

all edge costs are nonnegative. The idea of the improvement is to modify

the costs of the edges in the augmentation network so that:

(i) the identity of the minimum-cost directed path (or paths) from a

free vertex in X to a free vertex in Y is unchanged

and (ii) all edge costs are nonnegative.

This is achieved by associating with each vertex v a "potential" a(v)

which affects additively the costs of all edges of G incident with v.

The details of the scheme are given in the next version of the algorithm.

ASSIGNMENT ALGORITHM - VERSION 2

begin

for v^V do a.(v) «-0

while |M| < |X| do

begin

form the augmentation network G;

for each {x,y}£E-M assign directed edge <x,y> the cost

c(x,y) =c(x,y)+a(x)-a(y);

for each {x,y}eM assign directed edge <y,x> the cost 0;

for all vev do

begin

let y(v) be the minimum cost of a directed path in G which begins

at a free source and ends either at v or at a free destination;

a(v) «-a(v)+y(v)

end

let P be a minimum-cost directed path in G from a free source to a

free destination;

let P be the set of edges in G corresponding to edges in P;

M«-N©P

end

end

It can be proven inductively that the following properties hold at the

beginning of each iteration of the while loop:

(i

(11

(111

(iv

(v

for each free source x, a(x) = 0;

for each free destination y, a(y) = a* = max a(v);
vGV

for each edge {x,y} in E, c(x,y) = c(x,y) +a(x) -a(y) > 0;

for each edge {x,y} in M, c(x,y) = c(x,y) +a(x) -a(y) = 0;

if P is a directed path in G from a free source to a free

destination, then

cost of P relative to the edge costs in VERSION 1

- cost of P relative to the edge costs in VERSION 2

= a*

Properties (iii) and (iv) ensure that all shortest-path computations

are performed on networks with nonnegative costs. Property (v) ensures that,

at each iteration, the algorithm indeed computes a minimum-cost augmenting

path; hence the algorithm solves the assignment problem correctly.

3. A Minimum-Cost Path Algorithm Using Priority Queues

Efficient algorithms to compute minimum-cost paths from a single source

to all the vertices of a network with nonnegative edge costs were suggested

two decades ago by Dantzig [2] and Dijkstra [3]. Many refinements have

been suggested since (see, for example, [6]). The computation of the path

P and the quantities y(v) involves a variant of the single-source minimum-

cost path problem having the following input data: a digraph 6 = <V,E>;

a set S c V of start vertices; a set T c v of target vertices such that

SHT = <f> and there exists a path from S to T; for each edge <u,v> a

nonnegative cost d(u,v). For each v e V, let OUT(v) denote the set of

edges of G directed out of v, and let y(v) denote the minimum cost of

a path from a vertex in S to a vertex in TU{v}. The following algorithm

computes y(v) and the associated minimum-cost paths.

MINIMUM-COST PATH ALGORITHM - VERSION 1

begin

PATHSET-0;

EDGE-0;

R-S;

for uGR do y(u)+0; EDGE - EDGEUOUT(u);

while RHT = 0 do

begin

choose <x,y>GEDGE so that y(x)+d(x,y) = min [y(u)+d(u,v)];

EDGE-EDGE-{<x,y»; <u,v*=EDGE
if y^R then

begin

PATHSET - PATHSET U {<x,y>};

R-RU{y};

Y(y)^-Y(x)+d(x,y);

EDGE-EDGE UOUT(y)

end

end;

for v^R do y(v) -y(y);

end

At the beginning of each execution of the body of the while loop R

denotes the set of vertices v for which y(v) has been determined. The

set PATHSET contains, for each v e R-S, the last edge in a minimum-cost

path from S to v. The set EDGE contains those edges which are directed

out of vertices in R and have not been examined during the execution of

the algorithm.

The bulk of the execution time of the algorithm is spent in performing

the following operations on the set EDGE:

(i) EDGE - EDGEUOUT(y); this operation is performed whenever a

a vertex y enters R.

(ii) selecting an edge <x,y> e EDGE to minimize y(x)+c(x,y).

The complexity of these operations depends critically on the data

structure chosen to represent EDGE. A natural choice is a data structure

called a priority queue ([1],[7]). A priority queue represents a set of

items of the form <x,8>, where x is an arbitrary data object and 6 is

a real number called the value of the item; it supports the operations of

initialization, insertion and deletion, which are defined as follows:

Operation Execution Time

Initialize the queue by inserting N items 0(N)

Insert a new item into a queue containing N items 0(log N)

Delete an item of minimum value from a queue con
taining N items

0(log N)

The total execution time of operations on the priority queue EDGE

during the execution of the minimum-cost path algorithm is 0(|E|log|E|),

since each edge is inserted at most once and deleted at most once. The

total time for other operations is 0(|V|), and hence the over-all execu

tion time of the algorithm is 0(|V| + |E|log|E|).

The computation of an optimum assignment requires |X| executions of

the minimum-cost path algorithm. At each execution the digraph is the

8

augmentation digraph with respect to the current matching, the start vertices

are the free sources and the target vertices are the free destinations. The

cost of a forward edge <x,y> is c(x,y) = c(x,y) +oc(x) -a(y), and the

cost of a backward edge is zero.

It will be convenient to modify the minimum-cost path algorithm in two

ways when it is used as a subroutine within an assignment algorithm.

(i) Backward edges of the form <y,x> are not explicitly inserted into

EDGE. Instead, whenever a destination y enters R and

{x,y} e M, x enters R immediately and y(x) is set equal to

Y(y)'. This is valid since <y,x> has cost zero,

(ii) When a source x enters R, each pair <x,y> such that y£Y

is inserted into EDGE. This insertion is erroneous in case

{x,y} e M; in such a case <x,y> is not an edge of G. To

compensate, every time an edge <x,y> is selected from EDGE, it

is discarded if {x,y} e M.

Since each augmentation graph has |X| + |Y| vertices and at most

[X|•|Y| edges, the execution time for each augmenting path computation is

0(|X|-|Y|«log|Y|), and the over-all execution time of the assignment algo-

rithm is 0(|X| •|Y|-log|Y|). A different implementation of the minimum-

cost path algorithm is possible [3] which leads to a worst-case execution

time of 0(|X[-1Y|), for the assignment algorithm, but does not lend

itself to the modification which is examined in the next two sections, and

is the key point of the present paper.

4. A Modified Assignment Algorithm

When executed on typical examples the assignment algorithm we have

presented spends most of its time pouring edges into the set EDGE; very few

of these edges are ever selected from EDGE. In this section we present a

trick which tends to reduce drastically the number of priority queue inser

tion operations executed by the algorithm, at the cost of a modest increase

in the number of deletions. The trick is based on the use of "surrogate

items" in the priority queue; the insertion of one surrogate item will take

the place of a large number of insertions of conventional items.

In the next section we show that, under suitable assumptions about the

joint probability distribution of the costs c(x,y), the average execution

time of the modified assignment algorithm is 0(|X|•|Y|«log|Y|).

Consider a point in the execution of the assignment algorithm (Version 2)

when a matching M has just been determined and the node potentials a(v)

have been readjusted. Let a* = max a(v). Recall that c(x,y) = c(x,y) +a(x)
v

- a(y). Define c*(x,y) by c*(x,y) = c(x,y)+a(x)-a*. Then

c*(x,y) < c(x,y)

y(x)+c*(x,y) < y(x)+c(x,y) ,

with equality if y is a free destination. Also, c*(x,y) < c*(x,y') if

and only if c(x,y) < c(x,y').

The modified assignment algorithm has a preprocessing phase in which,

for each source x, a list LIST(x) is formed consisting of all ordered

pairs <x,y> such that y is a destination, sorted in increasing order of

the cost c(x,y).

During the execution of the modified assignment algorithm, information

about the set EDGE is kept in a priority queue Q containing two types of

items: regular items of the form «x,z>,y(x)+c(x,z)> and special items

of the form «x,y>,Y(x)+c*(x,y)>. Such a special item is called a surrogate

for the regular item «x,z>,y(x)+c(x,z)> if c(x,y) < c(x,z) (or,

10

equivalently, y(x)+c*(x,y) < y(x) +c*(x,z) < y(x) +c(x,z)) . The relation

of the queue Q to the set of edges EDGE is as follows: <x,z> e EDGE o

Q contains either the regular item «x,z>,y(x)+c(x,z)> or a surrogate for

that item.

Using the structure Q we can implement all the operations on EDGE

required by the assignment algorithm. These operations are:

(A) EDGE «• 0

(B) Test if EDGE = 0

(C) EDGE - EDGEUOUT(x)

(D) choose <x,y> such that

Y(x)+c(x,y) = min [y(u)+c(u,v)] .
<u,v>€EDGE

The implementations of these operations using Q are as follows:

(A) Q + 0

(B) Q = 0?

(C) begin

<x,y>«-first element of LIST(x);

insert into Q the special entry «x,y>,Y(x)+c (x,y)>

end

(D) Procedure SELECT

begin

do

begin

q«-the item of least value in Q;

delete q from Q;

<x,y>-«-the edge-to which q corresponds;

if q is special

then

11

begin

if <x,y> is not the last element of LIST(x)
then

begin

<x,w>-<-the successor of <x,y> in LIST(x);
insert into Qthe special item «x,y>,Y(x)+c*(x,y)>;
end

insert into Q the regular item «x,y>,Y(x)+c(x,y)>

end

end

until a regular item «x,y>,Y(x)+c(x,y)> has been selected such

that {x,y}$M

end

The following version of the assignment algorithm incorporates all our

modifications.

ASSIGNMENT ALGORITHM - VERSION 3

begin

for x€X do LIST(x)«-an array containing the set of elements {<x,y>|
yGY} in increasing order of c(x,y);

M+ 0;

for v^V do a(v) «-0;

while |M| <|X| do
begin

PATHSET + 0;

Q^0;

R + {free sources};

for x£R do

begin

y(x)<-0;

<x,y>«-first element of LIST(x);

insert into Q the special item «x,y>,Y(x)+c*(x,y)>;
end

while Rn{free destinations} =0 do

12

begin

Execute Procedure SELECT

if y <f R then

begin

PATHSET «- PATHSET U {<x,y>}

R^RU{y}

Y(y)^Y(x)+c(x,y)

if y is not free then

begin

{y,v}^-the edge of M incident with y;

PATHSET «- PATHSET U{<y,v>};

R^RU{v};

y(v)^y(y);

<v,£>«-first element of LIST(v);

insert into Q the special item «v,£>,y(v)+c*(v,£)>

end

end

end

for v $ R do y(v) ^Y(y);

for v G V do a(v) «-oi(v)+y(v);

Let P be the unique directed path from a free source to y whose

edges are all in PATHSET;

Let P be the set of edges in G corresponding to directed edges in P;

M + M©P

end

end

5. Average Execution Time of the Assignment Algorithm (VERSION 3)

We make the following assumptions:

(i) the costs c(x,y) are independent random variables;

(ii) for each fixed source x, the costs c(x,y), for all y e Y, are

drawn independently from a common distribution.

The sorting operations involved in forming the list LIST(x) for each

xGX require 0(|X| •|Y|-log|Y|) steps.

13

Next we derive an upper bound on the expected time spent in operations

on the priority queue Q. At any point in the execution of the algorithm

call <x,y> a virgin edge if no entry previously selected from Q during

the entire computation contains <x,y> in its edge field. In particular,

<x,y> is a virgin edge whenever Y is a free destination. Call the

selection of an item corresponding to a virgin edge an initial selection.

Each time an initial selection occurs involving an edge directed out of x,

all virgin edges <x,y> are equally likely to be involved. This is so

because the costs c(x,y) (and hence c*(x,y)) associated with edges out

of x are drawn independently from a common distribution, and none of the

previous selections of edges from Q have given information about the

relative costs of the virgin edges directed out of x.

For any k, phase k of the algorithm refers to the period when the

matching M is of size k. We place an upper bound on the expected number

of initial selections during phase k. The selection of a virgin edge

directed into a free destination will trigger an augmentation and end the

phase. For each x, there are at most |Y| virgin edges directed out of

x, and |Y|-k of these are directed into free destinations. Hence the
Iy I —k

probability that a given initial selection will end the phase is > yi ,
|Y|

and the expected number of initial selections in phase k is < ly Ik'

Now we bound the expected number of selections of all kinds. If an

edge ceases to be virgin in phase k, then the number of selections involv

ing it is < 2(|X|-k+l), since at most one special item and one regular item

corresponding to that edge can be selected at any phase. Hence the expected

total number of selections is bounded above by

zi-rffrWI-k+i) " 2|Y|-|X|+0(|Y|) .
k=0 lTl"K

14

Since each selection takes time 0(log|Y|), the expected time for all

selections is bounded above by 0(|X| -1Y| -log[-Y|). •

The time for all operations not associated with preprocessing or

selection from Q is bounded above by 0(|X|«|Y|). Hence the expected

execution time of the algorithm is 0(|X|-|Y|-log|Y|).

15

References

[1] Aho, A.V., Hopcroft, J.E. and UUman, J.D., The Design and Analysis
of Computer Algorithms, Addison-Wesley (1974).

[2] Dantzig, G.B., "On the shortest route through a network," Manag. Sci.
6, 187-190 (1960).

[3] Dijkstra, E.W., "A note on two problems in connexion with graphs,"
Numer. Math. 1, 269-271 (1959).

[4] Edmonds, J. and Karp, R.M., "Theoretical improvements in algorithmic
efficiency for network flow problems," J. ACM 19^ 248-264 (1972).

[5] Ford, L. and Fulkerson, D.R., Flows in Networks, Princeton University
Press (1962).

[6] Johnson, D.B., "Efficient algorithms for shortest paths in sparse
networks," J. ACM 24 (1977).

[7] Knuth, D.E., The Art of Computer Programming, Vol. 1: Fundamental
Algorithms, Addison-Wesley (1968).

[8] Lawler, E.L., Combinatorial Optimization: Networks and Matroids,
Holt, Rinehart and Winston (1976).

[9] Tomizawa, N., "On some techniques useful for solution of transportation
problems," Networks 1, 173-194 (1972).

	Copyright notice 1978
	ERL-78-67

